1
|
Jesus RAD, Oliveira JMAD, Silva JMD, Fraga MO, Silva WRD, Wisniewski A, Sá Filho JCFD, Blank AF, Souza DAD, Wartha ERSDA, Nogueira PCDL, Moraes VRDS. Comparative analysis of phenolic extracts obtained from Lippia alba (Mill.) N. E. Brown leaves by microwave-assisted extraction using eco-friendly solvents. Food Chem 2025; 474:143166. [PMID: 39919425 DOI: 10.1016/j.foodchem.2025.143166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
This study demonstrated that microwave-assisted extraction (MAE) was more effective for the recovery of phenolic compounds from L. alba leaves, compared to traditional methods such as Soxhlet extraction, infusion, and decoction, and resulted in higher antioxidant activity. Ultra-high-resolution mass spectrometry analysis enabled the identification of important phenolic compounds, such as acteoside/isoacteoside and theveside, in addition to several flavonoids, which could explain the high antioxidant activities. The results of principal component analysis (PCA) indicated that MAE significantly influenced the chemical composition of the extracts. MAE, using green solvents (water and ethanol), proved to be an efficient and sustainable approach for obtaining antioxidant phenolic compounds from L. alba leaves, with potential applications in the food, cosmetics, and pharmaceutical industries. The findings provide important information for further studies to assess the scalability and environmental impact of the MAE process, aiming at feasible large-scale production.
Collapse
Affiliation(s)
- Raphael Amancio de Jesus
- Department of Chemistry, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil.
| | | | - José Michael da Silva
- Department of Chemistry, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil
| | - Mariana Oliveira Fraga
- Department of Chemistry, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil
| | - Wenes Ramos da Silva
- Department of Chemistry, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil
| | - Alberto Wisniewski
- Department of Chemistry, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil
| | - José Carlos Freitas de Sá Filho
- Department of Agronomic Engineering, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil
| | - Arie Fitzgerald Blank
- Department of Agronomic Engineering, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil
| | - Daniel Alves de Souza
- Department of Nutrition, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil
| | | | - Paulo Cesar de Lima Nogueira
- Department of Chemistry, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil
| | - Valéria Regina de Souza Moraes
- Department of Chemistry, Federal University of Sergipe, Av. Marcelo Déda Chagas, s/n, 49107-230, São Cristovão, SE, Brazil.
| |
Collapse
|
2
|
Xia F, He H, Ma J, Jin Y, Qiao Q, Long P, Li P, Sun R. Optimization of Ultrasonic-Assisted Extraction of Diene Urushiol from Lacquer Tree Leaves Using Response Surface Methodology. Molecules 2025; 30:1663. [PMID: 40333583 PMCID: PMC12029910 DOI: 10.3390/molecules30081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
Lacquer trees are an important economic tree species in China, and raw lacquer is its main secondary metabolite. Polyphenolic compounds are the primary components of raw lacquer, among which diene urushiol exhibits high inhibitory activity against the reverse transcriptase of acquired immunodeficiency syndrome (AIDS). Therefore, this study established and optimized the ultrasound-assisted extraction process of diene urushiol from lacquer tree leaves. Based on single-factor experiments on the number of extractions, extraction time, extraction temperature, and solvent to solid ratio, the Box-Behnken Design response surface methodology was employed to obtain the optimal extraction process, which included three extractions, an extraction time of 55 min, an extraction temperature of 50 °C, and a solvent to solid ratio of 10:1 mL/g. Under these conditions, the content of diene urushiol was 4.56 mg/g (FW), which bore no significant difference from the theoretical value of 4.69 mg/g (FW), indicating a good model fit. Therefore, response surface methodology (RSM) can be used to optimize the extraction process of diene urushiol from lacquer leaves. This method lays a solid foundation for the comprehensive development and utilization of lacquer tree resources.
Collapse
Affiliation(s)
- Fengming Xia
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (F.X.); (H.H.); (J.M.); (Y.J.); (Q.Q.); (P.L.)
| | - Haojiang He
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (F.X.); (H.H.); (J.M.); (Y.J.); (Q.Q.); (P.L.)
| | - Jize Ma
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (F.X.); (H.H.); (J.M.); (Y.J.); (Q.Q.); (P.L.)
| | - Yutian Jin
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (F.X.); (H.H.); (J.M.); (Y.J.); (Q.Q.); (P.L.)
| | - Qing Qiao
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (F.X.); (H.H.); (J.M.); (Y.J.); (Q.Q.); (P.L.)
| | - Peng Long
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (F.X.); (H.H.); (J.M.); (Y.J.); (Q.Q.); (P.L.)
| | - Ping Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China;
| | - Rui Sun
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (F.X.); (H.H.); (J.M.); (Y.J.); (Q.Q.); (P.L.)
| |
Collapse
|
3
|
Ma Y, Li W, Tan S, Yu Q. Characterization and application of citrus pectin composite film containing rosemary (Rosmarinus officinalis L.) essential oil for improving storage of chilled beef. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2390-2402. [PMID: 39506921 DOI: 10.1002/jsfa.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 11/08/2024]
Abstract
BACKGROUND This study used single-factor experiments and response surface methodology to optimize ultrasound time (10-50 min), particle size (0-80 mesh) and extraction time (60-180 min) for the ultrasound-assisted extraction of rosemary essential oil (REO). The resulting REO (0-2.5%, w/w) was then incorporated into citrus pectin (CP) to prepare CP/REO composite films before determining their microstructure, mechanical, barrier and antioxidant properties, alongside their ability to improve the shelf life of chilled beef. RESULTS A sonication time of 41 min, a crushing degree of 40 mesh and an extraction time of 135 min were optimum for extracting 1.91% of REO, with the essential oil also showing good antioxidant activity. Characterization of the composite film further revealed that CP had an excellent film-forming ability and that REO was uniformly distributed in the pectin matrix through hydrogen bonding. The film displayed optimum mechanical and barrier properties at an REO concentration of 1.5% which also significantly enhanced antioxidant activity. Furthermore, the CP/1.5 REO film reduced the total viable count, delayed oxidative rancidity and maintained good color during beef storage, thereby extending the latter's shelf life by 6 days. CONCLUSION The novel food packaging film could successfully maintain the quality of chilled meat. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuying Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Weizheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Siyi Tan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Song S, Yu Y, Song S, Zhang X, Zhang W. Effect of co-pigments on anthocyanins of wild cranberry and investigation of interaction mechanisms. Food Chem 2025; 466:142212. [PMID: 39612847 DOI: 10.1016/j.foodchem.2024.142212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/03/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
This study systematically evaluated the color-enhancing effects of different co-pigmented molecules (amino acids, peptides, flavonoids and phenolic acids) with cranberry anthocyanins under different environmental conditions (light, dark, high temperature and ascorbic acid) and their potential mechanisms by various means, such as degradation kinetics, color stability, H NMR spectroscopy, and structural simulation analyses. The results showed that the introduction of co-pigments induced a strong color-enhancing effect and bathochromic shift, inhibited the degradation of anthocyanins (9.34 % ∼ 45.00 %), and prolonged the half-life of anthocyanins (14.33 % ∼ 104.56 %). Among them, catechin, ferulic acid and tryptophan, by virtue of their large molecular planes, flexible side chains and abundant substituents, altered the core structure of anthocyanins and the electron cloud density of H atoms on the acylated molecules, which significantly enhanced their stability upon binding to anthocyanins. In addition, molecular docking simulations revealed an interaction mode between co-pigments and anthocyanins dominated by hydrogen bonding and π-π stacking interactions.
Collapse
Affiliation(s)
- Shuang Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuhe Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shengzhao Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
5
|
Córdova A, Catalán S, Carrasco V, Farias FO, Trentin J, López J, Salazar F, Mussagy CU. Sustainable assessment of ultrasound-assisted extraction of anthocyanins with bio-based solvents for upgrading grape pomace Cabernet Sauvignon derived from a winemaking process. ULTRASONICS SONOCHEMISTRY 2025; 112:107201. [PMID: 39705982 PMCID: PMC11718338 DOI: 10.1016/j.ultsonch.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.9 and 13.9 W/cm2). Samples were taken from 0 to 40 min. Ultrasound induced a fast extraction of anthocyanins: a plateau was reached at 5 min and the continuation of the sonication only provoked a marginal increase which is transferred in lower Productivity (Pr) rand higher energy consumptions. The COSMO-SAC model validated solute-solvent interactions, providing robust predictive insights where ethanol showed the highest anthocyanin extraction and productivities (1.094 kg/hL). However, propylene-glycol showed the highest eco-scale scores (∼ 80) within the range defined as "Excellent" and antioxidant capacity (2758.34 ± 6.26 μmol TE/g DM) regardless of the UI, and with very low energy consumption when the extraction was performed at 3.9 W/cm2 and SLR of 1:10 g/mL. These results show that integration of UAE and bio-based solvents presented a sustainable and efficient method for valorizing wine making by-products, with significant improvements with respect to the conventional extraction, thus promoting eco-friendly practices for the food industry, and supporting the circular economy.
