1
|
Pan R, Huang Y, Wei T, Zheng L, Hu Z, Duan J, Hao X, Deng Z, Li J. The influence of temperature induced changes in the composition of MFGM on membrane phase transition and nanomechanical properties. Food Res Int 2025; 200:115310. [PMID: 39779156 DOI: 10.1016/j.foodres.2024.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025]
Abstract
Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE. Two types of artificial fat globule membrane (AFGM) were further constructed using XO with phospholipid molecules, including N-AFGM (simulating MFGM in raw milk) and P-AFGM (mimicking MFGM in ultra-pasteurized milk). The results of atomic force microscopy showed that the P-AFGM had significantly less liquid ordered phase (Lo), more aggregation of XO, smoother surface, higher Young's modulus, and more prone to rupture compared to N-AFGM. These results contribute to a better understanding of the relationship between changes of MFGM composition induced by thermal processing and fat globule stability.
Collapse
Affiliation(s)
- Ruize Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yingchao Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China.
| |
Collapse
|
2
|
Zhang J, Yang G, Zha X, Ma X, La Y, Wu X, Guo X, Chu M, Bao P, Yan P, Liang C. Polymorphisms Within the IQGAP2 and CRTAC1 Genes of Gannan Yaks and Their Association with Milk Quality Characteristics. Foods 2024; 13:3720. [PMID: 39682792 DOI: 10.3390/foods13233720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The IQ motif containing GTPase activating protein 2 (IQGAP2) gene functions as a tumor suppressor, reducing the malignant properties of breast cancer cells. The circulating cartilage acidic protein 1 (CRTAC1) gene, present in the whey protein fraction of dairy cows throughout lactation, is significantly correlated with fatty acids in milk. In this study, we investigated the correlation between single nucleotide polymorphisms (SNPs) in the IQGAP2 and CRTAC1 genes and milk quality traits in Gannan yaks, aiming to identify potential molecular marker loci for enhancing milk quality. Using the Illumina Yak cGPS 7K liquid chip, we genotyped 162 yaks and identified five SNPs in the IQGAP2 (g.232,769C>G, g.232,922G>C) and CRTAC1 (g.4,203T>C, g.5,348T>G, g.122,451T>C) genes. Genetic polymorphism analysis revealed that these five SNPs were moderately polymorphic and in Hardy-Weinberg equilibrium. An association analysis results showed that, at the g.232,769C>G locus of the IQGAP2 gene, the heterozygous CG genotype had significantly higher lactose content than the CC and GG homozygous genotypes (p < 0.05). Similarly, at the g.232,922G>C locus, the heterozygous GC and mutant CC genotypes significantly increased the contents of milk fat, lactose, and total solids (TS) (p < 0.05). In the CRTAC1 gene (g.4,203T>C, g.5,348T>G, g.122,451T>C), the mutant CC genotype significantly increased milk fat content, while the heterozygous TG genotype significantly increased lactose content (p < 0.05). In summary, mutations at the loci of g.232,769C>G, g.232,922G>C, g.4,203T>C, g.5,348T>G, and g.122,451T>C significantly elevated the lactose, milk fat, and TS content in Gannan yak milk, providing potential molecular marker candidates for improving Gannan yak milk quality.
Collapse
Affiliation(s)
- Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Guowu Yang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xita Zha
- Qinghai Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
3
|
Sazzad MAA, Lönnfors M, Yang B. Effect of phosphatidylcholine regioisomerism on lateral segregation of milk sphingomyelin in bilayer membranes. Chem Phys Lipids 2024; 265:105445. [PMID: 39326817 DOI: 10.1016/j.chemphyslip.2024.105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Milk fat globule membrane (MFGM) promotes the lateral phase separation of milk lipids and stabilizes the fat globules in milk. The composition and structures of lipids have a significant impact on physicochemical properties of MFGM, which in turn influences the digestion and absorption of milk lipids. Phospholipids (PL), sphingolipids, and cholesterol are the major lipid constituents of MFGM. While the effects of the head-group and structure of the fatty acids (FAs) on membrane properties are commonly studied, little is known on the impact of PL regioisomerism. The present study investigated the impact of phosphatidylcholine (PC) regioisomerism on lateral segregation of milk-sphingomyelin (milk-SM) as well as the influence on the interaction of milk-SM with ceramide and cholesterol in simulated membrane systems. The regioisomer pairs of four molecular species PC 16:0/18:1n-9, PC 16:0/18:2n-6, PC 16:0/18:3n-3, and PC 16:0/20:4n-6 were included in this study. The lateral segregation was determined using lifetime analysis of trans-parinaric acid (tPA) fluorescence. Thermostability of the domains was detected using steady-state anisotropy of tPA. Our results demonstrated a clear impact of PC regioisomerism on membrane properties. PC regioisomers having the unsaturated FAs at the sn-2 position enhanced the lateral segregation of milk-SM with and without the presence of ceramide and cholesterol compared to the regioiosmers having 16:0 at the sn-2 position. Furthermore, the characteristics i. e. the acyl chain length and degree of unsaturation of sn-2 FA of the PCs had a major impact on the milk-SM gel phase and the intermolecular forces between milk-SM and ceramide/cholesterol. This work is the first investigation showing the effect of PL regioisomerism on milk-SM domains, which might have significant influence on functional properties of MFGM.
