1
|
Romero-Martínez M, Andrade-Pizarro R, De Paula C. Functional compounds in tropical fruit processing by-products and intrinsic factors affecting their composition: A review. Curr Res Food Sci 2025; 10:101028. [PMID: 40190386 PMCID: PMC11968299 DOI: 10.1016/j.crfs.2025.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 04/09/2025] Open
Abstract
Tropical fruits, highly demanded in the food industry, generate a considerable amount of waste during processing. These traditionally discarded by-products, such as peels, seeds and pomace, are rich in bioactive compounds, natural molecules that have beneficial properties for human health, as they participate in various metabolic processes in the organism. Among the most prominent compounds are flavonoids, carotenoids, phenolic compounds, tannins and vitamin C. Beyond their health benefits, these compounds have significant industrial value and are widely used in the textile, pharmaceutical, cosmetic, biotechnological and food fields, in the latter especially as preservatives, additives, colorants and others. This review explores the main bioactive compounds found in fruit by-products, highlighting their functional relevance and analyzing the intrinsic or fruit-derived factors that influence the composition of these compounds, such as the type of by-product (peels, seeds, bagasse, pomace), the variety of fruit, and the state of maturity at the time of processing. In addition, the extraction methods used to obtain these compounds are addressed, differentiating between conventional techniques, such as solvent extraction, and emerging methods, such as ultrasound-assisted extraction and supercritical fluid extraction, which offer advantages in terms of efficiency and sustainability. The diversity of bioactive compounds and their potential application in various industries highlight the importance of ongoing research in this field. It is necessary to further study the factors that influence the composition of these compounds, as well as the development of more efficient and sustainable extraction methods. These advances will not only add value to food industry waste, but will also contribute to the development of natural products with health benefits.
Collapse
Affiliation(s)
- María Romero-Martínez
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| | - Ricardo Andrade-Pizarro
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| | - Claudia De Paula
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| |
Collapse
|
2
|
Chuesomboon P, Rades T, Chaiyana W. Potential of Encapsulated Bovine Colostrum in Powder-Based Formulations for Facial Clay, Peel-Off Gel, and Sleeping Gel Masks. Gels 2025; 11:111. [PMID: 39996654 PMCID: PMC11854522 DOI: 10.3390/gels11020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Bovine colostrum is a bioactive compound with potential in cosmetic applications but has a limited shelf life. This study aimed to develop an effective encapsulation system for bovine colostrum using the complex coacervation method and incorporate it into powder formulations for facial masks. The research explored various gelatin-to-gum Arabic ratios to optimize the physical and chemical stability, encapsulation efficiency, and loading capacity of the encapsulated bovine colostrum (EBC). The EBC was further incorporated into powder formulations for clay masks, peel-off gel masks, and sleeping gel masks. The optimal gelatin-to-gum Arabic ratio was found to be 2:1, yielding the highest entrapment efficiency (66.6 ± 3.3% w/w) and loading capacity (67.6 ± 3.4% w/w) of bovine colostrum. For clay masks, the most effective powder blend incorporating EBC enhanced the moisture content, water solubility, and hygroscopicity, without affecting the drying time (9.7 ± 0.6 min). Additionally, peel-off gel masks incorporating EBC significantly reduced water activity and improved moisture content and hygroscopicity, while the drying time decreased from 44.3 ± 0.6 to 25.0 ± 1.7 min. For sleeping gel masks, the formulation with EBC increased water activity, while other parameters remained stable. In conclusion, the EBC with enhanced stability was effectively integrated into various powders for facial mask formulations.
Collapse
Affiliation(s)
- Pornpansa Chuesomboon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark;
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Chen Z, Li H, Zhang L, Ping Y, Wang Q, Fang X, Zhao B, Zhang L. Construction and microencapsulation of tea polyphenols W 1/O/W 2 double emulsion based on modified gluten (MEG). Int J Biol Macromol 2025; 290:139050. [PMID: 39708867 DOI: 10.1016/j.ijbiomac.2024.139050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The objective of this study was to solve instability and low bioavailability of tea polyphenols (TPs), and to explore the application of gluten protein as microcapsule wall material. Modified gluten protein (MEG), β-cyclodextrin (β-CD), xanthan gum (XG) or acacia gum (GA) were used as composite wall materials to encapsulate TPs by double-emulsion technique, and the physicochemical and structural properties of the products were characterized. The results show that the composite wall material effectively encapsulated and enhanced the stability of TPs. CLSM imaging and in vitro digestion simulation further validated the structural integrity in gastric conditions and controlled release properties of microcapsules. When the composite wall materials was MEG:β-CD (2:1)-XG, the superior bioavailability of TPs was 60.35 %. This study provides a preparation method of TPs microcapsules and composite wall materials, which will contribute to the stability and bioavailability of polyphenols and the expansion of the application of gluten.
Collapse
Affiliation(s)
- Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China.
| | - Lanxi Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qingyuan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xiaoxue Fang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Marković J, Salević-Jelić A, Milinčić D, Gašić U, Pavlović V, Rabrenović B, Pešić M, Lević S, Mihajlović D, Nedović V. Horseradish (Armoracia rusticana L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as potential antioxidants in mayonnaise production. Food Chem 2025; 464:141777. [PMID: 39471560 DOI: 10.1016/j.foodchem.2024.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to encapsulate cold-pressed horseradish leaf juice within maltodextrin/alginate (MD/AL), maltodextrin/guar gum (MD/GG), and maltodextrin/gum Arabic (MD/GA) by spray-drying, to characterize the encapsulates, and to test their potential as mayonnaise oxidation-preventing ingredients. The encapsulates exhibited desirable physicochemical, morphological, structural, and thermal properties, highlighting MD/GA-containing encapsulates, especially regarding high encapsulation yield (78.50 %). Also, encapsulates contained a significant amount of phenolics, which were stable during freezer storage. The encapsulates successfully delayed the mayonnaise oxidation: 31.91-38.94 % more than the synthetic antioxidant ethylenediaminetetraacetic acid, especially highlighting MD/AL-containing encapsulates. Also, the encapsulates improved product quality with a higher pH and lower acidity after storage compared to the controls. Overall acceptability of encapsulates-containing mayonnaises and commercial mayonnaise did not differ significantly. This study contributes to sustainable development by providing new insights into the valorization of horseradish leaves, as a promising alternative to synthetic additives to prolong the oxidative stability and shelf-life of high-oil-containing foods.
Collapse
Affiliation(s)
- Jovana Marković
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Ana Salević-Jelić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Danijel Milinčić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Uroš Gašić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Plant Physiology, 11060 Belgrade, Serbia.
| | - Vladimir Pavlović
- University of Belgrade, Faculty of Agriculture, Department of Mathematics and Physics, 11080 Belgrade, Serbia.
| | - Biljana Rabrenović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Mirjana Pešić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Steva Lević
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Dragana Mihajlović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Viktor Nedović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| |
Collapse
|
5
|
Ren J, Lu Y, Liu Y, Huang X, Sun K, Qi H. Encapsulated fucoxanthin improves the functional properties and storage stability of Undaria Pinnatifida and apple freeze-dried snack food during accelerated storage. Food Res Int 2025; 201:115591. [PMID: 39849728 DOI: 10.1016/j.foodres.2024.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/28/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
Carotenoids, recognized for their antioxidant and anti-aging properties, are commonly used in functional foods. To enhance the application of fucoxanthin (FX) in the food industry, this study employed the ion gel method for encapsulating FX and combined it with raw materials such as Undaria pinnatifida homogenate and apple pieces to create freeze-dried crunchy chunks. The study evaluated the effects of encapsulated-FX on the functional and structural characteristics of the Undaria pinnatifida and apple freeze-dried chunks over accelerated storage period under high temperature and humidity. Various analyses were conducted, including physicochemical properties, texture analysis, color evaluation, sensory assessment, and simulated digestion analysis. The results demonstrated that the FX-rich freeze-dried crunchy chunks exhibited favorable structural properties and appealing flavor. Notably, after the accelerated storage period, the encapsulated-FX maintained significant antioxidant activity, along with excellent thermal and light stability, indicating high storage stability. Additionally, the main ingredients, sodium alginate (SAA) and pectin (PE), significantly enhanced the stability of FX during in vitro digestion. This study provided a straightforward approach for producing freeze-dried snack foods rich in stabled-FX, contributing to the diversity of value-added algae products. Furthermore, it laid a theoretical foundation and reference for the future development of nutritional products.
