1
|
de Souza Silva AP, de Camargo AC, Lazarini JG, Carvalho GR, de Alencar SM. How does in vitro gastrointestinal digestion affect the biological activities and phenolic profile of açaí (Euterpe oleracea) and inajá (Maximiliana maripa) by-products? Food Chem 2025; 484:144364. [PMID: 40252452 DOI: 10.1016/j.foodchem.2025.144364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
This study investigates the bioactive potential and acute toxicity of açaí (Euterpe oleracea) and inajá (Maximiliana maripa) pomace extracts. The bioaccessible fraction (intestinal fraction, IF) of açaí pomace contained protocatechuic, ferulic, and vanillic acids, while inajá pomace had caffeic acid, glabridin, and an eriodictyol derivative. Both extracts showed similar total phenolic content and peroxyl radical scavenging capacity, with hypochlorous acid scavenging activity. Açaí pomace inhibited nuclear factor-κB (NF-κB) activation (85 % to 50 %) compared to inajá (33 % to 98 %), and both extracts reduced tumor necrosis factor-α (TNF-α) levels by over 81 % at 100 μg/mL, indicating anti-inflammatory properties. Acute toxicity tests in Galleria mellonella larvae showed no harmful effects at concentrations effective for antioxidant and anti-inflammatory activity. These findings suggest that açaí and inajá pomaces are promising natural sources of phenolic compounds for use in pharmaceuticals, cosmetics, and food industries.
Collapse
Affiliation(s)
- Anna Paula de Souza Silva
- Department of Food Science and Technology, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil..
| | | | - Josy Goldoni Lazarini
- Department of Food Science and Technology, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil
| | - Gisandro Reis Carvalho
- Department of Food Science and Technology, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil.; Federal Institute of Education, Science and Technology of São Paulo, IFSP, Barretos, São Paulo, Brazil
| | - Severino Matias de Alencar
- Department of Food Science and Technology, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil..
| |
Collapse
|
2
|
Heck KL, Yi Y, Thornton D, Zheng J, Calderón AI. A comparative metabolomics analysis of Açaí (Euterpe oleracea Mart.) fruit, food powder, and botanical dietary supplement extracts. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:394-408. [PMID: 38965051 DOI: 10.1002/pca.3416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Euterpe oleracea Mart. (açaí) is a botanical of interest to many who seek functional foods that provide antioxidant and anti-inflammatory properties. Cancer patients are increasingly taking botanical dietary supplements containing açaí to complement their conventional therapeutics, which may lead to serious adverse events. Before testing our açaí extracts in vitro for botanical-drug interactions, the goal is to chemically characterize our extracts for compounds whose biological activity in açaí is unknown. OBJECTIVE The objective of this work was to develop a chemical fingerprinting method for untargeted characterization of açaí samples from a variety of sources, including food products and botanical dietary supplement capsules, made with multiple extraction solvents. METHODS An optimized LC-MS method was generated for in-depth untargeted fingerprinting of chemical constituents in açaí extracts. Statistical analysis models were used to describe relationships between the açaí extracts based on molecular features found in both positive and negative mode ESI. RESULTS In an attempt to elucidate the differences in metabolites among açaí extracts from different cultivars, we identified or tentatively identified 173 metabolites from the 16 extracts made from 6 different sources. Of these compounds, there are 138 reported in açaí for the first time. Statistical models showed similar yet distinct differences between the extracts tested based on the polarity of compounds present and the origin of the source material. CONCLUSION A high-resolution mass spectrometry method was generated that allowed us to greatly characterize 16 complex extracts made from different sources of açaí with different extraction solvent polarities.
Collapse
Affiliation(s)
- Kabre L Heck
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Yuyan Yi
- Department of Mathematics and Statistics, College of Science and Mathematics, Auburn University, AL, USA
| | - Destini Thornton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jingyi Zheng
- Department of Mathematics and Statistics, College of Science and Mathematics, Auburn University, AL, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Coutinho RMP, Rocha JDCG, Neves N, da Silva VLD, Seixas VNC, Hermosín-Gutiérrez I, de Carvalho AF, Stringheta PC. The nutritional profile comparison between the white and purple Açaí in the mesoregions of Pará, Brazil. Front Nutr 2024; 11:1417076. [PMID: 39698247 PMCID: PMC11652185 DOI: 10.3389/fnut.2024.1417076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/26/2024] [Indexed: 12/20/2024] Open
Abstract
The study targeted to compare the nutritional profile of two varieties of açaí, the white and purple, found in different mesoregions of Pará, Brazil. The research focused on analyzing levels of total phenolics, total anthocyanins, antioxidant capacity, and mineral composition in these two varieties. The study sought to identify significant differences between the two varieties in terms of nutritional composition and antioxidant potential, providing valuable information into the specific nutritional and functional properties of each type of açaí studied. Higher levels of total phenolics, total anthocyanins, and antioxidant capacity were observed in purple açaí fruits, with values of 806.17 ± 17.48 mgGAE/100 g, 81.73 ± 1.77 mg/100 g, and 19.25 ± 0.35 μmol of Trolox equivalent (TE)/g, respectively, compared to 401.92 ± 52.70 mgGAE/100 g, 37.70 ± 5.34 mg/100 g, and 6.17 ± 1.07 μmol TE/g in white açaí. HPLC-MS analysis identified and quantified monomeric anthocyanins in white açaí, using two distinct analytical methods, revealing average values of 0.29 and 1.05 μg/100 g for cyanidin-3-glucoside and between 0.74 and 3.13 μg/100 g for cyanidin-3-rutinoside, respectively, which were higher than those found in yellow tropical fruits. The quality of both purple and white açaí varied significantly among mesoregions, with fruits from floodplain soils demonstrating superior quality compared to those from sandy and solid soils in southeastern Pará. Mineral composition and microbiological characteristics were similar between white and purple açaí. These findings underscore the significant influence of mesoregion and soil type on açaí quality, emphasizing the superiority of fruits grown in floodplain soils.
Collapse
Affiliation(s)
- Rosemary Maria Pimentel Coutinho
- Instituto Federal de Educação Ciência e Tecnologia do Pará – Campus Belém, Belém, Pará, Brazil
- Department of Food Technology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Nathália Neves
- Department of Food Technology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | - Paulo Cesar Stringheta
- Department of Food Technology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
Oliveira BCRD, Martins CPDC, Soutelino MEM, Rocha RS, Cruz AG, Mársico ET, Silva ACO, Esmerino EA. An overview of the potential of select edible Amazonian fruits and their applications in dairy products. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39440531 DOI: 10.1080/10408398.2024.2417796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND The Amazon forest produces a variety of fruits with strong biotechnological potential. However, their use in dairy products is restricted. SCOPE AND APPROACH This work aims to carry out a bibliographic survey on the technological applications of select edible Amazonian fruits and their residues in the elaboration and quality of dairy products. The Web of Science© (WOS), Science Direct®, PubMed®/MEDLINE, and Capes Periodicals databases were used. KEY FINDINGS AND CONCLUSIONS Adding Amazonian fruits to dairy products expands their nutritional and functional profile, presenting significant technological potential. Incorporating pulps from fruits such as "açaí" (Euterpe oleracea), "araçá-boi" (Eugenia stipitata), "bacuri" (Platonia insignis), "buriti" (Mauritia flexuosa), "camu-camu" (Myrciaria dubia), and "cupuaçu" (Theobroma grandiflorum) provides varied technological benefits, improving sensory aspects, positively influencing the growth and survival of relevant microorganisms, and increasing acceptance. In addition to the pulp, "camu-camu" residues (peel and seed) can be incorporated into dairy products as food additives or functional ingredients. This approach also diversifies the dairy market, promoting food security and sustainability for local and regional communities.
Collapse
Affiliation(s)
- Bianca Cristina R de Oliveira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | | | - Maria Eduarda M Soutelino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Ramon S Rocha
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Eliane T Mársico
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Adriana Cristina O Silva
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Erick A Esmerino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Teixeira BN, Albernaz FP, Oliveira AC, Gomes AMO, Carvalho VL, Carvalho CAM. Inhibitory activity of Euterpe oleracea Mart. fruit extract in West Nile virus infection. Microb Pathog 2024; 197:107075. [PMID: 39447664 DOI: 10.1016/j.micpath.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
West Nile virus (WNV) is a neurovirulent arbovirus whose epidemic capacity is enhanced by the wide occurrence of competent vectors and susceptible avian amplifying hosts. In this study, we investigated the antiviral potential of Euterpe oleracea Mart. fruit extract (EoFE) in WNV infection of monkey kidney (Vero) cell cultures. A chromatographic authentication of the extract revealed a typical two-peak fingerprint attributable to the major anthocyanins of the fruit. As assessed by plaque assays in Vero cells, the extract showed a significant concentration-dependent antiviral effect when present throughout the infection procedure, reaching a maximum inhibition of 66.8 % at 2 mg/mL without significant cytotoxicity or direct action on virus particles. A time-of-addition assay revealed that this anti-WNV effect was mostly exerted after virus entry, as incubation of Vero cells with EoFE before or during virus addition resulted in a nonsignificant decrease of infection efficiency. These results demonstrated a promising potential of EoFE in inhibiting WNV infection that can be further explored as an antiviral strategy.
Collapse
Affiliation(s)
- Bruna N Teixeira
- Center for Biological and Health Sciences, University of Pará State, Travessa Perebebuí 2623, Belém, 66095-662, Brazil
| | - Fabiana P Albernaz
- Leopoldo de Meis Institute of Medical Biochemistry, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, Rio de Janeiro, 21941-902, Brazil
| | - Andréa C Oliveira
- Leopoldo de Meis Institute of Medical Biochemistry, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, Rio de Janeiro, 21941-902, Brazil
| | - Andre Marco O Gomes
- Leopoldo de Meis Institute of Medical Biochemistry, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, Rio de Janeiro, 21941-902, Brazil
| | - Valéria L Carvalho
- Section for Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Ananindeua, 67030-000, Brazil
| | - Carlos Alberto M Carvalho
- Center for Biological and Health Sciences, University of Pará State, Travessa Perebebuí 2623, Belém, 66095-662, Brazil; Section for Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Ananindeua, 67030-000, Brazil.
| |
Collapse
|
6
|
Sandes JCAS, Walter EHM, Ramos GLDPA, Matta VMD, Cabral LMC. Do Temperature Abuses Along the Frozen Açaí Pulp Value Chain Increase Microbial Hazards? Foodborne Pathog Dis 2024. [PMID: 39393929 DOI: 10.1089/fpd.2024.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
Does temperature abuse during storage, distribution, marketing, and consumption of unpasteurized frozen açaí pulp increase microbial hazards? This study investigated the behavior of potentially pathogenic (Escherichia coli, Listeria monocytogenes and Salmonella spp.) and spoilage (mesophilic bacteria, yeasts and molds) microorganisms in two simulated thawing conditions: under refrigeration and at room temperature. The effect of repeated cold chain abuse was observed by thawing and refreezing (-20°C) açaí pulp four times over a period of 90 days. Freezing resulted in inhibition of all microorganisms except for mesophilic aerobic bacteria in one single sample. After thawing at 5°C, the kinetic parameters obtained by the Weibull model indicated that mesophilic aerobic bacteria, yeasts and molds and L. monocytogenes showed a longer inactivation time with δ values reaching 35, 126, and 46 days, respectively. The shortest inactivation time for a reduction of 4 log CFU.g-1 was for E. coli. The concentration of Salmonella spp. and L. monocytogenes in control samples was higher (p < 0.01) than in samples exposed to abusive conditions after 90 days of storage. The results indicate that the abusive thawing conditions studied do not increase the potential hazards of pathogens.
