1
|
Muñoz RLP, Mora CP, Parra-Perdomo LV, Rojas G. Healing from the Peel: Exploring the Bioactive Potential of Bananas for Gastric Ulcer Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40318148 DOI: 10.1021/acs.jafc.4c12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Bananas (Musaceae), herbaceous plants widely cultivated in tropical and subtropical regions, are traditionally used for their purported therapeutic effects on early-stage gastric ulcers. This comprehensive review provides an analysis of the bioactive compounds in bananas, with a focus on the influence of varietal differences and ripening stages. Researchers have identified key bioactive molecules in bananas, including phenolic compounds, carotenoids, and biogenic amines, predominantly located in the banana peel. Unripe bananas contain higher levels of phenolic compounds and biogenic amines, whereas ripened bananas exhibit increased carotenoid content. Additionally, in vivo studies have indicated that flavonoids, particularly leucocyanidin, exert gastroprotective effects by enhancing gastric mucosal thickness and increasing epidermal growth factor receptor expression, which promotes angiogenesis and re-epithelialization of the gastric mucosa, thereby protecting against ulcer formation. The findings reinforce the medicinal value of bananas, particularly in their unripe state, and highlight the importance of further exploration into their bioactive components for the development of natural therapies targeting gastric health.
Collapse
Affiliation(s)
- R Lizeth P Muñoz
- Departamento de Ciencias Químicas y Farmacéuticas, Facultad Barberi de Ingeniería, Diseño y Ciencias Aplicadas, Grupo de Investigación Natura, Universidad Icesi, Calle 18 No. 122-135, 760031 Cali, Colombia
| | - Carolina P Mora
- Departamento de Ciencias Químicas y Farmacéuticas, Facultad Barberi de Ingeniería, Diseño y Ciencias Aplicadas, Grupo de Investigación Natura, Universidad Icesi, Calle 18 No. 122-135, 760031 Cali, Colombia
| | - Laura V Parra-Perdomo
- Departamento de Ciencias Químicas y Farmacéuticas, Facultad Barberi de Ingeniería, Diseño y Ciencias Aplicadas, Grupo de Investigación Natura, Universidad Icesi, Calle 18 No. 122-135, 760031 Cali, Colombia
| | - Giovanni Rojas
- Departamento de Ciencias Químicas y Farmacéuticas, Facultad Barberi de Ingeniería, Diseño y Ciencias Aplicadas, Grupo de Investigación Natura, Universidad Icesi, Calle 18 No. 122-135, 760031 Cali, Colombia
| |
Collapse
|
2
|
Ling CY, Yeo MTY, Kang Y, Ng SM, Bi X, Henry CJ. Comparative Effects of Durian and Banana Consumption on Thermic Effect of Food and Metabolic Responses in Healthy Adults. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:283-291. [PMID: 39531559 DOI: 10.1080/27697061.2024.2426563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE In traditional Chinese philosophy, durian is classified as a "yang" food with heaty properties, believed to raise body temperature and blood pressure (BP) after consumption. In contrast, bananas are considered as "yin," possessing cooling effect. However, scientific evidence supporting these concepts is limited. This study aims to compare the metabolic effects in response to durian and banana ingestion. METHODS This randomized cross-over clinical study recruited 16 young, healthy Chinese participants (8 males and 8 females). All participants ingested isocaloric portion (367.5 kcal) of durian and banana with a wash-out period of at least 5 days. 3-h thermic effect of food (TEF) and substrate oxidation were assessed by indirect calorimetry. Postprandial vital signs and metabolic responses were measured over a period of 3 h. RESULTS Durian induced a higher and longer-lasting TEF than banana in most participants. Additionally, durian significantly lowered BP and increased triglyceride (TG) levels during 3 h after consumption, whereas bananas had no significant effects on these measures. Despite containing much fewer carbohydrates, durian prompted a comparable postprandial rise in blood glucose concentrations to that of banana. CONCLUSION While durian offers nutritional benefits and a BP-lowering effect, moderation is recommended due to its high sugar and fat content, which can elevate blood glucose and lipid levels, and its "heatiness" may cause digestive discomforts and a sore throat according to anecdotal experiences.
Collapse
Affiliation(s)
- Charlotte Yiin Ling
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michelle Ting Yun Yeo
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yan Kang
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shu Min Ng
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xinyan Bi
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
3
|
Miao H, Zhang J, Zheng Y, Jia C, Hu Y, Wang J, Zhang J, Sun P, Jin Z, Zhou Y, Zheng S, Wang W, Rouard M, Xie J, Liu J. Shaping the future of bananas: advancing genetic trait regulation and breeding in the postgenomics era. HORTICULTURE RESEARCH 2025; 12:uhaf044. [PMID: 40236735 PMCID: PMC11997438 DOI: 10.1093/hr/uhaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 04/17/2025]
Abstract
Bananas (Musa spp.) are among the top-produced food crops, serving as a primary source of food for millions of people. Cultivated bananas originated primarily from the wild diploid species Musa acuminata (A genome) and Musa balbisiana (B genome) through intra- and interspecific hybridization and selections via somatic variation. Following the publication of complete A- and B-genome sequences, prospects for complementary studies on S- and T-genome traits, key gene identification for yield, ripening, quality, and stress resistance, and advances in molecular breeding have significantly expanded. In this review, latest research progress on banana A, B, S, and T genomes is briefly summarized, highlighting key advances in banana cytoplasmic inheritance, flower and fruit development, sterility, and parthenocarpy, postharvest ripening and quality regulation, and biotic and abiotic stress resistance associated with desirable economic traits. We provide updates on transgenic, gene editing, and molecular breeding. We also explore future directions for banana breeding and genetic improvement.
Collapse
Affiliation(s)
- Hongxia Miao
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jianbin Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yunke Zheng
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Caihong Jia
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yulin Hu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xiuhu Road 1, Mazhang District, Zhanjiang 524000, China
| | - Jingyi Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jing Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Peiguang Sun
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Zhiqiang Jin
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Yongfeng Zhou
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Pengfei Road 7, Dapengxin District, Shenzhen 518000, China
| | - Sijun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
- Bioversity International, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
| | - Wei Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier 34397, Cedex 5, France
| | - Jianghui Xie
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Juhua Liu
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| |
Collapse
|
4
|
Ahmed HEH, Konneh M, Soylak M. Novel green synthesis of Al-Fe₃O₄ nanocomposite for magnetic d-μSPE of Cd(II) from water and food samples. Food Chem 2025; 472:142922. [PMID: 39827556 DOI: 10.1016/j.foodchem.2025.142922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
A novel and green nanocomposite (Al-Fe₃O₄) was synthesized and used for the magnetic d-μSPE method for separating and enriching Cd(II) from dried fruit samples. Aluminum foil waste and banana peels were used as the precursors. The green nanocomposite was characterized using FTIR, XRD, and FE-SEM techniques. The characterization results indicated a successful synthesis with active sites for efficient and simple extraction. The method performance showed significant results of low limits of detection (LOD) and quantification (LOQ) of 0.068 and 0.227 μg L-1, respectively. The method demonstrated an efficient extraction time of just 15 s using hand shaking. The optimal parameters were determined as pH 8.0, an adsorbent amount of 5 mg, adsorption and desorption intervals of 15 s and 0.5 min, a sample volume of 30 mL, and an eluent volume of 3.0 mL of 0.1 mol L-1 of HNO₃. The greenness degree of both the synthesis and magnetic d-μSPE methods was evaluated, which achieved high eco-scale and greenness scores of 94 and 0.79, respectively. The detected Cd(II) levels in the food samples were 10.2, 17.0, 27.4, and 18.8 μg kg-1 for dried Granny Smith apples, dried apricots, raisins, and dried kiwi, respectively. The developed method demonstrated exceptional sensitivity and reliability, successfully extracting Cd(II) at ultra-trace levels.
Collapse
Affiliation(s)
- Hassan Elzain Hassan Ahmed
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research and Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Sudan Atomic Energy Commission (SAEC) - Chemistry and Nuclear Physics Institute, Khartoum, Sudan; Sudan University of Science and Technology (SUST) - College of Science-Scientific Laboratories Department, Chemistry Section, Khartoum, Sudan
| | - Mohammed Konneh
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research and Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; United Methodist University, The College of Natural & Applied Sciences, Monrovia, Liberia
| | - Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research and Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Sinha S, Sardar A, Rai D, Tripathi AK, Kothari P, Rajput R, Pandey A, Trivedi R. Comparative assessment of flavonoid content in banana pulp and peel and their role in mitigating bone loss conditions and promoting osteoblast differentiation. Food Funct 2025; 16:3028-3047. [PMID: 40135274 DOI: 10.1039/d4fo04943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Banana fruit is widely grown and serves as a source of income across the tropics. It is known for its nutritional qualities and well-recognized medicinal applications. Given that banana pulp and peel are rich in flavonoids, such as naringenin, kaempferol, and quercetin, which are already known for their role in bone health, we hypothesize that banana pulp and peel can accelerate fracture healing, mitigate bone loss in post-menopausal conditions, and promote osteoblast differentiation. The current study was proposed to assess a comparative and parallel investigation of the differential flavonoid expression in banana pulp and peel and their concomitant bone anabolic effects. The pulp extract exhibited its osteogenic potential when administered orally for 2 weeks at doses of 250, 500 and 750 mg per kg per day in the osteotomy Balb/c mice model (n = 10), while the peel extract showed similar effects at comparatively much lower doses of 50, 100 and 250 mg per kg per day for the same duration. The effective lower doses in both cases, i.e., 250 mg per kg per day for the pulp and 50 mg per kg per day for the peel, were used to further investigate the anti-osteoporotic potential in vivo over a span of 8 weeks (n = 10). Banana pulp ameliorated the microarchitectural deterioration of the bones by increasing the rate of bone formation while simultaneously limiting exaggerated resorption, as assessed by micro-CT, calcein labelling, TRAP staining, bone strength parameters and measurement of bone formation and resorption markers in serum. Similar results were obtained with the banana peel extract at considerably lower doses. The osteogenic potential of the pulp and peel extracts was also tested in an in vitro setup. Osteoblast viability and differentiation, as assessed by MTT, ALP, mineralization and RT-PCR, demonstrated that bone formation potential was observed at 2.5 μg ml-1 and 5 μg ml-1 of the pulp extract, whereas in the case of the peel extract, it was observed at 0.625 μg ml-1 and 1.25 μg ml-1. These findings indicate that banana peel can exert similar osteogenic and osteoprotective effects as the pulp but at a much lower dose. This highlights banana peel as a prospective, sustainable feedstock for the healthcare sector, providing an alternative to its disposal.