Collapse
Affiliation(s)
- Md Abdullah Al Sazzad
- Food Sciences, Department of Life Technologies, University of Turku, FI-20500, Turku, Finland
| | - Max Lönnfors
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, FI-20500, Turku, Finland.
| |
Collapse
|
4
|
Liu R, Yang Y, Zhang Y, Sun Q, Zhu P, Xu H, Zheng W, Lu Y, Fu Q. Proteomic and antimicrobial peptide analyses of Buffalo colostrum and mature Milk whey: A comparative study. Food Chem 2024; 448:139119. [PMID: 38547703 DOI: 10.1016/j.foodchem.2024.139119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Buffalo colostrum is the initial mammary secretion after parturition, consisting of nutritional and bioactive components. In this study, we conducted a proteomic analysis of buffalo colostrum whey to identify bioactive proteins and peptides. A total of 107 differentially expressed proteins (DEPs) were identified in buffalo colostrum whey compared to those in mature milk. Gene Ontology analysis revealed that DEPs were primarily associated with immune response and tissue development. KEGG pathway enrichment suggested that colostrum actively enhances nascent immunity involved in interleukin and interferon signaling pathways. Furthermore, candidate antimicrobial peptides (AMPs) of whey protein hydrolysates from buffalo colostrum were characterized, which exhibits broad-spectrum activity against gram-positive and gram-negative pathogens. Overall, this study improves our understanding of protein variations in buffalo lactation, and contributes to the development of AMPs from buffalo colostrum.
Collapse
Affiliation(s)
- Runfeng Liu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Yuan Yang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Yue Zhang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Qinqiang Sun
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Pingchuan Zhu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Huiyan Xu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Wei Zheng
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Yangqing Lu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China.
| | - Qiang Fu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Yuan Y, Zhao J, Liu Q, Liu Y, Liu Y, Tian X, Qiao W, Zhao Y, Liu Y, Chen L. Human milk sphingomyelin: Function, metabolism, composition and mimicking. Food Chem 2024; 447:138991. [PMID: 38520905 DOI: 10.1016/j.foodchem.2024.138991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Human milk, which contains various nutrients, is the "gold standard" for infant nutrition. Healthy human milk meets all the nutritional needs of early infant development. Polar lipids mainly exist in the milk fat globule membrane, accounting for approximately 1-2% of human milk lipids; sphingomyelin (SM) accounts for approximately 21-24% of polar lipids. SM plays an important role in promoting the development of the brain and nervous system, regulating intestinal flora, and improving skin barriers. Though SM could be synthesized de novo, SM nutrition from dietary is also important for infants. The content and composition of SM in human milk has been reported, however, the molecular mechanisms of nutritional functions of SM for infants required further research. This review summarizes the functional mechanisms, metabolic pathways, and compositional, influencing factors, and mimicking of SM in human milk, and highlights the challenges of improving maternal and infant early/long-term nutrition.
Collapse
Affiliation(s)
- Yuying Yuan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaoyan Tian
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yanyan Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
6
|
Pitkänen M, Matilainen O. Milk Fat Globule Membrane-Containing Protein Powder Promotes Fitness in Caenorhabditis elegans. Nutrients 2024; 16:2290. [PMID: 39064733 PMCID: PMC11280102 DOI: 10.3390/nu16142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Milk-derived peptides and milk fat globule membrane (MFGM) have gained interest as health-promoting food ingredients. However, the mechanisms by which these nutraceuticals modulate the function of biological systems often remain unclear. We utilized Caenorhabditis elegans to elucidate how MFGM-containing protein powder (MProPow), previously used in a clinical trial, affect the physiology of this model organism. Our results demonstrate that MProPow does not affect lifespan but promotes the fitness of the animals. Surprisingly, gene expression analysis revealed that MProPow decreases the expression of genes functioning on innate immunity, which also translates into reduced survival on pathogenic bacteria. One of the innate immunity-associated genes showing reduced expression upon MProPow supplementation is cpr-3, the homolog of human cathepsin B. Interestingly, knockdown of cpr-3 enhances fitness, but not in MProPow-treated animals, suggesting that MProPow contributes to fitness by downregulating the expression of this gene. In summary, this research highlights the value of C. elegans in testing the biological activity of food supplements and nutraceuticals. Furthermore, this study should encourage investigations into whether milk-derived peptides and MFGM mediate their beneficial effects through the modulation of cathepsin B expression in humans.
Collapse
Affiliation(s)
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland;
| |
Collapse
|
7
|
Slykerman R, Davies N, Fuad M, Dekker J. Milk Fat Globule Membranes for Mental Health across the Human Lifespan. Foods 2024; 13:1631. [PMID: 38890860 PMCID: PMC11171857 DOI: 10.3390/foods13111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The milk fat globule membrane (MFGM) contains bioactive proteins, carbohydrates, and lipids. Polar lipids found in the MFGM play a critical role in maintaining cell membrane integrity and neuronal signalling capacity, thereby supporting brain health. This review summarises the literature on the MFGM and its phospholipid constituents for improvement of mental health across three key stages of the human lifespan, i.e., infancy, adulthood, and older age. MFGM supplementation may improve mental health by reducing neuroinflammation and supporting neurotransmitter synthesis through the gut-brain axis. Fortification of infant formula with MFGMs is designed to mimic the composition of breastmilk and optimise early gut and central nervous system development. Early behavioural and emotional development sets the stage for future mental health. In adults, promising results suggest that MFGMs can reduce the negative consequences of situational stress. Preclinical models of age-related cognitive decline suggest a role for the MFGM in supporting brain health in older age and reducing depressive symptoms. While there is preclinical and clinical evidence to support the use of MFGM supplementation for improved mental health, human studies with mental health as the primary target outcome are sparce. Further high-quality clinical trials examining the potential of the MFGM for psychological health improvement are important.