Collapse
Affiliation(s)
- Andrés Córdova
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile.
| | - Sebastián Catalán
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Vinka Carrasco
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, Brazil
| | - Julia Trentin
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, Brazil
| | - Jessica López
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Fernando Salazar
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Cassamo U Mussagy
- School of Agronomy, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| |
Collapse
|
6
|
Pogorzelska-Nowicka E, Hanula M, Pogorzelski G. Extraction of polyphenols and essential oils from herbs with green extraction methods - An insightful review. Food Chem 2024; 460:140456. [PMID: 39084104 DOI: 10.1016/j.foodchem.2024.140456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The demand for polyphenols and essential oils (EOs) on the food market is high and grows every year. Its partially the result of the fact that these compounds can be used in formulation of clean label foods, a fast growing food sector. A significant share of polyphenols and EOs are extracted from herbs. The quality of the extracts is determined mainly by the extraction method. Conventional extraction techniques of phytochemicals are time-consuming, operate at high temperatures, and require usage of organic solvents and energy in large quantities. According to the United Nations Sustainability Development Plan, chemical processes should be replaced by green alternatives that would reduce the use of solvents and energy. Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE) and Cold Plasma-Assisted Extraction (CPAE) meets these criteria. The review shows that each of these techniques seems to be a great alternative for conventional extraction methods ensuring higher yields of bioactive compounds.
Collapse
Affiliation(s)
- Ewelina Pogorzelska-Nowicka
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Monika Hanula
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Grzegorz Pogorzelski
- The Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland.
| |
Collapse
|
7
|
Ji R, Zhang X, Chen Z, Song S, Li Y, Zhang X, Zhang W. Effect of metal cation crosslinking on the mechanical properties and shrimp freshness monitoring sensitivity of pectin/carboxymethyl cellulose sodium/anthocyanin intelligent films. Carbohydr Polym 2024; 340:122285. [PMID: 38858002 DOI: 10.1016/j.carbpol.2024.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Although many preparation methods have been reported so far, it is still a great challenge for intelligent packaging films with both excellent mechanical properties and very high sensitivity. Herein, we report a facile method to prepare performance-enhanced pectin (PC)/carboxymethyl cellulose sodium (CMC)/anthocyanins (ACNs)/metal ion films by crosslinking with metal ions (Zn2+, Mg2+ and Ca2+). Cross-linking reaction between PC/CMC and metal ions significantly improved water resistance and mechanical properties of composite films (P < 0.05). Even at high relative humidity (RH = 84 %), cross-linking of Ca2+, Mg2+, and Zn2+ significantly increased the tensile index of the films by 1.37, 1.41, and 1.52 times (P < 0.05), respectively. Moreover, the complexation of metal ions/polysaccharides with ACNs reduced the decomposition rate of ACNs, improved the storage stability and antioxidant capacity of ACNs, and also increased the sensitivity of the colorimetric response of the indicator films in monitoring shrimp freshness. Thus, with this high sensitivity, the Red, Green and Blue (RGB) values of the films can be determined using a mobile phone application to monitor shrimp safety in real time. These results suggest that ACNs-metal cation-polysaccharide composite films have great potential for smart packaging applications.
Collapse
Affiliation(s)
- Run Ji
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Zhao Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shuang Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
8
|
Hu Y, Qian W, Fan S, Yang Y, Liao H, Zhuang G, Gao S. Ultrasonic-Assisted Extraction of Phenolic Compounds from Lonicera similis Flowers at Three Harvest Periods: Comparison of Composition, Characterization, and Antioxidant Activity. Molecules 2024; 29:3280. [PMID: 39064860 PMCID: PMC11279271 DOI: 10.3390/molecules29143280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Lonicera similis Hemsl. (L. similis) is a promising industrial crop with flowers rich in phenolic compounds. In this study, an ultrasound-assisted extraction (UAE) was designed to extract phenolic compounds from L. similis flowers (LSFs). A contrastive analysis on the phenolic compounds' yield and characterization and the antioxidant activity of the extracts at three harvest stages (PGS I, PGS II, and PGS III) are reported. The results indicate that the optimal conditions are a sonication intensity of 205.9 W, ethanol concentration of 46.4%, SLR of 1 g: 31.7 mL, and sonication time of 20.1 min. Under these optimized conditions, the TPC values at PGS I, PGS II, and PGS III were 117.22 ± 0.55, 112.73 ± 1.68, and 107.33 ± 1.39 mg GAE/g, respectively, whereas the extract of PGS I had the highest TFC (68.48 ± 2.01 mg RE/g). The HPLC analysis showed that chlorogenic acid, rutin, quercetin, isoquercitrin, and ferulic acid are the main components in the phenolic compounds from LSFs, and their contents are closely corrected with the harvest periods. LSF extracts exhibited a better antioxidant activity, and the activity at PGS I was significantly higher than those at PGS II and PGS III. The correlation analysis showed that kaempferol and ferulic acid, among the eight phenolic compounds, have a significant positive correlation with the antioxidant activity, while the remaining compounds have a negative correlation. Minor differences in extracts at the three harvest stages were found through SEM and FTIR. These findings may provide useful references for the optimal extraction method of phenolic compounds from LSFs at three different harvest periods, which will help to achieve a higher phytochemical yield at the optimal harvest stage (PGS I).
Collapse
Affiliation(s)
- Yunyi Hu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| | - Wenzhang Qian
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| | - Shaojun Fan
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| | - Yao Yang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China;
| | | | - Shun Gao
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| |
Collapse
|
9
|
Fan SJ, Zhang XY, Cheng Y, Qiu YX, Hu YY, Yu T, Qian WZ, Zhang DJ, Gao S. Extraction Optimization of Phenolic Compounds from Triadica sebifera Leaves: Identification, Characterization and Antioxidant Activity. Molecules 2024; 29:3266. [PMID: 39064845 PMCID: PMC11278767 DOI: 10.3390/molecules29143266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Triadica sebifera (T. sebifera) has attracted much attention because of the high oil content in its seeds, but there are few systematic studies on the phenolic compounds of T. sebifera leaves (TSP). In this study, the extraction process of TSP was optimized by response surface methodology. The phenolic components of these extracts were analyzed by high-performance liquid chromatography (HPLC). Moreover, the effects of hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the antioxidant activity and characterization of T. sebifera leaf extract (TSLE) were evaluated. Under the conditions of ethanol concentration 39.8%, liquid-solid ratio (LSR) 52.1, extraction time 20.2 min and extraction temperature 50.6 °C, the maximum TSP yield was 111.46 mg GAE/g dw. The quantitative analysis and correlation analysis of eight compounds in TSP showed that the type and content of phenolic compounds had significant correlations with antioxidant activity, indicating that tannic acid, isoquercitrin and ellagic acid were the main components of antioxidant activities. In addition, through DPPH and ABTS determination, VD-TSLE and FD-TSLE showed strong scavenging ability, with IC50 values of 138.2 μg/mL and 135.5 μg/mL and 73.5 μg/mL and 74.3 μg/mL, respectively. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) infrared spectroscopy revealed small differences in the extracts of the three drying methods. This study lays a foundation for the effective extraction process and drying methods of phenolic antioxidants from T. sebifera leaves, and is of great significance for the utilization of T. sebifera leaves.
Collapse
Affiliation(s)
- Shao-Jun Fan
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Xin-Yue Zhang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yu Cheng
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yu-Xian Qiu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yun-Yi Hu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Ting Yu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China;
| | - Wen-Zhang Qian
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Dan-Ju Zhang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Gao
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Fotiadou R, Fragkaki I, Pettas K, Stamatis H. Valorization of Olive Pomace Using Ultrasound-Assisted Extraction for Application in Active Packaging Films. Int J Mol Sci 2024; 25:6541. [PMID: 38928246 PMCID: PMC11203504 DOI: 10.3390/ijms25126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive compounds that can be recovered by the solid wastes of the olive oil sector, such as polyphenols, are known for their significant antioxidant and antimicrobial activities with potential application in nutraceutical, cosmetic, and food industries. Given that industrial demands are growing, and the polyphenol market value is ever increasing, a systematic study on the recovery of natural antioxidant compounds from olive pomace using ultrasound-assisted extraction (UAE) was conducted. Single-factor parameters, i.e., the extraction solvent, time, and solid-to-liquid ratio, were investigated evaluating the total phenolic content (TPC) recovery and the antioxidant activity of the final extract. The acetone-water system (50% v/v, 20 min, 1:20 g mL-1) exhibited the highest total phenolic content recovery (168.8 ± 5.5 mg GAE per g of dry extract). The olive pomace extract (OPE) was further assessed for its antioxidant and antibacterial activities. In DPPH, ABTS, and CUPRAC, OPE exhibited an antioxidant capacity of 413.6 ± 1.9, 162.72 ± 3.36 and 384.9 ± 7.86 mg TE per g of dry extract, respectively. The antibacterial study showed that OPE attained a minimum inhibitory activity (MIC) of 2.5 mg mL-1 against E. coli and 10 mg mL-1 against B. subtilis. Hydroxytyrosol and tyrosol were identified as the major phenolic compounds of OPE. Furthermore, active chitosan-polyvinyl alcohol (CHT/PVA) films were prepared using different OPE loadings (0.01-0.1%, w/v). OPE-enriched films showed a dose-dependent antiradical scavenging activity reaching 85.7 ± 4.6% (ABTS) and inhibition growth up to 81% against B. subtilis compared to the control film. Increased UV light barrier ability was also observed for the films containing OPE. These results indicate that OPE is a valuable source of phenolic compounds with promising biological activities that can be exploited for developing multifunctional food packaging materials.