Collapse
Affiliation(s)
- Shradha Sinha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anirban Sardar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Divya Rai
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| | - Priyanka Kothari
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| | - Ruchika Rajput
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Liu D, Ding X, Yang Y. Anti-cancer effects of carnosol in DMBA-induced oral experimental carcinogenesis by oncogenic signaling pathways on in vivo and in silico study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04010-4. [PMID: 40220028 DOI: 10.1007/s00210-025-04010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/03/2025] [Indexed: 04/14/2025]
Abstract
The most prevalent malignant tumor in the oral cavity, accounting for more than 90% of all oral malignancies, is oral squamous cell carcinoma (OSCC). Therefore, detection or prevention of malignant transformation remains a viable target for the future. Carnosol is a compound derived from rosemary that contains both antioxidant and anti-carcinogens. This study examined the defensive properties of carnosol in DMBA-induced oral carcinogenesis. We have developed the computational based docking analysis to predict the binding affinity and interaction of carnosol with inflammatory and pro-apoptotic proteins. Carnosol was the most potential bioactive compound shows strong binding affinity to low binding energy to bind above the proteins. Following this, we created a hamster model to study buccal pouch carcinogenesis induced by DMBA and assessed buccal tissues using histopathological, biochemical, and western blotting. Carnosol treatment effectively reduced DMBA-induced pathological changes in buccal tissues: Altered detoxification, increased antioxidant levels, and reduced lipid peroxidation enzymes levels. We then examined the impact of carnosol intervention on the modulation of the levels of inflammatory factors and pro-apoptotic markers in oral carcinogenesis. Binding energy was studied between the carnosol between the inflammatory (NF-κB and COX-2) and apoptotic (Bax, caspase-3, and caspase-9) proteins using molecular docking. Our findings suggest that carnosol enhances antioxidant and detoxification levels, potentially prevents oral carcinogenesis by modifying the inflammatory and pro-apoptotic signaling pathways, and acts as an anti-cancer agent.
Collapse
Affiliation(s)
- Dengke Liu
- Department of Cardiology and Endodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No.769 Shengli Road, Xingqing District, Ningxia Hui Autonomous Region, Ningxia, 750003, China.
| | - Xiaoyan Ding
- Department of Cardiology and Endodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No.769 Shengli Road, Xingqing District, Ningxia Hui Autonomous Region, Ningxia, 750003, China
| | - Yafeng Yang
- Department of Cardiology and Endodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No.769 Shengli Road, Xingqing District, Ningxia Hui Autonomous Region, Ningxia, 750003, China
| |
Collapse
|
7
|
Fuad ASM, Arzmi MH, Bakar ME, Taib IS, Khuda F, Nasruddin NS. Acute oral toxicity evaluation of synbiotic mixture containing Streptococcus salivarius K12 and Musa acuminata aqueous peel extract in Sprague-Dawley rats. J Ayurveda Integr Med 2025; 16:101037. [PMID: 39681048 PMCID: PMC11714393 DOI: 10.1016/j.jaim.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/13/2023] [Accepted: 07/05/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The combination of S. salivarius K12 and M. acuminata are being used as synbiotic, but its safety evaulation is required. OBJECTIVE This study aimed to determine the LD50 of synbiotic containing probiotic Streptococcus salivarius K12 and prebiotic Musa acuminata peel extract. MATERIALS AND METHODS The determination of LD50 is done according to the Acute Oral Toxicity test No. 425 (AOT425). For limit test, five female Sprague Dawley rats were given a limit dose of 2000 mg/kg of the synbiotic mixture once orally, and observed for 12 days. For subacute toxicity test, twenty female Sprague Dawley rats were randomised into 4 groups (n = 5). Control group received saline, others received synbiotic mixture at doses 175 mg/kg, 550 mg/kg, and 2000 mg/kg, respectively, and observed for 14 days. Animals were euthanised on day-15, blood was collected, and subjected to haematological and biochemical analyses. Kidney and liver were preserved for histopathological examination. RESULT No significant changes on the average body weight of the animals throughout the study. Haematological parameters and biochemical analysis do not depict any changes related to acute toxicity. Histopathology analysis depicted mild changes on kidney and liver. CONCLUSION Based on the data, the LD50 of the synbiotic formulation is higher than 2000 mg/kb, with no sign of acute toxicity observed on all parameters.
Collapse
Affiliation(s)
- Aalina Sakiinah Mohd Fuad
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia; Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia; Melbourne Dental School, The University of Melbourne, Swanston Street, 3053, Victoria, Australia
| | - Muhammad Ekmal Bakar
- Centre of Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Izatus Shima Taib
- Centre of Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fazle Khuda
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Department of Restorative Dentistry, Faculty of Dentistry, Lincoln University College Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Minuti A, Mazzon E, Iori R, Chiricosta L, Artimagnella O. Bioactivated Glucoraphanin Improves Cell Survival, Upregulating Phospho-AKT, and Modulates Genes Involved in DNA Repair in an In Vitro Alzheimer's Disease Model: A Network-Transcriptomic Analysis. Nutrients 2024; 16:4202. [PMID: 39683594 DOI: 10.3390/nu16234202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, for which a definitive cure is still missing. Recently, natural compounds have been investigated for their possible neuroprotective role, including the bioactivated product of glucoraphanin (GRA), the sulforaphane (SFN), which is highly rich in cruciferous vegetables. It is known that SFN alleviates neuronal dysfunction, apoptosis, and oxidative stress in the brain. In the light of this evidence, the aim of this study was to investigate the molecular effects of SFN pre-treatment in differentiated SH-SY5Y neurons exposed to β-amyloid (Aβ). METHODS To this end, we first evaluated first cell viability via the Thiazolyl Blue Tetrazolium Bromide (MTT) assay, and then we analyzed the transcriptomic profiles by next-generation sequencing (NGS). Finally, we used a network analysis in order to understand which biological processes are affected, validating them by Western blot assay. RESULTS SFN pre-treatment counteracted Aβ-induced loss of cell viability. The network-transcriptomic analysis revealed that SFN upregulates genes associated with DNA repair, such as ABRAXAS1, BRCA1, BRCA2, CDKN1A, FANCA, FANCD2, FANCE, NBN, and XPC. Finally, SFN also increased the phosphorylation of AKT, which is associated with DNA repair and cell survival. CONCLUSIONS These data suggest that SFN is a natural compound that could be suitable in the prevention of AD, thanks to its neuroprotective role in increasing cell survival, potentially restoring DNA damage induced by Aβ exposure.
Collapse
Affiliation(s)
- Aurelio Minuti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Renato Iori
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Osvaldo Artimagnella
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
9
|
Zhao Y, Sun J, Liu Y, Zhang X, Cao Y, Zheng B, Zhang RX, Zhao C, Ai X, He H, Han Y. Metabolic basis for superior antioxidant capacity of red-fleshed peaches. Food Chem X 2024; 23:101698. [PMID: 39211764 PMCID: PMC11357884 DOI: 10.1016/j.fochx.2024.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Peach fruit is an important natural source of phenolic compounds that are well-known to have health benefits, but their metabolic basis remain elusive. Here, we report on phenolic compounds accumulation and antioxidant activity of ripe fruits in peach. A considerable variation in phenolic compounds content was observed among peach germplasm, with significantly higher levels detected in red-fleshed peaches compared to non-red-fleshed peaches. Antioxidant activity of crude extracts from ripe fruits showed significant differences among peach germplasm, with red-fleshed peaches having the strongest antioxidant activity. Intriguingly, it was observed that total phenolics instead of anthocyanins were strongly associated with antioxidant activity. Phenolic compounds content and antioxidant activity showed dynamic changes throughout fruit development, and these were much higher in the peel than in the flesh. Metabolomic analysis unveiled a coordinated accumulation of anthocyanins as well as key components of flavonoids and phenolic acids, which endows red-fleshed peaches with superior antioxidant activity.
Collapse
Affiliation(s)
- Yun Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juanli Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yudi Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Beibei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xiaoyan Ai
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430209, China
| | - Huaping He
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430209, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
10
|
Zheng Y, Sun F, Ye S, Zhu J, Ma Y, Shan M, Li S, Chen Y, Li J. Correlation between fruit consumption and 10-year all-cause mortality in patients with dyslipidemia. Front Nutr 2024; 11:1471737. [PMID: 39421625 PMCID: PMC11484278 DOI: 10.3389/fnut.2024.1471737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Consuming fruit provides health benefits. Reportedly, increased fruit consumption reduces the risks of hypertension and cardiovascular disease. However, existing studies have not clarified the effect of fruit consumption on mortality risk in patients with dyslipidemia. This study aimed to assess the correlation between the consumption of different types of fruits and all-cause mortality in patients with dyslipidemia. METHODS A total of 2,184 patients with dyslipidemia were included in this study, and trends in the correlation between the frequency of consumption of different types of fruits and the 10-year all-cause mortality risk in patients with dyslipidemia were analyzed by smoothed curve fitting, Cox regression, and Kaplan-Meier curve analysis. Subgroup analysis and interaction test were applied to analyze the stability of the effect of apple consumption on 10-year all-cause mortality in patients with dyslipidemia. RESULTS Smoothed curve fitting and Cox regression analyses revealed a significant reduction in the 10-year all-cause mortality risk in patients with dyslipidemia who consumed apples 3-4 times/week (hazard ratio [HR] = 0.61, 95% confidence interval [CI]: 0.43-0.87, p = 0.007) and in those who consumed bananas 3-4 times/week (HR = 0.71, 95% CI: 0.52-0.98, p = 0.039), with a more pronounced effect in patients who consumed both apples and bananas (HR = 0.55, 95% CI: 0.30-0.99, p = 0.045). Other fruits did not exhibit similar effects. CONCLUSION Consuming apples or bananas 3-4 times/week significantly improved the 10-year survival rate in patients with dyslipidemia, and the effect was even more profound in patients who consumed both fruits.
Collapse
Affiliation(s)
- Yuanjuan Zheng
- Department of General Practice, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Feifei Sun
- Department of Critical Care Medicine, Heilongjiang Provincial Corps Hospital of Chinese People’s Armed Police Forces, Harbin, China
| | - Suling Ye
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Jinzhou Zhu
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Yu Ma
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Mengmeng Shan
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Shaomi Li
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Yingying Chen
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Jie Li
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| |
Collapse
|
11
|
Minuti A, Trainito A, Gugliandolo A, Anchesi I, Chiricosta L, Iori R, Mazzon E, Calabrò M. Bioactivated Glucoraphanin Modulates Genes Involved in Necroptosis on Motor-Neuron-like Nsc-34: A Transcriptomic Study. Antioxidants (Basel) 2024; 13:1111. [PMID: 39334770 PMCID: PMC11428517 DOI: 10.3390/antiox13091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Research on bioactive compounds has grown recently due to their health benefits and limited adverse effects, particularly in reducing the risk of chronic diseases, including neurodegenerative conditions. According to these observations, this study investigates the activity of sulforaphane (RS-GRA) on an in vitro model of differentiated NSC-34 cells. We performed a transcriptomic analysis at various time points (24 h, 48 h, and 72 h) and RS-GRA concentrations (1 µM, 5 µM, and 10 µM) to identify molecular pathways influenced by this compound and the effects of dosage and prolonged exposure. We found 39 differentially expressed genes consistently up- or downregulated across all conditions. Notably, Nfe2l2, Slc1a5, Slc7a11, Slc6a9, Slc6a5, Sod1, and Sod2 genes were consistently upregulated, while Ripk1, Glul, Ripk3, and Mlkl genes were downregulated. Pathway perturbation analysis showed that the overall dysregulation of these genes results in a significant increase in redox pathway activity (adjusted p-value 1.11 × 10-3) and a significant inhibition of the necroptosis pathway (adjusted p-value 4.64 × 10-3). These findings suggest RS-GRA's potential as an adjuvant in neurodegenerative disease treatment, as both increased redox activity and necroptosis inhibition may be beneficial in this context. Furthermore, our data suggest two possible administration strategies, namely an acute approach with higher dosages and a chronic approach with lower dosages.