Collapse
Affiliation(s)
- Jiaying Ren
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yujing Lu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Liu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Huang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kailing Sun
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Hoseini SA, Vazifedoost M, Hajirostamloo B, Didar Z, Nematshahi MM. Supercritical fluid extraction and encapsulation of Rivas ( Rheum ribes) flower: Principal component analysis (PCA). Heliyon 2025; 11:e41746. [PMID: 39872459 PMCID: PMC11770504 DOI: 10.1016/j.heliyon.2025.e41746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Supercritical CO2 modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO2 (SCO2-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO2-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.58 %), phytosterols (mainly sitosterol: 197.02 and campesterol: 144.47 mg/100g), terpenoids (mainly camphor: 17.52 %; and 1,8-cineol: 10.91 %) and phenolics (mainly m-coumaric acid: 48.22; luteolin: 38.07 and gallic acid: 26.25 mg/g). The yield of Rivas extract was 1.62 ± 0.27 %. The extract bioactivity was as follows: antioxidant activity of 89.6 ± 1.39 %; total phenolic content of 306.19 ± 13.59 mg GAE/g; total flavonoid content of179.84 ± 5.77 mg QE/g and a comparable antimicrobial effect to synthetic antimicrobials against E. coli, L. monocytogenes, and A. fumigatus. The encapsulation efficiency of microparticles was 90.53 % for MD to 93.23 % for GA + MD (P < 0.05). The microparticles had irregular semi-spherical shapes with wrinkled surfaces. According to the PCA, MD showed the best solubility and the lowest price, making it a cost-effective ingredient to improve the nutritional-value of food formulations. If the stability of bioactive compounds is more important, GA + MD will be the best choice.
Collapse
Affiliation(s)
- Seyyed Ali Hoseini
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohsen Vazifedoost
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Bahareh Hajirostamloo
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Zohreh Didar
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohamad Mehdi Nematshahi
- Department of Food Science and Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
7
|
Mori-Mestanza D, Valqui-Rojas I, Caetano AC, Culqui-Arce C, Cruz-Lacerna R, Cayo-Colca IS, Castro-Alayo EM, Balcázar-Zumaeta CR. Physicochemical Properties of Nanoencapsulated Essential Oils: Optimizing D-Limonene Preservation. Polymers (Basel) 2025; 17:348. [PMID: 39940550 PMCID: PMC11820669 DOI: 10.3390/polym17030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Essential oils exhibit antioxidant properties but are prone to oxidative degradation under environmental conditions, making their preservation crucial. Therefore, the purpose of this work was to evaluate the physicochemical properties of nanoencapsulated essential oils (EOs) extracted from the peel of sweet lemon, mandarin, lime, and orange using four formulations of wall materials consisting of gum arabic (GA), maltodextrin (MD), and casein (CAS). The results showed that EOs from sweet lemon, mandarin, lime, and orange showed higher solubility (79.5% to 93.5%) when encapsulated with GA/MD. Likewise, EOs from sweet lemon showed the highest phenolic content when using GA/CAS (228.27 mg GAE/g sample), and the encapsulated EOs of sweet lemon and mandarin with GA/MD/CAS (1709 and 1599 μmol TE/g) had higher antioxidant capacity. On the other hand, higher encapsulation efficiency was obtained in EOs of lime encapsulated with GA/MD (68.5%), and the nanoencapsulates of EOs from sweet lemon with GA/MD had higher D-limonene content (613 ng/mL). Using gum arabic and maltodextrin increased the encapsulation efficiency and D-limonene content in EO of sweet lemon. On the other hand, the formulations with casein were the most efficient wall materials for retaining D-limonene from the EOs of mandarin, lime, and orange.
Collapse
Affiliation(s)
- Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.M.-M.); (I.V.-R.); (C.C.-A.); (R.C.-L.); (E.M.C.-A.)
| | - Iraida Valqui-Rojas
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.M.-M.); (I.V.-R.); (C.C.-A.); (R.C.-L.); (E.M.C.-A.)
| | - Aline C. Caetano
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Universitaria N° 304, Chachapoyas 01001, Peru;
| | - Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.M.-M.); (I.V.-R.); (C.C.-A.); (R.C.-L.); (E.M.C.-A.)
| | - Rosita Cruz-Lacerna
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.M.-M.); (I.V.-R.); (C.C.-A.); (R.C.-L.); (E.M.C.-A.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.M.-M.); (I.V.-R.); (C.C.-A.); (R.C.-L.); (E.M.C.-A.)
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.M.-M.); (I.V.-R.); (C.C.-A.); (R.C.-L.); (E.M.C.-A.)
| |
Collapse
|
8
|
Silva NC, Chevigny C, Domenek S, Almeida G, Assis OBG, Martelli-Tosi M. Nanoencapsulation of active compounds in chitosan by ionic gelation: Physicochemical, active properties and application in packaging. Food Chem 2025; 463:141129. [PMID: 39265301 DOI: 10.1016/j.foodchem.2024.141129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
The ionic gelation technique using chitosan to encapsulate active compounds has received lots of attention in the literature due to its ease-of-use and known biodegradability, biocompatibility and antimicrobial properties of the polymer. In this review, main studies from the last five years involving encapsulation of active compounds (natural and commercial/synthetic) are brought together in order to understand the encapsulation mechanisms of components with chitosan as well as the physical, chemical and morphological properties of the resulting particles. The application of these nanostructures in polymeric films was then investigated, since additives for packaging are an attractive premise and have only recently started being studied in the literature. Herein, comparisons are made between free and encapsulated bioactive compounds in different film matrices, as well as the effect of this activation on structure. Finally, this work details the mechanisms involved in the production of chitosan nanoparticles with active compounds and encourages new studies to focus on their application in packaging.
Collapse
Affiliation(s)
- Natalia Cristina Silva
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Postgraduate Programme in Materials Science and Engineering, 13635-900 Pirassununga, SP, Brazil; National Nanotechnology Laboratory for Agriculture, Embrapa Instrumentação, 13561-206 São Carlos, SP, Brazil
| | - Chloe Chevigny
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Sandra Domenek
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Giana Almeida
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | | | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Postgraduate Programme in Materials Science and Engineering, 13635-900 Pirassununga, SP, Brazil; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Kamalesh R, Saravanan A, Yaashikaa PR, Vijayasri K. Innovative approaches to harnessing natural pigments from food waste and by-products for eco-friendly food coloring. Food Chem 2025; 463:141519. [PMID: 39368203 DOI: 10.1016/j.foodchem.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
With unprecedented growth in the world population, the demand for food has risen drastically leading to increased agricultural production. One promising avenue is recovery of value-added pigments from food waste which has been gaining global attention. This review focuses on sustainable strategies for extracting pigments, examining the factors that influence extraction, their applications, and consumer acceptability. The significant findings of the study state the efficiency of pigment extraction through innovative extraction techniques rather than following conventional methods that are time-consuming, and unsustainable. In addition to their vibrant colors, these pigments provide functional benefits such as antioxidant properties, extended shelf life and improved food quality. Societal acceptance of pigments derived from food waste is positively driven by environmental awareness and sustainability. The study concludes by highlighting the stability challenges associated with various natural pigments, emphasizing the need for tailored stabilization methods to ensure long-term stability and effective utilization in food matrices.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
10
|
Ahmadi F, Suleria HAR, Dunshea FR. Physicochemical Characterization, Storage Stability Behavior, and Intestinal Bioaccessibility of Clove Extract Encapsulated Using Varying Combinations of Gum Arabic and Maltodextrin. Foods 2025; 14:237. [PMID: 39856903 PMCID: PMC11764740 DOI: 10.3390/foods14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Clove (Syzygium aromaticum, L.) is a rich source of polyphenols and antioxidants, but its intense flavor, poor solubility, and instability may limit its widespread and efficient use in industrial applications. In a series of laboratory-scale experiments, gum Arabic (GA) and maltodextrin (MD) were used as coating agents in various proportions (ranging from 0MD:100GA to 100MD:0GA) for encapsulation of clove extract using a freeze-drying method. The encapsulates were assessed for the physicochemical properties, storage stability behavior, and intestinal bioaccessibility of phenolics using an in vitro gastrointestinal digestion test. The freeze-dried encapsulates were characterized as having low water activity (<0.3, which is a critical threshold to ensure chemical and microbiological stability), high water solubility (>90%), solid (product) recovery (mean 93.1 ± 1.77%), and encapsulation efficiency (91.4-94.9%). Hygroscopicity increased as the GA:MD proportion increased in the encapsulation formulations. Encapsulation was effective in protecting bioactive components of clove extract during storage at room (up to 40 days) or high temperature (60 °C for 7 days) and minimized the loss of antioxidant activity during storage, as compared to the clove extract in a non-encapsulated form. All encapsulation formulations were characterized by a negative zeta potential (from -22.1 to -29.7 mV) and a polydispersity index ranging from 0.47 to 0.68, classifying the formulations as having a mid-range polydisperse particle size distribution. The FTIR analysis demonstrated that the freeze-drying encapsulation process resulted in no evident chemical interaction between coating and core materials. Intestinal bioaccessibility of total phenolics after the in vitro-simulated gastrointestinal digestion was greater in the encapsulated clove extract compared to the non-encapsulated clove extract. In conclusion, the encapsulation process was effective in protecting the bioactivity of the polyphenol-rich clove extract during storage and improved the phenolic bioaccessibility, potentially supporting the application of the encapsulated clove extract for use in functional food development.
Collapse
Affiliation(s)
- Farhad Ahmadi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.A.R.S.); (F.R.D.)