Collapse
Affiliation(s)
- Jéssica Caroline Araujo Silva Sandes
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
- Embrapa Food Agroindustry, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
7
|
Sousa SMDN, Garcias JT, Farias MRDO, Lima ALA, de Sousa RDSDR, Philippsen HK, Madeira LDPDS, Rogez H, Marques JM. Rhizobacteria Isolated from Amazonian Soils Reduce the Effects of Water Stress on the Growth of Açaí ( Euterpe oleracea Mart.) Palm Seedlings. BIOLOGY 2024; 13:757. [PMID: 39452066 PMCID: PMC11504209 DOI: 10.3390/biology13100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 10/26/2024]
Abstract
Euterpe oleracea Mart., also known for its fruit açaí, is a palm native to the Amazon region. The state of Pará, Brazil, accounts for over 90% of açaí production. Demand for the fruit in national and international markets is increasing; however, climate change and diseases such as anthracnose, caused by the fungus Colletotrichum sp., lead to decreased production. To meet demand, measures such as expanding cultivation in upland areas are often adopted, requiring substantial economic investments, particularly in irrigation. Therefore, the aim of this study was to evaluate the potential of açaí rhizobacteria in promoting plant growth (PGPR). Rhizospheric soil samples from floodplain and upland açaí plantations were collected during rainy and dry seasons. Bacterial strains were isolated using the serial dilution method, and subsequent assays evaluated their ability to promote plant growth. Soil analyses indicated that the sampling period influenced the physicochemical properties of both areas, with increases observed during winter for most soil components like organic matter and C/N ratio. A total of 177 bacterial strains were isolated from rhizospheres of açaí trees cultivated in floodplain and upland areas across dry and rainy seasons. Among these strains, 24% produced IAA, 18% synthesized ACC deaminase, 11% mineralized organic phosphate, and 9% solubilized inorganic phosphate, among other characteristics. Interestingly, 88% inhibited the growth of phytopathogenic fungi of the genera Curvularia and Colletotrichum. Analysis under simulated water stress using Polyethylene Glycol 6000 revealed that 23% of the strains exhibited tolerance. Two strains were identified as Bacillus proteolyticus (PP218346) and Priestia aryabhattai (PP218347). Inoculation with these strains increased the speed and percentage of açaí seed germination. When inoculated in consortium, 85% of seeds germinated under severe stress, compared to only 10% in the control treatment. Therefore, these bacteria show potential for use as biofertilizers, enhancing the initial development of açaí plants and contributing to sustainable agricultural practices.
Collapse
Affiliation(s)
- Suania Maria do Nascimento Sousa
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.T.G.); (M.R.D.O.F.); (R.d.S.d.R.d.S.); (L.D.P.d.S.M.); (H.R.); (J.M.M.)
| | - Josinete Torres Garcias
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.T.G.); (M.R.D.O.F.); (R.d.S.d.R.d.S.); (L.D.P.d.S.M.); (H.R.); (J.M.M.)
| | - Marceli Ruani De Oliveira Farias
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.T.G.); (M.R.D.O.F.); (R.d.S.d.R.d.S.); (L.D.P.d.S.M.); (H.R.); (J.M.M.)
| | - Allana Laís Alves Lima
- Faculty of Biology, Socioenvironmental and Water Resources Institute, Federal Rural University of the Amazon, Belém 66077-830, PA, Brazil; (A.L.A.L.); (H.K.P.)
| | - Rosiane do Socorro dos Reis de Sousa
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.T.G.); (M.R.D.O.F.); (R.d.S.d.R.d.S.); (L.D.P.d.S.M.); (H.R.); (J.M.M.)
| | - Hellen Kempfer Philippsen
- Faculty of Biology, Socioenvironmental and Water Resources Institute, Federal Rural University of the Amazon, Belém 66077-830, PA, Brazil; (A.L.A.L.); (H.K.P.)
| | - Lucimar Di Paula dos Santos Madeira
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.T.G.); (M.R.D.O.F.); (R.d.S.d.R.d.S.); (L.D.P.d.S.M.); (H.R.); (J.M.M.)
| | - Herve Rogez
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.T.G.); (M.R.D.O.F.); (R.d.S.d.R.d.S.); (L.D.P.d.S.M.); (H.R.); (J.M.M.)
| | - Joana Montezano Marques
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.T.G.); (M.R.D.O.F.); (R.d.S.d.R.d.S.); (L.D.P.d.S.M.); (H.R.); (J.M.M.)
| |
Collapse
|
8
|
Sanches SCDC, Ferreira LMDMC, Pereira RR, Lynch DG, Ramos INDF, Khayat AS, Carrera Silva-Júnior JO, Rossi A, Ribeiro-Costa RM. Acai Oil-Based Organogel Containing Hyaluronic Acid for Topical Cosmetic: In Vitro and Ex Vivo Assessment. Pharmaceutics 2024; 16:1195. [PMID: 39339231 PMCID: PMC11434770 DOI: 10.3390/pharmaceutics16091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Organogels are semi-solid pharmaceutical forms whose dispersing phase is an organic liquid, for example, an oil, such as acai oil, immobilized by a three-dimensional network formed by the gelling agent. Organogels are being highlighted as innovative release systems for cosmetic active ingredients such as hyaluronic acid for topical applications. Acai oil was evaluated for its physicochemical parameters, fatty acid composition, lipid quality index, spectroscopic pattern (Attenuated total reflectance Fourier Transform Infrared Spectroscopy), thermal behavior, total phenolic, total flavonoids, and total carotenoids and β-carotene content. The effectiveness of the organogel incorporated with hyaluronic acid (OG + HA) was evaluated through ex vivo permeation and skin retention tests, in vitro tests by Attenuated total reflectance Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry. The physicochemical analyses highlighted that the acai oil exhibited quality standards in agreement with the regulatory bodies. Acai oil also showed high antioxidant capacity, which was correlated with the identified bioactive compounds. The cytotoxicity tests demonstrated that the formulation OG + HA does not release toxic substances into the biological environment that could impede cell growth, adhesion, and efficacy. In vitro and ex vivo analyses demonstrated that after 6 h of application, OG + HA presented a high level of hydration, thermal protection and release of HA. Thus, it can be concluded that the OG + HA formulation has the potential for physical-chemical applications, antioxidant quality, and potentially promising efficacy for application in the cosmetic areas.
Collapse
Affiliation(s)
| | | | - Rayanne Rocha Pereira
- Institute of Collective Health, Federal University of Western Para, Santarém 68135-110, Brazil
| | - Desireé Gyles Lynch
- School of Pharmacy, College of Health Sciences, University of Technology, Jamaica, 237 Old Hope Road, Kingston 6, Jamaica
| | | | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém 66075-110, Brazil
| | - José Otávio Carrera Silva-Júnior
- Pharmaceutical and Cosmetic R&D Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Alessandra Rossi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, Faculty of Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
9
|
Siqueira LMM, Campos ALDBS, Pires FCS, Ferreira MCR, Silva APDSE, Menezes EGO, Ramos INDF, Khayat AS, Rêgo JDARD, Carvalho Junior RND. Evaluation of Bioactive Compounds and Antioxidant and Cytotoxic Effects of Oil and Pulp without Açaí Fat ( Euterpe oleracea) Obtained by Supercritical Extraction. Foods 2024; 13:2819. [PMID: 39272584 PMCID: PMC11394948 DOI: 10.3390/foods13172819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
For bioactivity studies, it is necessary to use products with a high degree of purity, which may influence the cytotoxic effects. Supercritical technology presents itself as an alternative to obtain these products. Therefore, the objective of this work was to obtain the bioactive compounds of oil and pulp of açaí fat-free supercritical technology and evaluate the cytotoxicity of products in MRC-5 and VERO cells in vitro. The açaí pulp was subjected to extraction with supercritical CO2 to obtain the oil and pulp without fat, under conditions of 323.15 K at 35 MPa, 333.15 K at 42 MPa, and 343.15 K at 49 MPa. The largest yields (51.74%), carotenoids (277.09 µg/g), DPPH (2.55 μmol TE/g), ABTS (2.60 μmol TE/g), and FRAP (15.25 μm of SF/g) of oil and ABTS (644.23 μmol TE/g) of pulp without fat were found in the condition 343.15 K at 49 MPa. The highest levels of compounds phenolics (150.20 mg GAE/g), DPPH (414.99 μmol TE/g), and FRAP (746.2 μm SF/g) of the pulp without fat were found in the condition of 323.15 K to 35 MPa. The fat-free pulp presented high levels of anthocyanins without significant variation in cytotoxicity. The developed process was efficient in obtaining oil rich in carotenoids, and the supercritical technology elucidated an efficient way to obtain açaí fat-free pulp.
Collapse
Affiliation(s)
- Letícia Maria Martins Siqueira
- PRODERNA (Graduate Program in Engineering of Natural Resources of the Amazon), LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Ana Luiza de Barros Souza Campos
- LABEX (Extraction Laboratory), FEQ (Faculty of Chemical Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Flávia Cristina Seabra Pires
- LABTECS (Supercritical Technology Laboratory), Science and Technology Park, Perimeter Avenue of Science, km 01, Guamá, Belém 66075-750, PA, Brazil
| | - Maria Caroline Rodrigues Ferreira
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), PPGCTA (Graduate Program in Food Science and Technology), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Correa Street S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Ana Paula de Souza E Silva
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), PPGCTA (Graduate Program in Food Science and Technology), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Correa Street S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Eduardo Gama Ortiz Menezes
- Federal Institute of Education, Science and Technology of Rondônia, IFRO, Porto Velho 78900-000, RO, Brazil
| | - Ingryd Nayara de Farias Ramos
- NPO (Center for Research in Oncology), PPGOCM (Graduate Program in Oncology and Medical Sciences, ICB (Institute of Biological Sciences), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém 665-07900, PA, Brazil
| | - André Salim Khayat
- NPO (Oncology Research Center), ICB (Institute of Biological Sciences), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém 66075-900, PA, Brazil
| | - José de Arimateia Rodrigues do Rêgo
- LABA (Laboratory of Amazonian Biofilms), PPGCMA (Graduate Program in Sciences and Environment), ICEN (Institute of Exact and Natural Sciences), UFPA (Federal University of Pará), Augusto Corrêa Street S/.CON, Guamá, Belém 665-07900, PA, Brazil
| | - Raul Nunes de Carvalho Junior
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), FEA (Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém 665-07900, PA, Brazil
| |
Collapse
|
10
|
Lima LS, Ribeiro M, Cardozo LFMF, Moreira NX, Teodoro AJ, Stenvinkel P, Mafra D. Amazonian Fruits for Treatment of Non-Communicable Diseases. Curr Nutr Rep 2024; 13:611-638. [PMID: 38916807 DOI: 10.1007/s13668-024-00553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW The Amazon region has a high biodiversity of flora, with an elevated variety of fruits, such as Camu-Camu (Myrciaria dúbia), Açaí (Euterpe oleracea Mart.), Tucumã (Astrocaryum aculeatum and Astrocaryum vulgare), Fruta-do-conde (Annona squamosa L.), Cupuaçu (Theobroma grandiflorum), Graviola (Annona muricata L.), Guarana (Paullinia cupana Kunth var. sorbilis), and Pitanga (Eugenia uniflora), among many others, that are rich in phytochemicals, minerals and vitamins with prominent antioxidant and anti-inflammatory potential. RECENT FINDINGS Studies evaluating the chemical composition of these fruits have observed a high content of nutrients and bioactive compounds. Such components are associated with significant biological effects in treating various non-communicable diseases (NCDs) and related complications. Regular intake of these fruits from Amazonas emerges as a potential therapeutic approach to preventing and treating NCDs as a nutritional strategy to reduce the incidence or mitigate common complications in these patients, which are the leading global causes of death. As studies remain largely unexplored, this narrative review discusses the possible health-beneficial effects for patients with NCDs.