Collapse
Affiliation(s)
- Aurelio Minuti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Alessandra Trainito
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Ivan Anchesi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Renato Iori
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Calabrò
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
12
|
Dibakoane SR, Da Silva LS, Meiring B, Anyasi TA, Mlambo V, Wokadala OC. The multifactorial phenomenon of enzymatic hydrolysis resistance in unripe banana flour and its starch: A concise review. J Food Sci 2024; 89:5185-5204. [PMID: 39150760 DOI: 10.1111/1750-3841.17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Unripe banana flour starch possesses a high degree of resistance to enzymatic hydrolysis, a unique and desirable property that could be exploited in the development of functional food products to regulate blood sugar levels and promote digestive health. However, due to a multifactorial phenomenon in the banana flour matrix-from the molecular to the micro level-there is no consensus regarding the complex mechanisms behind the slow enzymatic hydrolysis of unripe banana flour starch. This work therefore explores factors that influence the enzymatic hydrolysis resistance of raw and modified banana flour and its starch including the proportion and distribution of the amorphous and crystalline phases of the starch granules; granule morphology; amylose-amylopectin ratio; as well as the presence of nonstarch components such as proteins, lipids, and phenolic compounds. Our findings revealed that the relative contributions of these factors to banana starch hydrolytic resistance are apparently dependent on the native or processed state of the starch as well as the cultivar type. The interrelatability of these factors in ensuring amylolytic resistance of unripe banana flour starch was further highlighted as another reason for the multifactorial phenomenon. Knowledge of these factors and their contributions to enzymatic hydrolysis resistance individually and interconnectedly will provide insights into enhanced ways of extraction, processing, and utilization of unripe banana flour and its starch.
Collapse
Affiliation(s)
- Siphosethu R Dibakoane
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
| | - Laura Suzanne Da Silva
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Belinda Meiring
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Tonna A Anyasi
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, UK
| | - Victor Mlambo
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
13
|
Hashim M, Akbar A, Gul Z, Bilal Sadiq M, Khan Achakzai J, Ahmad Khan N. Fermentation impact: A comparative study on the functional and biological properties of Banana peel waste. Heliyon 2024; 10:e36095. [PMID: 39247352 PMCID: PMC11379994 DOI: 10.1016/j.heliyon.2024.e36095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Banana fruit is a highly consumed and widely cultivated world food crop that generates plenty of waste globally. In this work, the phytochemical, nutritional, scavenging and therapeutic potentials of banana peel (BP) extracts were compared before and after fermentation. Halophilic fungi (Alternaria alternata, Pleosporaceae spp., Fusarium culmorum) were used in fermentation media designated as fermented banana peel FBP1, FBP2, and FBP3, respectively. Phytochemical coumarins, terpenoids, tannins, saponins, quinones, flavonoids, alkaloids, carbohydrates, proteins and steroids were found in all extracts while anthraquinone was identified in BP extracts only. Fermented extracts showed less quantity of Carbohydrate, compared to BP (477.1 ± 28.93 mg/g). Fermentation influenced the protein concentration as FBP1 showed a maximum protein of 56.9 ± 8.91 mg/g. Decreased quantities of Total Phenolic Contents (TPC), Total Flavonoid contents (TFC), and Vitamin C were noted in fermented products. The BP contained TPC (18 ± 2.59 mg GAE/g), TFC (20.5 ± 2.11 mg QE/g), carotenoid (1.03 ± 0.19 mg/g) and vitamin C (33.46 ± 2.63 mg/L). For BP, high antioxidant activity was observed, IC50 values of DPPH scavenging and FRAP assay were 2.01 ± 0.06 mg/mL and 12.81 ± 0.03 mg/mL, respectively. All the extracts were potentially active against the Salmonella typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli BP extract showed high antibacterial activity than the fermented products. Among all the above, S. aureus showed high sensitivity to BP and FBP2 with 26.33 ± 2.49 and 26.33 ± 0.97 mm zone of inhibition and S. typhi was highly inhibited by BP and FBP1 with 26.26 ± 1.77 and 26.66 ± 2.63 mm. BP was highly active against K. pneumoniae and P. aeruginosa with 31.33 ± 1.74 and 32.33 ± 1.59 mm zone of inhibition and E. coli was sensitive to FBP2 with 25.7 ± 2.33 mm zone, respectively. The BP extract possessed potent antifungal activity against Mucor mucedo (84 %), Aspergillus niger (72 %) and Aspergillus flavus (83 %), which was higher than the fermented products. The antileishmanial assay was undertaken for all extracts against promastigotes of Leishmania major, BP showed good activity IC50 = 0.763 ± 0.01 mg/g. In the anti-inflammatory assays the BP showed lowest IC50 values by protein denaturing (0.612 ± 0.01), proteinase inhibitory (0.502 ± 0.01) and blood hemolysis assay (0.515 ± 0.01 mg/g). The minimum concentration indicated that BP was highly potent in response to antileishmanial and inflammation activity.
Collapse
Affiliation(s)
- Mehnaz Hashim
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, 19120, Khyber Pakhtunkhwa, Pakistan
| | - Zareen Gul
- Department of Botany, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Muhammad Bilal Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Jahangir Khan Achakzai
- Disipline of Biochemistry, Department of Natural and Basic Sciences, University of Turbat Kech, 92600, Balochistan, Pakistan
| | - Nazir Ahmad Khan
- Deprtment of Animal Nutrition, The University of Agriculture Peshawar, Pakistan
| |
Collapse
|
14
|
Jovanović D, Bognár S, Despotović V, Finčur N, Jakšić S, Putnik P, Deák C, Kozma G, Kordić B, Šojić Merkulov D. Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production. Foods 2024; 13:2643. [PMID: 39200570 PMCID: PMC11353736 DOI: 10.3390/foods13162643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Pure water scarcity is the most significant emerging challenge of the modern society. Various organics such as pesticides (clomazone, quinmerac), pharmaceuticals (ciprofloxacin, 17α-ethynilestradiol), and mycotoxins (deoxynivalenol) can be found in the aquatic environment. The aim of this study was to fabricate ZnO nanomaterial on the basis of banana peel extract (ZnO/BPE) and investigate its efficiency in the photocatalytic degradation of selected organics under various experimental conditions. Newly synthesized ZnO/BPE nanomaterials were fully characterized by the XRD, FTIR, SEM-EPS, XPS, and BET techniques, which confirmed the successful formation of ZnO nanomaterials. The photocatalytic experiments showed that the optimal catalyst loading of ZnO/BPE was 0.5 mg/cm3, while the initial pH did not influence the degradation efficiency. The reusability of the ZnO/BPE nanomaterial was also tested, and minimal activity loss was found after three photocatalytic cycles. The photocatalytic efficiency of pure banana peel extract (BPE) was also studied, and the obtained data showed high removal of ciprofloxacin and 17α-ethynilestradiol. Finally, the influence of water from Danube River was also examined based on the degradation efficiency of selected pollutants. These results showed an enhanced removal of ciprofloxacin in water from the Danube River, while in the case of other pollutants, the treatment was less effective.
Collapse
Affiliation(s)
- Dušica Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Szabolcs Bognár
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Vesna Despotović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Nina Finčur
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Sandra Jakšić
- Scientific Veterinary Institute “Novi Sad”, Rumenački Put 20, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Cora Deák
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Square 1, H-6720 Szeged, Hungary; (C.D.); (G.K.)
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Square 1, H-6720 Szeged, Hungary; (C.D.); (G.K.)
| | - Branko Kordić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Daniela Šojić Merkulov
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| |
Collapse
|
15
|
Khan R, Haram Z, Ahmad W, Sohni S, Xu J, Ilyas M. Removal of hydrocarbon pollutants from refinery wastewater using N-hexadecylchitosan as an efficient adsorptive platform. Sci Rep 2024; 14:17236. [PMID: 39060270 PMCID: PMC11282244 DOI: 10.1038/s41598-024-66429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The negative impact of refinery wastewater is of great concern to the aquatic, terrestrial, and aerial environment. In this study, N-hexadecylchitosan (NHDC) was successfully synthesized to deal with low mechanical strength, poor adsorption capacity, and limited selectivity of native chitosan. The NHDC was characterized by fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-Ray diffraction analysis (XRD) to study its composition, morphology, and structural attributes. The adsorption of hydrocarbon pollutants from refinery wastewater was studied in batch mode experiments. The results indicated that the removal of COD attained by chitosan and NHDC was 21 and 63%, respectively. COD removal was found to be maximal, i.e., 96% using 0.08 g of NHDC at 60 min in a solution of pH 6.5 maintained at 60 °C. Furthermore, kinetic data revealed that the adsorption system followed pseudo-second order kinetics, whereas equilibrium studies supported both monolayer and multilayer adsorption mechanisms. The designed adsorption platform was able to capture hydrocarbon pollutants under very mild optimized conditions. Furthermore, NHDC demonstrated long term stability when subjected to five successive cycles, which contributed to the sustainability of water treatment systems. On the basis of the outcome of this work, it is advocated that new biobased NHDC can be used as an efficient adsorbent for the remediation of organic contaminants laden wastewater streams generated from oil refineries.
Collapse
Affiliation(s)
- Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Zeenat Haram
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Saima Sohni
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Jiajun Xu
- Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhammad Ilyas
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Wari Campus, Dir Upper, 18200, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
16
|
Borowiec K, Szwajgier D, Stachniuk A, Mielniczuk J, Trzpil A. Investigation of Changes in the Polyphenol Profile Verified by LC-MS/MS and the Pro-Health Activities of Fruit Smoothie. Mol Nutr Food Res 2024; 68:e2300426. [PMID: 38924345 DOI: 10.1002/mnfr.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/30/2024] [Indexed: 06/28/2024]
Abstract
SCOPE Bilberry, bananas, and apples are used for smoothie production because the health-promoting activities and to prevent human diseases including neurodegenerative disorders. The smoothie is prepared to promote a promising practice for increasing the intake of fruit in the diet. METHODS AND RESULTS The smoothie is packed into dark glass jars, pasteurized, and stored for up to 4 months at 4 or 22 °C. Then, it is analyzed for the polyphenols profile using liquid chromatography-high resolution mass spectometry (LC-HRMS) Polyphenols content and the antiinflammatory, anticholinesterase, and antioxidant activities, and the impact on catalase activity are controlled using biochemical analyses. A significant decrease in the flavanol content (p < 0.05) is investigated, while there are lower decreases or no changes in the other polyphenols content in the smoothies stored at 4 °C. The changes in the anticholinesterase and antioxidant activities of the smoothie are correlated with the total polyphenols, anthocyanins, flavonols, and tannins content. CONCLUSION The proposed preservation of the smoothie and its storage at refrigeration temperature is adequate to maintain the smoothie's nutritional and functional effect for a 4-month shelf life. Even significant changes in the content of individual subgroups of polyphenols are not drastically reflected in the decrease of the smoothie biological activities.