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.A.R.S.); (F.R.D.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.A.R.S.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Ali Redha A, Torquati L, Bows JR, Gidley MJ, Cozzolino D. Microencapsulation of broccoli sulforaphane using whey and pea protein: in vitro dynamic gastrointestinal digestion and intestinal absorption by Caco-2-HT29-MTX-E12 cells. Food Funct 2025; 16:71-86. [PMID: 39431890 DOI: 10.1039/d4fo03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sulforaphane, an organosulfur phytochemical, has been demonstrated to have significant anticancer potential in both in vitro and in vivo studies, exhibiting mechanisms of action that include inducing apoptosis, inhibiting cell proliferation, and modulating key signalling pathways involved in cancer development. However, its instability presents a major obstacle to its clinical application due to its limited bioavailability. This study aimed to improve the stability and thus the bioavailability of sulforaphane from broccoli by microencapsulation with whey (BW) and pea protein (BP) by freeze-drying. BW and BP were characterised by particle size measurement, colour, infrared spectroscopy, scanning electron microscopy, thermogravimetry, and differential scanning calorimetry. Dynamic in vitro gastrointestinal digestion was performed to measure sulforaphane bioaccessibility, in BP, BW and dried broccoli. A Caco-2-HT29-MTX-E12 intestinal absorption model was used to measure sulforaphane bioavailability. The in vitro dynamic gastrointestinal digestion revealed that sulforaphane bioaccessibility of BW was significantly higher (67.7 ± 1.2%) than BP (19.0 ± 2.2%) and dried broccoli (19.6 ± 10.4%) (p < 0.01). In addition, sulforaphane bioavailability of BW was also significantly greater (54.4 ± 4.0%) in comparison to BP (9.6 ± 1.2%) and dried broccoli (15.8 ± 2.2%) (p < 0.01). Microencapsulation of broccoli sulforaphane with whey protein significantly improved its in vitro bioaccessibility and bioavailability. This suggests that whey protein isolate could be a promising wall material to protect and stabilise sulforaphane for enhanced bioactivity and applications (such as nutraceutical formulations).
Collapse
Affiliation(s)
- Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Luciana Torquati
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| | | | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
12
|
Li S, Fu X, Wen J, Jiang L, Shao L, Du Y, Shan C. Characterization of Physicochemical Properties, Bioactivities, and Sensory Attributes of Sea Buckthorn-Fava Bean Composite Instant Powder: Spray-Drying Versus Freeze-Drying Coupled with Carriers. Foods 2024; 13:3944. [PMID: 39683016 DOI: 10.3390/foods13233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Foods and beverages with health benefits have become increasingly popular with consumers, and fruits and legumes are considered good sources of nutrients. In this study, sea buckthorn and fava bean were used as the main raw materials to prepare sea buckthorn-fava bean composite instant powder (S-FCP). Different drying methods (spray-drying (SD) and freeze-drying (FD)) combined with carriers (maltodextrin (MD) and inulin (INU)) were involved to investigate their effects on physicochemical properties, functional properties, and sensory attributes of instant powder. The results showed that FD better protected the color of the S-FCP and produced particles possessing more porous structures compared to SD; FD-INU (freeze-dried-inulin) had the shortest dissolution time and the largest solubility. In addition, FD-INU had the highest total phenolic and total flavonoid contents and the strongest antioxidant capacity, and FD-INU had better overall organoleptic properties and hypoglycemic potential. Therefore, FD and the use of INU as a carrier are more suitable for the production of the S-FCP. This work provides a promising approach for developing a high-valued instant powder beverage composed of sea-buckthorn/broad bean, which also contributes to the development of the functional food industry.
Collapse
Affiliation(s)
- Shi Li
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Xizhe Fu
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Jing Wen
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Lin Jiang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Liheng Shao
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Yinglin Du
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| |
Collapse
|
13
|
Laurindo LF, Takeda LN, Mendes Machado N, Otoboni AMMB, Goulart RDA, Catharin VCS, Silva LR, Barbalho SM, Direito R. Health benefits of acerola (Malpighia spp) and its by-products: A comprehensive review of nutrient-rich composition, pharmacological potential, and industrial applications. FOOD BIOSCI 2024; 62:105422. [DOI: 10.1016/j.fbio.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Schiebel CS, Bueno LR, Pargas RB, de Mello Braga LLV, da Silva KS, Fernandes ACVU, Dos Santos Maia MH, de Oliveira NMT, Bach C, Maria-Ferreira D. Exploring the biological activities and potential therapeutic applications of agro-industrial waste products through non-clinical studies: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175317. [PMID: 39111448 DOI: 10.1016/j.scitotenv.2024.175317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The latent potential of active ingredients derived from agro-industrial waste remains largely untapped and offers a wealth of unexplored resources. While these types of materials have applications in various fields, their ability to benefit human health needs to be further explored and investigated. This systematic review was conducted to systematically evaluate non-clinical studies that have investigated the biological effects of fractions, extracts and bioactive compounds from agro-industrial wastes and their potential therapeutic applications. Articles were selected via PubMed, Embase and Medline using the descriptors (by-products[title/abstract]) AND (agro-industrial[title/abstract]). The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42024491021. After a detailed analysis based on inclusion and exclusion criteria, a total of 38 articles were used for data extraction and discussion of the results. Information was found from in vitro and in vivo experiments investigating a variety of residues from the agro-industry. The studies investigated peels, pomace/bagasse, pulp, seeds, aerial parts, cereals/grains and other types of waste. The most studied activities include mainly antioxidant and anti-inflammatory effects, but other activities such as antimicrobial, cytotoxic, antiproliferative, antinociceptive, hypoglycemic, antihyperglycemic and anticoagulant effects have also been described. Finally, the studies included in this review demonstrate the potential of agro-industrial waste and can drive future research with a focus on clinical application.
Collapse
Affiliation(s)
- Carolina Silva Schiebel
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Laryssa Regis Bueno
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Romulo Barreiro Pargas
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Karien Sauruk da Silva
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Ana Carolina Vieira Ulysséa Fernandes
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Mateus Henrique Dos Santos Maia
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Camila Bach
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Daniele Maria-Ferreira
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil.
| |
Collapse
|
15
|
Wu Y, Zhang Z, Wang Z, Yu C, Huang Z, Tang Y, Li Z, Yin S, Wang G. Enhanced fluorescence properties of polyfluorene-based polymer dots through an ascorbic acid-photoaging treatment for living cell imaging. Talanta 2024; 279:126628. [PMID: 39084040 DOI: 10.1016/j.talanta.2024.126628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The polymer dots (Pdots) prepared by the conjugated polymer (PFO, poly (9,9-dihexylfluorene-2,7-diyl)) have high fluorescence intensity and are often used in biological fluorescence imaging. However, due to the chain defects, the PFO Pdots suffer from stability issues such as photoinactivation and photobleaching. To solve this problem, we drew inspiration from the preparation process of organic planar light-emitting devices and added an optimization processing after Pdots was prepared. We used illumination as the driving force to activate defects on its chain, and ascorbic acid as a reducing substance to restore the chain defects of the polymer to a more stable state. Through this method, we increased the fluorescence intensity by nearly 1.9 times, and significantly improving their long and short-term stability. In addition, it ensures other properties remain unchanged. This optimization scheme is also fully compatible with the entire biological imaging process, ensuring that other important properties such as cytotoxicity do not undergo unnecessary changes. Furthermore, we conducted material characterization and theoretical simulation, revealing that the optimization scheme mainly serves to repair C-9 alkyl defects on the polyfluorene unit. This study has improved and enhanced the fluorescence performance of PFO Pdots, and also provides a way to optimize the treatment of other similar conjugated polymer material systems.
Collapse
Affiliation(s)
- Yuyang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Ze Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Zhipeng Huang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, 130022, PR China
| | - Zongjun Li
- School of Material Science and Technology, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China.
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China.
| |
Collapse
|
16
|
Nilkamheang T, Thanaseelangkoon C, Sangsue R, Parisaka S, Nghiep LK, Wanyo P, Toontom N, Tudpor K. Encapsulation of ɣ-Aminobutyric Acid Compounds Extracted from Germinated Brown Rice by Freeze-Drying Technique. Molecules 2024; 29:5119. [PMID: 39519760 PMCID: PMC11547326 DOI: 10.3390/molecules29215119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) from plants has several bioactivities, such as neurotransmission, anti-cancer cell proliferation, and blood pressure control. Its bioactivities vary when exposed to pH, heat, and ultraviolet. This study analyzed the protective effect of the GABA encapsulation technique using gum arabic (GA) and maltodextrin (MD) and the freeze-drying method. The impact of different ratios of the wall material GA and MD on morphology, GABA content, antioxidant activity, encapsulation efficiency, process yield, and physical properties were analyzed. Results showed that the structure of encapsulated GABA powder was similar to broken glass pieces of various sizes and irregular shapes. The highest GABA content and encapsulation efficiency were, respectively, 90.77 mg/g and 84.36% when using the wall material GA:MD ratio of 2:2. The encapsulated powder's antioxidant activity was 1.09-1.80 g of encapsulation powder for each formula, which showed no significant difference. GA and MD as the wall material in a 2:2 (w/w) ratio showed the lowest bulk density. The high amount of MD showed the highest Hausner ratio (HR), and Carr's index (CI) showed high encapsulation efficiency and process yield. The stability of encapsulated GABA powder can be kept in clear glass with a screw cap at 35 °C for 42 days compared to the non-encapsulated one, which can be preserved for only 18 days under the same condition. In conclusion, this study demonstrated that the freeze-drying process for GABA encapsulation preserved GABA component extracts from brown rice while increasing its potential beneficial properties. Using a wall material GA:MD ratio of 2:2 resulted in the maximum GABA content, solubility, and encapsulation efficiency while having the lowest bulk density.