Collapse
Affiliation(s)
- Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nara Xavier Moreira
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
| | - Anderson Junger Teodoro
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
- Unidade de Pesquisa Clínica-UPC. Rua Marquês de Paraná, Niterói-RJ, 303/4 Andar , Niterói, RJ, 24033-900, Brazil.
| |
Collapse
|
11
|
Santos OV, Lemos YS, da Conceição LRV, Teixeira-Costa BE. Lipids from the purple and white açaí ( Euterpe oleracea Mart) varieties: nutritional, functional, and physicochemical properties. Front Nutr 2024; 11:1385877. [PMID: 39086549 PMCID: PMC11289689 DOI: 10.3389/fnut.2024.1385877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The Brazilian superfruit called Açaí or Assaí has gained interested from researcher and consumers worldwide, due to its health-related properties. In this context, this pioneering study aimed to compare the physicochemical, nutritional, and thermal properties of vegetable oils obtained from two varieties of açaí (Euterpe oleracea), purple and white. Both açaí oils from white (WAO) and purple (PAO) varieties were obtained by using the conventional solid-liquid extraction, which resulted in oil yields ranging from 52 to 61%. WAO and PAO were analyzed by their edibility quality parameters given the recommendations from Codex Alimentarius; their nutritional functionality indices and their composition of fatty acids and triglycerides content were estimated. Both oils showed low levels of acidity and peroxides, <1.8 mg KOH g-1 and < 1.7 mEq kg-1, respectively, which are good indicators of their preservation status, agreeing with the food regulations. PAO and WAO showed differences among the composition of fatty acids, mainly related to the content of monounsaturated fatty acids (MUFAs), which were 62.5 and 39.5%, respectively, mainly oleic acid. Regarding the polyunsaturated fatty acids (PUFAs), the WAO showed up to 23% of linoleic acid, whereas the PAO exhibited up to 11% of it. These differences reflect on the values of the nutritional functionality indices, atherogenic (AI), thrombogenic (IT), and hypocholesterolemic/hypercholesterolemic ratio (H/H). Both PAO and WAO showed low levels of AI and TI and superior values of H/H than other oilseeds from the literature. These results indicate the nutritional properties of açaí oils regarding a potential cardioprotective effect when included in a regular dietary intake. The thermogravimetric behavior and the evaluation of oxidation status by infrared spectroscopy (FTIR) were also studied. Both açaí oils demonstrated higher thermal stability (with an onset temperature ranging from 344 to 350 °C) and low indications of oxidation status, as no chemical groups related to it were noted in the FTIR spectrum, which agrees with the determined acidity and peroxide content. Moreover, the FTIR analysis unveiled characteristic chemical groups related to fatty acids and triglycerides, agreeing with the literature reports. These findings collectively contribute to a deeper comprehension of the nutritional and functional properties between white and purple açaí oils, offering valuable insights into their potential health, food, and industrial applications.
Collapse
Affiliation(s)
- Orquídea Vasconcelos Santos
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Instituto de Tecnologia, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Yasmin Silva Lemos
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Instituto de Tecnologia, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | | | - Bárbara E. Teixeira-Costa
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- Departamento de Nutrição e Dietética, Faculdade de Nutrição Emília de Jesus Ferreiro, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Moura JDMD, Rodrigues PDA, Dos Santos VRN, Bittencourt LO, Matos-Sousa JM, Peinado BRR, Perdigão JM, Rogez H, Collares FM, Lima RR. Açai ( Euterpe oleracea Mart.) supplementation promotes histological and ultrastructural changes in rats' alveolar bone. Heliyon 2024; 10:e31067. [PMID: 38807891 PMCID: PMC11130704 DOI: 10.1016/j.heliyon.2024.e31067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
The açai juice contains high concentrations of phenolic compounds, including cyanidin-3-glucoside and others flavonoids. The aim of this study was to evaluate the impact of açai supplementation on healthy mandibular alveolar bone in male albino rats of the Wistar strain. 24 rats were divided into 3 groups, in which one group received a daily dose of saline solution and the other two groups were treated with daily doses of clarified açai juice for 14 or 28 days. After the experiment, hemimandibles were collected and analyzed using Scanning Electron Microscopy (SEM), histological assessments, and micro-CT. Results showed changes in the integrity of the alveolar bone as seen in SEM, increased osteocyte density and higher collagen matrix area in the açai group compared to the control group as seen in histological analysis, and increased bone volume, trabecular thickness and number, and cortical bone as seen in micro-CT analysis. The space between bone trabeculae showed no difference among the groups. These results suggest that açai supplementation may have a structural change effect on alveolar bone, but further research is needed to confirm these findings in humans and to determine the exact mechanisms behind these effects.
Collapse
Affiliation(s)
| | | | - Vinicius Ruan Neves Dos Santos
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - José Mario Matos-Sousa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - José Messias Perdigão
- Center for Valorization of Amazonian Bioactive Compounds, College of Biotechnology, Federal University of Pará, Belém, Pará, Brazil
| | - Herve Rogez
- Center for Valorization of Amazonian Bioactive Compounds, College of Biotechnology, Federal University of Pará, Belém, Pará, Brazil
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
13
|
Correa KL, de Carvalho-Guimarães FB, Mourão ES, Oliveira Santos HC, da Costa Sanches SC, Lamarão MLN, Pereira RR, Barbosa WLR, Ribeiro-Costa RM, Converti A, Silva-Júnior JOC. Physicochemical and Nutritional Properties of Vegetable Oils from Brazil Diversity and Their Applications in the Food Industry. Foods 2024; 13:1565. [PMID: 38790865 PMCID: PMC11121345 DOI: 10.3390/foods13101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, the oils of açaí, passion fruit, pequi, and guava were submitted to physicochemical analysis to investigate their potential application in the food industry. Gas chromatography associated with mass spectroscopy showed that oleic and linoleic acids are mainly responsible for the nutritional quality of açaí, passion fruit, pequi, and guava oils, which exhibited 46.71%, 38.11%, 43.78%, and 35.69% of the former fatty acid, and 18.93%, 47.64%, 20.90%, and 44.72% of the latter, respectively. The atherogenicity index of the oils varied from 0.11 to 0.65, while the thrombogenicity index was 0.93 for açaí, 0.35 for guava, and 0.3 for passion fruit oils, but 1.39 for pequi oil, suggesting that the use of the first three oils may lead to a low incidence of coronary heart disease. Thermogravimetry showed that all tested oils were thermally stable above 180 °C; therefore, they can be considered resistant to cooking and frying temperatures. In general, the results of this study highlight possible applications of these oils in the food industry, either in natura or in typical food production processes.
Collapse
Affiliation(s)
- Kamila Leal Correa
- Laboratory R&D Pharmaceutical and Cosmetic, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (K.L.C.); (F.B.d.C.-G.); (E.S.M.)
| | - Fernanda Brito de Carvalho-Guimarães
- Laboratory R&D Pharmaceutical and Cosmetic, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (K.L.C.); (F.B.d.C.-G.); (E.S.M.)
| | - Erika Silva Mourão
- Laboratory R&D Pharmaceutical and Cosmetic, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (K.L.C.); (F.B.d.C.-G.); (E.S.M.)
| | - Hellen Caroline Oliveira Santos
- Laboratory of Nanotechnology Pharmaceutical, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (H.C.O.S.); (S.C.d.C.S.); (M.L.N.L.); (R.M.R.-C.)
| | - Suellen Christtine da Costa Sanches
- Laboratory of Nanotechnology Pharmaceutical, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (H.C.O.S.); (S.C.d.C.S.); (M.L.N.L.); (R.M.R.-C.)
| | - Maria Louze Nobre Lamarão
- Laboratory of Nanotechnology Pharmaceutical, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (H.C.O.S.); (S.C.d.C.S.); (M.L.N.L.); (R.M.R.-C.)
| | - Rayanne Rocha Pereira
- Laboratory of Pharmacognosy, Institute of Public Health—(ISCO), Federal University of Western Pará (UFOPA), Santarém 68040255, PA, Brazil;
| | - Wagner Luiz Ramos Barbosa
- Laboratory of Chromatography and Mass Spectrometry, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil;
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Nanotechnology Pharmaceutical, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (H.C.O.S.); (S.C.d.C.S.); (M.L.N.L.); (R.M.R.-C.)
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Via Opera Pia 15, 16145 Genoa, Italy;
| | - José Otávio Carréra Silva-Júnior
- Laboratory R&D Pharmaceutical and Cosmetic, Federal University of Pará, Rua Augusto Correa 01, Belém 66075110, PA, Brazil; (K.L.C.); (F.B.d.C.-G.); (E.S.M.)
| |
Collapse
|
14
|
Monteiro CEDS, de Cerqueira Fiorio B, Silva FGO, de Fathima Felipe de Souza M, Franco ÁX, Lima MADS, Sales TMAL, Mendes TS, Havt A, Barbosa ALR, Resende ÂC, de Moura RS, de Souza MHLP, Soares PMG. A polyphenol-rich açaí seed extract protects against 5-fluorouracil-induced intestinal mucositis in mice through the TLR-4/MyD88/PI3K/mTOR/NF-κBp65 signaling pathway. Nutr Res 2024; 125:1-15. [PMID: 38428258 DOI: 10.1016/j.nutres.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Açaí seed extract (ASE) is obtained from Euterpe oleracea Mart. (açaí) plant (Amazon region) has high nutritional and functional value. ASE is rich in polyphenolic compounds, mainly proanthocyanidins. Proanthocyanidins can modulate the immune system and oxidative stress by inhibiting the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. A great deal of evidence suggests that inflammatory cytokines and oxidative stress contribute to the pathogenesis of intestinal mucositis, and these events can lead to intestinal dysmotility. We hypothesized that ASE acts as an anti-inflammatory and antioxidant compound in intestinal mucositis induced by 5-fluorouracil (5-FU) through modulation of the TLR-4/MyD88/phosphatidylinositol-3-kinase α/mechanistic target of rapamycin/NF-κBp65 pathway. The animals were divided into linear 5-FU (450 mg/kg) and 5-FU + ASE (10, 30, and 100 mg/kg) groups. The weight loss of the animals was evaluated daily. Samples from duodenum, jejunum, and ileum were obtained for histopathological, biochemical, and functional analyses. ASE reduced weight loss, inflammatory parameters (interleukin-1β; tumor necrosis factor-α; myeloperoxidase activity) and the gene expression of mediators involved in the TLR-2/MyD88/NF-κB pathway. ASE prevented histopathological changes with beneficial effects on gastrointestinal transit delay, gastric emptying, and intestinal absorption/permeability. In conclusion, ASE protects the integrity of the intestinal epithelial barrier by inhibiting the TLR/MyD88/PI3K/mechanistic target of rapamycin/NF-κBp65 pathway.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Monteiro
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bárbara de Cerqueira Fiorio
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Géssica Oliveira Silva
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria de Fathima Felipe de Souza
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Álvaro Xavier Franco
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marcos Aurélio de Sousa Lima
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thiago Meneses Araujo Leite Sales
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Santos Mendes
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alexandre Havt
- Laboratory of Molecular Toxinology, LTM, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Luiz Reis Barbosa
- LAFFEX- Laboratory of Experimental Physiopharmacology, Parnaiba Delta Federal University (UFDPAR), Parnaíba, PI, Brazil
| | - Ângela Castro Resende
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro Marcos Gomes Soares
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
15
|
Borges KRA, Wolff LAS, da Silva MACN, de Carvalho Silva AK, Campos CDL, Souza FS, Teles AM, Vale AÁM, Pascoa H, Lima EM, de Sousa EM, Nunes ACS, Gil da Costa RM, Faustino-Rocha AI, Cardoso Carvalho R, Nascimento MDDSB. Açaí ( Euterpe oleracea Mart.) Seed Oil and Its Nanoemulsion: Chemical Characterisation, Toxicity Evaluation, Antioxidant and Anticancer Activities. Curr Issues Mol Biol 2024; 46:3763-3793. [PMID: 38785503 PMCID: PMC11120212 DOI: 10.3390/cimb46050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
This study explores a nanoemulsion formulated with açaí seed oil, known for its rich fatty acid composition and diverse biological activities. This study aimed to characterise a nanoemulsion formulated with açaí seed oil and explore its cytotoxic effects on HeLa and SiHa cervical cancer cell lines, alongside assessing its antioxidant and toxicity properties both in vitro and in vivo. Extracted from fruits sourced in Brazil, the oil underwent thorough chemical characterization using gas chromatography-mass spectrometry. The resulting nanoemulsion was prepared and evaluated for stability, particle size, and antioxidant properties. The nanoemulsion exhibited translucency, fluidity, and stability post centrifugation and temperature tests, with a droplet size of 238.37, PDI -9.59, pH 7, and turbidity 0.267. In vitro assessments on cervical cancer cell lines revealed antitumour effects, including inhibition of cell proliferation, migration, and colony formation. Toxicity tests conducted in cell cultures and female Swiss mice demonstrated no adverse effects of both açaí seed oil and nanoemulsion. Overall, açaí seed oil, particularly when formulated into a nanoemulsion, presents potential for cancer treatment due to its bioactive properties and safety profile.