Collapse
Affiliation(s)
- Rebecca Slykerman
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Naomi Davies
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Maher Fuad
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| | - James Dekker
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| |
Collapse
|
8
|
Silva FG, Silva SR, Pereira AMF, Cerqueira JL, Conceição C. A Comprehensive Review of Bovine Colostrum Components and Selected Aspects Regarding Their Impact on Neonatal Calf Physiology. Animals (Basel) 2024; 14:1130. [PMID: 38612369 PMCID: PMC11010951 DOI: 10.3390/ani14071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.
Collapse
Affiliation(s)
- Flávio G. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Severiano R. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
| | - Alfredo M. F. Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| | - Joaquim Lima Cerqueira
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Cristina Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| |
Collapse
|
9
|
Pan J, Chen M, Li N, Han R, Yang Y, Zheng N, Zhao S, Zhang Y. Bioactive Functions of Lipids in the Milk Fat Globule Membrane: A Comprehensive Review. Foods 2023; 12:3755. [PMID: 37893646 PMCID: PMC10606317 DOI: 10.3390/foods12203755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
The milk fat globule membrane (MFGM) is a complex tri-layer membrane that wraps droplets of lipids in milk. In recent years, it has attracted widespread attention due to its excellent bioactive functions and nutritional value. MFGM contains a diverse array of bioactive lipids, including cholesterol, phospholipids, and sphingolipids, which play pivotal roles in mediating the bioactivity of the MFGM. We sequentially summarize the main lipid types in the MFGM in this comprehensive review and outline the characterization methods used to employ them. In this comprehensive review, we sequentially describe the types of major lipids found in the MFGM and outline the characterization methods employed to study them. Additionally, we compare the structural disparities among glycerophospholipids, sphingolipids, and gangliosides, while introducing the formation of lipid rafts facilitated by cholesterol. The focus of this review revolves around an extensive evaluation of the current research on lipid isolates from the MFGM, as well as products containing MFGM lipids, with respect to their impact on human health. Notably, we emphasize the clinical trials encompassing a large number of participants. The summarized bioactive functions of MFGM lipids encompass the regulation of human growth and development, influence on intestinal health, inhibition of cholesterol absorption, enhancement of exercise capacity, and anticancer effects. By offering a comprehensive overview, the aim of this review is to provide valuable insights into the diverse biologically active functions exhibited by lipids in the MFGM.
Collapse
Affiliation(s)
- Junyu Pan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Meiqing Chen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Ning Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| |
Collapse
|
10
|
Effects of various thermal treatments on interfacial composition and physical properties of bovine milk fat globules. Food Res Int 2023; 167:112580. [PMID: 37087201 DOI: 10.1016/j.foodres.2023.112580] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
This study aimed to investigate changes of milk fat globules (MFG) and their membranes after thermal treatments, and further analyzed the relationship between the stability of MFG and interfacial compositions of milk fat globule membrane (MFGM). We characterized the influence of three kinds of thermal treatments on fat globule interfacial components (including interfacial phospholipids and interfacial protein) and physical properties using phospholipidomics and several microscopy techniques. The results showed that size of MFG increased from 2.96 μm to 3.59 μm and ζ-potential decreased from -9.71 mV to -13.23 mV after thermal treatment, suggesting that MFGM was damaged and MFG occurred coalescence. Thermal treatment increased the Young's modulus of MFGM and made membranes more fragile. The abundance of MFGM proteins decreased while casein and β-lactoglobulin increased after thermal treatment. Results of phospholipidomics showed that 27 phospholipid species could be used to distinguish the samples. Pasteurization reduced mainly SM and PC located in the outer bilayer of MFGM, while ultra-pasteurization reduced not only SM and PC but also PI and PE located in the inner leaflet. Based on correlation analysis, the increase in Young's modulus of MFGM during thermal treatment might be related to changes in chemical components on the membrane, suggesting a potential link between the change of MFGM components and fat globule coalescence behavior.