Collapse
Affiliation(s)
- Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| | - Ioanna Fragkaki
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| | - Kyriakos Pettas
- STYMON Natural Products ΙΚΕ, Industrial Area of Patras, Street B2, Building Square 4, 25018 Patras, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| |
Collapse
|
11
|
de Jesus RA, da Silva WR, Wisniewski A, de Andrade Nascimento LF, Blank AF, de Souza DA, Wartha ERSDA, Nogueira PCDL, Moraes VRDS. Microwave and ultrasound extraction of antioxidant phenolic compounds from Lantana camara Linn. leaves: Optimization, comparative study, and FT-Orbitrap MS analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:889-902. [PMID: 38369344 DOI: 10.1002/pca.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The species Lantana camara is used in folk medicine. The biological activities of this medicinal plant are attributable to the presence of various derivatives of triterpenoids and phenolic compounds present in its preparations, indicating excellent economic potential. OBJECTIVE In this study, the operational conditions of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were optimized using Box-Behnken design to improve the total phenolic content (TPC) recovered in hydroethanolic extracts of L. camara leaves. MATERIAL AND METHODS The TPC, total flavonoid content (TFC), and antioxidant activities of the hydroalcoholic extracts of L. camara, prepared by UAE and MAE under the optimized extraction conditions, were compared with those of the extracts obtained by conventional extraction methods. RESULTS Under the optimal conditions, the extracts obtained by UAE (35% ethanol, 25 min, and a solvent-to-solid ratio of 60:1 mL/g) and by MAE (53% ethanol, 15 min, and 300 W) provided high yields of 32.50% and 38.61% and TPC values of 102.89 and 109.83 mg GAE/g DW, respectively. The MAE extract showed the best results with respect to TPC, TFC, and antioxidant activities, followed by extracts obtained by UAE, Soxhlet extraction, decoction, maceration, and infusion, in that order. CONCLUSION The results obtained indicate that L. camara may be used as an important source of antioxidant phenolic compounds to obtain products with high biological and economic potential, especially when the extraction process is performed under appropriate conditions using MAE and/or UAE, employing environmentally friendly solvents such as water and ethanol.
Collapse
Affiliation(s)
| | - Wenes Ramos da Silva
- Department of Chemistry, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Alberto Wisniewski
- Department of Chemistry, Federal University of Sergipe, São Cristovão, SE, Brazil
| | | | - Arie Fitzgerald Blank
- Department of Agronomic Engineering, Federal University of Sergipe, São Cristovão, SE, Brazil
| | | | | | | | | |
Collapse
|
12
|
Tsevdou M, Ntzimani A, Katsouli M, Dimopoulos G, Tsimogiannis D, Taoukis P. Comparative Study of Microwave, Pulsed Electric Fields, and High Pressure Processing on the Extraction of Antioxidants from Olive Pomace. Molecules 2024; 29:2303. [PMID: 38792161 PMCID: PMC11123897 DOI: 10.3390/molecules29102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.
Collapse
Affiliation(s)
| | | | | | | | | | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Heroon Polytechniou Str., 15780 Athens, Greece; (M.T.); (A.N.); (M.K.); (G.D.); (D.T.)
| |
Collapse
|
13
|
Bin Mokaizh AA, Nour AH, Kerboua K. Ultrasonic-assisted extraction to enhance the recovery of bioactive phenolic compounds from Commiphora gileadensis leaves. ULTRASONICS SONOCHEMISTRY 2024; 105:106852. [PMID: 38518410 PMCID: PMC10979263 DOI: 10.1016/j.ultsonch.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/15/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The "ultrasonic-assisted extraction (UAE)" method was utilized in this work to assess how different process parameters affected the yield and recovery of phenolic compounds from the leaf of Commiphora gileadensis, which is one of the medicinal plants with a variety of biological functions. Its leaf is used for a various of therapeutic applications, such as the treatment of bacterial infections, inflammation, and wound healing. The "One-Factor-At-a-Time (OFAT)" approach was employed to examine the impacts of various UAE process parameters on the process of extraction, which include time of extraction, sample/solvent ratio, ultrasonic frequency, and solvent (ethanol) concentration. The extracts were then investigated for the presence of several phytochemicals using analytical techniques such as "Gas Chromatography-Mass Spectroscopy (GC-MS)" and "Fourier Transform Infrared Spectroscopy (FTIR)" studies. The findings showed that the maximum extraction yield, the total phenolic content (TPC), and the total flavonoids content (TFC) of the ethanolic extract of the leaves of C. gileadensis using the UAE method were at 31.80 ± 0.41 %, 96.55 ± 2.81 mg GAE/g d.w. and 31.66 ± 2.01 mg QE/g d.w. accordingly under a procedure duration of 15 min, ultrasonic frequency of 20 kHz, solvent/sample ratio of 1:20 g/mL, and solvent concentration of 40 % v/v. The leaves extract of C. gileadensis included 25 phenolic compounds that were previously unreported, and GC-MS analysis confirmed their presence. Hence, it follows that the UAE technique can successfully extract the phytochemicals from C. gileadensis for a variety of therapeutic uses.
Collapse
Affiliation(s)
- Aiman A Bin Mokaizh
- Faculty "of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia.
| | - Abdurahman Hamid Nour
- Faculty "of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia
| | - Kaouther Kerboua
- Department of Process and Energy Engineering, National Higher School of Technology and Engineering, 23005 Annaba, Algeria
| |
Collapse
|
14
|
Zhao Y, Guo S, Li S, Ye E, Wang W, Wang T, Wen Y, Guo L. Ultrasonic-assisted extraction, anti-biofilm activity, and mechanism of action of Ku Shen ( Sophorae Flavescentis Radix) extracts against Vibrio parahaemolyticus. Front Microbiol 2024; 15:1379341. [PMID: 38596374 PMCID: PMC11003267 DOI: 10.3389/fmicb.2024.1379341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
The objective of this study is to optimize the ultrasonic-assisted extraction process of Ku Shen (Sophorae Flavescentis Radix) extracts (KSE) against Vibrio parahaemolyticus and explore their anti-biofilm activity and mechanism of action. The ultrasonic-assisted extraction process of KSE optimized by single factor experiment, Box-Behnken design and response surface methodology was as follows: 93% ethanol as solvent, liquid/material ratio of 30 mL/g, ultrasonic power of 500 W, extraction temperature of 80°C and time of 30 min. Under these conditions, the diameter of inhibition circle of KSE was 15.60 ± 0.17 mm, which had no significant difference with the predicted value. The yield of dried KSE is 32.32 ± 0.57% and the content of total flavonoids in KSE was 57.02 ± 5.54%. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of KSE against V. parahaemolyticus were 0.25 and 0.5 mg/mL, respectively. Crystal violet staining, Congo red plate, spectrophotometry, CCK-8 and scanning electron microscopy were used to investigate the activity and mechanism of action of KSE against V. parahaemolyticus biofilm. The results showed that the sub-MIC of KSE could significantly inhibit biofilm formation, reduce the synthesis of polysaccharide intercellular adhesin (PIA) and the secretion of extracellular DNA. In addition, the inhibition rate of biofilm formation and clearance rate of mature biofilm of 1.0 mg/mL KSE were 85.32 and 74.04%, and the reduction rate of metabolic activity of developing and mature biofilm were 77.98 and 74.46%, respectively. These results were confirmed by visual images obtained by scanning electron microscopy. Therefore, KSE has the potential to further isolate the anti-biofilm agent and evaluate it for the preservation process of aquatic products.
Collapse
Affiliation(s)
- Yanan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Siya Guo
- College of Kangda, Nanjing Medical University, Lianyungang, China
| | - Shuge Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Enjun Ye
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Wenfang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Tong Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Ying Wen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
15
|
Alshammari F, Alam MB, Naznin M, Kim S, Lee SH. Optimization, Metabolomic Analysis, Antioxidant Potential andDepigmenting Activity of Polyphenolic Compounds fromUnmature Ajwa Date Seeds ( Phoenix dactylifera L.) Using Ultrasonic-Assisted Extraction. Antioxidants (Basel) 2024; 13:238. [PMID: 38397836 PMCID: PMC10886343 DOI: 10.3390/antiox13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
This study sought to optimize the ultrasonic-assisted extraction of polyphenolic compounds from unmature Ajwa date seeds (UMS), conduct untargeted metabolite identification and assess antioxidant and depigmenting activities. Response surface methodology (RSM) utilizing the Box-Behnken design (BBD) and artificial neural network (ANN) modeling was applied to optimize extraction conditions, including the ethanol concentration, extraction temperature and time. The determined optimal conditions comprised the ethanol concentration (62.00%), extraction time (29.00 min), and extraction temperature (50 °C). Under these conditions, UMS exhibited total phenolic content (TPC) and total flavonoid content (TFC) values of 77.52 ± 1.55 mgGAE/g and 58.85 ± 1.12 mgCE/g, respectively, with low relative standard deviation (RSD%) and relative standard error (RSE%). High-resolution mass spectrometry analysis unveiled the presence of 104 secondary metabolites in UMS, encompassing phenols, flavonoids, sesquiterpenoids, lignans and fatty acids. Furthermore, UMS demonstrated robust antioxidant activities in various cell-free antioxidant assays, implicating engagement in both hydrogen atom transfer and single electron transfer mechanisms. Additionally, UMS effectively mitigated tert-butyl hydroperoxide (t-BHP)-induced cellular reactive oxygen species (ROS) generation in a concentration-dependent manner. Crucially, UMS showcased the ability to activate mitogen-activated protein kinases (MAPKs) and suppress key proteins including tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and -2) and microphthalmia-associated transcription factor (MITF), which associated melanin production in MNT-1 cell. In summary, this study not only optimized the extraction process for polyphenolic compounds from UMS but also elucidated its diverse secondary metabolite profile. The observed antioxidant and depigmenting activities underscore the promising applications of UMS in skincare formulations and pharmaceutical developments.
Collapse
Affiliation(s)
- Fanar Alshammari
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (S.K.)
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (S.K.)