Collapse
Affiliation(s)
- Katia Regina Assunção Borges
- Northeast Biotechnology Postgraduate Program, Renorbio, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil; (K.R.A.B.); (A.K.d.C.S.)
| | - Lais Araújo Souza Wolff
- Adult Health Master’s Postgraduate Program—PPGSAD, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil;
| | | | - Allysson Kayron de Carvalho Silva
- Northeast Biotechnology Postgraduate Program, Renorbio, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil; (K.R.A.B.); (A.K.d.C.S.)
| | - Carmem Duarte Lima Campos
- Postgraduate Program in Health Sciences, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil; (C.D.L.C.); (A.Á.M.V.); (R.M.G.d.C.); (R.C.C.)
| | - Franscristhiany Silva Souza
- Postgraduate Program in Biodiversity and Biotechnology of the Bionorte Network, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil
| | - Amanda Mara Teles
- Professional Postgradualte Program in Animal Health Defense, State University of Maranhão, Av. Oeste Externa, 2220-São Cristóvão, São Luís 65010-120, Maranhao, Brazil;
| | - André Álvares Marques Vale
- Postgraduate Program in Health Sciences, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil; (C.D.L.C.); (A.Á.M.V.); (R.M.G.d.C.); (R.C.C.)
| | - Henrique Pascoa
- Farmatec Laboratory at the Federal University of Goiás, Campus Samambaia da UFG, Goiânia 74690-631, Goiás, Brazil; (H.P.); (E.M.L.)
| | - Eliana Martins Lima
- Farmatec Laboratory at the Federal University of Goiás, Campus Samambaia da UFG, Goiânia 74690-631, Goiás, Brazil; (H.P.); (E.M.L.)
| | - Eduardo Martins de Sousa
- Graduate Program in Biosciences Applied to Health, CEUMA Universitity, São Luís 65075-120, Maranhão, Brazil;
| | - Ana Clara Silva Nunes
- Coordination of the Chemical Engineering course, Center for Exact Sciences and Technology, Federal University of Maranhao (UFMA), São Luís 65080-085, Maranhão, Brazil
| | - Rui M. Gil da Costa
- Postgraduate Program in Health Sciences, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil; (C.D.L.C.); (A.Á.M.V.); (R.M.G.d.C.); (R.C.C.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), University of Porto (FEUP), 4200-465 Porto, Portugal
| | - Ana Isabel Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- Comprehensive Health Research Center (CHRC), 7006-554 Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7002-554 Évora, Portugal
| | - Rafael Cardoso Carvalho
- Postgraduate Program in Health Sciences, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil; (C.D.L.C.); (A.Á.M.V.); (R.M.G.d.C.); (R.C.C.)
| | - Maria do Desterro Soares Brandão Nascimento
- Northeast Biotechnology Postgraduate Program, Renorbio, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil; (K.R.A.B.); (A.K.d.C.S.)
- Adult Health Master’s Postgraduate Program—PPGSAD, Federal University of Maranhao (UFMA), Avenida dos Portugueses, 1966 Bacanga, Saõ Luis 65080-085, Maranhao, Brazil;
| |
Collapse
|
16
|
Thomasi SS, de Benedicto DFC, da Conceição Alves T, Bellete BS, Venâncio T, de Andrade Mattietto R, Ferreira AG. Chemical constituents of açai berry pulp ( Euterpe oleracea Mart.) by LC-UV-BPSU/NMR and LC-UV-SPE/NMR. Nat Prod Res 2024:1-8. [PMID: 38613238 DOI: 10.1080/14786419.2024.2338805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
The techniques LC-UV-BPSU and LC-UV-SPE/NMR were applied for the first time in the analysis of açai berry (Euterpe oleracea Mart.) pulp extracts. Those techniques allowed the identification of twenty-three metabolites: Valine (1), citric acid (2), tachioside (3), isotachioside (4), α-guaiacylglycerol (5), syringylglycerol (6), uridine (7), adenosine (8), dimethoxy-1,4-benzoquinone (9), koaburaside (10), protocatechuic acid (11), eurycorymboside B (12), 7',8'-dihydroxy-dihydrodehydroconiferyl alcohol-9-O-β-D-glucopyranoside (13), orientin (14), homoorientin (15), dihydrokaempferol-3-glucoside (16), isolariciresinol-9'-O-β-D-glucopyranoside (17), 5'-methoxyisolariciresinol-9'-O-β-D-glucopyranoside (18), cyanidin-3-O-glucoside (19), cyandin-3-O-rutenoside (20), 9,12-octadecadienoic acid (Z,Z)-2-hydroxy-1-(hydroxymethyl) ethyl ester (21), linolenic acid (22), and 1,2-di-O-α-linolenoyl-3-O-β-D-galactopyranosyl-sn-glycerol (23). In this plant, compounds 3, 4, 5, 6, 8, 10, 12, 17, 18, 21, and 23 are reported for the first time. All the structures were determined through extensive analyses of 1D and 2D NMR data, mass spectrometry, and comparison with published data. This methodology has proven to be an efficient alternative to the analysis of complex extracts containing a large variety of compounds.
Collapse
Affiliation(s)
| | | | | | | | - Tiago Venâncio
- Chemistry Departament, Federal University of São Carlos, São Carlos, Brazil
| | | | | |
Collapse
|
17
|
Jarošová M, Lorenc F, Bedrníček J, Petrášková E, Bjelková M, Bártová V, Jarošová E, Zdráhal Z, Kyselka J, Smetana P, Kadlec J, Stupková A, Bárta J. Comparison of Yield Characteristics, Chemical Composition, Lignans Content and Antioxidant Potential of Experimentally Grown Six Linseed (Linum usitatissimum L.) Cultivars. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:159-165. [PMID: 38236453 DOI: 10.1007/s11130-023-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
Linseed represents a rich source of nutritional, functional and health-beneficial compounds. Nevertheless, the chemical composition and content of bioactive compounds may be quite variable and potentially affected by various factors, including genotype and the environment. In this study, the proximate chemical composition, lignans content and antioxidant potential of six experimentally grown linseed cultivars were assessed and compared. A diagonal cultivation trial in the University of South Bohemia Experimental Station in České Budějovice, Czech Republic, was established in three subsequent growing seasons (2018, 2019 and 2020). The results showed that the cultivar and growing conditions influenced most studied parameters. The lack of precipitation in May and June 2019 negatively affected the seed yield and the level of secoisolariciresinol diglucoside but did not decrease the crude protein content, which was negatively related to the oil content. The newly developed method for lignans analysis allowed the identification and quantification of secoisolariciresinol diglucoside and matairesinol. Their content correlated positively with the total polyphenol content and antioxidant assays (DPPH and ABTS radical scavenging activity), indicating the significant contribution to the biofunctional properties of linseed. On the other hand, we did not detect minor linseed lignans, pinoresinol and lariciresinol. The results of this study showed the importance of cultivar and growing conditions factors on the linseed chemical composition and the lignans content, determining its nutritional and medicinal properties.
Collapse
Affiliation(s)
- Markéta Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| | - František Lorenc
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic.
| | - Jan Bedrníček
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic
| | - Eva Petrášková
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic
| | - Marie Bjelková
- Department of Legumes and Technical Crops, Agritec Plant Research, Ltd. Zemědělská 2520, Šumperk, 787 01, Czech Republic
| | - Veronika Bártová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| | - Eva Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology Prague, University of Chemistry and Technology, Technická 5, Prague, 166 28, Czech Republic
| | - Pavel Smetana
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic
| | - Jaromír Kadlec
- Department of Food Biotechnologies and Agricultural Products' Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská, České Budějovice, 1668, 370 05, Czech Republic
| | - Adéla Stupková
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| | - Jan Bárta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
18
|
Taipe Huisa AJ, Estrella Josende M, Gelesky MA, Fernandes Ramos D, López G, Bernardi F, Monserrat JM. Açaí (Euterpe oleracea Mart.) green synthesis of silver nanoparticles: antimicrobial efficacy and ecotoxicological assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12005-12018. [PMID: 38227263 DOI: 10.1007/s11356-024-31949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
The synthesis of silver nanoparticles (AgNPs) is usually based on expensive methods that use or generate chemicals that can negatively impact the environment. Our study presents a simple one-step synthesis process for obtaining AgNP using an aqueous extract of Amazonian fruit açai (Euterpe oleracea Mart.) as the reducing and stabilizing agents. The bio-synthesized AgNP (bio-AgNP) were comprehensively characterized by diverse techniques, and as a result, 20-nm spherical particles (transmission electron microscopy) were obtained. X-ray diffraction analysis (XRD) confirmed the presence of crystalline AgNP, and Fourier-transform infrared spectroscopy (FT-IR) suggested that polyphenolic compounds of açaí were present on the surface. The bio-AgNP showed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii. In Caenorhabditis elegans exposed to 10 μg/L bio-AgNP for 96 h, there were no significant effects on growth, reproduction, or reactive oxygen species (ROS) concentration; however, there was an increase in superoxide dismutase (SOD) and glutathione-S-transferase (GST) enzymatic activity. In contrast, when worms were exposed to chemically synthesized AgNP (PVP-AgNP), an increase in ROS, SOD, and GST activity and a reduction in oxidative stress resistance were observed. In conclusion, our study not only showcased the potential of açaí in the simple and rapid production of AgNP but also highlighted the broad-spectrum antimicrobial activity of the synthesized nanoparticles using our protocol. Moreover, our findings revealed that these AgNPs exhibited reduced toxicity to C. elegans at environmentally realistic concentrations compared with PVP-AgNP.
Collapse
Affiliation(s)
- Andy Joel Taipe Huisa
- Physiological Sciences Post Graduation Program, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcelo Estrella Josende
- Physiological Sciences Post Graduation Program, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcos Alexandre Gelesky
- Technological and Environmental Chemistry Post Graduation Program. School of Chemistry and Food (EQA), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Daniela Fernandes Ramos
- Medicine Faculty (FAMED), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
- Post Graduation Program in Health Sciences, FURG, Rio Grande, RS, Brazil
| | | | - Fabiano Bernardi
- Physics Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - José María Monserrat
- Physiological Sciences Post Graduation Program, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
19
|
Bartkowiak-Wieczorek J, Mądry E. Natural Products and Health. Nutrients 2024; 16:415. [PMID: 38337699 PMCID: PMC10856951 DOI: 10.3390/nu16030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
A natural product is an organic compound from a living organism that can be isolated from natural sources or synthesized [...].
Collapse
Affiliation(s)
- Joanna Bartkowiak-Wieczorek
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland;
| | | |
Collapse
|
20
|
Kołodziejczak K, Onopiuk A, Szpicer A, Poltorak A. The Effect of Type of Vegetable Fat and Addition of Antioxidant Components on the Physicochemical Properties of a Pea-Based Meat Analogue. Foods 2023; 13:71. [PMID: 38201099 PMCID: PMC10778522 DOI: 10.3390/foods13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, interest in functional foods and meat analogues has increased. This study investigated the effect of the type of vegetable fat and ingredients with antioxidant activity on the properties of a meat analogue based on textured pea protein. The possibility of using acai oil (AO), canola oil (CO) and olive oil (OO); propolis extract (P); buckwheat honey (H); and jalapeno pepper extract (JE) was investigated. The texture, colour and selected chemical parameters of plant-based burgers were analysed. Results showed that burgers from control group had the lowest hardness, while burgers with honey had the highest. The highest MUFA content was found in samples with olive oil. Samples with honey were characterised by the highest content of polyphenols, flavonoids and antioxidant capacity. The highest overall acceptability was observed in burgers from the JE-CO group. Therefore, it is possible to use selected ingredients with antioxidant activity in the recipe for a plant-based burger with high product acceptability.