Collapse
Affiliation(s)
- Kamila Borowiec
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, ul. Skromna 8, Lublin, 20-704, Poland
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, Lublin, 20-090, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, ul. Skromna 8, Lublin, 20-704, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, Lublin, 20-090, Poland
| | - Jacek Mielniczuk
- Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, ul. Głęboka 28, Lublin, 20-612, Poland
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, Lublin, 20-090, Poland
| |
Collapse
|
17
|
Munoz B, Hayes M, Perkins-Veazie P, Gillitt N, Munoz M, Kay CD, Lila MA, Ferruzzi MG, Iorizzo M. Genotype and ripening method affect carotenoid content and bio-accessibility in banana. Food Funct 2024; 15:3433-3445. [PMID: 38436090 DOI: 10.1039/d3fo04632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Bananas (Musa spp.) are a target crop for provitamin A carotenoids (pVACs) biofortification programs aiming at reducing the negative impact on health caused by vitamin A deficiency in vulnerable populations. However, studies to understand the effect of ripening methods and stages and the genotype on carotenoid content and bioaccessibility in the banana germplasm are scarce. This study evaluated carotenoid content and bioaccessibility in 27 different banana accessions at three maturation stages and two ripening methods (natural ripening and ethylene ripening). Across most accessions, total carotenoid content (TCC) increased from unripe to ripe fruit; only two accessions showed a marginal decrease. The ripening method affected carotenoid accumulation; 18 accessions had lower TCC when naturally ripened compared with the ethylene ripening group, while nine accessions showed higher TCC when ripened with exogenous ethylene, suggesting that treating bananas with exogenous ethylene might directly affect TCC accumulation, but the response is accession dependent. Additionally, carotenoid bioaccessibility varied across genotypes and was correlated with the amount of soluble starch and resistant starch. These findings highlight the importance of ripening methods and genotypes in maximizing banana carotenoid content and bioaccessibility, which could contribute to improving pVACs delivery in biofortification programs.
Collapse
Affiliation(s)
- Bryan Munoz
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| | - Micaela Hayes
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| | | | - Miguel Munoz
- Research & Development Department, Dole, Standard Fruit Company de Costa Rica, San José, Costa Rica
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Arkansas Children's Nutrition Center (ACNC), University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72202, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Arkansas Children's Nutrition Center (ACNC), University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72202, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, USA
| |
Collapse
|
18
|
Đurašinović T, Lopandić Z, Protić-Rosić I, Nešić A, Trbojević-Ivić J, Jappe U, Gavrović-Jankulović M. Identification of S-adenosyl-l-homocysteine hydrolase from banana fruit as a novel plant panallergen. Food Chem 2024; 437:137782. [PMID: 37871426 DOI: 10.1016/j.foodchem.2023.137782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
Banana allergy is often associated with the pollen and latex allergies, which led us to the hypothesis that some yet unidentified banana allergen could provide a basis of the latex-pollen-fruit syndrome. S-adenosyl-l-homocysteine hydrolase (SAHH) was recently identified in the literature as a novel plant allergen. This study aimed to assess the allergenic potential of the naturally occurring banana SAHH (nSAHH) and its recombinant homolog produced in E. coli (rSAHH). nSAHH showed IgE reactivity with a serum pool of twelve banana-allergic persons, while rSAHH displayed IgE reactivity in ten out of the twelve tested patients. Five linear B-cell epitopes were identified on the rSAHH surface, exhibiting ≥ 90 % sequence homology with relevant plant SAHH allergens. Our findings have elucidated SAHH as a novel plant panallergen, underlying the cross-reactivity between plant-derived food and respiratory allergens, confirming our initial hypothesis.
Collapse
Affiliation(s)
- Tatjana Đurašinović
- Institute of Medical Biochemistry, Military Medical Academy, 11000 Belgrade, Serbia
| | - Zorana Lopandić
- University of Belgrade, Faculty of Chemistry, 11000 Belgrade, Serbia
| | | | - Andrijana Nešić
- University of Belgrade, Faculty of Chemistry, 11000 Belgrade, Serbia
| | | | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | |
Collapse
|
19
|
Sun C, Li J, Zhao Z, Ren S, Guan Y, Zhang M, Li T, Tan L, Yao Q, Chen L. The correlation between fruit intake and all-cause mortality in hypertensive patients: a 10-year follow-up study. Front Nutr 2024; 11:1363574. [PMID: 38585613 PMCID: PMC10995410 DOI: 10.3389/fnut.2024.1363574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE Extensive research has consistently shown the beneficial impact of fruit consumption on overall health. While some studies have proposed a potential association between fruit consumption and hypertension management, the influence of fruit consumption on mortality rates among hypertensive individuals remains uncertain. Consequently, aim of this study is to evaluate whether fruit consumption is associated with all-cause mortality among hypertensive patients. METHODS Data were obtained from the National Health and Nutrition Examination Survey (NHANES), conducted between 2003 and 2006. Ten-year follow-up data from the National Death Index (NDI) were used to assess all-cause mortality. Cox proportional hazard model was utilized to explore the impact of fruit intake on all-cause mortality among hypertensive individuals. RESULTS The study included a cohort of 2,480 patients diagnosed with hypertension, and during the follow-up period, a total of 658 deaths from various causes were recorded. The COX regression analysis demonstrated that hypertensive patients who consumed apples three to six times per week exhibited a significantly reduced risk of all-cause mortality (HR = 0.60, 95%CI: 0.45-0.78, p < 0.001) in comparison to those who consumed apples less than once per month. Likewise, consuming bananas three to six times per week also led to a comparable outcome (HR = 0.76, 95%CI: 0.59-0.97, p = 0.027). Moreover, Combined consumption of bananas and apples three to six times per week exhibited a noteworthy decrease in all-cause mortality (HR = 0.57, 95%CI: 0.39-0.84, p = 0.005) when compared to individuals who consumed these fruits less frequently. Conversely, no significant association was found between the consumption of other fruits, including pears, pineapples, and grapes, and all-cause mortality. CONCLUSION The study discovered that moderate consumption of apples and bananas was associated with a reduced risk of all-cause mortality in patients with hypertension.
Collapse
Affiliation(s)
- Chuang Sun
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Li
- General Practice Department, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zeyuan Zhao
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shupeng Ren
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Guan
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Miaoan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianfeng Li
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linglin Tan
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Liang Chen
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Wang C, Meng L, Zhang G, Yang X, Pang B, Cheng J, He B, Sun F. Unraveling crop enzymatic browning through integrated omics. FRONTIERS IN PLANT SCIENCE 2024; 15:1342639. [PMID: 38371411 PMCID: PMC10869537 DOI: 10.3389/fpls.2024.1342639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Enzymatic browning reactions, triggered by oxidative stress, significantly compromise the quality of harvested crops during postharvest handling. This has profound implications for the agricultural industry. Recent advances have employed a systematic, multi-omics approach to developing anti-browning treatments, thereby enhancing our understanding of the resistance mechanisms in harvested crops. This review illuminates the current multi-omics strategies, including transcriptomic, proteomic, and metabolomic methods, to elucidate the molecular mechanisms underlying browning. These strategies are pivotal for identifying potential metabolic markers or pathways that could mitigate browning in postharvest systems.
Collapse
Affiliation(s)
- Chunkai Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Guochao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Xiujun Yang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Bingwen Pang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Cheng
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bing He
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fushan Sun
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| |
Collapse
|
21
|
Playdon MC, Tinker LF, Prentice RL, Loftfield E, Hayden KM, Van Horn L, Sampson JN, Stolzenberg-Solomon R, Lampe JW, Neuhouser ML, Moore SC. Measuring diet by metabolomics: a 14-d controlled feeding study of weighed food intake. Am J Clin Nutr 2024; 119:511-526. [PMID: 38212160 PMCID: PMC10884612 DOI: 10.1016/j.ajcnut.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Metabolomics has the potential to enhance dietary assessment by revealing objective measures of many aspects of human food intake. Although metabolomics studies indicate that hundreds of metabolites are associated with dietary intake, correlations have been modest (e.g., r < 0.50), and few have been evaluated in controlled feeding studies. OBJECTIVES The aim of this study was to evaluate associations between metabolites and weighed food and beverage intake in a controlled feeding study of habitual diet. METHODS Healthy postmenopausal females from the Women's Health Initiative (N = 153) were provided with a customized 2-wk controlled diet designed to emulate their usual diet. Metabolites were measured by liquid chromatography tandem mass spectrometry in end-of-study 24-h urine and fasting serum samples (1293 urine metabolites; 1113 serum metabolites). We calculated partial Pearson correlations between these metabolites and intake of 65 food groups, beverages, and supplements during the feeding study. The threshold for significance was Bonferroni-adjusted to account for multiple testing (5.94 × 10-07 for urine metabolites; 6.91 × 10-07 for serum metabolites). RESULTS Significant diet-metabolite correlations were identified for 23 distinct foods, beverages, and supplements (171 distinct metabolites). Among foods, strong metabolite correlations (r ≥ 0.60) were evident for citrus (highest r = 0.80), dairy (r = 0.65), and broccoli (r = 0.63). Among beverages and supplements, strong correlations were evident for coffee (r = 0.86), alcohol (r = 0.69), multivitamins (r = 0.69), and vitamin E supplements (r = 0.65). Moderate correlations (r = 0.50-0.60) were also observed for avocado, fish, garlic, grains, onion, poultry, and black tea. Correlations were specific; each metabolite correlated with one food, beverage, or supplement, except for metabolites correlated with juice or multivitamins. CONCLUSIONS Metabolite levels had moderate to strong correlations with weighed intake of habitually consumed foods, beverages, and supplements. These findings exceed in magnitude those previously observed in population studies and exemplify the strong potential of metabolomics to contribute to nutrition research. The Women's Health Initiative is registered at clinicaltrials.gov as NCT00000611.
Collapse
Affiliation(s)
- Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Cancer Control and Population Sciences Division, Huntsman Cancer Institute, Salt Lake City, UT; Division of Cancer Epidemiology and Genetics, National Cancer institute, Rockville, MD
| | - Lesley F Tinker
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Ross L Prentice
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer institute, Rockville, MD
| | - Kathleen M Hayden
- School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Linda Van Horn
- Feinberg School of Medicine, Northwestern University, Chicago IL
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer institute, Rockville, MD
| | | | - Johanna W Lampe
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Marian L Neuhouser
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer institute, Rockville, MD.
| |
Collapse
|
22
|
Ruhee RT, Suzuki K. The Immunomodulatory Effects of Sulforaphane in Exercise-Induced Inflammation and Oxidative Stress: A Prospective Nutraceutical. Int J Mol Sci 2024; 25:1790. [PMID: 38339067 PMCID: PMC10855658 DOI: 10.3390/ijms25031790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms. Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and oxidative stress. We discussed human and animal studies that are related to exercise intervention and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals that are associated with acute and chronic inflammatory conditions. Given its health-promoting effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
23
|
Al-Qurashi AD, Awad MA, Elsayed MI, Ali MA. Postharvest melatonin and chitosan treatments retain quality of 'Williams' bananas during ripening. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:84-96. [PMID: 38192706 PMCID: PMC10771425 DOI: 10.1007/s13197-023-05819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/25/2023] [Accepted: 08/12/2023] [Indexed: 01/10/2024]
Abstract
The effect of postharvest dipping treatments with 0.5 mM melatonin (MT) and 1% chitosan (CT) either alone or in combination on quality of pre-climacteric 'Williams' bananas during ripening at ambient conditions were investigated. MT or CT treatments delayed ripening by retaining greener peel, higher firmness, titratable acidity (TA), but lower total soluble solids (TSS) and TSS/TA, weight loss, browning and electrolyte leakage than the control. Total phenol (TPC) and flavonoid contents (TFC) in both peel and pulp increased up to 6 days and then decreased and was higher in treated fruit than the control. Vitamin C content decreased up to 3 days, then increased and was higher in treated fruit than control. MT and CT combination exhibited the highest TPC, TFC and vitamin C contents compared to other treatments. Radical scavenging capacity (RSC) of peel and pulp increased up to 6 days, then decreased and was higher in treated fruit than the control. The treated fruit exhibited lower polyphenoloxidase (PPO) and hydrolytic enzymes but higher peroxidase (POD) activities in both peel and pulp than the control. Postharvest treatments with 0.5 mM MT and 1% CT alone or in combination could be used to retain quality of 'Williams' bananas during ripening.