- Mass Spectroscopy Converging Research and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
16
|
Xue H, Gao Y, Wu L, Cai X, Liao J, Tan J. Research progress in extraction, purification, structure of fruit and vegetable polysaccharides and their interaction with anthocyanins/starch. Crit Rev Food Sci Nutr 2023; 65:1235-1260. [PMID: 38108271 DOI: 10.1080/10408398.2023.2291187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Fruits and vegetables contain polysaccharides, polyphenols, antioxidant enzymes, and various vitamins, etc. Fruits and vegetables polysaccharides (FVPs), as an important functional factor in health food, have various biological activities such as lowering blood sugar, blood lipids, blood pressure, inhibiting tumors, and delaying aging, etc. In addition, FVPs exhibit good physicochemical properties including low toxicity, biodegradability, biocompatibility. Increasing research has confirmed that FVPs could enhance the stability and biological activities of anthocyanins, affecting their bioavailability to improve food quality. Simultaneously, the addition of FVPs in natural starch suspension could improve the physicochemical properties of natural starch such as viscosity, gelling property, water binding capacity, and lotion stability. Hence, FVPs are widely used in the modification of natural anthocyanins/starch. A systematic review of the latest research progress and future development prospects of FVPs is very necessary to better understand them. This paper systematically reviews the latest progress in the extraction, purification, structure, and analysis techniques of FVPs. Moreover, the review also introduces the potential mechanisms, evaluation methods, and applications of the interaction between polysaccharides and anthocyanins/starch. The findings can provide important references for the further in-depth development and utilization of FVPs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Liu Wu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, Yichun, Jiangxi, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| |
Collapse
|
17
|
Wong JCJ, Nillian E. Microwave-assisted extraction of bioactive compounds from Sarawak Liberica sp. coffee pulp: Statistical optimization and comparison with conventional methods. Food Sci Nutr 2023; 11:5364-5378. [PMID: 37701201 PMCID: PMC10494612 DOI: 10.1002/fsn3.3494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 09/14/2023] Open
Abstract
Coffea liberica, commonly known as Liberica coffee, is a kind of coffee that originated in Liberia, a West African country. It is considered a less-known coffee bean variety, which accounts for less than 2% of commercially produced coffee worldwide. In this study, the influences of optimization of microwave-assisted extraction (MAE) on the total phenolic content (TPC), total flavonoid content (TFC), and total carbohydrate content (TCC) of bioactive compounds extracted from Sarawak Liberica sp. coffee pulp were studied. Response surface methodology was adopted with a face-centered central composite design to generate 34 responses by taking three microwave parameters into consideration, microwave power (watt), time of irradiation (second), and solvent-to-feed ratio as independent variables. As a result, the findings revealed that optimum extraction conditions were conducted as follows: microwave power of 700 W, time of irradiation of 180 s, and solvent-to-feed ratio of 86.644:1. While under optimal extraction conditions, MAE outperformed conventional maceration extraction in terms of extraction efficiency and had no significant difference (p < .05) with Soxhlet extraction on the extraction of TPC (12.94 ± 2.25 mg GAE/g), TFC (9.84 ± 0.38 mg QE/g), and TCC (876.50 ± 64.15 mg GE/g). Present work advances the usage of Sarawak Liberica sp. coffee for the development of functional products and aids in reducing environmental pollution by utilization of coffee pulp waste.
Collapse
Affiliation(s)
- Joel Ching Jue Wong
- Faculty of Resource Science and TechnologyUniversity Malaysia SarawakKota SamarahanSarawakMalaysia
| | - Elexson Nillian
- Faculty of Resource Science and TechnologyUniversity Malaysia SarawakKota SamarahanSarawakMalaysia
| |
Collapse
|
18
|
Álvarez-Romero M, Ruíz-Rodríguez A, Barbero GF, Vázquez-Espinosa M, El-Mansouri F, Brigui J, Palma M. Comparison between Ultrasound- and Microwave-Assisted Extraction Methods to Determine Phenolic Compounds in Barley ( Hordeum vulgare L.). Foods 2023; 12:2638. [PMID: 37509730 PMCID: PMC10378303 DOI: 10.3390/foods12142638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Barley (Hordeum vulgare L.) is one of the major cereal crops worldwide. It is grown not only to be used as fodder but also for human consumption. Barley grains are a great source of phenolic compounds, which are particularly interesting for their health-promoting antioxidant properties, among other benefits. Two extraction methods, namely ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE), have been optimized and compared by using Box-Behnken design (BBD) to determine both the antioxidant power and the phenolic compound levels of the extracts. Three variables have been assessed based on these designs: solvent composition (% MeOH in water), temperature (°C), and sample-to-solvent ratio (mg sample mL-1 solvent). The solvent composition used and the interaction between the solvent and the temperature were the most significant variables in terms of recovery of phenolic compounds and antioxidant capacity of the extracts. Short extraction times, a high precision level, and good recoveries have been confirmed for both methods. Moreover, they were successfully applied to several samples. Significant differences regarding the level of phenolic compounds and antioxidant power were revealed when analyzing three different barley varieties. Specifically, the amounts of phenolic compounds ranged from 1.08 to 1.81 mg gallic acid equivalent g-1 barley, while their antioxidant capacity ranged from 1.35 to 2.06 mg Trolox equivalent g-1 barley, depending on the barley variety. Finally, MAE was found to be slightly more efficient than UAE, presenting higher levels of phenolic compounds in the extracts.
Collapse
Affiliation(s)
- María Álvarez-Romero
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Ana Ruíz-Rodríguez
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Fouad El-Mansouri
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, Tangier BP 416, Morocco
| | - Jamal Brigui
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, Tangier BP 416, Morocco
| | - Miguel Palma
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
19
|
El Maaiden E, El Kahia H, Nasser B, Moustaid K, Qarah N, Boukcim H, Hirich A, Kouisni L, El Kharrassi Y. Deep eutectic solvent-ultrasound assisted extraction as a green approach for enhanced extraction of naringenin from Searsia tripartita and retained their bioactivities. Front Nutr 2023; 10:1193509. [PMID: 37404862 PMCID: PMC10315493 DOI: 10.3389/fnut.2023.1193509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Background Naringenin (NA) is a natural flavonoid used in the formulation of a wide range of pharmaceutical, fragrance, and cosmetic products. In this research, NA was extracted from Searsia tripartita using an environmentally friendly, high efficiency extraction method: an ultrasound-assisted extraction with deep eutectic solvents (UAE-DES). Methods Six natural deep eutectic solvent systems were tested. Choline chloride was used as the hydrogen bond acceptor (HBA), and formic acid, ethylene glycol, lactic acid, urea, glycerol, and citric acid were used as hydrogen bond donors (HBD). Results Based on the results of single-factor experiments, response surface methodology using a Box-Behnken design was applied to determine the optimal conditions for UAE-DES. According to the results, the optimal NA extraction parameters were as follows: DES-1 consisted of choline chloride (HBA) and formic acid (HBD) in a mole ratio of 2:1, an extraction time of 10 min, an extraction temperature of 50°C, an ultrasonic amplitude of 75 W, and a solid-liquid ratio of 1/60 g/mL. Extracted NA was shown to inhibit the activity of different enzymes in vitro, including α-amylase, acetylcholinesterase, butyrylcholinesterase, tyrosinase, elastase, collagenase, and hyaluronidase. Conclusion Thus, the UAE-DES technique produced high-efficiency NA extraction while retaining bioactivity, implying broad application potential, and making it worthy of consideration as a high-throughput green extraction method.
Collapse
Affiliation(s)
- Ezzouhra El Maaiden
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Houda El Kahia
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Hassan I University of Settat, Settat, Morocco
| | - Khadija Moustaid
- Laboratory of Applied Chemistry and Environment, Hassan I University of Settat, Settat, Morocco
| | - Nagib Qarah
- Department of Chemistry, Faculty of Education-Zabid, Hodeidah University, Hodeidah, Yemen
| | - Hassan Boukcim
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Abdelaziz Hirich
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Youssef El Kharrassi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| |
Collapse
|
20
|
El Baakili A, Fadil M, Es-Safi NE. Ultrasonic-assisted extraction for phenolic compounds and antioxidant activity of Moroccan Retama sphaerocarpa L. leaves: Simultaneous optimization by response surface methodology and characterization by HPLC/ESI-MS analysis. Heliyon 2023; 9:e17168. [PMID: 37342583 PMCID: PMC10277595 DOI: 10.1016/j.heliyon.2023.e17168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
This study was designed to optimize the ultrasound-assisted extraction of phenolic compounds and the antioxidant activity of Moroccan Retama sphaerocarpa extracts using response surface methodology (RSM). A central composite design has been conducted to investigate the effects of three factors: extraction period (X1), solvent concentration (X2), and solvent-to-material ratio (X3) on extraction yield, total phenolic content (TPC), flavonoids content (TFC), and antioxidant activity. The obtained results showed that the experimental values agreed with the predicted ones, confirming the capacity of the used model for optimizing the extraction conditions. The best extraction conditions for the simultaneous optimization were an extraction time of 38 min, a solvent concentration of 58%, and a solvent-to-material ratio of 30 mL/g. Under these conditions, the optimized values of yield, TPC, TFC, and DPPH-radical scavenging activity (DPPHIC50) were 18.91%, 154.09 mg GAE/g, 23.76 mg QE/g, and 122.47 μg/mL, respectively. The further HPLC/ESI-MS analysis of the obtained optimized extract revealed the presence of 14 phenolic compounds with piscidic acid, vitexin, and quinic acid as major compounds. These research findings indicate promising applications for efficiently extracting polyphenolic antioxidants, especially in the food industry.