Collapse
Affiliation(s)
- Tarinee Nilkamheang
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (T.N.); (N.T.)
- Faculty of Public Health, Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (C.T.); (R.S.); (S.P.)
| | - Chanikarn Thanaseelangkoon
- Faculty of Public Health, Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (C.T.); (R.S.); (S.P.)
| | - Rawinan Sangsue
- Faculty of Public Health, Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (C.T.); (R.S.); (S.P.)
| | - Sarunya Parisaka
- Faculty of Public Health, Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (C.T.); (R.S.); (S.P.)
| | - Le Ke Nghiep
- Vinh Long Department of Health, Vinh Long 85000, Vietnam;
| | - Pitchaporn Wanyo
- Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand;
| | - Nitchara Toontom
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (T.N.); (N.T.)
- Faculty of Public Health, Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (C.T.); (R.S.); (S.P.)
| | - Kukiat Tudpor
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (T.N.); (N.T.)
- Faculty of Public Health, Mahasarakham University, Kham Riang, Maha Sarakham 44150, Thailand; (C.T.); (R.S.); (S.P.)
| |
Collapse
|
17
|
Chen S, Song S, Tan Y, He S, Ren X, Li Z, Liu Y. Optimization of ultrasonic-assisted debittering of Ganoderma lucidum using response surface methodology, characterization, and evaluation of antioxidant activity. PeerJ 2024; 12:e17943. [PMID: 39421421 PMCID: PMC11485051 DOI: 10.7717/peerj.17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/19/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) has gained increasing attention as a potential health care product and food source. However, the bitter taste of G. lucidum has limited its development and utilization for the food industry. Methonds The response surface methodology was employed to optimize the inclusion conditions for the debittering of G. lucidum. The effects of 2-hydroxypropyl-β-cyclodextrin concentration (12-14 g/mL), ultrasound temperature (20-40 °C and host-guest ratio (1:1-2:1) on response variables were studied. The physical characteristics of inclusion complexes prepared through spray drying and freeze drying were analyzed. The antioxidant activity of the different treated samples was subsequently investigated. Results Study results showed that, in comparison to the control group, the inclusion solution displayed a significantly enhanced taste profile under optimal processing conditions, exhibiting an 80.74% reduction in bitterness value. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (NMR) studies indicated the successful formation of inclusion compounds. The moisture content and bulk density of spray-dried powder were found to be significantly superior to those of freeze-dried powder (p < 0.05). In comparison to the diluted solution, the inclusion liquid demonstrated a 20.27%, 30.01% and 36.55% increase in ferric ion reducing antioxidant power (FRAP), hydroxyl radical scavenging and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging respectively. Further, the DPPH clearance of microencapsulated powder was not significantly different from that of tocopherol at a concentration of 25 mg/mL. Conclusions In summary, the study provides theoretical basis and methodological guidance to eliminate the bitterness of G. lucidum, and therefore provide potential options to the use of G. lucidum as a food source.
Collapse
Affiliation(s)
- Shuting Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shiying Song
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Yumei Tan
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shengling He
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Xiyi Ren
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
| | - Yongxiang Liu
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| |
Collapse
|
18
|
Al‐Maqtari QA, Othman N, Mohammed JK, Mahdi AA, Al‐Ansi W, Noman AE, Al‐Gheethi AAS, Asharuddin SM. Comparative analysis of the nutritional, physicochemical, and bioactive characteristics of Artemisia abyssinica and Artemisia arborescens for the evaluation of their potential as ingredients in functional foods. Food Sci Nutr 2024; 12:8255-8279. [PMID: 39479604 PMCID: PMC11521740 DOI: 10.1002/fsn3.4431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
Artemisia abyssinica and Artemisia arborescens are unique plants that show significant bioactive properties and are used for the treatment of a variety of diseases. This study assessed the nutritional values, functional properties, chemical composition, and bioactive attributes of these plants as functional nutritional supplements. Compared to A. arborescens, A. abyssinica had higher fat (4.76%), fiber (16.07%), total carbohydrates (55.87%), and energy (302.15 kcal/100 g DW), along with superior functional properties, including higher water and oil absorption capacities (638.81% and 425.85%, respectively) and foaming capacity and stability (25.67% and 58.48%). The investigation of volatile compounds found that A. abyssinica had higher amounts of hotrienol (4.53%), yomogi alcohol (3.92%), caryophyllene (3.67%), and carvotanacetone (3.64%), which possess anti-inflammatory, antimicrobial, and antioxidant properties. Artemisia abyssinica contributed over 30% of the recommended dietary intake (RDI) of amino acids. It displayed superior levels of sodium (31.46 mg/100 g DW) and calcium (238.07 mg/100 g DW). It also exhibited higher levels of organic acids, particularly malic acid, butyric acid, and succinic acid, compared to A. arborescens. Fatty acid analysis revealed palmitic and linoleic acids as primary components in both plants, with A. abyssinica having a higher palmitic acid content. Artemisia abyssinica also had higher vitamin C and thiamine levels. Although A. arborescens showed the highest total phenolic content (TPC), antioxidant activity, and capacity, A. abyssinica demonstrated acceptable efficiency in TPC and antioxidant content. These findings highlight the potential of both Artemisia species, particularly A. abyssinica, as valuable sources of nutrients and bioactive compounds for various applications.
Collapse
Affiliation(s)
- Qais Ali Al‐Maqtari
- Micro‐Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built EnvironmentUniversiti Tun Hussein Onn Malaysia (UTHM)Batu PahatJohorMalaysia
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
- Department of Microbiology, Faculty of ScienceSana'a UniversitySana'aYemen
| | - Norzila Othman
- Micro‐Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built EnvironmentUniversiti Tun Hussein Onn Malaysia (UTHM)Batu PahatJohorMalaysia
| | - Jalaleldeen Khaleel Mohammed
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
| | - Amer Ali Mahdi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
| | - Waleed Al‐Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
| | - Abeer Essam Noman
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
| | - Adel Ali Saeed Al‐Gheethi
- Global Centre for Environmental Remediation (GCER)University of Newcastle and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)NewcastleNew South WalesAustralia
| | - Syazwani Mohd Asharuddin
- Micro‐Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built EnvironmentUniversiti Tun Hussein Onn Malaysia (UTHM)Batu PahatJohorMalaysia
| |
Collapse
|
19
|
Silva NC, Silva MJ, Assis OBG, Martelli-Tosi M. Ultrasound-assisted extraction of bioactives as a strategic step for chemical pretreatments in nanocellulose production from acerola by-products. Int J Biol Macromol 2024; 276:133876. [PMID: 39009259 DOI: 10.1016/j.ijbiomac.2024.133876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Acerola by-products (AB) have been used as raw material for extracting active compounds; however, there were no studies related to the use of the remaining acerola by-product (RAB) from this extraction. This portion still has fibers and can be used for the production of cellulose nanofibrils (CNFs); therefore, the main objective of this study was to evaluate the production of CNFs using AB and RAB and to investigate whether the extraction can be a treatment step before bleaching/acid hydrolysis. AB and RAB were characterized before and after being chemically treated (AB_CT and RAB_CT, respectively). The fibers extracted from the RAB showed the highest cellulose contents (RAB: 36.6 % and RAB_CT: 69.9 %), suggesting that the extraction process had an impact on by-product defibrillation. The same trends were observed for CNFs produced by acid hydrolysis. CNFs based on RAB showed higher yield (CNF_RAB: 25.2 % and CNF_RAB_CT: 24.2 %), higher crystallinity index (CNF_RAB: 68.3 % and CNF_RAB_CT: 71.7 %) and higher thermal stability compared to CNFs extracted from AB and AB_CT. This study proved that it is feasible to use by-products after removing the active compounds for CNF production without other pre-treatments or in association with chemical treatment to obtain more crystalline and thermally stable CNFs.
Collapse
Affiliation(s)
- Natalia Cristina Silva
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil
| | - Maycon Jhony Silva
- EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil; Departament of Chemistry, Federal University of São Carlos, Rodovia Washington Luiz, 13565-905, São Carlos, São Paulo, Brazil
| | - Odílio Benedito Garrido Assis
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil
| | - Milena Martelli-Tosi
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
20
|
Santos AAL, Corrêa JLG, Machado GGL, Silveira PG, Cruz MS, Nascimento BS. Acerola processing waste: Convective drying with ethanol as pretreatment. Food Res Int 2024; 190:114586. [PMID: 38945606 DOI: 10.1016/j.foodres.2024.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
The acerola seed is an agro-industrial waste. It is a high moisture content product, rich in bioactive compounds. Drying is an alternative to make this waste available in a safe condition. The use of ethanol as a pretreatment could improve the drying process besides reducing the operation time. This study aimed to investigate the influence of ethanol pretreatment (ET) on the content of bioactive compounds, cell wall thickness, and color. The drying kinetics was studied, and the influence of external and internal resistance was discussed. The samples were immersed in ethanol for 2 min with subsequent convective drying (40 °C and 60 °C; 1 m s-1) until they reached the equilibrium condition. The ET reduced the drying time up to 36.36 %. The external and mixed control of mass transfer were identified as the governing regimes for drying this material, depending on the use of ethanol. ET led to an increase in effective diffusivity, a reduction in cell wall thickness, and preservation of the color of the dried waste. The ET positively impacted the conservation of ascorbic acid compared to untreated dried samples but was not relevant to phenolic compounds, carotenoids, and antioxidant activity. The drying process increased the bioactivity of the anthocyanins. The best condition was drying at 60 °C, pretreated with ethanol.