Collapse
Affiliation(s)
- Adel D. Al-Qurashi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Mohamed A. Awad
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Pomology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Mohamed I. Elsayed
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Md. Arfan Ali
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Pomology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| |
Collapse
|
24
|
Hessel SS, Dwivany FM, Zainuddin IM, Wikantika K, Celik I, Emran TB, Tallei TE. A computational simulation appraisal of banana lectin as a potential anti-SARS-CoV-2 candidate by targeting the receptor-binding domain. J Genet Eng Biotechnol 2023; 21:148. [PMID: 38015308 PMCID: PMC10684481 DOI: 10.1186/s43141-023-00569-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The ongoing concern surrounding coronavirus disease 2019 (COVID-19) primarily stems from continuous mutations in the genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to the emergence of numerous variants. The receptor-binding domain (RBD) in the S1 subunit of the S protein of the virus plays a crucial role in recognizing the host's angiotensin-converting enzyme 2 (hACE2) receptor and facilitating cell membrane fusion processes, making it a potential target for preventing viral entrance into cells. This research aimed to determine the potential of banana lectin (BanLec) proteins to inhibit SARS-CoV-2 attachment to host cells by interacting with RBD through computational modeling. MATERIALS AND METHODS The BanLecs were selected through a sequence analysis process. Subsequently, the genes encoding BanLec proteins were retrieved from the Banana Genome Hub database. The FGENESH online tool was then employed to predict protein sequences, while web-based tools were utilized to assess the physicochemical properties, allergenicity, and toxicity of BanLecs. The RBDs of SARS-CoV-2 were modeled using the SWISS-MODEL in the following step. Molecular docking procedures were conducted with the aid of ClusPro 2.0 and HDOCK web servers. The three-dimensional structures of the docked complexes were visualized using PyMOL. Finally, molecular dynamics simulations were performed to investigate and validate the interactions of the complexes exhibiting the highest interactions, facilitating the simulation of their dynamic properties. RESULTS The BanLec proteins were successfully modeled based on the RNA sequences from two species of banana (Musa sp.). Moreover, an amino acid modification in the BanLec protein was made to reduce its mitogenicity. Theoretical allergenicity and toxicity predictions were conducted on the BanLecs, which suggested they were likely non-allergenic and contained no discernible toxic domains. Molecular docking analysis demonstrated that both altered and wild-type BanLecs exhibited strong affinity with the RBD of different SARS-CoV-2 variants. Further analysis of the molecular docking results showed that the BanLec proteins interacted with the active site of RBD, particularly the key amino acids residues responsible for RBD's binding to hACE2. Molecular dynamics simulation indicated a stable interaction between the Omicron RBD and BanLec, maintaining a root-mean-square deviation (RMSD) of approximately 0.2 nm for a duration of up to 100 ns. The individual proteins also had stable structural conformations, and the complex demonstrated a favorable binding-free energy (BFE) value. CONCLUSIONS These results confirm that the BanLec protein is a promising candidate for developing a potential therapeutic agent for combating COVID-19. Furthermore, the results suggest the possibility of BanLec as a broad-spectrum antiviral agent and highlight the need for further studies to examine the protein's safety and effectiveness as a potent antiviral agent.
Collapse
Affiliation(s)
- Sofia Safitri Hessel
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Fenny Martha Dwivany
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia.
| | - Ima Mulyama Zainuddin
- Department of Biosystems, KU Leuven, Willem de Croylaan 42 box 2455, B-3001, Leuven, Belgium
| | - Ketut Wikantika
- Remote Sensing and Geographical Information Science Research Group, Faculty of Earth Science and Technology (FITB), Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, 95115, Indonesia.
| |
Collapse
|
25
|
Thakur M, Singh M, Kumar S, Dwivedi VP, Dakal TC, Yadav V. A Reappraisal of the Antiviral Properties of and Immune Regulation through Dietary Phytochemicals. ACS Pharmacol Transl Sci 2023; 6:1600-1615. [PMID: 37974620 PMCID: PMC10644413 DOI: 10.1021/acsptsci.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Indexed: 11/19/2023]
Abstract
In the present era of the COVID-19 pandemic, viral infections remain a major cause of morbidity and mortality worldwide. In this day and age, viral infections are rampant and spreading rapidly. Among the most aggressive viral infections are ebola, AIDS (acquired immunodeficiency syndrome), influenza, and SARS (severe acute respiratory syndrome). Even though there are few treatment options for viral diseases, most of the antiviral therapies are ineffective owing to frequent mutations, the development of more aggressive strains, drug resistance, and possible side effects. Traditionally, herbal remedies have been used by healers, including for dietary and medicinal purposes. Many clinical and scientific studies have demonstrated the therapeutic potential of plant-derived natural compounds. Because of unsafe practices like blood transfusions and organ transplants from infected patients, medical supply contamination. Our antiviral therapies cannot achieve sterile immunity, and we have yet to find a cure for these pernicious infections. Herbs have been shown to improve therapeutic efficacy against a wide variety of viral diseases because of their high concentration of immunomodulatory phytochemicals (both immunoinhibitory and anti-inflammatory). Combined with biotechnology, this folk medicine system can lead to the development of novel antiviral drugs and therapies. In this Review, we will summarize some selected bioactive compounds with probable mechanisms of their antiviral actions, focusing on the immunological axis of these compounds.
Collapse
Affiliation(s)
- Mony Thakur
- Department
of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Mona Singh
- Department
of Obstetrics and Gynaecology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sandeep Kumar
- Division
of Cell Biology and Immunology, Council
of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh 160036, India
| | - Ved Prakash Dwivedi
- International
Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tikam Chand Dakal
- Genome
and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Vinod Yadav
- Department
of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| |
Collapse
|
26
|
Semwal P, Painuli S, Begum J P S, Jamloki A, Rauf A, Olatunde A, Mominur Rahman M, Mukerjee N, Ahmed Khalil A, Aljohani ASM, Al Abdulmonem W, Simal-Gandara J. Exploring the nutritional and health benefits of pulses from the Indian Himalayan region: A glimpse into the region's rich agricultural heritage. Food Chem 2023; 422:136259. [PMID: 37150115 DOI: 10.1016/j.foodchem.2023.136259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Pulses have been consumed worldwide for over 10 centuries and are currently among the most widely used foods. They are not economically important, but also nutritionally beneficial as they constitute a good source of protein, fibre, vitamins and minerals such as iron, zinc, folate and magnesium. Pulses, but particularly species such as Macrotyloma uniflorum, Phaseolus vulgaris L., Glycine max L. and Vigna umbellate, are essential ingredients of the local diet in the Indian Himalayan Region (IHR). Consuming pulses can have a favourable effect on cardiovascular health as they improve serum lipid profiles, reduce blood pressure, decrease platelet activity, regulate blood glucose and insulin levels, and reduce inflammation. Although pulses also contain anti-nutritional compounds such as phytates, lectins or enzyme inhibitors, their deleterious effects can be lessened by using effective processing and cooking methods. Despite their great potential, however, the use of some pulses is confined to IHR regions. This comprehensive review discusses the state of the art in available knowledge about various types of pulses grown in IHR in terms of chemical and nutritional properties, health effects, accessibility, and agricultural productivity.
Collapse
Affiliation(s)
- Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology, Premnagar, Dehradun 248006, Uttarakhand, India
| | - Shabaaz Begum J P
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Abhishek Jamloki
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Srinagar, Uttarakhand, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber, Pakhtunkhwa, Pakistan.
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, Kolkata 700118, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary of Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain.
| |
Collapse
|
27
|
Zhang X, Li C, Hu W, Abdel-Samie MA, Cui H, Lin L. An overview of tea saponin as a surfactant in food applications. Crit Rev Food Sci Nutr 2023; 64:12922-12934. [PMID: 37737159 DOI: 10.1080/10408398.2023.2258392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The residue of Camellia seeds after oil extraction contains many bioactive ingredients, including tea saponin. Tea saponin has many pharmacological effects and is an excellent nonionic surfactant. The development of natural surfactants has become a hot topic in food research. This review gathers the applications of tea saponin as a surfactant in food. It focuses on the application of tea saponin in emulsions, delivery systems, extraction and fermentation, as well as the challenges and development prospects in food applications. Tea saponin shows great potential as a surfactant in food applications, which can replace some synthetic surfactants. The full utilization of tea saponin improves the comprehensive utilization value of Camellia seed residue, contributes to the sustainable development of Camellia industry and avoids resource waste.
Collapse
Affiliation(s)
- Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
28
|
Gurumayum N, Sarma PP, Khound P, Jana UK, Devi R. Nutritional Composition and Pharmacological Activity of Musa balbisiana Colla Seed: An Insight into Phytochemical and Cellular Bioenergetic Profiling. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:520-525. [PMID: 37477732 DOI: 10.1007/s11130-023-01080-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Musa balbisiana Colla belongs to the family Musaceae which is well-known for its nutritional and pharmacological properties. Here, we have analysed the phytochemical content and evaluated the nutritional, antioxidant, anti-glycation, α-amylase, and α-glucosidase inhibition potential. Moreover, for the first time, we have studied the bioenergetic profiles of the bioactive fractions of M. balbisiana seeds extract against oxidative stress-related mitochondrial and cellular dysfunction using XFe24 extracellular flux analyzer. M. balbisiana seeds have high nutritional values with significant levels of carbohydrates, starch, protein, and minerals (Ca, Na, Mg, Cu, Fe, and Zn). Bioactivity-guided fractionation of the methanolic extract of M. balbisiana seeds revealed that the ethyl acetate fraction (EAF) showed the highest antioxidant, anti-glycation, and phytochemical content as compared to other fractions. Moreover, the EAF showed a lower α-amylase inhibition and a higher α-glucosidase inhibitory activity. Most importantly, our GC-MS analyses of EAF revealed the presence of unique and previously unreported 14 phytochemical compounds. A strong correlation between the biological activities and total phenolic/tannin content was observed. In addition, the bioactive fraction of M. balbisiana seeds (EAF) improved the bioenergetic profiles of free fatty acid-induced oxidative stress with a concomitant increase in ATP production, and respiratory and glycolytic capacity. Altogether, our findings suggest that M. balbisiana seeds can be used as a natural supplement to boost antioxidant levels and combat oxidative stress and non-enzymatic glycation.
Collapse
Affiliation(s)
- Nonibala Gurumayum
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - Partha Pratim Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Puspanjali Khound
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Department of Zoology, Gauhati University, Guwahati, 781014, India
| | - Uttam Kumar Jana
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India.