Collapse
Affiliation(s)
- Aafaf El Baakili
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Mouhcine Fadil
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Road of Imouzzer, Fez, Morocco
| | - Nour Eddine Es-Safi
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| |
Collapse
|
21
|
Li F, Muhmood A, Tavakoli S, Park S, Kong L, Zhu H, Wei Y, Wei Y. Subcritical low temperature extraction of bioactive ingredients from foods and food by-products and its applications in the agro-food industry. Crit Rev Food Sci Nutr 2023; 64:8218-8230. [PMID: 37039080 DOI: 10.1080/10408398.2023.2198009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Bioactive ingredients are part of the food chain and are responsible for numerous health benefits. Subcritical low temperature extraction has been employed to acquire bioactive ingredients because of its excellent properties, such as energy conservation, low temperature, elimination of residual solvent, and high extraction yield and quality. This review aims to provide a clear picture of the basics of subcritical-temperature extraction, its bioactive ingredient extraction efficiency, and possible applications in the agro-food industry. This review suggested that the extraction temperature, time, co-solvents, solid-fluid ratio, and pressure impacted the extraction efficiency of bioactive ingredients from foods and food by-products. Subcritical solvents are appropriate for extracting low polar ingredients, while the inclusion of co-solvents could extract medium and high polar substances. Bioactive ingredients from foods and food by-products can be used as antioxidants, colorants, and nutritional supplements. Additionally, this technology could remove pesticide residues in tea, concentrate edible proteins, and reduce cigarette tar. A new trend toward using subcritical low temperature extraction in extracting bioactive ingredients will acquire momentum.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao, China
| | - Atif Muhmood
- Institure of Soil Chemistry & Environmental Sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Samad Tavakoli
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Solju Park
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lingyao Kong
- College of Life Science, Qingdao University, Qingdao, China
| | - Hongguang Zhu
- College of Life Science, Qingdao University, Qingdao, China
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
22
|
Hu DB, Xue R, Zhuang XC, Zhang XS, Shi SL. Ultrasound-assisted extraction optimization of polyphenols from Boletus bicolor and evaluation of its antioxidant activity. Front Nutr 2023; 10:1135712. [PMID: 37063317 PMCID: PMC10090463 DOI: 10.3389/fnut.2023.1135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionBoletus bicolor (B. bicolor) mushrooms are widely consumed as a valuable medicinal and dietary ingredient in China, but the active ingredients of this mushroom and their extraction methods were not extensively studied.MethodsIn this paper, we propose an optimized ultrasound-assisted extraction (UAE) method to detect natural antioxidant substances in B. bicolor. The antioxidants were quantitatively and quantitatively determined using UPLC-MS, the polyphenols were evaluated based on response surface methodology (RSM), and density functional theory (DFT) calculations were performed.ResultsThe results showed that the optimal extraction was obtained under the following conditions: ethanol concentration 42%; solvent to solid ratio 34:1 mL/g; ultrasonic time 41 min; and temperature 40°C. The optimized experimental polyphenol value obtained under these conditions was (13.69 ± 0.13) mg/g, consistent with the predicted value of 13.72 mg/g. Eight phenolic compounds in the extract were identiffed by UPLC-MS: syringic acid, chlorogenic acid, gallic acid, rosmarinic acid, protocatechuic acid, catechin, caffeic acid, and quercetin. Chlorogenic acid exhibits the highest HOMO energy (−0.02744 eV) and the lowest energy difference (−0.23450 eV) among the studied compounds, suggesting that the compound might be the strongest antioxidant molecule. Eight phenolic compounds from the B. bicolor signiffcantly inhibited intracellular reactive oxygen species (ROS) generation, reduced oxidative stress damage in H2O2-induced HepG-2 cells.DiscussionTherefore, it was confirmed that the UAE technique is an efficient, rapid, and simple approach for extracting polyphenols with antioxidant activity from B. bicolor.
Collapse
|
23
|
Lei Y, Yao Q, Jin Z, Wang YC. Intelligent films based on pectin, sodium alginate, cellulose nanocrystals, and anthocyanins for monitoring food freshness. Food Chem 2023; 404:134528. [DOI: 10.1016/j.foodchem.2022.134528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
|
24
|
Advances on Hormones in Cosmetics: Illegal Addition Status, Sample Preparation, and Detection Technology. Molecules 2023; 28:molecules28041980. [PMID: 36838967 PMCID: PMC9959700 DOI: 10.3390/molecules28041980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Owing to the rapid development of the cosmetic industry, cosmetic safety has become the focus of consumers' attention. However, in order to achieve the desired effects in the short term, the illegal addition of hormones in cosmetics has emerged frequently, which could induce skin problems and even skin cancer after long-term use. Therefore, it is of great significance to master the illegal addition in cosmetics and effectively detect the hormones that may exist in cosmetics. In this review, we analyze the illegally added hormone types, detection values, and cosmetic types, as well as discuss the hormone risks in cosmetics for human beings, according to the data in unqualified cosmetics in China from 2017 to 2022. Results showed that although the frequency of adding hormones in cosmetics has declined, hormones are still the main prohibited substances in illegal cosmetics, especially facial masks. Because of the complex composition and the low concentration of hormones in cosmetics, it is necessary to combine efficient sample preparation technology with instrumental analysis. In order to give the readers a comprehensive overview of hormone analytical technologies in cosmetics, we summarize the advanced sample preparation techniques and commonly used detection techniques of hormones in cosmetics in the last decade (2012-2022). We found that ultrasound-assisted extraction, solid phase extraction, and microextraction coupled with chromatographic analysis are still the most widely used analytical technologies for hormones in cosmetics. Through the investigation of market status, the summary of sample pretreatment and detection technologies, as well as the discussion of their development trends in the future, our purpose is to provide a reference for the supervision of illegal hormone residues in cosmetics.
Collapse
|
25
|
Thilakarathna RCN, Siow LF, Tang TK, Chan ES, Lee YY. Physicochemical and antioxidative properties of ultrasound-assisted extraction of mahua (Madhuca longifolia) seed oil in comparison with conventional Soxhlet and mechanical extractions. ULTRASONICS SONOCHEMISTRY 2023; 92:106280. [PMID: 36587443 PMCID: PMC9816963 DOI: 10.1016/j.ultsonch.2022.106280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Ultrasound-assisted solvent extraction (UAE) was applied to extract underutilized Madhuca longifolia seed oil. The effect of extraction time, temperature, solvent type, solvent/sample ratio, and amplitude on the oil yield and recovery were investigated. Approximately 56.97% of oil yield and 99.54% of oil recovery were attained using mild conditions of 35 min, 35 °C, 40% amplitude, isopropanol to acetone (1:1), and solvent to sample (20 mL/g). UAE oil yield and recovery were comparable with Soxhlet extraction (SXE) whilst mechanical pressing (ME) yielded < 50% of UAE recovery. UAE does not affect the fatty acids composition (46% C18:1; 22% C16:0; 21% C18:0, 10% C18:2), and triacylglycerol profile (23% POO, 17% POS, 16% SOO, and 14% POP). Interestingly, UAE extracted oil conferred remarkably (P < 0.05) higher antioxidant capacity (IC50 of DPPH 106.60 mg/mL and ABTS 39.80 mg/mL) than SXE (IC50 of DPPH 810.40 mg/mL and ABTS 757.43 mg/mL) or ME (IC50 of DPPH 622.38 mg/mL and ABTS 392.87 mg/mL).
Collapse
Affiliation(s)
- R C N Thilakarathna
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Teck-Kim Tang
- Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
26
|
Variability of insecticidal activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. extracts according to solvents and extraction systems. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Response surface methodology optimization and HPLC-ESI-QTOF-MS/MS analysis on ultrasonic-assisted extraction of phenolic compounds from okra (Abelmoschus esculentus) and their antioxidant activity. Food Chem 2022; 405:134966. [PMID: 36436230 DOI: 10.1016/j.foodchem.2022.134966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Okra (Abelmoschus esculentus) has attracted a growing attention for its nutritional and medicinal values, while few studies focused on systemic study of okra polyphenols (OP). In order to obtain the maximum extracted efficiency, response surface methodology was used to optimize ultrasonic-assisted extraction conditions. The maximum TPC was 7.02 mg GAE/g dw under the condition of solid-liquid ratio 1:25, ethanol concentration 70 %, 40 min, and 142 W at 46 °C. Then 27 compounds in OP were identified by HPLC-ESI-QTOF-MS/MS, among which 7-hydroxycoumarin, scopoletin, luteolin and et al were firstly identified from okra. Furthermore, OP exhibited antioxidant activity in reducing power (FRAP, 9.77 mM Fe2+/g OP) and radical scavenging (DPPH, IC50 19.31 µg/mL; SARC, IC50 210.81 µg/ml). Moreover, OP significantly inhibited cell apoptosis and ROS generation, and alleviated oxidative damage in t-BHP induced HUVECs. Overall, our findings could provide perspective for further potential employments of okra as functional food.