Collapse
|
11
|
Wei T, Huang Y, Weng C, Chen F, Tan C, Liu W, Deng Z, Li J. Lipid rafts may affect the coalescence of milk fat globules through phase transition after thermal treatment. Food Chem 2023; 399:133867. [DOI: 10.1016/j.foodchem.2022.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
|
12
|
An C, Yang K, Zhu J, Guo W, Lu C, Zhu X. Qualitative identification of mature milk adulteration in bovine colostrum using noise-reduced dielectric spectra and linear model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7313-7322. [PMID: 35763549 DOI: 10.1002/jsfa.12097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The rapid and accurate identification of colostrum, a strong non-homogeneous food, remains a challenge. In the present study, the dielectric spectra including the dielectric constant (ε') and loss factor (ε″) of 154 colostrum samples adulterated with 0-50% mature milk were measured from 20 to 4500 MHz. RESULTS The results showed that the noise-reducing spectral preprocessing, including Savitzky-Golay (S-G), second derivative (SD), and S-G + SD, was significantly better than scattering-eliminating, including standard normal variate (SNV), multiplicative scatter correction (MSC), and SNV + MSC. The combination of S-G and SD was the best. Principal component analysis results demonstrated that dielectric spectroscopy is less susceptible to the inhomogeneity of colostrum and can be used to identify doped colostrum. The identification performance of linear models was better than that of non-linear models. The established linear discriminant analysis model based on full spectra had the best accuracy rates of 99.14% and 97.37% in the calibration and validation sets, respectively. Confirmatory tests on samples from different sources confirmed the satisfactory robustness of the proposed model. CONCLUSION We found that the main unfavorable effect on the identification based on dielectric spectroscopy was noise interference, rather than scattering effect caused by inhomogeneity of colostrum. The satisfactory results undoubtedly cast light on rapid detection of strongly non-homogeneous foods based on dielectric spectroscopy. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changqing An
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Ke Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Jieliang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Chang Lu
- Guangzhou Institute of Industrial Technology, Guangzhou, China
| | - Xinhua Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Agricultural Equipment Engineering Technology, Yangling, China
| |
Collapse
|
13
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
14
|
Phospholipidomics of bovine milk subjected to homogenization, thermal treatment and cold storage. Food Chem 2022; 381:132288. [DOI: 10.1016/j.foodchem.2022.132288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
|
15
|
Phospholipid profiling, cholesterol, and tocopherols: Comparison of sow milk fats from two lactation stages and five breeds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Ren C, Jin J, Wang X, Zhang Y, Jin Q. Evaluation of fatty acid profile of colostrum and milk fat of different sow breeds. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Ceniti C, Costanzo N, Morittu VM, Tilocca B, Roncada P, Britti D. Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2034165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Nicola Costanzo
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| |
Collapse
|
18
|
Poonia A, Shiva. Bioactive compounds, nutritional profile and health benefits of colostrum: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022; 4:26. [PMCID: PMC9592540 DOI: 10.1186/s43014-022-00104-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bovine colostrum is defined as first milk by milching animals responsible for providing the innate immunity to the neonatal and possess many immunoglobulins for preventing the calf from diseases. Colostrum consist of many bioactive compounds like proteins, enzymes, growth factors, immunoglobulins and nucleotides that provides several benefits to human health. Numerous clinical and pre-clinical studies have demonstrated the therapeutic benefits of the bovine colostrum. This review focusses on bioactive compounds, their health benefits, potential of colostrum for developing several health foods and prevention of respiratory and gastrointestinal tract disorders. Processing can also be done to extend shelf-life and extraction of bioactive constituents either as encapsulated or as extracts. The products derived from bovine colostrum are high-end supplements possessing high nutraceutical value.
Collapse
Affiliation(s)
- Amrita Poonia
- grid.411507.60000 0001 2287 8816Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Shiva
- grid.411507.60000 0001 2287 8816Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
19
|
Klopp RN, Ferreira CR, Casey TM, Boerman JP. Relationship of cow and calf circulating lipidomes with colostrum lipid composition and metabolic status of the cow. J Dairy Sci 2021; 105:1768-1787. [PMID: 34802733 DOI: 10.3168/jds.2021-21008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
Newborn calves rely on lipids in colostrum for energy and immune function. The lipid concentration in colostrum, however, is highly variable, and little is known about its composition and maternal factors that influence its composition. The first objective was to measure plasma lipid composition of multiparous cows at 35 d before calving (BC; 35 ± 3 d; ± standard deviation) and 7 d BC (7 ± 2 d), their colostrum, and serum lipid composition of calves (24 h after birth) using multiple reaction monitoring profiling, which is an exploratory and highly sensitive lipidomic analysis method that screens lipids based on chemical functionality. Second, data were analyzed to determine if there were relationships between circulating lipids in the cow, colostrum lipids, and calf serum lipids. Third, relationships between markers of metabolic status of the cows and circulating and colostrum lipids were analyzed with correlation analysis. Blood was sampled and plasma prepared from multiparous cows (n = 16) at 35 and 7 d BC. Within 3 h of parturition, colostrum was collected from cows and fed to her calf. Calves received another feeding of colostrum within 12 h after birth and a serum sample was collected from each calf 24 h after the first feeding of colostrum. The metabolic status of cows was evaluated using insulin, glucose, and nonesterified fatty acid area under the curve in response to an intravenous glucose tolerance test performed at 3 wk BC. Lipids were extracted from plasma, colostrum, and calf serum and were analyzed using multiple reaction monitoring profiling. Concentration of lipids were calculated using spiked in standards and expressed as percent of lipids identified. Data were uploaded into MetaboAnalyst 5.0 for multivariate and univariate analysis. Principal component analysis indicated that circulating lipids in the cow and calf were distinct from lipids in colostrum. Phosphatidylglycerol (PG) concentration was greater in colostrum and calf serum than in cow plasma, with 23 of the 24 PG found in colostrum also found in calf serum. In response to intravenous glucose tolerance test in late gestation, nonesterified fatty acid area under the curve was positively related to total triacylglycerols lipids in 7 d BC plasma (r = 0.63) but negatively related to total membrane lipids in colostrum (r = -0.55). Thus, the metabolic status of the dam influences circulating lipids and colostrum lipid content. Moreover, the circulating lipidome of the cow and calf are similar to one another and distinct from the colostrum lipidome, except for PG, where it appears that colostrum serves as the source for PG in the calf's circulation.