Collapse
Affiliation(s)
| | - Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, 02-776 Warsaw, Poland; (K.K.); (A.S.); (A.P.)
| | | | | |
Collapse
|
21
|
Lima RS, de Carvalho APA, Conte-Junior CA. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit Rev Food Sci Nutr 2023; 63:12453-12475. [PMID: 35875893 DOI: 10.1080/10408398.2022.2101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Brazilian Amazon contains over 30,000 plant species and foods rich in bioactive compounds such as terpenes, phenolic acids, alkaloids, and flavonoids, of potential health benefits (antioxidant, antimicrobial, antiparasitic, anticancer, gastroprotection, prebiotic effects, among others). The existence of residues from non-edible parts of plants (leaves, roots, stems, branches, barks) or fruit wastes (peel, bagasse, seeds) in the agri-food industry and its supply chain is an important challenge in food loss and waste management. In this critical review several Amazon species, focusing on extracts/essential oils from nonedible parts or wastes, were analyzed in terms of phytochemicals, biological activity, and underlying mechanisms. We hope this review emphasizes the importance of Amazon's sustainability initiatives on population health due to the potential shown against cancer, infectious diseases, and prevention of oral diseases. It is urgent to think about the conversion of amazon food wastes and co-products into high-added-value raw materials to develop novel drugs, food packaging systems, or nutraceutical foods.
Collapse
Affiliation(s)
- Rayssa S Lima
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Silveira JTD, Rosa APCD, Morais MGD, Victoria FN, Costa JAV. An integrative review of Açaí (Euterpe oleracea and Euterpe precatoria): Traditional uses, phytochemical composition, market trends, and emerging applications. Food Res Int 2023; 173:113304. [PMID: 37803612 DOI: 10.1016/j.foodres.2023.113304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
The increasing trade and popularity of açaí prompt this review. Therefore, it is imperative to provide an overview of the fruit's characteristics and the available data on its marketing, research, and products derived from its pulp and seeds to comprehend the current state of the açaí industry. Concerning food applications, it was observed that there is still room for developing processes that effectively preserve the bioactive compounds of the fruit while also being economically feasible, which presents an opportunity for future research. A notable research trend has been focused on utilizing the fruit's seeds, a byproduct of açaí processing, which is still considered a significant technological challenge. Furthermore, the studies compiled in this review attest to the industry's considerable progress and ongoing efforts to demonstrate the various properties of açaí, driving the sector's exponential growth in Brazil and worldwide.
Collapse
Affiliation(s)
- Jéssica Teixeira da Silveira
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, CEP 96201-900 Rio Grande, RS, Brazil
| | - Ana Priscila Centeno da Rosa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, CEP 96201-900 Rio Grande, RS, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Francine Novack Victoria
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, CEP 96201-900 Rio Grande, RS, Brazil.
| |
Collapse
|
23
|
Alessandra-Perini J, Machado DE, Palmero CY, Claudino MC, de Moura RS, Palumbo Junior A, Perini JA, Nasciutti LE. Euterpe oleracea extract (açaí) exhibits cardioprotective effects after chemotherapy treatment in a breast cancer model. BMC Complement Med Ther 2023; 23:301. [PMID: 37626388 PMCID: PMC10463785 DOI: 10.1186/s12906-023-04104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Açaí, a Brazilian native fruit, has already been demonstrated to play a role in the progress of breast cancer and cardiotoxicity promoted by chemotherapy agents. Thus, the present study aimed to evaluate the combined use of açaí and the FAC-D chemotherapy protocol in a breast cancer model in vivo. METHODS Mammary carcinogenesis was induced in thirty female Wistar rats by subcutaneous injection of 25 mg/kg 7,12-dimethylbenzanthracene (DMBA) in the mammary gland. After sixty days, the rats were randomized into two groups: treated with 200 mg/kg of either açaí extract or vehicle, via gastric tube for 45 consecutive days. The FAC-D protocol was initiated after 90 days of induction by intraperitoneal injection for 3 cycles with a 7-day break each. After treatment, blood was collected for haematological and biochemical analyses, and tumours were collected for macroscopic and histological analyses. In the same way, heart, liver, and kidney samples were also collected for macroscopic and histological analyses. RESULTS Breast cancer was found as a cystic mass with a fibrotic pattern in the mammary gland. The histological analysis showed an invasive carcinoma area in both groups; however, in the saline group, there was a higher presence of inflammatory clusters. No difference was observed regarding body weight, glycaemia, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and urea in either group. However, açaí treatment decreased creatine kinase (CK), creatine kinase MB (CKMB), troponin I and C-reactive protein levels and increased the number of neutrophils and monocytes. Heart histopathology showed normal myocardium in the açaí treatment, while the saline group presented higher toxicity effects with loss of architecture of cardiac tissue. Furthermore, the açaí treatment presented greater collagen distribution, increased hydroxyproline concentration and lower H2AX immunostaining in the heart samples. CONCLUSION Açaí decreased the number of inflammatory cells in the tumor environment and exhibited protection against chemotherapy drug cardiotoxicity with an increased immune response in animals. Thus, açaí can be considered a promising low-cost therapeutic treatment that can be used in association with chemotherapy agents to avoid heart damage.
Collapse
Affiliation(s)
- Jéssica Alessandra-Perini
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
- Laboratório de Pesquisa em Ciências Farmacêuticas (LAPESF), Universidade do Estado do Rio de Janeiro (UERJ), Manuel Caldeira de Alvarenga Avenue, 1.203, Rio de Janeiro, RJ, 23070-200, Brazil.
| | - Daniel Escorsim Machado
- Laboratório de Pesquisa em Ciências Farmacêuticas (LAPESF), Universidade do Estado do Rio de Janeiro (UERJ), Manuel Caldeira de Alvarenga Avenue, 1.203, Rio de Janeiro, RJ, 23070-200, Brazil
| | - Celia Yelimar Palmero
- Laboratório Integrado de Morfologia, Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro 9UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marllow Caetano Claudino
- Laboratório de Pesquisa em Ciências Farmacêuticas (LAPESF), Universidade do Estado do Rio de Janeiro (UERJ), Manuel Caldeira de Alvarenga Avenue, 1.203, Rio de Janeiro, RJ, 23070-200, Brazil
| | - Roberto Soares de Moura
- Departamento de Farmacologia e Psicobiologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Antônio Palumbo Junior
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Laboratório de Pesquisa em Ciências Farmacêuticas (LAPESF), Universidade do Estado do Rio de Janeiro (UERJ), Manuel Caldeira de Alvarenga Avenue, 1.203, Rio de Janeiro, RJ, 23070-200, Brazil
| | - Luiz Eurico Nasciutti
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
25
|
Da Silva IO, Crespo-Lopez ME, Augusto-Oliveira M, Arrifano GDP, Ramos-Nunes NR, Gomes EB, da Silva FRP, de Sousa AA, Leal ALAB, Damasceno HC, de Oliveira ACA, Souza-Monteiro JR. What We Know about Euterpe Genus and Neuroprotection: A Scoping Review. Nutrients 2023; 15:3189. [PMID: 37513607 PMCID: PMC10384735 DOI: 10.3390/nu15143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The Euterpe genus (mainly Euterpe oleracea Martius, Euterpe precatoria Martius, and Euterpe edulis Martius) has recently gained commercial and scientific notoriety due to the high nutritional value of its fruits, which are rich in polyphenols (phenolic acids and anthocyanins) and have potent antioxidant activity. These characteristics have contributed to the increased number of neuropharmacological evaluations of the three species over the last 10 years, especially açaí of the species Euterpe oleracea Martius. The fruits of the three species exert neuroprotective effects through the modulation of inflammatory and oxidative pathways and other mechanisms, including the inhibition of the mTOR pathway and protection of the blood-brain barrier, all of them intimately involved in several neuropathologies. Thus, a better understanding of the neuropharmacological properties of these three species may open new paths for the development of therapeutic tools aimed at preventing and treating a variety of neurological conditions.
Collapse
Affiliation(s)
- Ilano Oliveira Da Silva
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Natália Raphaela Ramos-Nunes
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Elielton Barreto Gomes
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Felipe Rodolfo Pereira da Silva
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Aline Andrade de Sousa
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Alessandro Luiz Araújo Bentes Leal
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Helane Conceição Damasceno
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Ana Carolina Alves de Oliveira
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - José Rogério Souza-Monteiro
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| |
Collapse
|
26
|
da Silva MACN, Tessmann JW, Borges KRA, Wolff LAS, Botelho FD, Vieira LA, Morgado-Diaz JA, Franca TCC, Barbosa MDCL, Nascimento MDDSB, Rocha MR, de Carvalho JE. Açaí ( Euterpe oleracea Mart.) Seed Oil Exerts a Cytotoxic Role over Colorectal Cancer Cells: Insights of Annexin A2 Regulation and Molecular Modeling. Metabolites 2023; 13:789. [PMID: 37512496 PMCID: PMC10384432 DOI: 10.3390/metabo13070789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Açaí, Euterpe oleracea Mart., is a native plant from the Amazonian and is rich in several phytochemicals with anti-tumor activities. The aim was to analyze the effects of açaí seed oil on colorectal adenocarcinoma (ADC) cells. In vitro analyses were performed on CACO-2, HCT-116, and HT-29 cell lines. The strains were treated with açaí seed oil for 24, 48, and 72 h, and cell viability, death, and morphology were analyzed. Molecular docking was performed to evaluate the interaction between the major compounds in açaí seed oil and Annexin A2. The viability assay showed the cytotoxic effect of the oil in colorectal adenocarcinoma cells. Acai seed oil induced increased apoptosis in CACO-2 and HCT-116 cells and interfered with the cell cycle. Western blotting showed an increased expression of LC3-B, suggestive of autophagy, and Annexin A2, an apoptosis regulatory protein. Molecular docking confirmed the interaction of major fatty acids with Annexin A2, suggesting a role of açaí seed oil in modulating Annexin A2 expression in these cancer cell lines. Our results suggest the anti-tumor potential of açaí seed oil in colorectal adenocarcinoma cells and contribute to the development of an active drug from a known natural product.
Collapse
Affiliation(s)
- Marcos Antonio Custódio Neto da Silva
- Faculty of Medical Science, Post-graduation in Internal Medicine, State University of Campinas, Campinas 13083-970, Brazil
- Nucleum of Basic and Applied Immunology, Pathology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Josiane Weber Tessmann
- Cell Structure and Dynamics Group, Cellular and Molecular Oncobiology Program, National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Kátia Regina Assunção Borges
- Nucleum of Basic and Applied Immunology, Pathology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Laís Araújo Souza Wolff
- Nucleum of Basic and Applied Immunology, Pathology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Fernanda Diniz Botelho
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | - Leandro Alegria Vieira
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | - Jose Andres Morgado-Diaz
- Cell Structure and Dynamics Group, Cellular and Molecular Oncobiology Program, National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitansheho 62, 500-03 Kralove, Czechia
| | - Maria do Carmo Lacerda Barbosa
- Nucleum of Basic and Applied Immunology, Pathology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | - Murilo Ramos Rocha
- Cell Structure and Dynamics Group, Cellular and Molecular Oncobiology Program, National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, Post-graduation in Internal Medicine, State University of Campinas, Campinas 13083-970, Brazil
| |
Collapse
|
27
|
Paientko V, Oranska OI, Gun'ko VM, Skwarek E. Selected Textural and Electrochemical Properties of Nanocomposite Fillers Based on the Mixture of Rose Clay/Hydroxyapatite/Nanosilica for Cosmetic Applications. Molecules 2023; 28:4820. [PMID: 37375377 DOI: 10.3390/molecules28124820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In order to improve the properties and characteristics of rose clay composites with acai, hydroxyapatite (HA), and nanosilica, the systems were mechanically treated. This treatment provides the preparation of better nanostructured composites with natural and synthetic nanomaterials with improved properties. The materials were characterized using XRD, nitrogen adsorption and desorption, particle sizing, zeta potential, and surface charge density measurements. For the systems tested in the aqueous media, the pH value of the point of zero charge (pHPZC) ranges from 8 to 9.9. However, the isoelectric point (pHIEP) values for all composites are below pH 2. This large difference between pHPZC and pHIEP is due to the complexity of the electrical double layer (EDL) and the relation of these points to different layers of the EDL. The tested samples as composite/electrolyte solutions are colloidally unstable. The toxicity level of the ingredients and release of anthocyanins as bioactive substances from acai in the composites were determined. The composites demonstrate an enhanced release of anthocyanins. There are some regularities in the characteristics depending on the type of components, morphology, and textural features of solids. The morphological, electrochemical, and structural characteristics of the components have changed in composites. The release of anthocyanins is greater for the composites characterized by minimal confined space effects in comparison with rose clay alone. The morphological, electrochemical, and structural characteristics allow us to expect high efficiency of composites as bioactive systems that are interesting for practical applications in cosmetics.