Collapse
|
28
|
Zhang L, Ren Y, Meng F, Bao H, Xing F, Tian C. Verification of the Protective Effects of Poplar Phenolic Compounds Against Poplar Anthracnose. PHYTOPATHOLOGY 2022; 112:2198-2206. [PMID: 35578737 DOI: 10.1094/phyto-12-21-0509-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poplar anthracnose caused by Colletotrichum gloeosporioides is one of the most important diseases widely distributed in poplar-growing areas in China, causing serious economic and ecological losses. In this study, three poplar species showed different resistance to poplar anthracnose: Populus × canadensis was resistant, Populus tomentosa was susceptible, and P. × beijingensis showed intermediate resistance. However, it remains uncertain whether phenolic compounds in poplar are involved in this resistance. Therefore, we determined the concentrations of phenolic compounds and their antifungal activity. Before and after the C. gloeosporioides inoculation, 20 phenolic compounds were detected in P. × canadensis and the number increased from 12 to 14 in P. × beijingensis but decreased from seven to four in P. tomentosa. Thus, phenolic compounds may be positively correlated with the degree of disease resistance. We selected seven phenolic compounds for further analysis, which varied considerably in content after inoculation with C. gloeosporioides. These seven compounds were salicin, arbutin, benzoic acid, salicylic acid, chlorogenic acid, ferulic acid, and naringenin, which helped poplar trees to limit the growth of C. gloeosporioides and differed in their antifungal effects, with phenolic acids having the strongest inhibitory effect. In addition, the optimal concentrations of different substances varied. We demonstrate that these phenolic compounds produced by poplar do play a certain role in the process of poplar resistance to anthracnose. These findings lay a foundation for future research into the antifungal mechanism of poplar trees and may be useful for enhancing the prevention and control of poplar anthracnose.
Collapse
Affiliation(s)
- Linxuan Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yue Ren
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Fanli Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Hangbin Bao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Fei Xing
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
29
|
Li Z, Li Q. Ultrasonic-Assisted Efficient Extraction of Coumarins from Peucedanum decursivum (Miq.) Maxim Using Deep Eutectic Solvents Combined with an Enzyme Pretreatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175715. [PMID: 36080482 PMCID: PMC9458171 DOI: 10.3390/molecules27175715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
In this study, the ultrasonic-assisted extraction of total coumarins from Peucedanum decursivum (Miq.) Maxim (P. decursivum) via the combination of deep eutectic solvents (DESs) with cellulase pretreatment was carried out. Among the 15 kinds of DESs with choline chloride as hydrogen bond acceptors, the DES system of choline chloride/1,4-butanediol with a molar ratio of 1:4 showed the best extraction effect. First, single-factor experiments were performed using the following factors: liquid–solid ratio, pH, enzyme dosage and ultrasonic temperature. The Box–Behnken design (BBD) and response surface methodology (RSM) were employed to optimize the extraction conditions and obtain the following optimal parameter values for the extraction of coumarins from P. decursivum: liquid–solid ratio 14:1 mL/g, pH 5.0, enzyme dosage 0.2%, ultrasonic temperature 60 °C and ultrasonic time 50 min. Under these conditions, the extraction yield of total coumarins from P. decursivum could reach 2.65%, which was close to the predicted extraction yield of 2.68%. Furthermore, the contents of six coumarins, namely, umbelliferone, nodakenin, xanthotoxin, bergapten, imperatorin and decursin were determined to be 0.707 mg·g−1, 0.085 mg·g−1, 1.651 mg·g−1, 2.806 mg·g−1, 0.570 mg·g−1 and 0.449 mg·g−1, respectively, using HPLC-MS after the optimization. In addition, the cell fragmentation of P. decursivum powder obtained using ultrasonic-assisted DES extraction with enzyme pretreatment was found to be the most comprehensive using scanning electron microscopy (SEM), which indicated the highest extraction efficiency for P. decursivum. Finally, the in vitro antioxidant activity of the extracts was evaluated via radical scavenging with 1,1-diphenyl-2-picrylhydrazyl (DPPH), which showed that ultrasonic-assisted DES extraction with enzyme pretreatment exhibited significant antioxidant activity with DPPH radical scavenging of up to 97.90%. This work developed a new and efficient extraction method for coumarins.
Collapse
|
30
|
Huang P, Jin W, Xu S, Jin L, Chen J, Zhang T, Mao K, Wan H, He Y. Optimization of smashing tissue and ultrasonic extraction of tanshinones and their neuroprotective effect on cerebral ischemia/reperfusion injury by inhibiting parthanatos. Food Funct 2022; 13:9658-9673. [PMID: 36040108 DOI: 10.1039/d2fo01902g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green smashing tissue and ultrasonic (STU) extraction method, which combines smashing tissue and ultrasonic-assisted extraction, was developed for the first time. The extraction of tanshinones from Salvia miltiorrhiza Bunge (SM) was taken as an example to discuss the practicability of this method. Taking the total yield of eight tanshinones as an evaluation index, response surface methodology (RSM) and artificial neural network (ANN) models were used to optimize the extraction parameters, and these two models were also compared by investigating the extract yield of tanshinones and the antioxidant activity of the obtained SM extract. The optimal STU conditions by ANN were as follows: an ethanol concentration of 73%, a liquid/solid ratio of 30 mL g-1, a smashing tissue time of 97 s and an ultrasonic time of 40 min. Under these optimal conditions, the yield of the eight components was 0.30% ± 0.12, which was greater than 0.28% ± 0.03 optimized by RSM. The IC50 values of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) of the obtained extract were 55.25 ± 3.72 μg mL-1 and 67.33 ± 2.62 μg mL-1, respectively, which were better than those of 75.49 ± 4.33 μg mL-1 and 112.10 ± 5.98 μg mL-1, respectively, optimized by RSM. Furthermore, the SM extract was found to exert neuroprotective effects by inhibiting parthanatos in middle cerebral artery occlusion/reperfusion (MCAO/R)-induced rats. The results supported the use of the SM extract, which was obtained by STU, as a potential product in the cosmetics, medicine, and food industries.
Collapse
Affiliation(s)
- Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Shouchao Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Lei Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jianzhen Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Kunjun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
31
|
Das I, Arora A. One stage hydrothermal treatment: A green strategy for simultaneous extraction of food hydrocolloid and co-products from sweet lime (Citrus Limetta) peels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Influence of Ultrasound Application in Fermented Pineapple Peel on Total Phenolic Content and Antioxidant Activity. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antioxidant phenolic compounds were extracted from fermented samples of Golden pineapple peels via an ultrasound method. The fermentation conditions to maximize the production of phenolic content and antioxidant activity were previously determined (pH: 5.5, T: 37.3 °C and 85% moisture content). A central composite design with 20 treatments was applied to evaluate the effect of the ethanol concentration, time, and temperature on the production of phenolic compounds and antioxidant activity of the extracts. The statistical analysis showed that the optimal conditions to produce extracts with high phenolic content and antioxidant activity were: 62 °C, 30 min and 58% ethanol. We obtained 866.26 mg gallic acid equivalents (GAE)/g d.m in total phenolic content and for antioxidant activity expressed as percentage inhibition, 80.06 ± 1.02% for ABTS and 63.53 ± 2.02% for DPPH, respectively. The bioactive compound profile in the extracts was identified and quantified using ultra-high performance liquid chromatography (UHPLC), this method showed the presence of rosmarinic acid, caffeic acid, vanillic acid, p-coumaric acid, ferulic acid, quercetin-3 glucoside, rutine, quercetin, kaempherol-3 glucoside and gallic acid, demonstrating the great potential of these by-products to obtain components that can benefit the consumer’s health.
Collapse
|
33
|
Arya A, Kaushik D, Almeer R, Bungau SG, Sayed AA, Abdel-Daim MM, Bhatia S, Mittal V. Application of Green Technologies in Design-Based Extraction of Celastrus paniculatus ( Jyotishmati) Seeds, SEM, GC-MS Analysis, and Evaluation for Memory Enhancing Potential. Front Nutr 2022; 9:871183. [PMID: 35662919 PMCID: PMC9158750 DOI: 10.3389/fnut.2022.871183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Celastrus paniculatus (CP), commonly known as Jyotishmati, is considered as "elixir of life" by Indian people for the prevention or management of many ailments. The seed powder and its extract have widely used commercially for the preparation of various Ayurvedic formulations for the improvement of memory. CP seeds were generally extracted by conventional extraction methods (CEMs) which are assumed to impact environment burden and also produce low extract yield. Green extraction with possible improvement in extract yield has always been the need of hour for selected medicinal plant. OBJECTIVE In the present research, we aimed to optimize the different extraction factors in microwave and ultrasound-based extraction. The various extracts obtained in conventional and green methods are also evaluated for the possible improvement in memory enhancing potential. MATERIALS AND METHODS The selected medicinal herb was extracted by CEM (maceration and percolation). In green methods such microwave-assisted extraction (MAE) and ultrasound assisted-extraction (UAE), various parameters were optimized using Box-Behnken design coupled with response surface methodology. The scanning electron microscopy (SEM) and gas chromatography-mass spectroscopy (GC-MS) analyses were also done to confirm the possible improvement in concentration of plant actives. The Swiss albino mice were used to evaluate memory enhancing potential of different extracts. RESULTS At the optimized conditions MAE and UAE the extraction yield, total phenolic content (TPC) and Total flavonoid content (TFC) are significantly improved. The GC-MS analysis further confirms the improvement in concentration of certain fatty acid esters, pilocarpine, and steroidal compounds in optimized extracts. The optimized extracts also exhibited the significant improvement in behavioral parameters, oxidative stress-induced parameters, and acetylcholinesterase inhibitory potential. DISCUSSION AND CONCLUSION From the results, we can say that the application of green technologies in design-based extraction of selected herb not only significantly reduces the extraction time but also improves the extract yield and concentration of plant actives. In nutshell, it can be concluded that the green approaches for extraction of seeds of Celastrus paniculatus could be scale up at a commercial level to meet the rising demand for herbal extract.