Collapse
Affiliation(s)
- A A L Santos
- Department of Food Science, Federal University of Lavras, Lavras, Brazil.
| | - J L G Corrêa
- Department of Food Science, Federal University of Lavras, Lavras, Brazil
| | - G G L Machado
- Department of Food Science, Federal University of Lavras, Lavras, Brazil
| | - P G Silveira
- Department of Food Science, Federal University of Lavras, Lavras, Brazil
| | - M S Cruz
- Department of Food Science, Federal University of Lavras, Lavras, Brazil
| | - B S Nascimento
- Department of Food Science, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
21
|
Wu X, Yan X, Zhang J, Wu X, Zhang Q, Zhang B. Intelligent films based on dual-modified starch and microencapsulated Aronia melanocarpa anthocyanins: Functionality, stability and application. Int J Biol Macromol 2024; 275:134076. [PMID: 39053820 DOI: 10.1016/j.ijbiomac.2024.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
This study aims to enhance the physical properties and color stability of anthocyanin-based intelligent starch films. Three dual-modified starches, namely crosslinked-oxidized starch (COS), acetylated distarch phosphate (ADSP), and hydroxypropyl distarch phosphate (HDSP), were utilized as film matrices. Aronia melanocarpa anthocyanins were incorporated through three different pre-treatments (free, spray-drying microencapsulation, and freeze-drying microencapsulation) to assess the prepared films' functionality, stability, and applicability. The results indicate that the ADSP film exhibited an approximately two-fold increase in elongation at break (EAB) compared to native starch film. Specifically, the ADSP film's water contact angle (WCA) reached 90°, demonstrating excellent flexibility and hydrophobicity. Scanning electron microscopy (SEM) revealed stronger interactions between anthocyanins and the film matrix after microencapsulation. Furthermore, after 30 days of exposure to 37 °C heat and light radiation, the freeze-dried anthocyanin-based intelligent film (FDA film) exhibited minimal fading, displaying the highest stability among the tested films. Notably, during beef freshness monitoring, the intelligent films underwent significant color changes as the beef deteriorated. In conclusion, the developed FDA film, with its outstanding stability and responsive pH characteristics, holds immense potential as a novel packaging material for food applications.
Collapse
Affiliation(s)
- Xiuli Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Xiangxuan Yan
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Jianwen Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Xuexu Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Qing Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Bingqian Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| |
Collapse
|
22
|
Magalhães D, Gonçalves R, Rodrigues CV, Rocha HR, Pintado M, Coelho MC. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024; 13:2276. [PMID: 39063360 PMCID: PMC11276186 DOI: 10.3390/foods13142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (R.G.); (C.V.R.); (H.R.R.); (M.P.)
| |
Collapse
|
23
|
Remígio MSDN, Greco T, Silva Júnior JOC, Converti A, Ribeiro-Costa RM, Rossi A, Barbosa WLR. Spray-Drying Microencapsulation of Bauhinia ungulata L. var. obtusifolia Aqueous Extract Containing Phenolic Compounds: A Comparative Study Using Different Wall Materials. Pharmaceutics 2024; 16:488. [PMID: 38675149 PMCID: PMC11054010 DOI: 10.3390/pharmaceutics16040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
Species belonging to the Bauhinia genus, usually known as "pata-de-vaca", are popularly used to treat diabetes. Bauhinia ungulata var. obtusifolia (Ducke) Vaz is among them, of which the leaves are used as a tea for medicinal purposes in the Amazon region. A microencapsulation study of lyophilized aqueous extract from Bauhinia ungulata leaves, which contain phenolic compounds, using five different wall materials (maltodextrin DE 4-7, maltodextrin DE 11-14; β-cyclodextrin; pectin and sodium carboxymethylcellulose) is described in this paper. The microstructure, particle size distribution, thermal behavior, yield, and encapsulation efficiency were investigated and compared using different techniques. Using high-performance liquid chromatography, phenolics, and flavonoids were detected and quantified in the microparticles. The microparticles obtained with a yield and phenolics encapsulation efficiency ranging within 60-83% and 35-57%, respectively, showed a particle size distribution between 1.15 and 5.54 µm, spherical morphology, and a wrinkled surface. Among them, those prepared with sodium carboxymethylcellulose or pectin proved to be the most thermally stable. They had the highest flavonoid content (23.07 and 21.73 mg RUTE/g Extract) and total antioxidant activity by both the DPPH (376.55 and 367.86 µM TEq/g Extract) and ABTS (1085.72 and 1062.32 µM TEq/g Extract) assays. The chromatographic analyses allowed for quantification of the following substances retained by the microparticles, chlorogenic acid (1.74-1.98 mg/g Extract), p-coumaric acid (0.06-0.08 mg/g Extract), rutin (11.2-12.9 mg/g Extract), and isoquercitrin (0.49-0.53 mg/g Extract), compounds which considered to responsible for the antidiabetic property attributed to the species.
Collapse
Affiliation(s)
- Myrth Soares do Nascimento Remígio
- Laboratory of Chromatography and Mass Spectrometry, Graduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Teresa Greco
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - José Otávio Carréra Silva Júnior
- Laboratory of R&D Pharmaceutical and Cosmetic, Graduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil;
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, 16145 Genoa, Italy;
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Nanotechnology, Graduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil;
| | - Alessandra Rossi
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Wagner Luiz Ramos Barbosa
- Laboratory of Chromatography and Mass Spectrometry, Graduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
24
|
Ribeiro DN, Borges KC, Matsui KN, Hoskin RT. Spray dried acerola ( Malpighia emarginata DC) juice particles to produce phytochemical-rich starch-based edible films. J Microencapsul 2024; 41:112-126. [PMID: 38345078 DOI: 10.1080/02652048.2024.2313234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
This study aimed to produce spray dried acerola juice microparticles with different protein carriers to be incorporated into edible starch films. The microparticles were evaluated for solids recovery, polyphenol retention, solubility, hygroscopicity, particle size distribution, X-ray diffraction, phytochemical compounds and antioxidant activity. Acerola microparticles produced with WPI/hydrolysed collagen carriers (AWC) with higher solids recovery (53.5 ± 0.34% w/w), polyphenol retention (74.4 ± 0.44% w/w), high solubility in water (85.2 ± 0.4% w/w), total polyphenol content (128.45 ± 2.44 mg GAE/g) and good storage stability were selected to produce starch-based films by casting. As a result, cassava films with water vapour permeability of 0.29 ± 0.07 g mm/m2 h KPa, polyphenol content of 10.15 ± 0.22 mg GAE/g film and DPPH radical scavenging activity of 6.57 ± 0.13 μM TE/g film, with greater migration of polyphenol to water (6.30 ± 0.52 mg GAE/g film) were obtained. Our results show that the incorporation of phytochemical-rich fruit microparticles is a promising strategy to create biodegradable edible films.
Collapse
Affiliation(s)
- Dayene Nunes Ribeiro
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Kátia Cristina Borges
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Kátia Nicolau Matsui
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Roberta Targino Hoskin
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Department of Food, Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| |
Collapse
|
25
|
Silva Júnior MED, Silva NBD, Araújo MVRL, Converti A, Dos Santos Lima M, Maciel MIS. Effect of coating material on microencapsulated phenolic compounds extracted from agroindustrial ciriguela peel residue. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1335-1346. [PMID: 37782290 DOI: 10.1002/jsfa.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Extract of ciriguela residue was microencapsulated by spray-drying and freeze-drying using maltodextrin (M), gum arabic (GA) and their mixture (50% M; 50% GA on dry basis) as encapsulating agents. Total phenolic compounds (TPC), antioxidant activity, physicochemical properties, profile of phenolic compounds by HPLC with diode-array detection and storage stability were evaluated. RESULTS TPC content of powders ranged from 306.9 to 451.2 mg gallic acid equivalent g-1 dry powder. The spray-dried powder prepared using GA as encapsulating agent had higher TPC content and antioxidant activity, whereas the freeze-dried powder had lower moisture and water activity. Spray-dried microcapsules had spherical shape, whereas freeze-dried products had irregular structures. The profile of phenolic compounds identified in samples was similar, with rutin (342.59 and 72.92 μg g-1 ) and quercetin (181.02 and 43.24 μg g-1 ) being the major compounds in liquid and freeze-dried extracts, respectively, whereas myricetin (97.41 μg g-1 ) was predominant in spray-dried ones. Storage stability tests carried out for 45 days at 7 or 25 °C revealed no statistically significant difference in TPC. CONCLUSION Ciriguela residue can be considered a source of TPC and used as ingredient with good antioxidant activity in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Maria Vitória Rolim Lemos Araújo
- Laboratory of Physical-Chemical Analysis of Food, Department of Consumer Sciences, Federal Rural University of Pernambuco, Recife, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Pole of Chemical Engineering, Genoa, Italy
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Brazil
| | - Maria Inês Sucupira Maciel
- Technology Center, Federal University of Paraiba, João Pessoa, Brazil
- Food Science and Technology Graduate Program, Federal Rural University of Pernambuco, Recife, Brazil
| |
Collapse
|
26
|
Liu Y, Tong Y, Tong Q, Xu W, Wang Z. Effects of sunflower pectin on thermal stability of purple sweet potato anthocyanins at different pH. Int J Biol Macromol 2023; 253:126663. [PMID: 37660844 DOI: 10.1016/j.ijbiomac.2023.126663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
The present study aimed to examine the impact of sunflower pectin (SFP) on the thermal stability and antioxidant activity of purple sweet potato anthocyanins (PSPA) at varying pH levels. It was observed that the pH value significantly influenced the ability of pectin to protect anthocyanins from thermal degradation, which was found to be associated with the rate of binding between PSPA and SFP. The binding rate of PSPA-SFP was observed to be highest at pH 4.0, primarily due to the influence of electrostatic interaction and hydrogen bonding. Monoacylated anthocyanins exhibited a binding rate approximately 2-4 % higher than that of diacylated anthocyanins. The PSPA-SFP demonstrated its highest thermal stability at pH 4.0, with a corresponding half-life of 14.80 h at 100 °C. Molecular dynamics simulations indicated that pectin had a greater affinity for the flavylium cation and hemiketal form of anthocyanins. The antioxidant activity of anthocyanins in PSPA and PSPA-SFP increased with increasing pH, suggesting that anthocyanins at high pH had higher antioxidant activity than anthocyanins at low pH.