- Department of Zoology, Gauhati University, Guwahati, 781014, India.
| |
Collapse
|
29
|
Shinga MH, Fawole OA. Opuntia ficus indica mucilage coatings regulate cell wall softening enzymes and delay the ripening of banana fruit stored at retail conditions. Int J Biol Macromol 2023; 245:125550. [PMID: 37356689 DOI: 10.1016/j.ijbiomac.2023.125550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Rapid ripening and softening due to cell wall polysaccharide degradation and disassembly pose major challenges in extending fruit storability. This study aimed to examine the efficacy of Opuntia ficus indica mucilage (OFIM) edible coating in minimizing softening in bananas under retail conditions. Mucilage was extracted from freshly harvested prickly pear cladodes and dried into a powder. Phenolic compounds in OFIM powder were quantified using liquid chromatography-mass spectrometry (LC-MS). OFIM concentrations (1, 2 and 3 % (w/v)) were prepared, and their physicochemical properties were examined. The prepared coatings were applied to harvested banana fruit by dipping and stored at room temperature for 12 days. During the experiment, several parameters were measured, including fruit weight loss, total soluble solids (TSS), titratable acidity (TA), peel color, pulp firmness, ethylene production, respiration rate, ion leakage, malondialdehyde (MDA) content, total chlorophyll and carotenoids, chlorophyll-degrading enzymes, protopectin content and water-soluble pectin (WSP) and softening-related enzymes in the peel. Results showed that mucilage treatments effectively delayed cell wall and chlorophyll degradation, as well as carotenoid accumulation, thus inhibiting ripening-associated processes compared to control fruit. OFIM-treated fruit exhibited significantly higher firmness, chlorophyll content, and TA, lower TSS content, ethylene production, respiration rate, MDA concentration, ion leakage and protopectin content than uncoated fruit. This suggests that OFIM edible coating has the potential to maintain quality and extend the shelf life of bananas by suppressing softening enzymes during storage.
Collapse
Affiliation(s)
- Mawande Hugh Shinga
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi Amos Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
30
|
Tuárez-García DA, Galván-Gámez H, Erazo Solórzano CY, Edison Zambrano C, Rodríguez-Solana R, Pereira-Caro G, Sánchez-Parra M, Moreno-Rojas JM, Ordóñez-Díaz JL. Effects of Different Heating Treatments on the Antioxidant Activity and Phenolic Compounds of Ecuadorian Red Dacca Banana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2780. [PMID: 37570934 PMCID: PMC10420799 DOI: 10.3390/plants12152780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The banana is a tropical fruit characterized by its composition of healthy and nutritional compounds. This fruit is part of traditional Ecuadorian gastronomy, being consumed in a wide variety of ways. In this context, unripe Red Dacca banana samples and those submitted to different traditional Ecuadorian heating treatments (boiling, roasting, and baking) were evaluated to profile their phenolic content by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and the antioxidant activity by ORAC, ABTS, and DPPH assays. A total of sixty-eight phenolic compounds were identified or tentatively identified in raw banana and treated samples, highlighting the content in flavonoids (flavan-3-ols with 88.33% and flavonols with 3.24%) followed by the hydroxybenzoic acid family (5.44%) in raw banana samples. The total phenolic compound content significantly decreased for all the elaborations evaluated, specifically from 442.12 mg/100 g DW in fresh bananas to 338.60 mg/100 g DW in boiled (23.41%), 243.63 mg/100 g DW in roasted (44.90%), and 109.85 mg/100 g DW in baked samples (75.15%). Flavan-3-ols and flavonols were the phenolic groups most affected by the heating treatments, while flavanones and hydroxybenzoic acids showed higher stability against the heating treatments, especially the boiled and roasted samples. In general, the decrease in phenolic compounds corresponded with a decline in antioxidant activity, evaluated by different methods, especially in baked samples. The results obtained from PCA studies confirmed that the impact of heating on the composition of some phenolic compounds was different depending on the technique used. In general, the heating processes applied to the banana samples induced phytochemical modifications. Even so, they remain an important source of bioactive compounds for consumers.
Collapse
Affiliation(s)
- Diego Armando Tuárez-García
- Faculty of Industry and Production Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, Quevedo 120301, Ecuador; (D.A.T.-G.); (C.Y.E.S.)
| | - Hugo Galván-Gámez
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| | - Cyntia Yadira Erazo Solórzano
- Faculty of Industry and Production Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, Quevedo 120301, Ecuador; (D.A.T.-G.); (C.Y.E.S.)
| | - Carlos Edison Zambrano
- Faculty of Business Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, C.P. 73, Quevedo 120301, Ecuador;
| | - Raquel Rodríguez-Solana
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Gema Pereira-Caro
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Mónica Sánchez-Parra
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| | - José M. Moreno-Rojas
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - José L. Ordóñez-Díaz
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| |
Collapse
|
31
|
Alam M, Biswas M, Hasan MM, Hossain MF, Zahid MA, Al-Reza MS, Islam T. Quality attributes of the developed banana flour: Effects of drying methods. Heliyon 2023; 9:e18312. [PMID: 37519739 PMCID: PMC10372653 DOI: 10.1016/j.heliyon.2023.e18312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The study aims to investigate the effects of different drying methods on the changes in functional properties, physicochemical composition, bioactive compounds, antioxidant activity, sensory attributes, and microstructural quality of the banana flours. Two local banana cultivars, Mehersagar and Sabri, were dried to produce flour using four distinct drying methods: freeze drying (FD), cabinet drying (CD), microwave oven drying (MOD), and forced air oven drying (FOD). The functional properties of the developed banana flours were observed where the findings were as water holding capacity (0.93 ± 0.06-2.74 ± 0.04 g water/g dry sample), oil absorption capacity (0.87 ± 0.06-2.22 ± 0.10 g oil/g dry sample), swelling capacity (4.62 ± 0.02-5.05 ± 0.03 g paste/g dry sample), bulk density (0.54 ± 0.04-0.81 ± 0.02 g/ml), tapped density (0.62 ± 0.04-0.93 ± 0.03 g/ml) and Carr's Index (9.38 ± 0.47-13.58 ± 0.43%). Freeze-dried Mehersagar cultivar's flour showed the leading functional properties with good flowability and cohesiveness. The physicochemical parameters of the flours also revealed significant differences (p < 0.05) in lightness (L*) (50.51 ± 1.49-72.21 ± 1.05), moisture content (3.96 ± 0.09-7.74 ± 0.13%), protein (2.72 ± 0.07-3.93 ± 0.06%), crude fat (0.11 ± 0.01-0.36 ± 0.04%), crude fiber (0.64 ± 0.03-1.22 ± 0.03%), carbohydrate (84.15 ± 0.24-88.26 ± 0.15%) and energy content (354.25 ± 0.57-370.02 ± 0.39 kcal/g). Total flavonoid content (21.44 ± 0.04-34.34 ± 0.03 mgQE/100g) and phenolic content (29.91 ± 0.01-71.46 ± 0.03 mgGAE/100g) was observed, while the highest retention of bioactive compounds was exhibited in Mehersagar cultivar's flour. In terms of appearance, fineness, taste, flavor, color, and overall acceptability, the dried banana flour of both the cultivars obtained from freeze-dried scored overall acceptability 8.04 ± 0.02 and 7.92 ± 0.17, respectively. The scanning electron microscopy analysis of the microstructure of flour granules from each sample revealed a diverse morphological configuration in particle size and shape. According to the findings of this study, the freeze-drying technology is superior to others, and the Mehersagar banana cultivar is more satisfactory in terms of quality characteristics. Moreover, the quality parameters of banana flour may facilitate the formulation of different flour-based gluten-free baked products and food supplements.
Collapse
Affiliation(s)
- Mahfujul Alam
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mrityunjoy Biswas
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mir Meahadi Hasan
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Faruk Hossain
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Ashrafuzzaman Zahid
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Sajib Al-Reza
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Tarikul Islam
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
32
|
Zhu L, Shan W, Cai D, Lin Z, Wu C, Wei W, Yang Y, Lu W, Chen J, Su X, Kuang J. High temperature elevates carotenoid accumulation of banana fruit via upregulation of MaEIL9 module. Food Chem 2023; 412:135602. [PMID: 36739724 DOI: 10.1016/j.foodchem.2023.135602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Banana is a good source of carotenoids, which are bioactive metabolites with health beneficial properties for human. However, the molecular mechanism of carotenoid accumulation in banana fruit is largely unclear. In this study, we found that high temperature elevated carotenoid production in banana pulp, which is presumably due to upregulation of a subset of carotenogenic genes as well as a carotenoid biosynthesis regulator MaSPL16. Moreover, an ethylene signaling component MaEIL9 was identified, whose transcript and protein contents were also induced by high temperature. In addition, MaEIL9 positively regulates transcription of MaDXR1, MaPDS1, MaZDS1 and MaSPL16 through directly targeting their promoters. Overexpression of MaEIL9 in tomato fruit substantially increased the expression of carotenoid formation genes and elevated carotenoid content. Importantly, transiently silencing MaEIL9 in banana fruit weakened carotenoid production caused by high temperature. Taken together, these results indicate that high temperature induces carotenoid production in banana fruit, at least in part, through MaEIL9-mediated activation of MaDXR1, MaPDS1, MaZDS1 and MaSPL16 expression.
Collapse
Affiliation(s)
- Lisha Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zengxiang Lin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chaojie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinguo Su
- Guangdong AIB Polytechnic College, Guangzhou 510507, China.
| | - Jianfei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Julanon N, Thiravetyan B, Unhapipatpong C, Xanthavanij N, Krikeerati T, Thongngarm T, Wongsa C, Songnuan W, Naiyanetr P, Sompornrattanaphan M. Not Just a Banana: The Extent of Fruit Cross-Reactivity and Reaction Severity in Adults with Banana Allergy. Foods 2023; 12:2456. [PMID: 37444194 DOI: 10.3390/foods12132456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
This cross-sectional study aimed to investigate the prevalence and clinical characteristics of cross-reactivity and co-allergy to other plant foods among adult patients with IgE-mediated banana allergy in Thailand. A structured questionnaire was used to assess clinical reactivity, and cross-reactivity diagnoses were based on reactions occurring within 2 years of banana allergy onset, within 3 h of intake, and confirmed by allergists. Among the 133 participants, the most commonly associated plant foods with clinical reactions were kiwi (83.5%), avocado (71.1%), persimmon (58.8%), grapes (44.0%), and durian (43.6%). Notably, 26.5% of the reported reactions to other plant foods were classified as severe. These findings highlight the common occurrence of cross-reactivity/co-allergy to other plant foods in banana-allergic patients, with a significant proportion experiencing severe reactions. Travelers to tropical regions should be aware of this risk and advised to avoid specific banana cultivars and plant foods with reported high cross-reactivity. The inclusion of self-injectable epinephrine in the management plan for patients with primary banana allergy should be considered due to the substantial proportion of reported severe reactions and the wide range of clinical cross-reactivity and co-allergy observed.