Collapse
Affiliation(s)
- Ashwani Arya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Simona G. Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
34
|
Evaluation of the ethanolic ultrasound-assisted extraction from clove (Syzygium aromaticum) leaves and chemical characterization of the extracts. Food Chem 2022; 373:131351. [PMID: 34710680 DOI: 10.1016/j.foodchem.2021.131351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023]
Abstract
In this study, clove leaves (Syzygium aromaticum) were subjected to ultrasound-assisted extraction (UAE) with ethanol as the solvent, following a central composite design to evaluate the effects of time, amplitude, solvent/sample ratio, and temperature on the yield, eugenol content, and antioxidant capacity of the extracts. The results were compared with those obtained using the conventional method of maceration (ME). The optimum conditions for extract yield were achieved with an extraction time of 25 min,amplitude of 85%, solvent/sample ratio of 35 mL g-1, and temperature of 70 °C, and the result (14.63 wt%) was three times higher than that of conventional extraction. Eugenol was detected in the extracts obtained by both methods, with the highest yield of 2.94 g eugenol kg leaves-1obtained in the UAE method, while the ME method achieved 1.36 g eugenol kg leaves-1.In general, the extracts exhibited high antioxidant capacities.
Collapse
|
35
|
Ultrasound-Assisted and Microwave-Assisted Extraction, GC-MS Characterization and Antimicrobial Potential of Freeze-dried L. Camara Flower. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lantana camara is known to have anti-bacterial properties which can be exploited to develop a natural food preservative. There is huge demand for natural preservatives in food industry due to the increased health risks associated with synthetic preservatives, development of effecient extraction methods are essential to retain heat sensitive bioactive compounds. This aim of this study was to compare the performance of microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and conventional solvent extraction (CSE) methods for extraction of freeze-dried lantana flower. The phytochemicals in freeze-dried flowers were characterized by GC-MS analysis and antibacterial properties were tested at different concentrations (50, 100, and 150 µl) against E.coli, Salmonella, and S. aureus. It was evident that the UAE offered the highest yield (64%), followed by MAE (53%) and CSE (49%) with distilled water as solvent. The freeze-dried extract possessed a high amount of tannins (417 µg/g), followed by flavonoids such as catechol (88 µg/g) and quercetin (9.2 µg/g). The antibacterial potential results revealed that only distilled water-based extraction techniques offered positive inhibition zones of 2.0-2.67 mm (MAE), 1.67-2.67 mm (UAE), and 1.67-2.17 mm (CSE) against all three organisms, while the chloroform based extracts had no inhibition effect. The microwave-assisted extract at 150 µl concentration offered a significant inhibitory effect against all three pathogens. The GC-MS profiling of bioactive compounds in flower extract revealed the presence of hexadecanoic acid as the major phytochemical compound in all three extraction techniques. The study revealed that the chloroform extract failed to exhibit an antibacterial effect due to the absence of alkaloids, saponins, and anthraquinones as a result of its neutralizing effect.
Collapse
|
36
|
Feng T, Zhang M, Sun Q, Mujumdar AS, Yu D. Extraction of functional extracts from berries and their high quality processing: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7108-7125. [PMID: 35187995 DOI: 10.1080/10408398.2022.2040418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Berry fruits have attracted increasing more attention of the food processing industry as well as consumers due to their widely acclaimed advantages as highly effective anti-oxidant properties which may provide protection against some cancers as well as aging. However, the conventional extraction methods are inefficient and wasteful of solvent utilization. This paper presents a critical overview of some novel extraction methods applicable to berries, including pressurized-liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, enzyme-assisted extraction as well as some combined extraction methods. When combined with conventional methods, the new technologies can be more efficient and environmentally friendly. Additionally, high quality processing of the functional extracts from berry fruits, such as refined processing technology, is introduced in this review. Finally, progress of applications of berry functional extracts in the food industry is described in detail; this should encourage further scientific research and industrial utilization.
Collapse
Affiliation(s)
- Tianlin Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd, Qingdao, Shandong, China
| |
Collapse
|
37
|
Otero P, Carpena M, Fraga-Corral M, Garcia-Oliveira P, Soria-Lopez A, Barba F, Xiao JB, Simal-Gandara J, Prieto M. Aquaculture and agriculture-by products as sustainable sources of omega-3 fatty acids in the food industry. EFOOD 2022. [DOI: 10.53365/efood.k/144603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The valorization of by-products is currently a matter of great concern to improve the sustainability of the food industry. High quality by-products derived from the food chain are omega-3 fatty acids, being fish the main source of docosahexaenoic acid and eicosapentaenoic acid. The search for economic and sustainable sources following the standards of circular economy had led to search for strategies that put in value new resources to obtain different omega-3 fatty acids, which could be further employed in the development of new industrial products without producing more wastes and economic losses. In this sense, seeds and vegetables, fruits and crustaceans by products can be an alternative. This review encompasses all these aspects on omega-3 fatty acids profile from marine and agri-food by-products together with their extraction and purification technologies are reported. These comprise conventional techniques like extraction with solvents, cold press, and wet pressing and, more recently proposed ones like, supercritical fluids fractionation and purification by chromatographic methods. The information collected indicates a trend to combine different conventional and emerging technologies to improve product yields and purity. This paper also addresses encapsulation strategies for their integration in novel foods to achieve maximum consumer acceptance and to ensure their effectiveness.
Collapse
|
38
|
Conidi C, Cassano A, Drioli E. Membrane diafiltration for enhanced purification of biologically active compounds from goji berries extracts. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Simultaneous vacuum-ultrasonic assisted extraction of bioactive compounds from lotus leaf. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Investigation on total phenolic content, antioxidant activity, and emulsifying capacity of sodium alginate from Nizimuddinia zanardini during microwave-assisted extraction; optimization and statistical modeling. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
42
|
Zhou DD, Saimaiti A, Luo M, Huang SY, Xiong RG, Shang A, Gan RY, Li HB. Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants (Basel) 2022; 11:155. [PMID: 35052659 PMCID: PMC8772747 DOI: 10.3390/antiox11010155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Kombucha is a popular beverage with various bioactivities (such as antioxidant activity), which can be attributed to its abundant bioactive compounds, especially polyphenols. Kombucha is conventionally prepared by fermentation of a sugared black tea infusion without tea residue. In this study, the effects of black tea residue and green tea residue on kombucha were studied, and its antioxidant activities, total phenolic contents, as well as concentrations of polyphenols at different fermentation stages were evaluated using ferric-reducing antioxidant power, Trolox equivalent antioxidant capacity, Folin-Ciocalteu method and high-performance liquid chromatography with a photodiode array detector. The results showed that fermentation with tea residue could markedly increase antioxidant activities (maximum 3.25 times) as well as polyphenolic concentrations (5.68 times) of kombucha. In addition, green tea residue showed a stronger effect than black tea residue. Overall, it is interesting to find that fermentation with tea residues could be a better strategy to produce polyphenol-rich kombucha beverages.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| |
Collapse
|
43
|
Kininge MM, Gogate PR. Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach. ULTRASONICS SONOCHEMISTRY 2022; 82:105870. [PMID: 34920353 PMCID: PMC8683778 DOI: 10.1016/j.ultsonch.2021.105870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 05/24/2023]
Abstract
Ultrasound-assisted approach has been investigated for delignification so as to develop green and sustainable technology. Combination of NaOH with ultrasound has been applied with detailed study into effect of various parameters such as time (operating range of 15-90 min), alkali concentration (0.25 M-2.5 M), solvent loading (1:15-1:30 w/v), temperature (50-90 ˚C), power (40-140 W) and duty cycle (40-70 %) at fixed frequency of 20 kHz. The optimized operating conditions established for the ultrasonic horn were 1 M as the NaOH concentration, 1 h as treatment time, 70˚C as the operating temperature, 1:20 as the biomass loading ratio, 100 W as the ultrasonic power and 70% duty cycle yielding 67.30% as the delignification extent. Comparative study performed using conventional and ultrasonic bath assisted alkaline treatment revealed lower delignification as 48.09% and 61.55% respectively. The biomass samples were characterized by SEM, XRD, FTIR and BET techniques to establish the role of ultrasound during the treatment. The morphological changes based on the ultrasound treatment demonstrated by SEM were favorable for enhanced delignification and also the crystallinity index was more in the case of ultrasound treated material than that obtained by conventional method. Specific surface area and pore size determinations based on BET analysis also confirmed beneficial role of ultrasound. The overall results clearly demonstrated the intensification obtained due to the use of ultrasonic reactors.
Collapse
Affiliation(s)
- Madhuri M Kininge
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
44
|
DES Based Efficient Extraction Method for Bioactive Coumarins from Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. SEPARATIONS 2021. [DOI: 10.3390/separations9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, a simple and environmentally friendly method was developed for the extraction of seven active coumarins from Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav.(A. dahurica) based on deep eutectic solvents (DESs). Among the 16 kinds of DES based on choline chloride, the DES system with the molar ratio of choline chloride, citric acid, and water as 1:1:2 had the best extraction effect. Ultrasonic-assisted response surface methodology (RSM) was used to investigate the optimal extraction scheme. The results showed that the optimal extraction conditions were a liquid–solid ratio of 10:1 (mL/g), an extraction time of 50 min, an extraction temperature of 59.85 °C, and a moisture content of 49.28%. Under these conditions, the extraction yield reached 1.18%. In addition, scanning electron microscopy (SEM) was used to observe the degree of powder fragmentation before and after extraction with different solvents. The cells of A. dahurica medicinal materials obtained by DES ultrasonic-assisted treatment were the most seriously broken, indicating that DES had the highest efficiency in the treatment of A. dahurica. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) DPPH radical scavenging model was used to evaluate the biological activity of DES extract. The results showed that DES extract had better scavenging ability of DPPH free radical. Therefore, DES is a green solvent suitable for extracting coumarin compounds of A. dahurica, with great potential to replace organic solvents.