Collapse
Affiliation(s)
- Yutong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Synergetic Innovation Center, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - YingJia Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Wentian Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zeqing Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Synergetic Innovation Center, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
27
|
Laureanti EJG, Paiva TS, de Matos Jorge LM, Jorge RMM. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. Int J Biol Macromol 2023; 253:126969. [PMID: 37730006 DOI: 10.1016/j.ijbiomac.2023.126969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microencapsulation techniques establish a protective barrier around a sensitive compound, reducing vulnerability to external influences and offering controlled release. This work evaluates microencapsulation of Brazilian seed known as pink pepper (Schinus terebinthifolius) extract incorporated with green propolis extract, (main propolis font from the South America native plant Baccharis dracunculifolia DC) to enhancement antioxidant activity through synergic interaction, comparing to the extracts individually. Four treatments were produced using maltodextrin and combined with gum arabic as encapsulating agent, employing two different microencapsulation technique applied (spray drying and freeze drying) to assess their impact on physicochemical properties. The incorporation of gum arabic into matrix yielded higher encapsulation efficiency values, exhibiting significant differences for both encapsulation techniques. Combining the two encapsulation agents afforded greater protection of the bioactive compounds, resulting in an increase of approximately 31 % in the inhibition of the DPPH● radical. In controlled release analysis, maltodextrin exhibits the best protective effect on total phenolic compounds during intestinal release, whereas combining maltodextrin and gum arabic enhanced protection during gastric phase. Microcapsules may contribute to the protection of important bioactive compound, possessing a wide range of applications such as flavors encapsulation in food industry, lipids, antioxidants and pharmaceutical industry for controlled drug release.
Collapse
Affiliation(s)
- Emanuele Joana Gbur Laureanti
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil
| | - Thainnane Silva Paiva
- Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil
| | - Luiz Mário de Matos Jorge
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Chemical Engineering Department, State University of Maringá (UEM), Colombo Avenue, 5790, CEP, 87020-900, Maringá, PR, Brazil
| | - Regina Maria Matos Jorge
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil.
| |
Collapse
|
28
|
Pusty K, Dash KK, Tiwari A, Balasubramaniam VM. Ultrasound assisted extraction of red cabbage and encapsulation by freeze-drying: moisture sorption isotherms and thermodynamic characteristics of encapsulate. Food Sci Biotechnol 2023; 32:2025-2042. [PMID: 37860738 PMCID: PMC10581982 DOI: 10.1007/s10068-023-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 10/21/2023] Open
Abstract
In the present study encapsulation of ultrasound assisted red cabbage extract was carried out using four different carrier agents such as maltodextrin, gum arbic, xanthan gum, and gellan gum. Among the four hydrocolloids investigated, maltodextrin was found to have the least destructive effect on anthocyanin content (14.87 mg C3G/g dw), TPC (54.51 ± 0.09 mg GAE/g dw), TFC (19.82 Mg RE/g dw) and antioxidant activity (74.15%) upon freeze-drying. Subsequently a storage study was conducted using maltodextrin as carrier agent at 25-50 °C. The Clausius-Clapeyron equation was used to evaluate the net isosteric heat (qst) of water adsorption. The differential entropy (ΔS) and qst decreased from 82.298 to 38.628 J/mol, and 27.518 kJ/mol to 12.505 kJ/mol, respectively as the moisture content increased from 2 to 14%. The value of isokinetic energy and Gibb's free energy were found to be 364.88 and - 1.596 kJ/mol for freeze dried red cabbage. Graphical abstract
Collapse
Affiliation(s)
- Kasturi Pusty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
- Department of Agricultural Engineering, Assam University, Silchar, Assam India
| | - Kshirod K. Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar, Assam India
| | - V. M. Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210 USA
- Department of Food Agricultural and Biological Engineering, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210 USA
| |
Collapse
|
29
|
Ligarda-Samanez CA, Choque-Quispe D, Moscoso-Moscoso E, Pozo LMF, Ramos-Pacheco BS, Palomino-Rincón H, Gutiérrez RJG, Peralta-Guevara DE. Effect of Inlet Air Temperature and Quinoa Starch/Gum Arabic Ratio on Nanoencapsulation of Bioactive Compounds from Andean Potato Cultivars by Spray-Drying. Molecules 2023; 28:7875. [PMID: 38067603 PMCID: PMC10708246 DOI: 10.3390/molecules28237875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Lizeth M. Flores Pozo
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Rodrigo J. Guzmán Gutiérrez
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Diego E. Peralta-Guevara
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| |
Collapse
|
30
|
Almeida RF, Gomes MHG, Kurozawa LE. Rice bran protein increases the retention of anthocyanins by acting as an encapsulating agent in the spray drying of grape juice. Food Res Int 2023; 172:113237. [PMID: 37689965 DOI: 10.1016/j.foodres.2023.113237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 09/11/2023]
Abstract
Rice bran protein concentrate (RPC), an industrial by-product, may emerge as a green alternative for substituting animal proteins in microencapsulating compounds of interest. This study applied RPC, combined with maltodextrin (MD) as carrier agents, in the spray drying of grape juice, a product rich in these bioactive compounds, seeking to protect anthocyanins from degradation. The effects of carrier agent concentration [C: 0.75, 1.00, and 1.25 g of carrier agents (CA)/g of soluble solids of the juice (SS)] and RPC:CA ratio (P: 0%, as a control sample, 5%, 10%, 15%, and 20%) on anthocyanin retention and powder properties were evaluated. At 1.00 g CA/g SS, the internal and total retentions of anthocyanins improved by 2.4 and 3.2 times, respectively, when the RPC:CA ratio increased from 0% to 20%. The protein also exhibited excellent surface activity on the grape juice and positively influenced the physicochemical properties of the microparticles. There was a reduction in stickiness, degree of caking, and hygroscopicity, in addition to an increased antioxidant capacity when protein was used in combination with MD, especially at 1.00 and 1.25 g CA/g SS. Therefore, this study demonstrated that RPC could enhance the protection of anthocyanins during the spray drying of grape juice.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Matheus Henrique Gouveia Gomes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
31
|
da Silva Júnior ME, Araújo MVRL, Martins ACS, Dos Santos Lima M, da Silva FLH, Converti A, Maciel MIS. Microencapsulation by spray-drying and freeze-drying of extract of phenolic compounds obtained from ciriguela peel. Sci Rep 2023; 13:15222. [PMID: 37709786 PMCID: PMC10502068 DOI: 10.1038/s41598-023-40390-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Microcapsules of ciriguela peel extracts obtained by ultrasound-assisted extraction were prepared by spray drying, whose results were compared with those of freeze-drying as a control. The effects of spray-drying air temperature, feed flow rate and ratio of encapsulating agents (maltodextrin and arabic gum) were studied. Encapsulation efficiency, moisture content, total phenolic compounds (TPC), water activity, hygroscopicity, solubility, colorimetric parameters, phenolic profile by HPLC/DAD, simulated gastrointestinal digestion and morphology of spray-dried and freeze-dried microcapsules were evaluated, as well as their stability of TPC during 90 days storage at 7 and 25 °C. Spray-dried extract showed higher encapsulation efficiency (98.83%) and TPC (476.82 mg GAE g-1) than freeze-dried extract. The most abundant compounds in the liquid extract of ciriguela peel flour were rutin, epicatechin gallate, chlorogenic acid and quercetin. Rutin and myricetin were the major flavonoids in the spray-dried extract, while quercetin and kaempferol were in the freeze-dried one. The simulated gastrointestinal digestion test of microencapsulated extracts revealed the highest TPC contents after the gastric phase and the lowest one after the intestinal one. Rutin was the most abundant compound after the digestion of both spray-dried (68.74 µg g-1) and freeze-dried (93.98 µg g-1) extracts. Spray-dried microcapsules were of spherical shape, freeze-dried products of irregular structures. Spray-dried microcapsules had higher phenolic compounds contents after 90 days of storage at 7 °C compared to those stored at 25 °C, while the lyophilized ones showed no significant difference between the two storage temperatures. The ciriguela agro-industrial residue can be considered an interesting alternative source of phenolic compounds that could be used, in the form of bioactive compounds-rich powders, as an ingredient in pharmaceutical, cosmetic and food industries.