Collapse
Affiliation(s)
- R N Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - C R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| | - J P Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
20
|
Infant Formula Based on Milk Fat Affects Immune Development in Both Normal Birthweight and Fetal Growth Restricted Neonatal Piglets. Nutrients 2021; 13:nu13103310. [PMID: 34684311 PMCID: PMC8539276 DOI: 10.3390/nu13103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Infant formulas offer an alternative to breast milk for both normal birth weight (NBW) and immunocompromised intrauterine growth restricted (IUGR) infants. Although the lipid fraction in formulas is often derived from vegetable oils, it is unclear if this alters immunological outcomes relative to milk fats or whether these effects differ between IUGR and NBW infants. We hypothesized that replacing vegetable oil with bovine milk fat in infant formula would improve immune development in IUGR and NBW neonates. Two-day old piglets were selected (NBW, n = 18, IUGR, n = 18) and each group of animals were fed formula based on either vegetable oil (VEG) or bovine milk fat (MILK). Animals were reared until day 23/24 and systemic immune parameters were evaluated. Milk-fat feeding decreased blood neutrophil counts and improved neutrophil function while transiently reducing leucocytes’ expression of genes related to adaptive and innate immunity as well as energy metabolism, following in vitro stimulation by live Staphylococcus epidermidis (whole blood, 2 h). However, there were only a few interactions between milk-fat type and birthweight status. Thus, piglets fed milk-fat-based formula had improved neutrophil maturation and suppressed pro-inflammatory responses, compared to those fed vegetable-oil-based formula.
Collapse
|
21
|
Lu N, Wang J, Chen Z, Zhang X, Chen C, Wang S. The effect of adding phospholipids before homogenization on the properties of milk fat globules. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Thum C, Roy NC, Everett DW, McNabb WC. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit Rev Food Sci Nutr 2021; 63:87-113. [PMID: 34190660 DOI: 10.1080/10408398.2021.1944049] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Milk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David W Everett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Sienkiewicz M, Szymańska P, Fichna J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv Nutr 2021; 12:533-545. [PMID: 33070186 PMCID: PMC8009748 DOI: 10.1093/advances/nmaa120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Patrycja Szymańska
- Department of Hemostasis and Hemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T, Samuel F, Ma G, Geurts JMW. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children-An Update and Novel Insights. Nutrients 2021; 13:nu13010199. [PMID: 33435231 PMCID: PMC7828103 DOI: 10.3390/nu13010199] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Proper nutrition is crucial for normal brain and neurocognitive development. Failure to optimize neurodevelopment early in life can have profound long-term implications for both mental health and quality of life. Although the first 1000 days of life represent the most critical period of neurodevelopment, the central and peripheral nervous systems continue to develop and change throughout life. All this time, development and functioning depend on many factors, including adequate nutrition. In this review, we outline the role of nutrients in cognitive, emotional, and neural development in infants and young children with special attention to the emerging roles of polar lipids and high quality (available) protein. Furthermore, we discuss the dynamic nature of the gut-brain axis and the importance of microbial diversity in relation to a variety of outcomes, including brain maturation/function and behavior are discussed. Finally, the promising therapeutic potential of psychobiotics to modify gut microbial ecology in order to improve mental well-being is presented. Here, we show that the individual contribution of nutrients, their interaction with other micro- and macronutrients and the way in which they are organized in the food matrix are of crucial importance for normal neurocognitive development.
Collapse
Affiliation(s)
- Kathrin Cohen Kadosh
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
| | - Leilani Muhardi
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Panam Parikh
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Melissa Basso
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Hamid Jan Jan Mohamed
- Nutrition and Dietetics Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Titis Prawitasari
- Nutrition and Metabolic Diseases Working Group, Indonesian Pediatric Society, Jakarta 10310, Indonesia;
- Department of Pediatrics, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusomo National Referral Hospital Jakarta, Jakarta 10430, Indonesia
| | - Folake Samuel
- Department of Human Nutrition, University of Ibadan, Ibadan 200284, Nigeria;
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China;
- Laboratory of Toxicological Research and Risk assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| | - Jan M. W. Geurts
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Correspondence: ; Tel.: +31-6-53310499
| |
Collapse
|
25
|
Abd El‐Salam MH, El‐Shibiny S. Milk fat globule membrane: An overview with particular emphasis on its nutritional and health benefits. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Safinaz El‐Shibiny
- Dairy Department National Research Centre El‐Behous St Dokki Cairo Egypt
| |
Collapse
|
26
|
Pérez-Gálvez A, Calvo MV, Megino-Tello J, Aguayo-Maldonado J, Jiménez-Flores R, Fontecha J. Effect of gestational age (preterm or full term) on lipid composition of the milk fat globule and its membrane in human colostrum. J Dairy Sci 2020; 103:7742-7751. [PMID: 32622597 DOI: 10.3168/jds.2020-18428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 02/05/2023]
Abstract
Human colostrum is the first milk secreted by the mother after birth and constitutes the ideal food for the newborn, because its chemical composition, rich in immunoglobulins, antimicrobial peptides, growth factors, bioactive lipids, and other important molecules, is perfectly adapted to the metabolic, digestive, and immunological immaturity of the newborn. An incomplete gestational period can affect the maturity of the mammary gland and its ability to secrete milk with the proper composition for the newborn's condition. Previous studies indicate that the mammary gland modulates the profiles of bioactive lipids present in the different phases of lactation from colostrum to mature milk. Given the key role played by the polar lipids (PL) (phospho- and sphingolipids) of the milk fat globule membrane (MFGM) in the immune system and cognitive development of the newborn, it is crucial to analyze whether the content and distribution of the PL are affected by gestation period. Therefore, this study aimed to determine the milk fat globule (MFG) and MFGM lipid compositions of human colostrum samples from 20 healthy preterm and full-term mothers. Lipid characterization using chromatographic techniques (gas chromatograph mass spectrometry and HPLC-evaporative light-scattering detection) revealed differences related to length of gestation in the profiles of lipid classes and fatty acid and triacylglyceride contents of colostrum. This comparative analysis leads to noteworthy outcomes about the changing roles of the PL, considering the preterm or full-term condition. We found a lack of correlation of some PL (such as phosphatidylcholine, phosphatidylinositol, and phosphatidylserine) with the delivery term; these could be denoted as structural category lipids. However, sphingomyelin and phosphatidyl-ethanolamine exhibited trends to decrease in full-term colostrum, indicating that in the final stage of pregnancy specific accretion of some PL occurs, which should be denoted as a nutritional redistribution.