Collapse
|
45
|
Optimization of Microwave-Assisted Extraction of Polyphenols from Lemon Myrtle: Comparison of Modern and Conventional Extraction Techniques Based on Bioactivity and Total Polyphenols in Dry Extracts. Processes (Basel) 2021. [DOI: 10.3390/pr9122212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aromatic herb lemon myrtle is a good source of polyphenols, with high antioxidant and antimicrobial capacity. In this study, the green extraction technique microwave-assisted extraction (MAE) was applied and the extraction parameters were optimized using response surface methodology (RSM) to maximize the extraction yield of phenolic compound and antioxidant properties. Then, it was compared with other popular novel and conventional extraction techniques including ultrasound-assisted extraction (UAE) and shaking water bath (SWB) to identify the most effective technique for extraction of phenolic compounds from lemon myrtle. The results showed that the MAE parameters including radiation time, power, and sample to solvent ratio had a significant influence on the extraction yield of phenolic compounds and antioxidant capacity. The optimal MAE conditions were radiation time of 6 min, microwave power of 630 W, and sample to solvent ratio of 6 g/100 mL. Under optimal conditions, MAE dry extract had similar levels of total phenolic compounds (406.67 ± 8.57 mg GAE/g DW), flavonoids (384.57 ± 2.74 mg CE/g DW), proanthocyanidins (336.54 ± 7.09 mg CE/g DW), antioxidant properties, and antibacterial properties against (Staphylococcus lugdunensis and Bacillus cereus) with the other two methods. However, MAE is eight-times quicker and requires six-times less solvent volume as compared to UAE and SWB. Therefore, MAE is recommended for the extraction of polyphenols from lemon myrtle leaf.
Collapse
|
46
|
Yamaguchi KKL, Dias DS, Lamarão CV, Castelo KFA, Lima MS, Antonio AS, Converti A, Lima ES, Veiga-Junior VF. Amazonian Bacuri ( Platonia insignis Mart.) Fruit Waste Valorisation Using Response Surface Methodology. Biomolecules 2021; 11:1767. [PMID: 34944411 PMCID: PMC8698816 DOI: 10.3390/biom11121767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Bacuri (Platonia insignis Mart) is a species from the Clusiaceae genus. Its fruit pulp is commonly used in South America in several food products, such as beverages, ice cream and candies. Only the pulp of the fruit is used, and the peels and seeds are considered waste from these industries. As a trioxygenated xanthone source, this species is of high interest for bioproduct development. This work evaluated the mesocarp and epicarp of bacuri fruits through different extraction methods and experimental conditions (pH, temperature and solvent) in order to determine the most effective method for converting this agro-industrial waste in a value-added bioproduct. Open-column procedures and HPLC and NMR experiments were performed to evaluate the chemical composition of the extracts, along with total phenols, total flavonoids and antioxidant activities (sequestration of the DPPH and ABTS radicals). A factorial design and response surface methodology were used. The best extraction conditions of substances with antioxidant properties were maceration at 50 °C with 100% ethanol as solvent for mesocarp extracts, and acidic sonication in 100% ethanol for epicarp extracts, with an excellent phenolic profile and antioxidant capacities. The main compounds isolated were the prenylated benzophenones garcinielliptone FC (epicarp) and 30-epi-cambogin (mesocarp). This is the first study analysing the performance of extraction methods within bacuri agro-industrial waste. Results demonstrated that shells and seeds of bacuri can be used as phenolic-rich bioproducts obtained by a simple extraction method, increasing the value chain of this fruit.
Collapse
Affiliation(s)
- Klenicy K. L. Yamaguchi
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari 69460-000, Brazil
| | - David S. Dias
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos 13566-590, Brazil;
| | - Carlos Victor Lamarão
- Agricultural Products Technology Laboratory, Faculty of Agricultural Science, Federal University of Amazonas, Manaus 69080-900, Brazil;
| | - Karen F. A. Castelo
- Chemistry Department, Institute of Exact Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil; (K.F.A.C.); (M.S.L.)
| | - Max S. Lima
- Chemistry Department, Institute of Exact Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil; (K.F.A.C.); (M.S.L.)
| | - Ananda S. Antonio
- Center for Forensic Analysis, Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro (NAF–LADETEC/IQ–UFRJ), Rio de Janeiro 21941-598, Brazil;
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, I-16145 Genoa, Italy;
| | - Emerson S. Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Valdir F. Veiga-Junior
- Chemical Engineering Section, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
47
|
Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes (Basel) 2021. [DOI: 10.3390/pr9101840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Laurus nobilis L. is an evergreen Mediterranean shrub whose leaves have been known for various health-promoting effects mainly attributed to polyphenols. Microwave- (MAE) and ultrasound-assisted extraction (UAE) are green extraction techniques that enable effective isolation of polyphenols from plant material. Therefore, the aim of this research was to optimize the extraction conditions of MAE (ethanol percentage, temperature, extraction time, microwave power) and UAE (ethanol percentage, extraction time, amplitude) of polyphenols from Laurus nobilis L. leaves and to assess their polyphenolic profile by ultra performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS) and antioxidant capacity by oxygen radical absorbance capacity (ORAC) assay. Optimal MAE conditions were 50% ethanol, 80 °C, 10 min and 400 W. Optimal UAE conditions were 70% ethanol, 10 min and 50% amplitude. Spectrophotometric analysis showed the highest total phenolic content in the extracts was obtained by MAE, compared to conventional heat-reflux extraction (CRE) and UAE. The polyphenolic profile of all obtained extracts included 29 compounds, with kaempferol and quercetin glycosides being the most abundant. UPLC-MS/MS showed the highest total phenolic content in the extracts obtained by CRE. ORAC assay showed the highest antioxidant capacity in extracts obtained by CRE, which is in agreement with the polyphenolic profile determined by UPLC-MS/MS.
Collapse
|
48
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Rodríguez-Martínez B, Ferreira-Santos P, Gullón B, Teixeira JA, Botelho CM, Yáñez R. Exploiting the Potential of Bioactive Molecules Extracted by Ultrasounds from Avocado Peels-Food and Nutraceutical Applications. Antioxidants (Basel) 2021; 10:1475. [PMID: 34573107 PMCID: PMC8466900 DOI: 10.3390/antiox10091475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Natural bioactive compounds from food waste have fomented interest in food and pharmaceutical industries for the past decade. In this work, it purposed the recovery of bioactive avocado peel extract using an environmentally friendly technique: the ultrasound assisted extraction. The response surface methodology was applied in order to optimize the conditions of the extraction, ethanol-water mixtures and time. The optimized extracts (ethanol 38.46%, 44.06 min, and 50 °C) were chemically characterized by HPLC-ESI-MS and FTIR. Its antioxidant ability, as well as, its effect on cell metabolic activity of normal (L929) and cancer (Caco-2, A549 and HeLa) cell lines were assessed. Aqueous ethanol extracts presented a high content in bioactive compounds with high antioxidant potential. The most representative class of the phenolic compounds found in the avocado peel extract were phenolic acids, such as hydroxybenzoic and hydroxycinnamic acids. Another important chemical group detected were the flavonoids, such as flavanols, flavanonols, flavones, flavanones and chalcone, phenylethanoids and lignans. In terms of its influence on the metabolic activity of normal and cancer cell lines, the extract does not significantly affect normal cells. On the other hand, it can negatively affect cancer cells, particularly HeLa cells. These results clearly demonstrated that ultrasound is a sustainable extraction technique, resulting in extracts with low toxicity in normal cells and with potential application in food, pharmaceutical or nutraceutical sectors.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
| | - José António Teixeira
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Cláudia M. Botelho
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Remedios Yáñez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
- Biomedical Research Centre (CINBIO), University of Vigo, University Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
50
|
Lv JM, Gouda M, Zhu YY, Ye XQ, Chen JC. Ultrasound-Assisted Extraction Optimization of Proanthocyanidins from Kiwi ( Actinidia chinensis) Leaves and Evaluation of Its Antioxidant Activity. Antioxidants (Basel) 2021; 10:1317. [PMID: 34439565 PMCID: PMC8389255 DOI: 10.3390/antiox10081317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Using ultrasound (US) in proanthocyanidin (PA) extraction has become one of the important emerging technologies. It could be the next generation for studying the US mechnophore impact on the bioactive compound's functionality. The objective of this study was to demonstrate the potential of US treatment on PAs extracted from kiwifruit (Actinidia chinensis) leaves, and to provide a comprehensive chemical composition and bioactivity relationship of the purified kiwifruit leaves PAs (PKLPs). Several methods like single-factor experiments and response surface methodology (RSM) for the four affected factors on US extraction efficiency were constructed. HPLC-QTOF-MS/MS, cytotoxicity analysis, and antioxidant activity were also demonstrated. In the results, the modeling of PA affected factors showed that 40% US-amplitude, 30 mL/g dry weight (DW) solvent to solid ration (S/S), and 70 °C for 15 min were the optimum conditions for the extraction of PAs. Furthermore, PKLPs exhibited significant radical scavenging and cellular antioxidant activity (p < 0.05). In conclusion, this study's novelty comes from the broad prospects of using US in PKLP green extraction that could play an important role in maximizing this phytochemical functionality in drug discovery and food science fields.
Collapse
Affiliation(s)
- Ji-Min Lv
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
| | - Mostafa Gouda
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12422, Egypt
| | - Yan-Yun Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
| | - Xing-Qian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
| | - Jian-Chu Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
| |
Collapse
|