Collapse
Affiliation(s)
| | - Maria Vitória Rolim Lemos Araújo
- Laboratory of Physical-Chemical Analysis of Food, Department of Consumer Sciences, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, PE, 56314-520, Brazil
| | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145, Genoa, Italy
| | - Maria Inês Sucupira Maciel
- Food Science and Technology Graduate Program, Technology Center, Federal University of Paraíba, João Pessoa, Brazil.
- Food Science and Technology Graduate Program, Federal Rural University of Pernambuco, Recife, Brazil.
| |
Collapse
|
32
|
Rodríguez-Cortina A, Hernández-Carrión M. Microcapsules of Sacha Inchi seed oil (Plukenetia volubilis L.) obtained by spray drying as a potential ingredient to formulate functional foods. Food Res Int 2023; 170:113014. [PMID: 37316081 DOI: 10.1016/j.foodres.2023.113014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Sacha Inchi seed oil (SIO) is rich in omega 3, 6, and 9 fatty acids with important health benefits, but is temperature sensitive. Spray drying is a technology that improves the long-term stability of bioactive compounds. This work aimed to study the effect of three different homogenization techniques on some physical properties and bioavailability of microcapsules of Sacha Inchi seed oil (SIO) emulsions obtained by spray drying. Emulsions were formulated with SIO (5%, w/w), maltodextrin:sodium caseinate as wall material (10%, w/w; 85:15), Tween 20 (1%, w/w) and Span 80 (0.5%, w/w) as surfactants and water up to 100% (w/w). Emulsions were prepared using high-speed (Dispermat D-51580, 18,000 rpm, 10 min), conventional (Mixer K-MLIM50N01, Turbo speed, 5 min), and ultrasound probe (Sonics Materials VCX 750, 35% amplitude, 750 W, 30 min) homogenization. SIO microcapsules were obtained in a Mini Spray B-290 (Büchi) using two inlet temperatures of the drying air (150 and 170 °C). Moisture, density, dissolution rate, hygroscopicity, drying efficiency (EY), encapsulation efficiency (EE), loading capacity, and oil release in digestive fluids in vitro were studied. Results showed that the microcapsules obtained by spray-drying had low moisture values and high encapsulation yield and efficiency values (greater than 50% and 70%, respectively). The thermogravimetric analysis indicates that heat protection was assured, enhancing the shelf life and the ability to withstand thermal food processing. Results suggest that spray-drying encapsulation could be a suitable technology to successfully microencapsulate SIO and enhance the absorption of bioactive compounds in the intestine. This work highlights the use of Latin American biodiversity and spray drying technology to ensure the encapsulation of bioactive compounds. This technology represents an opportunity for the development of new functional foods, improving the safety and quality of conventional foods.
Collapse
Affiliation(s)
- A Rodríguez-Cortina
- Universidad de los Andes, Department of Chemical and Food Engineering. Grupo de Diseño de Productos y Procesos (GDPP). Bogotá, Colombia
| | - M Hernández-Carrión
- Universidad de los Andes, Department of Chemical and Food Engineering. Grupo de Diseño de Productos y Procesos (GDPP). Bogotá, Colombia.
| |
Collapse
|
33
|
Ciont C, Difonzo G, Pasqualone A, Chis MS, Ranga F, Szabo K, Simon E, Naghiu A, Barbu-Tudoran L, Caponio F, Lelia Pop O, Cristian Vodnar D. Phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during in vitro gastrointestinal digestion. Food Chem 2023; 428:136778. [PMID: 37421669 DOI: 10.1016/j.foodchem.2023.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Olive leaf was characterized by a high content of phenols and flavonoids (oleuropein, luteolin, and their derivatives), presenting functional and health-related properties. The chemical instability of phenolics through technological processes and their degradation in the digestive system may negatively impact them, leading to lower absorption. This study evaluates the phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during the INFOGEST static in vitro digestion, aiming to enhance stability and sensorial properties. Ultrasound-assisted extraction and chromatography characterized the extract, while spray drying (maltodextrin-glucose) and nano-encapsulation (maltodextrin, whey protein isolate, and arabic gum) techniques were used with specific solutions. Encapsulated formulations underwent microscopy (TEM, SEM) and encapsulation efficiency analysis. Micro- and nano-encapsulation improved biscuit functionality by enhancing phenolic stability during digestion. However, the highest concentration adversely affected sensory and textural parameters. These findings contribute to developing functional food products enriched with bioactive compounds, providing improved health benefits while maintaining sensory attributes.
Collapse
Affiliation(s)
- Călina Ciont
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy.
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Maria Simona Chis
- Department Food Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Florica Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Katalin Szabo
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Elemer Simon
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Anca Naghiu
- Research Institute for Analytical Instrumentation, National Institute of Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| |
Collapse
|
34
|
Li S, Mao X, Guo L, Zhou Z. Comparative Analysis of the Impact of Three Drying Methods on the Properties of Citrus reticulata Blanco cv. Dahongpao Powder and Solid Drinks. Foods 2023; 12:2514. [PMID: 37444253 DOI: 10.3390/foods12132514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Citrus reticulata Blanco cv. Dahongpao is a traditional Chinese citrus variety. Due to the high investment in storage and transport of Citrus reticulata Blanco cv. Dahongpao and the lack of market demand, the fresh fruit is wasted. The processing of fresh fruit into fruit drinks can solve the problem of storage and transport difficulties and open up new markets. Investigating the effects of different drying processes (hot air, freeze, and spray drying) on fruit powders is a crucial step in identifying a suitable production process. The experiment measured the effects of different drying methods (hot air drying, freeze drying, and spray drying) on the nutrient, bioactive substance, and physical characteristics of fruit powder. This study measured the influence of three different drying methods (hot air, freeze, and spray drying) on the nutritional, bioactive substance, and physical characteristics of fruit powder. The results showed that compared to vacuum freeze-drying at low temperature (-60 °C) and spray-drying at high temperatures (150 °C), hot air drying at 50 °C produced fruit powder with superior nutritional quality, higher levels of active substances, and better physical properties. Hot air drying produced fruit powder that had the highest content of amino acids (11.48 ± 0.08 mg/g DW), vitamin C (112.09 ± 2.86 μg/g DW), total phenols (14.78 ± 0.30 mg/g GAE DW), total flavonoids (6.45 ± 0.11 mg/g RE DW), organic acids, and antioxidant activity capacity. Additionally, this method yielded the highest amounts of zinc (8.88 ± 0.03 mg/Kg DW) and soluble sugars, low water content, high solubility, and brown coloration of the fruit powder and juice. Therefore, hot air drying is one of the best production methods for producing high-quality fruit powder in factory production.
Collapse
Affiliation(s)
- Shunjie Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Xiaoxue Mao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
35
|
Bernal-Millán MDJ, Carrasco-Portugal MDC, Heredia JB, Bastidas-Bastidas PDJ, Gutiérrez-Grijalva EP, León-Félix J, Angulo-Escalante MÁ. Green Extracts and UPLC-TQS-MS/MS Profiling of Flavonoids from Mexican Oregano ( Lippia graveolens) Using Natural Deep Eutectic Solvents/Ultrasound-Assisted and Supercritical Fluids. PLANTS (BASEL, SWITZERLAND) 2023; 12:1692. [PMID: 37111915 PMCID: PMC10145289 DOI: 10.3390/plants12081692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Mexican oregano (Lippia graveolens) is an important source of bioactive compounds, such as flavonoids. These have presented different therapeutic properties, including antioxidant and anti-inflammatory; however, their functionality is related to the quantity and type of compounds, and these characteristics depend on the extraction method used. This study aimed to compare different extraction procedures to identify and quantify flavonoids from oregano (Lippia graveolens). Emerging and conventional technologies include maceration with methanol and water, and ultrasound-assisted extraction (UAE) using deep eutectic solvents (DES) such as choline chloride-ethylene glycol, choline chloride-glycerol, and choline chloride-lactic acid. Supercritical fluid extraction using CO2 as a solvent was also studied. Six different extracts were obtained and the total reducing capacity, total flavonoid content, and antioxidant capacity by ABTS•+, DPPH•, FRAP, and ORAC were evaluated. In addition, flavonoids were identified and quantified by UPLC-TQS-MS/MS. Results showed that UAE-DES had the best extraction effect and antioxidant capacity using colorimetric methods. However, maceration-methanol was superior in compound content, and highlighting naringenin and phloridzin were the major compounds. In addition, this extract was microencapsulated by spray drying, which provided a protection feature of their antioxidant potential. Oregano extracts are rich in flavonoids and the microcapsules present promising results for future research.