Collapse
Affiliation(s)
- Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013, Sevilla, Spain
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain
| | - Javier Megino-Tello
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain
| | | | | | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
27
|
Buttermilk as a wall material for microencapsulation of omega-3 oils by spray drying. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods 2020; 9:foods9030263. [PMID: 32121655 PMCID: PMC7143133 DOI: 10.3390/foods9030263] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 02/01/2023] Open
Abstract
Milk phospholipids (MPLs) have been used as ingredients for food fortification, such as bakery products, yogurt, and infant formula, because of their technical and nutritional functionalities. Starting from either buttermilk or beta serum as the original source, this review assessed four typical extraction processes and estimated that the life-cycle carbon footprints (CFs) of MPLs were 87.40, 170.59, 159.07, and 101.05 kg CO2/kg MPLs for membrane separation process, supercritical fluid extraction (SFE) by CO2 and dimethyl ether (DME), SFE by DME, and organic solvent extraction, respectively. Regardless of the MPL content of the final products, membrane separation remains the most efficient way to concentrate MPLs, yielding an 11.1-20.0% dry matter purity. Both SFE and solvent extraction processes are effective at purifying MPLs to relatively higher purity (76.8-88.0% w/w).
Collapse
|
29
|
SILVA EGDSO, RANGEL AHDN, MÜRMAM L, BEZERRA MF, OLIVEIRA JPFD. Bovine colostrum: benefits of its use in human food. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.14619] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Atehli D, Ali F, Wang J. The effects of sodium hexametaphosphate addition on the physicochemical properties and microstructure of the milk fat globule membrane (MFGM) in liquid milk after freezing. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dima Atehli
- Key Laboratory of Food Nutrition and Safety Ministry of Education Tianjin University of Science & Technology Tianjin 300457 China
| | - Fatma Ali
- Key Laboratory of Food Nutrition and Safety Ministry of Education Tianjin University of Science & Technology Tianjin 300457 China
| | - Jianming Wang
- College of Food Engineering and Biotechnology Tianjin University of Science & Technology Tianjin 300457 China
| |
Collapse
|
31
|
Et-Thakafy O, Guyomarc'h F, Lopez C. Young modulus of supported lipid membranes containing milk sphingomyelin in the gel, fluid or liquid-ordered phase, determined using AFM force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1523-1532. [DOI: 10.1016/j.bbamem.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
|
32
|
Milk Fat Globule Membrane Supplementation Promotes Neonatal Growth and Alleviates Inflammation in Low-Birth-Weight Mice Treated with Lipopolysaccharide. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4876078. [PMID: 31187046 PMCID: PMC6521396 DOI: 10.1155/2019/4876078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Impaired intestinal mucosal integrity and immunity are frequently observed in low-birth-weight (LBW) animals, which lead to inadequate growth and high neonatal mortality. However, the mechanisms of intestinal dysfunction in LBW animals are still unclear. Milk fat globule membrane (MFGM), a protein-lipid complex surrounding the fat globules in milk, has many healthful benefits for animals. Therefore, this study was conducted to explore the effect of MFGM supplementation on intestinal injury and inflammation in LBW mouse pups while being challenged with lipopolysaccharide (LPS). C57BL/6J LBW female neonatal mice were fed on breast milk and divided into four groups, including two normal diet groups (ND; CON group and LPS group) and the diet supplemented with two dosages of MFGM, namely, MFGM100 (ND plus MFGM at 100 mg/kg BW) and MFGM200 (ND plus MFGM at 200 mg/kg BW) from postnatal day (PND) 4 to PND 21. At PND21, pups from the LPS group, MFGM100 group, and MFGM200 group were injected intraperitoneally with LPS while the pups from the CON group were injected with equivalent volume of sterile saline. After 4 h of LPS administration, all pups were slaughtered and then the plasma, mid-ileum, and mid-colon tissue samples were collected. Our results showed that MFGM supplementation promoted the body weight from PND16 to PND21 and attenuated intestinal inflammation manifested by reduced histological damage, decreased secretion of TNF-α, IL-6, IFN-γ, and IL-1β, and improved oxidative stress characterized by increased SOD activity and decreased secretion of MDA. Expression of tight junction proteins (ZO-1, occludin, and claudin-1), MUC1, and MUC2 was increased in MFGM presupplemented groups compared to the LPS-challenged mice with normal diet. Meanwhile, the expression of proinflammatory cytokines and TLRs was decreased by MFGM presupplementation. Collectively, MFGM is a critical nutrient with an ability to improve the growth performance of LBW mouse pups, especially during the LPS challenge, by promoting the intestinal epithelial integrity and inhibiting inflammation through activating of TLR2 and TLR4 signals.