Collapse
Affiliation(s)
- Victoria Paientko
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine
| | - Olena I Oranska
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine
| | - Volodymyr M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine
| | - Ewa Skwarek
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland
| |
Collapse
|
28
|
Darnet E, Teixeira B, Schaller H, Rogez H, Darnet S. Elucidating the Mesocarp Drupe Transcriptome of Açai ( Euterpe oleracea Mart.): An Amazonian Tree Palm Producer of Bioactive Compounds. Int J Mol Sci 2023; 24:ijms24119315. [PMID: 37298279 DOI: 10.3390/ijms24119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Euterpe oleracea palm, endemic to the Amazon region, is well known for açai, a fruit violet beverage with nutritional and medicinal properties. During E. oleracea fruit ripening, anthocyanin accumulation is not related to sugar production, contrarily to grape and blueberry. Ripened fruits have a high content of anthocyanins, isoprenoids, fibers, and proteins, and are poor in sugars. E. oleracea is proposed as a new genetic model for metabolism partitioning in the fruit. Approximately 255 million single-end-oriented reads were generated on an Ion Proton NGS platform combining fruit cDNA libraries at four ripening stages. The de novo transcriptome assembly was tested using six assemblers and 46 different combinations of parameters, a pre-processing and a post-processing step. The multiple k-mer approach with TransABySS as an assembler and Evidential Gene as a post-processer have shown the best results, with an N50 of 959 bp, a read coverage mean of 70x, a BUSCO complete sequence recovery of 36% and an RBMT of 61%. The fruit transcriptome dataset included 22,486 transcripts representing 18 Mbp, of which a proportion of 87% had significant homology with other plant sequences. Approximately 904 new EST-SSRs were described, and were common and transferable to Phoenix dactylifera and Elaeis guineensis, two other palm trees. The global GO classification of transcripts showed similar categories to that in P. dactylifera and E. guineensis fruit transcriptomes. For an accurate annotation and functional description of metabolism genes, a bioinformatic pipeline was developed to precisely identify orthologs, such as one-to-one orthologs between species, and to infer multigenic family evolution. The phylogenetic inference confirmed an occurrence of duplication events in the Arecaceae lineage and the presence of orphan genes in E. oleracea. Anthocyanin and tocopherol pathways were annotated entirely. Interestingly, the anthocyanin pathway showed a high number of paralogs, similar to in grape, whereas the tocopherol pathway exhibited a low and conserved gene number and the prediction of several splicing forms. The release of this exhaustively annotated molecular dataset of E. oleracea constitutes a valuable tool for further studies in metabolism partitioning and opens new great perspectives to study fruit physiology with açai as a model.
Collapse
Affiliation(s)
- Elaine Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
| | - Bruno Teixeira
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Hubert Schaller
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Sylvain Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
29
|
Heck KL, Walters LM, Kunze ML, Calderón AI. Standardization of açaí extracts for in-vitro assays based on anthocyanin quantitation. J Food Compost Anal 2023; 118:105155. [PMID: 36844472 PMCID: PMC9957365 DOI: 10.1016/j.jfca.2023.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Euterpe oleracea Mart., commonly known as açaí, is a fruit that grows on a palm tree native to the Amazon region. Quantitation of bioactive constituents is a crucial preliminary step before utilizing extracts for biological assays so they may be normalized and administered according to a specific constituent concentration. Açaí has four main anthocyanin analytes: cyanidin 3-glucoside, cyanidin 3-sambubioside, cyanidin 3-rutinoside, and peonidin 3-rutinoside. This is the first comparison of açaí anthocyanin profiles between fresh fruits, processed powders, and botanical dietary supplement capsules. The materials examined shared a similar anthocyanin profile, with cyanidin 3-rutinoside being the most abundant (0.380 ± 0.006 - 15.1 ± 0.01 mg/g), followed by cyanidin 3-glucoside (0.0988 ± 0.0031 - 8.95 ± 0.01 mg/g). Among the botanical dietary supplement capsules, the two formulations varied greatly in anthocyanin concentration despite both being aqueous extracts (0.650 ± 0.011 - 0.924 ± 0.010 mg/g versus 1.23 ± 0.01 - 1.27 ± 0.02 mg/g). Previous LC-MS methods range from 35-120 min per injection, while we report a 10 min quantitative method for analysis of anthocyanins in various açaí materials that is fast, reproducible, and accurate. The method produced is useful to assure the quality, efficacy and safety of food and dietary supplement materials containing açaí.
Collapse
Affiliation(s)
- Kabre L. Heck
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, United States
| | - Lauren M. Walters
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, United States
| | - Madeline L. Kunze
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, United States
| | - Angela I. Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, United States
| |
Collapse
|
30
|
Johnson JB, Walsh KB, Naiker M, Ameer K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023; 28:molecules28073215. [PMID: 37049978 PMCID: PMC10096661 DOI: 10.3390/molecules28073215] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Infrared spectroscopy (wavelengths ranging from 750-25,000 nm) offers a rapid means of assessing the chemical composition of a wide range of sample types, both for qualitative and quantitative analyses. Its use in the food industry has increased significantly over the past five decades and it is now an accepted analytical technique for the routine analysis of certain analytes. Furthermore, it is commonly used for routine screening and quality control purposes in numerous industry settings, albeit not typically for the analysis of bioactive compounds. Using the Scopus database, a systematic search of literature of the five years between 2016 and 2020 identified 45 studies using near-infrared and 17 studies using mid-infrared spectroscopy for the quantification of bioactive compounds in food products. The most common bioactive compounds assessed were polyphenols, anthocyanins, carotenoids and ascorbic acid. Numerous factors affect the accuracy of the developed model, including the analyte class and concentration, matrix type, instrument geometry, wavelength selection and spectral processing/pre-processing methods. Additionally, only a few studies were validated on independently sourced samples. Nevertheless, the results demonstrate some promise of infrared spectroscopy for the rapid estimation of a wide range of bioactive compounds in food matrices.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Kerry B Walsh
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Mani Naiker
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
31
|
Custódio Neto da Silva MA, Araújo Souza Wolff L, Assunção Borges KR, Alvares Marques Vale A, Silva de Azevedo-Santos AP, Pascoal Xavier MA, Lacerda Barbosa MDC, Soares Brandão Nascimento MDD, Ernesto de Carvalho J. Açaí (Euterpe oleracea Mart.) byproduct reduces tumor size and modulates inflammation in Ehrlich mice model. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
|
32
|
Brito LL, Borges KRA, Silva GX, da Silva MACN, de Nazaré Silva Alves R, Teles AM, do Carmo Lacerda Barbosa M, Muniz Filho WE, de Barros Bezerra GF, do Desterro Soares Brandão Nascimento M. Effects of Euterpe oleracea Mart. extract on Candida spp. biofilms. Braz J Microbiol 2023; 54:29-36. [PMID: 36746872 PMCID: PMC9944593 DOI: 10.1007/s42770-023-00919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
PROBLEM OF RESEARCH Candida spp. biofilms are complex microbial communities that have been associated with increasing resistance to clinically available antifungal drugs. Hence, novel pharmacological approaches with ability to inhibit biofilm formation have been investigated. AIM OF STUDY The aim was to analyze in vitro antifungal activity of Euterpe oleracea Mart. (açaí berry) extract on biofilm strains of Candida albicans, C. parapsilosis, and C. tropicalis that were formed on abiotic surfaces. REMARKABLE METHODOLOGY Biofilms of C. albicans, C. parapsilosis, and C. tropicalis were grown in vitro. They were then treated with E. oleracea Mart. extract at different concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, 500, and 1000 μg/mL) for evaluation of both biofilm removal and anti-biofilm activity. REMARKABLE RESULTS All Candida species analyzed formed biofilms on abiotic surfaces. Yet, increased biofilm formation was displayed for C. tropicalis in comparison with the other two species. E. oleracea Mart. extract was shown to inhibit biofilm formation at all concentrations used when compared to no treatment (p < 0.05). SIGNIFICANCE OF THE STUDY In the current study, the extract of E. oleracea Mart. demonstrated antifungal activity against Candida albicans, C. parapsilosis, and C. tropicalis biofilms, regardless of the dose utilized. These results are important to evaluate a natural product as antifungal for Candida species.
Collapse
Affiliation(s)
- Larissa Lira Brito
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Kátia Regina Assunção Borges
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Gabriel Xavier Silva
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Marcos Antonio Custódio Neto da Silva
- Postgraduate Program in Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
- Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Rita de Nazaré Silva Alves
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Amanda Mara Teles
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | | | - Geusa Felipa de Barros Bezerra
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Maria do Desterro Soares Brandão Nascimento
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil.
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil.
| |
Collapse
|
33
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
34
|
Teixeira-Costa BE, Ferreira WH, Goycoolea FM, Murray BS, Andrade CT. Improved Antioxidant and Mechanical Properties of Food Packaging Films Based on Chitosan/Deep Eutectic Solvent, Containing Açaí-Filled Microcapsules. Molecules 2023; 28:molecules28031507. [PMID: 36771173 PMCID: PMC9920262 DOI: 10.3390/molecules28031507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The development of biobased antioxidant active packaging has been valued by the food industry for complying with environmental and food waste concerns. In this work, physicochemical properties for chitosan composite films as a potential active food packaging were investigated. Chitosan films were prepared by solution casting, plasticized with a 1:2 choline chloride: glycerol mixture as a deep eutectic solvent (DES) and incorporated with 0-10% of optimized açaí oil polyelectrolyte complexes (PECs). Scanning electron microscopy and confocal laser scanning microscopy revealed that the chitosan composite films were continuous and contained well-dispersed PECs. The increased PECs content had significant influence on the thickness, water vapor permeability, crystallinity (CrD) and mechanical and dynamic behavior of the films, as well as their antioxidant properties. The tensile strength was reduced in the following order: 11.0 MPa (control film) > 0.74 MPa (5% DES) > 0.63 MPa (5% DES and 5% PECs). Films containing 2% of PECs had an increased CrD, ~6%, and the highest elongation at break, ~104%. Films with 1% of PECs displayed the highest antioxidant properties against the ABTS and DPPH radicals, ~6 and ~17 mg TE g-1, respectively, and highest equivalent polyphenols content (>0.5 mg GAE g-1). Films with 2% of particles were not significantly different. These results suggested that the chitosan films that incorporated 1-2% of microparticles had the best combined mechanical and antioxidant properties as a potential material for food packaging.