Collapse
Affiliation(s)
- Narachai Julanon
- Division of Dermatology, Department of Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ben Thiravetyan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanita Unhapipatpong
- Division of Clinical Nutrition, Department of Medicine, Khon Kaen Hospital, Khon Kaen 40000, Thailand
| | - Nutchapon Xanthavanij
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanachit Krikeerati
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Allergy and Immunology, Mahidol University, Bangkok 10700, Thailand
| | - Torpong Thongngarm
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Allergy and Immunology, Mahidol University, Bangkok 10700, Thailand
| | - Chamard Wongsa
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Allergy and Immunology, Mahidol University, Bangkok 10700, Thailand
| | - Wisuwat Songnuan
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phornnop Naiyanetr
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mongkhon Sompornrattanaphan
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Allergy and Immunology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
34
|
Busche M, Pucker B, Weisshaar B, Stracke R. Three R2R3-MYB transcription factors from banana (Musa acuminata) activate structural anthocyanin biosynthesis genes as part of an MBW complex. BMC Res Notes 2023; 16:103. [PMID: 37312204 DOI: 10.1186/s13104-023-06375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVE Bananas are one of the most popular fruits in the world, providing food security and employment opportunities in several developing countries. Increasing the anthocyanin content of banana fruit could improve the health-promoting properties. Anthocyanin biosynthesis is largely regulated at the transcriptional level. However, relatively little is known about the transcriptional activation of anthocyanin biosynthesis in banana. RESULTS We analysed the regulatory activity of three Musa acuminata MYBs that were predicted by bioinformatic analysis to transcriptionally regulate anthocyanin biosynthesis in banana. MaMYBA1, MaMYBA2 and MaMYBPA2 did not complement the anthocyanin-deficient phenotype of the Arabidopsis thaliana pap1/pap2 mutant. However, co-transfection experiments in A. thaliana protoplasts showed that MaMYBA1, MaMYBA2 and MaMYBPA2 function as components of a transcription factor complex with a bHLH and WD40 protein, the so called MBW complex, resulting in the activation of the A. thaliana ANTHOCYANIDIN SYNTHASE and DIHYDROFLAVONOL 4-REDUCTASE promoters. The activation potential of MaMYBA1, MaMYBA2 and MaMYBPA2 was increased when combined with the monocot Zea mays bHLH ZmR instead of the dicot AtEGL3. This work paves the path towards decoding the MBW complex-mediated transcriptional activation of anthocyanin biosynthesis in banana. It will also facilitate research towards increased anthocyanin content in banana and other monocot crops.
Collapse
Affiliation(s)
- Mareike Busche
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Boas Pucker
- Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Ralf Stracke
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
35
|
Saha SP, Ghosh S, Mazumdar D, Ghosh S, Ghosh D, Sarkar MM, Roy S. Valorization of banana peel into α-amylase using one factor at a time (OFAT) assisted artificial neural network (ANN) and its partial purification, characterization, and kinetics study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
36
|
Saarniit K, Lang H, Kuldjärv R, Laaksonen O, Rosenvald S. The Stability of Phenolic Compounds in Fruit, Berry, and Vegetable Purees Based on Accelerated Shelf-Life Testing Methodology. Foods 2023; 12:foods12091777. [PMID: 37174315 PMCID: PMC10178123 DOI: 10.3390/foods12091777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Evaluating the stability of polyphenols in fruit, berry, and vegetable purees helps to assess the quality of these products during storage. This study aimed to (1) monitor the stability of total phenolic content (TPC) in four-grain puree with banana and blueberry (FGBB), mango-carrot-sea buckthorn puree (MCB), and fruit and yogurt puree with biscuit (FYB); (2) study the effect of aluminum-layered vs. aluminum-free packaging on the changes in TPC; and (3) assess the suitability of accelerated shelf-life testing (ASLT) methodology to evaluate the stability of polyphenols. The samples were stored at 23 °C for 182, 274, 365, and 427 days. The corresponding time points during ASLT at 40 °C were 28, 42, 56, and 66 days, calculated using Q10 = 3. The TPC was determined with Folin-Ciocalteu method. The results revealed that the biggest decrease in TPC took place with high-pH FGBB, which contained fewer ingredients with bioactive compounds. Minor changes were seen in FYB and MCB, which had lower pH values, and contained a larger amount of ingredients that include polyphenols. In addition, the choice of packaging material did not affect the TPC decrease in each puree. Finally, it was concluded that the ASLT methodology is suitable for studying the TPC changes in such purees, but the corresponding Q10 factors may vary and should be determined based on the chemical profile and ingredient list of the product.
Collapse
Affiliation(s)
- Kärt Saarniit
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Hanna Lang
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia
| | - Rain Kuldjärv
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Sirli Rosenvald
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia
| |
Collapse
|
37
|
Difonzo G, Antonino C, Squeo G, Caponio F, Faccia M. Application of Agri-Food By-Products in Cheesemaking. Antioxidants (Basel) 2023; 12:antiox12030660. [PMID: 36978908 PMCID: PMC10045188 DOI: 10.3390/antiox12030660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Agri-food companies produce large quantities of plant by-products that in many instances contain functional bioactive compounds. This review summarizes the main applications of agro-industrial by-products in cheesemaking, considering their bioactivities and functional properties. Polyphenol-rich by-products increase antioxidant and antimicrobial activity in cheeses, positively impacting their shelf life. Contrasting results have been obtained regarding the color and sensory properties of enriched cheeses depending on the selected by-products and on the technology adopted for the extract preparation. Furthermore, functional compounds in cheeses perform a prebiotic function and their bioavailability improves human health. Overall, the use of agri-food by-products in cheese formulation can offer benefits for agri-food chain sustainability and consumer health.
Collapse
|
38
|
Sheng O, Yin Z, Huang W, Chen M, Du M, Kong Q, Fernie AR, Yi G, Yan S. Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening. Food Chem 2023; 403:134380. [DOI: 10.1016/j.foodchem.2022.134380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
|
39
|
Ribeiro AEC, Oliveira AR, Silva ACMD, Garcia MC, Ribeiro KDO, Caliari M, Soares Júnior MS. High fiber content snack bars made with maize biomass flour, rice flakes and oat flakes: Physicochemical properties and sensory acceptance. FOOD SCI TECHNOL INT 2023; 29:181-191. [PMID: 35253452 DOI: 10.1177/10820132221085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to assess physicochemical properties and sensory acceptance of snack bars (SBs) made with different levels of maize biomass flour (MBF), rice flakes (RF) and oat flakes (OF). A simplex design was used, with 6 mixtures and 2 repetitions. The different levels of MBF, RF and OF used in the SBs influenced all physicochemical properties evaluated (moisture, water activity, specific volume, hardness and instrumental color). SB4 (containing 14.85:5:10.85% of MBF:RF:OF, respectively) and SB6 (containing 14:8:8% of MBF:RF:OF, respectively) were the closest to the desirable formulation according to the desirability diagram for the physicochemical properties of the SBs. SB1 (containing 20:5:5% of MBF:RF:OF, respectively) was also selected for sensory analysis as it showed the highest MBF content among all formulations. None SBs presented a microbiological risk. The SB6 presented the highest sensory acceptance and purchase intent, highlighting its rich content of dietary fiber (16.45 ± 0.1 g/100 g) and protein (7.04 ± 0.02 g/100 g) besides its low-calorie characteristic (1421.22 kJ/100 g/339.68 kcal/100 g). The development of SBs using MBF is feasible in relation to their physicochemical and sensory properties, which can stimulate the sustainable production of new goods from this by-product.
Collapse
Affiliation(s)
- Alline Emannuele Chaves Ribeiro
- Agronomy Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil.,Rural Development Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| | - Aryane Ribeiro Oliveira
- Food Engineering Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| | | | - Marina Costa Garcia
- Food Engineering Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| | | | - Márcio Caliari
- Rural Development Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil.,Food Engineering Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| | - Manoel Soares Soares Júnior
- Agronomy Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil.,Food Engineering Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| |
Collapse
|
40
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
41
|
Tadesse MG, Kasaw E, Lübben JF. Valorization of Banana Peel Using Carbonization: Potential Use in the Sustainable Manufacturing of Flexible Supercapacitors. MICROMACHINES 2023; 14:330. [PMID: 36838030 PMCID: PMC9962039 DOI: 10.3390/mi14020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Sustainable and environmentally friendly activated carbon from biomass materials is proposed to produce supercapacitors from banana peels and has the potential to replace the non-sustainable and hazardous process from either graphite or/and fossil fuels. In order to determine the potential of using banana peel for supercapacitor application, raw banana peel, a bio-waste, was activated both mechanically and chemically to observe the real differences. The sample was activated at 700 °C and chemically activated using KOH. Characterization of activated banana peel was performed using FTIR, DLS, TGA and XRD analytical equipment. FTIR analysis revised the presence of hydroxyl, carbonyl and aromatic compounds on a banana peel cellulose-based carbon. The TGA results proved that 700 °C could be sufficient to totally carbonize banana peel. DLS clearly showed a strong difference between the carbonized and KOH-activated material in particle size distribution. Meanwhile, surface area analysis using BET displayed an increase from 553.862 m2/g to 565.024 m2/g BET in surface area (SBET) when carbon was activated using KOH with a nitrogen isotherm at 77.350 K. Specific capacitance was increased from 0.3997 Fg-1 to 0.821 Fg-1, suggesting more than a 100% increase in the specific capacity due to KOH activation, as proved by the cyclic voltammetry (CV) curve. The X-ray diffraction results revealed the patterns of activated carbon. The findings demonstrated the feasibility of using banana peel waste as a low-cost and sustainable material for the preparation of flexible supercapacitor batteries.
Collapse
Affiliation(s)
- Melkie Getnet Tadesse
- Sustainable Engineering (STE), Albstadt-Sigmaringen University, 72458 Albstadt, Germany
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 1037, Ethiopia
| | - Esubalew Kasaw
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 1037, Ethiopia
| | - Jörn Felix Lübben
- Sustainable Engineering (STE), Albstadt-Sigmaringen University, 72458 Albstadt, Germany
| |
Collapse
|
42
|
Kritsi E, Tsiaka T, Sotiroudis G, Mouka E, Aouant K, Ladika G, Zoumpoulakis P, Cavouras D, Sinanoglou VJ. Potential Health Benefits of Banana Phenolic Content during Ripening by Implementing Analytical and In Silico Techniques. Life (Basel) 2023; 13:332. [PMID: 36836689 PMCID: PMC9962436 DOI: 10.3390/life13020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Banana ranks as the fifth most cultivated agricultural crop globally, highlighting its crucial socio-economic role. The banana's health-promoting benefits are correlated with its composition in bioactive compounds, such as phenolic compounds. Thus, the present study attempts to evaluate the potential health benefits of banana phenolic content by combing analytical and in silico techniques. Particularly, the total phenolic content and antioxidant/antiradical activity of banana samples during ripening were determined spectrophotometrically. In parallel, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was implemented to unravel the variations in the phenolic profile of banana samples during ripening. Chlorogenic acid emerged as a ripening marker of banana, while apigenin and naringenin were abundant in the unripe fruit. In a further step, the binding potential of the elucidated phytochemicals was examined by utilizing molecular target prediction tools. Human carbonic anhydrase II (hCA-II) and XII (hCA-XII) enzymes were identified as the most promising targets and the inhibitory affinity of phenolic compounds was predicted through molecular docking studies. This class of enzymes is linked to a variety of pathological conditions, such as edema, obesity, hypertension, cancer, etc. The results assessment indicated that all assigned phenolic compounds constitute great candidates with potential inhibitory activity against CA enzymes.