Collapse
|
33
|
Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Wei W, Jin Q, Wang X. Human milk fat substitutes: Past achievements and current trends. Prog Lipid Res 2019; 74:69-86. [DOI: 10.1016/j.plipres.2019.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
|
35
|
Jukkola A, Hokkanen S, Kämäräinen T, Partanen R, Heino A, Rojas OJ. Changes in milk fat globules and membrane lipids under the shear fields of microfiltration and centrifugation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Lopez C, Cauty C, Guyomarc'h F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Cheema M, Smith PB, Patterson AD, Hristov A, Harte FM. The association of lipophilic phospholipids with native bovine casein micelles in skim milk: Effect of lactation stage and casein micelle size. J Dairy Sci 2018; 101:8672-8687. [PMID: 30031576 DOI: 10.3168/jds.2017-14137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
Abstract
A known biological role of casein micelles is to transport calcium from mother to young and provide amino acids for growth and development. Previous reports demonstrated that modified casein micelles can be used to transport and deliver hydrophobic probes. In this study, the distribution of lipid-soluble phospholipids, including sphingomyelins (SM) and phosphatidylcholines (PC), was quantified in whole raw milk, skim raw milk, and casein micelles of various sizes during early, mid, and late lactation stages. Low-pressure size exclusion chromatography was used to separate casein micelles by size, followed by hydrophobic extraction and liquid chromatography-mass spectrometry for the quantification of PC and SM. Results showed that the SM d18:1/23:0, d18:1/22:0, d18:1/16:0, d16:1/22:0, d16:1/23:0, and d18:1/24:0 and the PC 16:0/18:1, 18:0/18:2, and 16:0/16:0 were dominating candidates appearing in maximum concentration in whole raw milk obtained from late lactation, with 21 to 50% of total SM and 16 to 35% of total PC appearing in skim milk. Of the total SM and PC found in skim milk, 35 to 46% of SM and 22 to 29% of PC were associated with the casein micelle fraction. The highest concentrations of SM d18:1/22:0 (341 ± 17 µg/g of casein protein) and PC 16:0/18:1 (180 ± 20 µg/g of casein protein) were found to be associated with the largest casein micelles (diameter = 149 nm) isolated in milk from late lactation, followed by a decrease in concentration as the casein micelle size decreased.
Collapse
Affiliation(s)
- M Cheema
- Department of Food Science, University Park 16802
| | - P B Smith
- The Huck Institutes of the Life Sciences, University Park 16802
| | - A D Patterson
- Department of Veterinary and Biomedical Sciences, University Park 16802
| | - A Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - F M Harte
- Department of Food Science, University Park 16802.
| |
Collapse
|
38
|
Bhojoo U, Chen M, Zou S. Temperature induced lipid membrane restructuring and changes in nanomechanics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:700-709. [DOI: 10.1016/j.bbamem.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/17/2017] [Accepted: 12/08/2017] [Indexed: 11/26/2022]
|
39
|
Effect of early lactation stage on goat colostrum: Assessment of lipid and oligosaccharide compounds. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Lu J, Pickova J, Vázquez-Gutiérrez JL, Langton M. Influence of seasonal variation and ultra high temperature processing on lipid profile and fat globule structure of Swedish cow milk. Food Chem 2018; 239:848-857. [DOI: 10.1016/j.foodchem.2017.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
|
41
|
Et-Thakafy O, Delorme N, Guyomarc’h F, Lopez C. Mechanical properties of milk sphingomyelin bilayer membranes in the gel phase: Effects of naturally complex heterogeneity, saturation and acyl chain length investigated on liposomes using AFM. Chem Phys Lipids 2018; 210:47-59. [DOI: 10.1016/j.chemphyslip.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022]
|
42
|
Jukkola A, Rojas OJ. Milk fat globules and associated membranes: Colloidal properties and processing effects. Adv Colloid Interface Sci 2017; 245:92-101. [PMID: 28457499 DOI: 10.1016/j.cis.2017.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
Abstract
The composition and physical-chemical properties of the milk fat globule membrane (MFGM) is a subject that has gained increased interest in the field of food colloids, mainly because the nutritional and technological value of the MFGM. In fact, related changes in integrity and structure during milk processing pose a huge challenge as far as efforts directed to isolate the components of the fat globule membrane. MFGM characteristics and potential utilization are subjects of dissension. Thus, the effects of processing and the colloidal interactions that exist with other milk constituents need to be better understood in order to exploit milk fat and MFGM, their functionality as colloids as well as those of their components. These are the main subjects of this review, which also reports on the results of recent inquiries into MFGM structure and colloidal behavior.