Collapse
Affiliation(s)
- Barbara E. Teixeira-Costa
- Programa de Pós-Graduação em Biotecnologia-PPGBIOTEC, Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio 6200, Manaus 69077-000, AM, Brazil
- Programa de Pós-Graduação em Ciência de Alimentos-PPGCAL, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Moniz Aragão 360, Bloco 8G/CT2, Rio de Janeiro 21941-594, RJ, Brazil
- Correspondence:
| | - Willian Hermogenes Ferreira
- Programa de Pós-Graduação em Ciência de Alimentos-PPGCAL, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Moniz Aragão 360, Bloco 8G/CT2, Rio de Janeiro 21941-594, RJ, Brazil
| | | | - Brent S. Murray
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Cristina T. Andrade
- Programa de Pós-Graduação em Ciência de Alimentos-PPGCAL, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Moniz Aragão 360, Bloco 8G/CT2, Rio de Janeiro 21941-594, RJ, Brazil
| |
Collapse
|
35
|
Lucas BF, Alberto Vieira Costa J, Brunner TA. Attitudes of consumers toward Spirulina and açaí and their use as a food ingredient. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
36
|
Boeira LS, Cád SV, Bezerra JA, Benavente CT, Neta MTSL, Sandes RDD, Narain N. Development of alcohol vinegars macerated with ACAI (Euterpe precatoria Mart.) berries and their quality evaluations with emphasis on color, antioxidant capacity, and volatiles profile. J Food Sci 2023; 88:666-680. [PMID: 36617682 DOI: 10.1111/1750-3841.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
In this work, the Amazonian native acai fruit, a superfruit recognized worldwide, was used through a simple operation of maceration in alcohol vinegar to transform it into an attractive and functional product containing the acai natural colorant and its bioactive compounds. The variables studied were the proportion of alcohol vinegar to acai (8:2 and 1:1) and maceration period (7, 14, and 21 days). The final vinegar was subjected to the determination of color parameters, antioxidant capacity (DPPH, ABTS), total phenolics content (TPC), volatile compounds extracted by stir bar sorptive extraction and identified by gas-chromatography-mass spectrometry analysis. The alcohol vinegars macerated with acai presented the color according to the content of acai added and maceration period employed, whereas antioxidant capacity and TPC were comparable to vinegars elaborated from fruits and red wine. Sixty volatiles compounds classified into five chemical groups were identified. The principal volatile compounds which contributed to the aroma in the products were 3-methyl-1-butanol, phenylethyl alcohol, benzaldehyde, o-cymene, p-cymenene, isoamyl acetate, and ethyl acetate. The most attractive product regarding the parameters studied was obtained from the use of the proportion of 1:1 of alcohol vinegar:acai and maceration period of 14 days. This product retained the most similar color to acai in natura, the highest values for antioxidant capacity measured by ABTS and TPC while being rich in volatile compounds due to the contributions mainly of alcohols, esters, aldehydes, and terpenes. PRACTICAL APPLICATION: This work demonstrates the feasibility to produce an alcohol vinegar with an attractive color and functional properties by the addition of acai resulting in to a wide spectrum of chemical compounds of acai through a very simple operation of maceration during 14 days of a proportion of 1:1 of alcohol vinegar:acai.
Collapse
Affiliation(s)
- Lúcia S Boeira
- Institute Federal of Education, Science and Technology of Amazonas (IFAM), Campus Manaus Centro (CMC), Department of Chemistry, Environment and Food, Manaus, Amazonas, Brazil
| | - Sandra V Cád
- Institute Federal of Education, Science and Technology of Amazonas (IFAM), Campus Manaus Centro (CMC), Department of Chemistry, Environment and Food, Manaus, Amazonas, Brazil
| | - Jaqueline A Bezerra
- Institute Federal of Education, Science and Technology of Amazonas (IFAM), Campus Manaus Centro (CMC), Department of Chemistry, Environment and Food, Manaus, Amazonas, Brazil
| | - César T Benavente
- National Institute for Amazonian Research (INPA), Laboratory of Plant Breeding, Manaus, Amazonas, Brazil
| | - Maria Terezinha S L Neta
- Federal University of Sergipe (UFS), Laboratory of Flavor and Chromatographic Analysis, São Cristóvão, Sergipe, Brazil
| | - Rafael Donizete Dutra Sandes
- Federal University of Sergipe (UFS), Laboratory of Flavor and Chromatographic Analysis, São Cristóvão, Sergipe, Brazil
| | - Narendra Narain
- Federal University of Sergipe (UFS), Laboratory of Flavor and Chromatographic Analysis, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
37
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
38
|
Phenolic Profile and the Antioxidant, Anti-Inflammatory, and Antimicrobial Properties of Açaí ( Euterpe oleracea) Meal: A Prospective Study. Foods 2022; 12:foods12010086. [PMID: 36613302 PMCID: PMC9818655 DOI: 10.3390/foods12010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The mechanical extraction of oils from Brazilian açaí (Euterpe oleracea Mart) produces significant amounts of a byproduct known as "meal", which is frequently discarded in the environment as waste material. Nevertheless, plant byproducts, especially those from oil extraction, may contain residual polyphenols in their composition and be a rich source of natural bioactive compounds. In this study, the phenolic composition and in vitro biological properties of a hydroethanolic açaí meal extract were elucidated. The major compounds tentatively identified in the extract by high-resolution mass spectrometry were anthocyanins, flavones, and flavonoids. Furthermore, rhamnocitrin is reported in an açaí byproduct for the first time. The extract showed reducing power and was effective in scavenging the ABTS radical cation (820.0 µmol Trolox equivalent∙g-1) and peroxyl radical (975.7 µmol Trolox equivalent∙g-1). NF-κB activation was inhibited at 10 or 100 µg∙mL-1 and TNF-α levels were reduced at 100 µg∙mL-1. However, the antibacterial effects against ESKAPE pathogens was not promising due to the high concentration needed (1250 or 2500 µg∙mL-1). These findings can be related to the diverse polyphenol-rich extract composition. To conclude, the polyphenol-rich extract obtained from açaí meal showed relevant biological activities that may have great applicability in the food and nutraceutical industries.
Collapse
|
39
|
Machado APDF, Alves MDR, Nascimento RDPD, Reguengo LM, Marostica Junior MR. Antiproliferative effects and main molecular mechanisms of Brazilian native fruits and their by-products on lung cancer. Food Res Int 2022; 162:111953. [DOI: 10.1016/j.foodres.2022.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 09/16/2022] [Indexed: 11/04/2022]
|
40
|
Manica‐Cattani MF, Hoefel AL, Azzolin VF, Montano MAE, da Cruz Jung IE, Ribeiro EE, Azzolin VF, da Cruz IBM. Amazonian fruits with potential effects on COVID-19 by inflammaging modulation: A narrative review. J Food Biochem 2022; 46:e14472. [PMID: 36240164 PMCID: PMC9874877 DOI: 10.1111/jfbc.14472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 01/27/2023]
Abstract
The COVID-19 pandemic had a great impact on the mortality of older adults and, chronic non- transmissible diseases (CNTDs) patients, likely previous inflammaging condition that is common in these subjects. It is possible that functional foods could attenuate viral infection conditions such as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19 pandemic. Previous evidence suggested that some fruits consumed by Amazonian Diet from Pre-Colombian times could present relevant proprieties to decrease of COVID-19 complications such as oxidative-cytokine storm. In this narrative review we identified five potential Amazonian fruits: açai berry (Euterpe oleracea), camu-camu (Myrciaria dubia), cocoa (Theobroma cacao), Brazil nuts (Bertholletia excelsa), and guaraná (Paullinia cupana). Data showed that these Amazonian fruits present antioxidant, anti-inflammatory and other immunomodulatory activities that could attenuate the impact of inflammaging states that potentially decrease the evolution of COVID-19 complications. The evidence compiled here supports the complementary experimental and clinical studies exploring these fruits as nutritional supplement during COVID-19 infection. PRACTICAL APPLICATIONS: These fruits, in their natural form, are often limited to their region, or exported to other places in the form of frozen pulp or powder. But there are already some companies producing food supplements in the form of capsules, in the form of oils and even functional foods enriched with these fruits. This practice is common in Brazil and tends to expand to the international market.
Collapse
Affiliation(s)
- Maria F. Manica‐Cattani
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil,FSG University Center (FSG)Nutrition SchoolCaxias do SulRio Grande do SulBrazil
| | - Ana L. Hoefel
- FSG University Center (FSG)Nutrition SchoolCaxias do SulRio Grande do SulBrazil
| | | | | | | | - Euler E. Ribeiro
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil
| | - Vitória F. Azzolin
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil
| | - Ivana B. M. da Cruz
- Post‐Graduate Program in Pharmacology, Department of Physiology and PharmacologyFederal University of Santa Maria (UFSM)Santa MariaRio Grande do SulBrazil,Post‐Graduate Program in GerontologyFederal University of Santa Maria (UFSM)Santa MariaRio Grande do SulBrazil
| |
Collapse
|
41
|
Paternina LPR, Moraes L, Santos TD, de Morais MG, Costa JAV. Spirulina
and açai as innovative ingredients in the development of gummy candies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Laura Patricia Rivera Paternina
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| | - Luiza Moraes
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| | - Thaisa Duarte Santos
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| |
Collapse
|
42
|
Role of Nutrients and Foods in Attenuation of Cardiac Remodeling through Oxidative Stress Pathways. Antioxidants (Basel) 2022; 11:antiox11102064. [PMID: 36290787 PMCID: PMC9598077 DOI: 10.3390/antiox11102064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac remodeling is defined as a group of molecular, cellular, and interstitial changes that manifest clinically as changes in the heart’s size, mass, geometry, and function after different injuries. Importantly, remodeling is associated with increased risk of ventricular dysfunction and heart failure. Therefore, strategies to attenuate this process are critical. Reactive oxygen species and oxidative stress play critical roles in remodeling. Importantly, antioxidative dietary compounds potentially have protective properties against remodeling. Therefore, this review evaluates the role of nutrients and food as modulators of cardiac remodeling.
Collapse
|
43
|
Morais RA, Teixeira GL, Ferreira SRS, Cifuentes A, Block JM. Nutritional Composition and Bioactive Compounds of Native Brazilian Fruits of the Arecaceae Family and Its Potential Applications for Health Promotion. Nutrients 2022; 14:nu14194009. [PMID: 36235663 PMCID: PMC9571529 DOI: 10.3390/nu14194009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
The fruits from the Arecaceae family, although being rich in bioactive compounds with potential benefits to health, have been underexplored. Studies on their composition, bioactive compounds, and effects of their consumption on health are also scarce. This review presents the composition of macro- and micronutrients, and bioactive compounds of fruits of the Arecaceae family such as bacaba, patawa, juçara, açaí, buriti, buritirana, and butiá. The potential use and reported effects of its consumption on health are also presented. The knowledge of these underutilized fruits is important to encourage production, commercialization, processing, and consumption. It can also stimulate their full use and improve the economy and social condition of the population where these fruits are found. Furthermore, it may help in future research on the composition, health effects, and new product development. Arecaceae fruits presented in this review are currently used as raw materials for producing beverages, candies, jams, popsicles, ice creams, energy drinks, and edible oils. The reported studies show that they are rich in phenolic compounds, carotenoids, anthocyanins, tocopherols, minerals, vitamins, amino acids, and fatty acids. Moreover, the consumption of these compounds has been associated with anti-inflammatory, antiproliferative, antiobesity, and cardioprotective effects. These fruits have potential to be used in food, pharmaceutical, and cosmetic industries. Despite their potential, some of them, such as buritirana and butiá, have been little explored and limited research has been conducted on their composition, biological effects, and applications. Therefore, more detailed investigations on the composition and mechanism of action based on in vitro and/or in vivo studies are needed for fruits from the Arecaceae family.