Collapse
Affiliation(s)
- Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Thalia Tsiaka
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Georgios Sotiroudis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Elizabeth Mouka
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Konstantinos Aouant
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Georgia Ladika
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Dionisis Cavouras
- Department of Biomedical Engineering, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Vassilia J. Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| |
Collapse
|
43
|
Afzal MF, Khalid W, Akram S, Khalid MA, Zubair M, Kauser S, Abdelsamea Mohamedahmed K, Aziz A, Anusha Siddiqui S. Bioactive profile and functional food applications of banana in food sectors and health: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2130940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Sidra Akram
- Department of Home Economics, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Zubair
- Department of Home Economics, Government College University, Faisalabad, Pakistan
| | - Safura Kauser
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Khalid Abdelsamea Mohamedahmed
- Department of Hematology and Immunology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Medani, Sudan
| | - Afifa Aziz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
44
|
Fu J, Xiao J, Tu S, Sheng Q, Yi G, Wang J, Sheng O. Plantain flour: A potential anti-obesity ingredient for intestinal flora regulation and improved hormone secretion. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1027762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
IntroductionDevelopment of functional food ingredients with anti-obesity is a growing interest in the global food industry. Plantain (Musa spp. AAB), a special type of cooking/starchy banana, is widely growing in African and Latin American countries. The flour made from unripe plantain pulp, which is considered as a natural source of indigestible carbohydrates such as resistant starch (RS), could be used in the formulation of diverse functional foods due to its anti-obesity properties. However, the mechanisms underlying the anti-obesity properties of plantain flour are not explored.MethodsIn this study, we investigated the changes in serum hormone levels, liver transcriptome profiles, and the modulation of gut microbiota in high-fat-fed Sprague-Dawley (SD) rats. The male SD rats were divided into six groups, viz. two control groups [non-obese (NC) or obese (OC)] which were not given the supplementation, one positive control (PC) group which received orlistat supplementation (60 mg/kg body weight/day), and three groups of obese rats which were supplemented with unripe plantain flour (UPF) at a dosage (body weight/day) of 1.25 g/kg (low-dose, LD), 2.50 g/kg (intermediate-dose, MD) or 5.0 g/kg (high-dose, HD).Results and discussionIt was found that UPF supplementation could lower the insulin levels of the obese rats. Moreover, UPF supplementation had a positive impact on gut microbiota, decreasing the relative abundances of Blautia, Parasutterella and Fusicatenibacter which were closely related to obesity, and increasing the relative abundances of probiotics (Allobaculum, Romboutsia, Staphylococcus, and Bacteroides). The spearman correlation analysis revealed that UPF supplementation reduced the relative abundance of Parasutterella and possibly decreased the blood sugar levels, leading to a decrease in the relative abundances of Blautia and Fusicatenibacter and a subsequent decrease in insulin levels. Furthermore, transcriptomic analysis of the liver tissues displayed that the peroxisome proliferator activated receptor-1α (PPAR) and AMP-activated protein kinase (AMPK) signaling pathway genes (Pparaa, Cpt1a, Prkaa1, Prkab1, Prkaa2, and Ppargc1a) were upregulated in those groups supplemented with UPF. These results indicated that UPF could mediate the glucolipid metabolism in the obese rats. Taken together, our findings suggested that the anti-obesity properties of UPF could be achieved by decreasing the insulin levels, positive-regulating of the gut microbiota composition as well as altering gene expression related to glucolipid metabolism.
Collapse
|
45
|
Savitri D, Djawad K, Hatta M, Wahyuni S, Bukhari A. Active compounds in kepok banana peel as anti-inflammatory in acne vulgaris: Review article. Ann Med Surg (Lond) 2022; 84:104868. [PMID: 36582904 PMCID: PMC9793233 DOI: 10.1016/j.amsu.2022.104868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acne vulgaris (AV) is a chronic inflammatory skin condition affecting the pilosebaceous units characterized by recurrent comedones, erythematous papules and pustules. The disease is benign however may produce scarring, erythema, and hyperpigmentation resulting in physical and psychological problems. Conventional therapy may reduce the symptoms of AV nevertheless, has a possibility of resistance, unwanted side effects, and has high cost. Thus, utilizing natural remedies may be a useful. METHODS The data in this study were collect by search the keyword combinations of medical subject heading (mesh) of "inhibition", "antimicrobial", "banana peel", "acne vulgaris" and "antiinflammation" and relevant reference lists were manually searched in PubMed, EMBRASE and Scopus database. All relevant articles in data base above were included and narratively discussed in this review article. OBJECTIVE To discuss the bioactive potential of banana peel as an inflammatory modulator in acne vulgaris. RESULTS Banana peel contains many bioactive compounds, particularly phenolic and non-phenolic antioxidants (ascorbic acid, carotene, and cyanidin) which are pivotal in removing inflammatory products by inhibiting reactive oxygen species (ROS), protecting protease inhibitors from oxidative damage, and preventing fibroblasts degradation. Banana peel also contains anti-inflammatory agents such as trigonelline which inhibits bacterial enzymes and nucleic acid synthesis; isovanillic acid which suppresses TNF-α production; and ferulic acid which inhibits the production of proinflammatory signaling and cytokines. CONCLUSION Banana peel contains many bioactive compounds which demonstrate anti-inflammatory properties through several processes of the inflammatory pathway. However further research is needed to confirm this finding.
Collapse
Affiliation(s)
- Dwiana Savitri
- Doctoral Program in Medical Science, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
- Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Khairuddin Djawad
- Department of Dermatology and Venereology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Mochammad Hatta
- Department of Molecular Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Sitti Wahyuni
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Agussalim Bukhari
- Department of Nutrition, Faculty Medicine, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
46
|
Jiang Q, Charoensiddhi S, Xue X, Sun B, Liu Y, El-Seedi HR, Wang K. A review on the gastrointestinal protective effects of tropical fruit polyphenols. Crit Rev Food Sci Nutr 2022; 63:7197-7223. [PMID: 36397724 DOI: 10.1080/10408398.2022.2145456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tropical fruits are popular because of their unique, delicious flavors and good nutritional value. Polyphenols are considered to be the main bioactive ingredients in tropical fruits, and these exert a series of beneficial effects on the human gastrointestinal tract that can enhance intestinal health and prevent intestinal diseases. Moreover, they are distinct from the polyphenols in fruits grown in other geographical zones. Thus, the comprehensive effects of polyphenols in tropical fruits on gut health warrant in-depth review. This article reviews, first, the biological characteristics of several representative tropical fruits, including mango, avocado, noni, cashew apple, passion fruit and lychee; second, the types and content of the main polyphenols in these tropical fruits; third, the effects of each of these fruit polyphenols on gastrointestinal health; and, fourth, the protective mechanism of polyphenols. Polyphenols and their metabolites play a crucial role in the regulation of the gut microbiota, increasing intestinal barrier function, reducing oxidative stress, inhibiting the secretion of inflammatory factors and regulating immune function. Thus, review highlights the value of tropical fruits, highlighting their significance for future research on their applications as functional foods that are oriented to gastrointestinal protection.
Collapse
Affiliation(s)
- Qianer Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Biqi Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Bilenler Koc T, Kuyumcu Savan E, Karabulut I. Electrochemical Determination of the Antioxidant Capacity, Total Phenolics, and Ascorbic Acid in Fruit and Vegetables by Differential Pulse Voltammetry (DPV) with a p-Toluene Sulfonic Acid Modified Glassy Carbon Electrode (TSA/GCE). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2144344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Tugca Bilenler Koc
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya, Turkey
| | - Ebru Kuyumcu Savan
- Division of Analytical Chemistry, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Ihsan Karabulut
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya, Turkey
| |
Collapse
|
48
|
Budetić M, Samardžić M, Bubnjar K, Dandić A, Živković P, Széchenyi A, Kiss L. A new sensor for direct potentiometric determination of thiabendazole in fruit peels using the Gran method. Food Chem 2022; 392:133290. [PMID: 35660977 DOI: 10.1016/j.foodchem.2022.133290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
A new sensor for direct potentiometric determination of thiabendazole (TBZ) was prepared. The ionic pair of TBZ cation and the 5-sulfosalicylate anion was used as the new sensor material incorporated in liquid type of ion-selective electrode membrane for TBZ determination. For optimization of the membrane of the sensor for TBZ determination, six different plasticizers and the content of the sensor material in the membrane were varied. The chosen sensor with dibutyl sebacate (DS) as plasticizer and 1% of sensor material in the membrane was characterized with Nernstian response towards TBZ (62.2 mV/decade of activity), a wide working range (8.6∙10-7-1.0∙10-3 M), and a low limit of detection (3.2·10-7 M). Also, it proved to be an accurate and reliable sensor for TBZ determination in pure and real samples (peel of oranges, lemons and bananas) where it was determined using direct potentiometry and Gran method.
Collapse
Affiliation(s)
- Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Karlo Bubnjar
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Andrea Dandić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Pavo Živković
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Aleksandar Széchenyi
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - László Kiss
- Department of Organic and Pharmacological Chemistry, University of Pécs, Honvéd street 1, H-7624 Pécs, Hungary; János Szentágothai Research Center, Ifjúság street 20, H-7624 Pécs, Hungary.
| |
Collapse
|
49
|
Structural, physicochemical and rheological properties of starches isolated from banana varieties ( Musa spp.). Food Chem X 2022; 16:100473. [PMID: 36277869 PMCID: PMC9579327 DOI: 10.1016/j.fochx.2022.100473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
High starch content in green banana can be extracted for industry and avoid waste. Banana starch from Tanzania was rich in amylose and resistant starch. Banana starch paste presented great structural stability. Banana starch had potential to produce edible films and replace chemical binder.
Banana starches were isolated from five banana varieties in Tanzania to analyze the proximate composition, structure, physicochemical and rheological properties. The amylose content of banana starches was 29.92 ± 0.17 %–39.50 ± 0.08 % and the resistant starch content of cooked banana starches ranged from 44.74 ± 1.72 % to 55.43 ± 1.52 %. Banana starch granules presented irregular shapes with particle size of 21.73 to 24.67 μm and showed B-type or C-type crystalline patterns with crystallinity of 36.69 % to 41.83 %. The solubility and the swelling power were 2.5 ± 0.42 %–4.4 ± 0.57 % and 11.27 ± 0.04 %–12.48 ± 0.71 %, respectively. Mzuzu and Malindi starches possessed lower gelatinization temperature. The high gelatinization peak viscosity (2248 ± 67–2897 ± 71 cP), low breakdown (556 ± 7–960 ± 41 cP) and low setback (583 ± 29–864 ± 118 cP) indicated banana starch could replace chemically cross-linked starch for applications that require stable viscosity. The rheological analysis showed that banana starches exhibited shear thinning behavior and had great processing adaptability. The results all above will provide basic data for the development and utilization of banana starch.
Collapse
|
50
|
Potential use of banana peel ( Musa cavendish) as ingredient for pasta and bakery products. Heliyon 2022; 8:e11044. [PMID: 36276723 PMCID: PMC9578991 DOI: 10.1016/j.heliyon.2022.e11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/19/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
The consumption of fruits and vegetables involves the disposal of the inedible parts, conveying challenges such as waste management and environment pollution. In recent years, there have been multiple studies aimed at finding alternatives that reduce the negative impact of food/agricultural waste. Since most studies done with by-products recommend their careful selection, the aim of this study was to verify if discarded banana peels could be disinfected until microbiologically safe and to determine if they could still provide nutrients to formulate food products with sensory characteristics acceptable to a consumer market after disinfection. Banana peels were collected from markets, restaurants, and greengrocers. They were disinfected, dried, and pulverized to obtain a flour which was subjected to microbiological and proximal analysis. Once its microbial safety was assured, this flour was incorporated into bakery and pasta products, replacing wheat flour with 5–20% banana peel flour (BPF). The sensory evaluation of the different products was carried out and, after verifying that the products were sensory acceptable, the proximal analysis was implemented. The formulated products were suitable for the addition of BPF up to 10%, in which the Acceptability Index was higher than 80% and significant increases in fiber and fat were achieved. We conclude that waste banana peel flour can be incorporated into bread and pasta products for human consumption to provide nutrients which might contribute to reduce this type of waste and to recover nutrients from otherwise disposed banana peels.
Collapse
|