Collapse
|
43
|
Cheng K, Ropers MH, Lopez C. The miscibility of milk sphingomyelin and cholesterol is affected by temperature and surface pressure in mixed Langmuir monolayers. Food Chem 2017; 224:114-123. [DOI: 10.1016/j.foodchem.2016.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/12/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022]
|
44
|
Lipid domains in the milk fat globule membrane: Dynamics investigated in situ in milk in relation to temperature and time. Food Chem 2017; 220:352-361. [DOI: 10.1016/j.foodchem.2016.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 11/24/2022]
|
45
|
Brijesha N, Aparna HS. Comprehensive characterization of bioactive peptides from Buffalo (Bubalus bubalis) colostrum and milk fat globule membrane proteins. Food Res Int 2017; 97:95-103. [PMID: 28578070 DOI: 10.1016/j.foodres.2017.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/19/2017] [Indexed: 11/19/2022]
Abstract
Milk fat is dispersed in milk as small spherical globules stabilized in the form of emulsion by its surrounding membrane, often referred to as fat globule membrane (FGM). Buffalo, a major milking mammal of Asia and second most milking mammal across the globe presents physicochemical features different from that of other ruminant species containing higher content of lipids and proteins. The present study describes characterization of FGM proteins isolated from both buffalo milk and colostrum. A detailed proteomic analysis of peptides generated by in vitro gastrointestinal simulation digestion of buffalo milk and colostrum FGM fractions was performed by nLC-ESI MS/MS. The peptide based clustering of FGM proteins unravelled association of membrane proteins in fat transport, enzymatic activity, general transport, defence, cell signalling, membrane/protein trafficking protein synthesis/binding/folding including unknown functions. Gene annotation, STRING and YLoc analyses provided putative insights into major secretory pathways in milk and colostrum FGM peptides, interactive protein networks including their sub cellular localization. The peptides of milk and colostrum FGM offered cellular protection as powerful antioxidants indicated their promising perspectives in commercial formulations and nutraceuticals.
Collapse
Affiliation(s)
- N Brijesha
- DOS in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - H S Aparna
- DOS in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India.
| |
Collapse
|
46
|
Verardo V, Gómez-Caravaca AM, Arráez-Román D, Hettinga K. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. Int J Mol Sci 2017; 18:ijms18010173. [PMID: 28106745 PMCID: PMC5297805 DOI: 10.3390/ijms18010173] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed.
Collapse
Affiliation(s)
- Vito Verardo
- Department of Chemistry and Physics (Analytical Chemistry Area), Research Centre for Agricultural and Food Biotechnology (BITAL), Agrifood Campus of International Excellence, ceiA3, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Ana Maria Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, c/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park (PTS) Granada, Avda. del Conocimiento s/n, EdificioBioregión, 18007 Granada, Spain.
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, c/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park (PTS) Granada, Avda. del Conocimiento s/n, EdificioBioregión, 18007 Granada, Spain.
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
47
|
Jukkola A, Partanen R, Rojas O, Heino A. Separation of milk fat globules via microfiltration: Effect of diafiltration media and opportunities for stream valorization. J Dairy Sci 2016; 99:8644-8654. [DOI: 10.3168/jds.2016-11422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022]
|
48
|
The temperature-dependent physical state of polar lipids and their miscibility impact the topography and mechanical properties of bilayer models of the milk fat globule membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2181-2190. [DOI: 10.1016/j.bbamem.2016.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
49
|
The dynamics of the biological membrane surrounding the buffalo milk fat globule investigated as a function of temperature. Food Chem 2016; 204:343-351. [DOI: 10.1016/j.foodchem.2016.02.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/01/2016] [Accepted: 02/23/2016] [Indexed: 11/20/2022]
|
50
|
Murthy AVR, Guyomarc'h F, Lopez C. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6757-6765. [PMID: 27300157 DOI: 10.1021/acs.langmuir.6b01040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sphingomyelin-rich microdomains have been observed in the biological membrane surrounding milk fat globules (MFGM). The role played by cholesterol in these domains and in the physical properties and functions of the MFGM remains poorly understood. The objective of this work was therefore to investigate the phase state, topography, and mechanical properties of MFGM polar lipid bilayers as a function of cholesterol concentration, by combining X-ray diffraction, atomic force microscopy imaging, and force spectroscopy. At room temperature, i.e. below the phase transition temperature of the MFGM polar lipids, the bilayers showed the formation of sphingomyelin-rich domains in the solid ordered (so) phase that protruded about 1 nm above the liquid disordered (ld) phase. These so phase domains have a higher mechanical resistance to rupture than the ld phase (30 nN versus 15 nN). Addition of cholesterol in the MFGM polar lipid bilayers (i) induced the formation of liquid ordered (lo) phase for up to 27 mol % in the bilayers, (ii) decreased the height difference between the thicker ordered domains and the surrounding ld phase, (iii) promoted the formation of small sized domains, and (iv) decreased the mechanical resistance to rupture of the sphingomyelin-rich domains down to ∼5 nN. The biological and functional relevance of the lo phase cholesterol/sphingomyelin-rich domains in the membrane surrounding fat globules in milk remains to be elucidated. This study brought new insight about the functional role of cholesterol in milk polar lipid ingredients, which can be used in the preparation of food emulsions, e.g. infant milk formulas.
Collapse
|