Collapse
Affiliation(s)
- Rômulo Alves Morais
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
| | - Gerson Lopes Teixeira
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
| | | | - Alejandro Cifuentes
- Foodomics Laboratory, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), 28049 Madrid, Spain
- Correspondence: (A.C.); (J.M.B.)
| | - Jane Mara Block
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
- Correspondence: (A.C.); (J.M.B.)
| |
Collapse
|
44
|
Açaí (Euterpe oleracea Mart.) Attenuates Oxidative Stress and Alveolar Bone Damage in Experimental Periodontitis in Rats. Antioxidants (Basel) 2022; 11:antiox11101902. [PMID: 36290625 PMCID: PMC9598833 DOI: 10.3390/antiox11101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Açaí (Euterpe oleracea Mart.) juice is rich in phenolic compounds with high antioxidant capacity. It has been observed that the use of antioxidants may be an additional strategy to nonsurgical periodontal therapy as well as to prevent alveolar bone loss. Thus, the objective of this study was to investigate the effects of açaí supplementation on experimental periodontitis in rats. Twenty male Rattus norvegicus (Wistar) rats were assigned into control, açaí, experimental periodontitis, and experimental periodontitis with açaí supplementation groups. Periodontitis was induced by placing ligatures around the lower first molars. Animals in the açaí groups received 0.01 mL/g of clarified açaí juice for 14 days by intragastric gavage. At the end of the experimental period, blood was collected to assess the reduced glutathione (GSH), Trolox equivalent antioxidant capacity (TEAC), and lipid peroxidation (TBARS) levels. Moreover, hemimandibles were analyzed by micro-computed tomography (micro-CT) for alveolar bone loss and bone quality. Açaí supplementation increased blood total antioxidant capacity and decreased lipid peroxidation. It also reduced alveolar bone loss when compared to the experimental periodontitis group. Moreover, clarified açaí per se modulated the oxidative biochemistry and bone microstructure. Thus, açaí may be considered a viable alternative for managing periodontal oxidative stress and preventing alveolar bone loss.
Collapse
|
45
|
Possibilities of Using Medicinal Plant Extracts and Salt-Containing Raw Materials from the Aral Region for Cosmetic Purposes. Molecules 2022; 27:molecules27165122. [PMID: 36014366 PMCID: PMC9416250 DOI: 10.3390/molecules27165122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of this work was to study the possibility of using medicinal plants in combination with salt-containing raw materials from the Aral Sea region for cosmetic purposes. The chemical and mineralogical compositions of salts occurring in this region were studied for pharmacological and cosmetic purposes. The salt-containing raw materials were studied by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The microflora of saline-containing raw materials and flora of the Zhaksy-Klych lake were studied. Fifty-six plant species were identified, of which 25% belong to the Asteraceae family, 32% were Poaceae, 22% were Amaranthaceae, and 21% were Tamaricaceae. Using the solid-phase microextraction (SPME) method and comprehensive two-dimensional gas chromatography−mass spectrometry, the composition of volatile compounds in such plant species as Artemisia alba L., Achilleamillifolium L., Eleagus commutate Bernh. Ex Rydb., Psoraleadrupacea Bunge, Artemisia cipa O. Vegd., Thymus vulgaris L., Morus alba L., Salvia pratensis L., Glycyrhizaglabra L., Tanacetum vulgare L., Polygonumaviculare L., Alhagipseudoalhagi Gagnebin and Peganumharmala L., chosen on the basis of their herbal components for future cosmetic products, was determined. In total, 187 different volatile compounds were found in the endemic plant species Glycyrrhizaglabra L., of which the following were dominant: 1,7-octadiene-3-, 2,6-dimethyl- with a peak area of 4.71%; caryophyllenes; bicyclo[7.2.0]4,11,11-trimethyl-8-methylene-, [1R-(1R*,4E,9S*)]—3.70%; bicyclo[2.2.1] heptane-2-1,7,7-trimethyl-,(1S)—3.46%; cyclohexanone, 5-methyl-2-(1-methylethyledene)-; 2-isopropyledene-5—2.97%; menthol; cyclohexanol, 5-methyl-2-(1-methylethyl)-; p-menthane-3-ol; menthol alcohol; and 2-isopropyl-5—2.08%. The remaining compounds were detected in amounts of less than 2.0%. Tests of seven cosmetic compositions developed on the basis of plant extracts and salt-containing raw materials revealed that three samples had a moisturizing effect. Launching the production of cosmetic products in the Aral region will not only reduce social tensions but also significantly improve the environmental situation in the region.
Collapse
|
46
|
ALNasser MN, Mellor IR, Carter WG. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry ( Euterpe sp.) as a Potential Natural Treatment for Alzheimer's Disease. Molecules 2022; 27:4891. [PMID: 35956841 PMCID: PMC9370152 DOI: 10.3390/molecules27154891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
47
|
Low-pressure conductive thin film drying of açaí pulp. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Santos OVD, Pinaffi Langley ACDC, Mota de Lima AJ, Vale Moraes VS, Dias Soares S, Teixeira-Costa BE. Nutraceutical potential of Amazonian oilseeds in modulating the immune system against COVID-19 - A narrative review. J Funct Foods 2022; 94:105123. [PMID: 35634457 PMCID: PMC9127052 DOI: 10.1016/j.jff.2022.105123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/31/2023] Open
Abstract
Since the outbreak of COVID-19 disease, medical and scientific communities are facing a challenge to contain its spread, develop effective treatments, and reduce its sequelae. Together with the therapeutical treatments, the use of dietary bioactive compounds represents a promising and cost-effective strategy to modulate immunological responses. Amazonian oilseeds are great sources of bioactive compounds, thus representing not only a dietary source of nutrients but also of substances with great interest for human health. This narrative review compiled the available evidence regarding the biochemical properties of some Amazonian oilseeds, especially Brazil nut, Açaí berry, Bacaba, Peach palm, Sapucaya and Tucuma fruits, on human health and its immune system. These effects were discussed from an etiological and pathophysiological perspective, emphasizing their potential role as a co-adjuvant strategy against COVID-19. Besides this, the cost associated with these strategies hinders their applicability in many nations, especially low-income countries and communities living in social insecurity.
Collapse
Affiliation(s)
| | | | - Ana Júlia Mota de Lima
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | - Vinícius Sidonio Vale Moraes
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | - Stephanie Dias Soares
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | | |
Collapse
|
49
|
Ţălu Ş, Monteiro MDS, Filho HDF, Ferreira NS, Matos RS. Surface aspects and multifractal features of 3D spatial patterns of low-cost Amazon açaí-loaded kefir microbial films. Microsc Res Tech 2022; 85:2526-2536. [PMID: 35312128 DOI: 10.1002/jemt.24106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023]
Abstract
In this study, açaí-loaded kefir microbial films obtained in solutions containing demerara sugar, a low-cost and relatively organic sugar, were prepared. Environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), stereometric and multifractal analyses were applied to study the influence of the concentration of açaí over the surface morphology as well as its multifractal nature. The ESEM and AFM images showed that low concentrations of acai berry form surface covered by bacteria, while higher concentrations promote yeast growth. The autocorrelation function suggested that the degree of surface anisotropy changes as the concentration of açaí increases, while the Minkowski Functionals confirmed that the sample with the highest content has a different morphology than the samples containing 10-40 ml. The multifractal analysis revealed that the surfaces have a strong multifractal behavior, where the multifractal singularity strength was higher in the sample containing the highest concentration of açaí. The sample with the highest concentration was then mapped to have a greater vertical growth of its spatial patterns. These results prove that image analysis using mathematical tools can be very useful for the characterization of biological-based systems for application in the biomedicine field. We characterized the micromorphology of the 3D surface of the kefir biofilms associated with Acai extract. The 3D surface analysis of the samples was performed using by environmental scanning electron microscope and atomic force microscopy. We determined the multifractal and Minkowski Functionals of the analyzed samples.
Collapse
Affiliation(s)
- Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Cluj county, Romania
| | - Michael D S Monteiro
- Postgraduate Program in Chemistry, Federal University of Sergipe-UFS, São Cristóvão, Sergipe, Brazil
| | - Henrique D F Filho
- Laboratório de Síntese de Nanomateriais e Nanoscopia (LSNN), Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Robert S Matos
- Amazonian Materials Group, Physics Department, Federal University of Amapá, Amapá, Brazil
- Materials Science and Engineering Department, Federal University of Sergipe, Sergipe, Brazil
| |
Collapse
|
50
|
Ramos PB, Colombo GM, Schmitz MJ, Simião CS, Machado KDS, Werhli AV, Costa LDF, Yunes JS, Prentice C, Wasielesky W, Monserrat JM. Chemoprotection mediated by açaí berry (Euterpe oleracea) in white shrimp Litopenaeus vannamei exposed to the cyanotoxin saxitoxin analyzed by in vivo assays and docking modeling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106148. [PMID: 35364510 DOI: 10.1016/j.aquatox.2022.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Saxitoxin (STX) is a neurotoxic cyanotoxin that also generate reactive oxygen species, leading to a situation of oxidative stress and altered metabolism. The Amazonian fruit açaí Euterpe oleracea possesses a high concentration of antioxidant molecules, a fact that prompted us to evaluate its chemoprotection activity against STX toxicity (obtained from samples of Trichodesmium sp. collected in the environment) in the shrimp Litopenaeus vannamei. For 30 days, shrimps were maintained in 16 aquaria containing 10 shrimps (15% salinity, pH 8.0, 24 °C, 12C/12D photoperiod) and fed twice daily with a diet supplemented with lyophilized açaí pulp (10%), in addition to the control diet. After, shrimps (7.21 ± 0.04 g) were exposed to the toxin added to the feed for 96 h. Four treatments were defined: CTR (control diet), T (lyophilized powder of Trichodesmium sp. 0.8 μg/g), A (10% of açaí) and the combination T + A. HPLC analysis showed predominance of gonyautoxin-1 concentrations (GTX-1) and gonyautoxin-4 concentrations (GTX-4). The results of molecular docking simulations indicated that all variants of STX, including GTX-1, can be a substrate of isoform mu of the glutathione-S-transferase (GST) enzyme since these molecules obtained similar values of estimated Free Energy of Binding (FEB), as well as similar final positions on the binding site. GSH levels were reduced in muscle tissues of shrimp in the T, A, and T + A treatments. Increased GST activity was observed in shrimp hepatopancreas of the T treatment and the gills of the A and T + A treatments. A decrease of protein sulfhydryl groups (P-SH) was observed in gills of shrimps from T + A treatment. A reduction in malondialdehyde (MDA) levels was registered in the hepatopancreas of the T + A treatment in respect to the Control, T, and A treatments. The use of açaí supplements in L. vannamei feed was able to partially mitigate the toxic effects caused by Trichodesmium sp. extracts, and points to mu GST isoform as a key enzyme for saxitoxin detoxification in L. vannamei, an issue that deserves further investigation.
Collapse
Affiliation(s)
- Patrícia B Ramos
- Laboratory of Functional Biochemistry of Aquatic Organisms (BIFOA), FURG, Rio Grande, RS, Brazil
| | - Grécica M Colombo
- Graduate Program in Aquiculture, Institute of Oceanography (IO), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Functional Biochemistry of Aquatic Organisms (BIFOA), FURG, Rio Grande, RS, Brazil
| | - Marcos J Schmitz
- Graduate Program in Aquiculture, Institute of Oceanography (IO), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Functional Biochemistry of Aquatic Organisms (BIFOA), FURG, Rio Grande, RS, Brazil
| | - Cleber S Simião
- Graduate Program in Aquiculture, Institute of Oceanography (IO), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Functional Biochemistry of Aquatic Organisms (BIFOA), FURG, Rio Grande, RS, Brazil
| | | | - Adriano V Werhli
- Center of Computational Science (C3), FURG, Rio Grande, RS, Brazil
| | | | - João Sarkis Yunes
- Cyanobacteria and Ficotoxin Laboratory, FURG, Rio Grande, RS, Brazil
| | - Carlos Prentice
- Graduate Program in Aquiculture, Institute of Oceanography (IO), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; School of Food Chemistry (EQA), FURG, Rio Grande, RS, Brazil
| | - Wilson Wasielesky
- Graduate Program in Aquiculture, Institute of Oceanography (IO), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Carcinoculture, FURG, Rio Grande, RS, Brazil
| | - José M Monserrat
- Graduate Program in Aquiculture, Institute of Oceanography (IO), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Functional Biochemistry of Aquatic Organisms (BIFOA), FURG, Rio Grande, RS, Brazil; Institute of Biological Sciences (ICB), FURG, Rio Grande, RS, Brazil.
| |
Collapse
|