Collapse
Affiliation(s)
| | - Miriam del Carmen Carrasco-Portugal
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo A.C., Culiacán 80110, Mexico; (M.d.J.B.-M.)
| | | | | | - Josefina León-Félix
- Centro de Investigación en Alimentación y Desarrollo A.C., Culiacán 80110, Mexico; (M.d.J.B.-M.)
| | | |
Collapse
|
36
|
Trindade LRD, Baião DDS, da Silva DVT, Almeida CC, Pauli FP, Ferreira VF, Conte-Junior CA, Paschoalin VMF. Microencapsulated and Ready-to-Eat Beetroot Soup: A Stable and Attractive Formulation Enriched in Nitrate, Betalains and Minerals. Foods 2023; 12:foods12071497. [PMID: 37048318 PMCID: PMC10093833 DOI: 10.3390/foods12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Beetroot is a tuber rich in antioxidant compounds, i.e., betanin and saponins, and is one of the main sources of dietary nitrate. The aim of the present study was to microencapsulate a ready-to-eat beetroot soup by lyophilization using different encapsulating agents, which supply the required amount of bioactive nutrients. Particle size distributions ranged from 7.94 ± 1.74 to 245.66 ± 2.31 µm for beetroot soup in starch and from 30.56 ± 1.66 to 636.34 ± 2.04 µm in maltodextrin. Microparticle yields of powdered beetroot soup in starch varied from 77.68% to 88.91%, and in maltodextrin from 75.01% to 80.25%. The NO3− and total betalain contents at a 1:2 ratio were 10.46 ± 0.22 mmol·100 g−1 fresh weight basis and 219.7 ± 4.92 mg·g−1 in starch powdered beetroot soup and 8.43 ± 0.09 mmol·100 g−1 fresh weight basis and 223.9 ± 4.21 mg·g−1 in maltodextrin powdered beetroot soup. Six distinct minerals were identified and quantified in beetroot soups, namely Na, K, Mg, Mn, Zn and P. Beetroot soup microencapsulated in starch or maltodextrin complied with microbiological quality guidelines for consumption, with good acceptance and purchase intention throughout 90 days of storage. Microencapsulated beetroot soup may, thus, comprise a novel attractive strategy to offer high contents of bioaccessible dietary nitrate and antioxidant compounds that may aid in the improvement of vascular-protective effects.
Collapse
Affiliation(s)
- Lucileno Rodrigues da Trindade
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Davi Vieira Teixeira da Silva
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Cristine Couto Almeida
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Fernanda Petzold Pauli
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Vitor Francisco Ferreira
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
37
|
Tatasciore S, Santarelli V, Neri L, González Ortega R, Faieta M, Di Mattia CD, Di Michele A, Pittia P. Freeze-Drying Microencapsulation of Hop Extract: Effect of Carrier Composition on Physical, Techno-Functional, and Stability Properties. Antioxidants (Basel) 2023; 12:antiox12020442. [PMID: 36830001 PMCID: PMC9951912 DOI: 10.3390/antiox12020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, freeze-drying microencapsulation was proposed as a technology for the production of powdered hop extracts with high stability intended as additives/ingredients in innovative formulated food products. The effects of different carriers (maltodextrin, Arabic gum, and their mixture in 1:1 w/w ratio) on the physical and techno-functional properties, bitter acids content, yield and polyphenols encapsulation efficiency of the powders were assessed. Additionally, the powders' stability was evaluated for 35 days at different temperatures and compared with that of non-encapsulated extract. Coating materials influenced the moisture content, water activity, colour, flowability, microstructure, and water sorption behaviour of the microencapsulates, but not their solubility. Among the different carriers, maltodextrin showed the lowest polyphenol load yield and bitter acid content after processing but the highest encapsulation efficiency and protection of hop extracts' antioxidant compounds during storage. Irrespective of the encapsulating agent, microencapsulation did not hinder the loss of bitter acids during storage. The results of this study demonstrate the feasibility of freeze-drying encapsulation in the development of functional ingredients, offering new perspectives for hop applications in the food and non-food sectors.
Collapse
Affiliation(s)
- Simona Tatasciore
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Veronica Santarelli
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Lilia Neri
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
- Correspondence:
| | - Rodrigo González Ortega
- Faculty of Science and Technology, University of Bolzano, Piazza Università, 39100 Bolzano, Italy
| | - Marco Faieta
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Carla Daniela Di Mattia
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Paola Pittia
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
38
|
Hendrysiak A, Brzezowska J, Nicolet N, Bocquel D, Andlauer W, Michalska-Ciechanowska A. Juice Powders from Rosehip ( Rosa canina L.): Physical, Chemical, and Antiglycation Properties. Molecules 2023; 28:1674. [PMID: 36838668 PMCID: PMC9964629 DOI: 10.3390/molecules28041674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Fruits from rosehip (Rosa canina L.) are gaining popularity due to their content and profile of bioactive components. Rosehip is distinct for its antioxidant, immunomodulatory, and anticancer properties. However, the abundance of these bioactives led to a tart taste, resulting in its consumption mainly in processed form. Due to microbiological safety, pasteurization is the preferred way of processing, which affects the chemical properties of the juice. A promising approach to improve acceptability of rosehip's physical properties, while preserving its bioactive compounds and adding health-promoting benefits, is to enrich the rosehip juice with functional carriers before drying. The influence of the carrier type (maltodextrin, inulin, trehalose, palatinose) and drying technique (spray- and freeze-drying) on the physical, chemical, and antioxidant properties of pasteurized, and non-pasteurized juice powders was examined in this study. In addition, the ability of powders with functional carriers to inhibit protein glycation was evaluated. Spray drying led to products with improved physical properties in relation to freeze-drying. The addition of carrier substances significantly influenced the antioxidant capacity determined by TEAC ABTS and FRAP methods, whereby the application of inulin and palatinose retained antioxidant capacity better than the frequently used maltodextrin. Moreover, rosehip juice powders showed a promising ability to inhibit protein glycation.
Collapse
Affiliation(s)
- Aleksandra Hendrysiak
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Jessica Brzezowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Nancy Nicolet
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| | - Dimitri Bocquel
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| | - Wilfried Andlauer
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| | - Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| |
Collapse
|
39
|
Jafari S, Jafari SM, Ebrahimi M, Kijpatanasilp I, Assatarakul K. A decade overview and prospect of spray drying encapsulation of bioactives from fruit products: Characterization, food application and in vitro gastrointestinal digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
ARAÚJO CDLD, COSTA GFD, DANTAS TD, LIMA TLS, KRAUSKOPF MM, ALVES RDN, BATISTA JMM, Santiago NETO JF, Figueiredo CFVD, ANDRADE ROD, RIBEIRO NL. Use of ultrasound and acerola (Malpighia emarginata) residue extract in meat pork. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
ARAUJO HCS, JESUS MSD, SANDES RDD, NOGUEIRA JP, LEITE NETA MTS, NARAIN N. Evaluation of performance of maltodextrin and gum Arabic usage on volatiles profile of Spray-dried powders of sapota (Manilkara zapota) fruit. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.106322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
42
|
Rodríguez-Cortina A, Rodríguez-Cortina J, Hernández-Carrión M. Obtention of Sacha Inchi ( Plukenetia volubilis Linneo) Seed Oil Microcapsules as a Strategy for the Valorization of Amazonian Fruits: Physicochemical, Morphological, and Controlled Release Characterization. Foods 2022; 11:foods11243950. [PMID: 36553691 PMCID: PMC9777982 DOI: 10.3390/foods11243950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Sacha inchi seed oil (SIO) is a promising ingredient for the development of functional foods due to its large amount of high-value compounds; however, it is prone to oxidation. This work aimed to obtain SIO microcapsules using conventional and ultrasound probe homogenization and using spray- and freeze-drying technologies as effective approaches to improve the long-term stability of functional compounds. The application of ultrasound probe homogenization improved the rheological and emulsifying properties and decreased the droplet size and interfacial tension of emulsions. The microcapsules obtained by both drying technologies had low moisture (1.64-1.76) and water activity (0.03-0.11) values. Spray-dried microcapsules showed higher encapsulation efficiency (69.90-70.18%) compared to freeze-dried ones (60.02-60.16%). Thermogravimetric analysis indicated that heat protection was assured, enhancing the shelf-life. Results suggest that both drying technologies are considered effective tools to produce stable microcapsules. However, spray-drying technology is positioned as a more economical alternative to freeze-drying.
Collapse
Affiliation(s)
- Aureliano Rodríguez-Cortina
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Jader Rodríguez-Cortina
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria—Agrosavia, Mosquera 250047, Colombia
| | - María Hernández-Carrión
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: ; Tel.: +57-1339-49-49 (ext. 1802)
| |
Collapse
|
43
|
Enciso-Huerta HA, Ruiz-Cabrera MA, Lopez-Martinez LA, Gonzalez-Garcia R, Martinez-Gutierrez F, Saavedra-Leos MZ. Evaluation of Two Active System Encapsulant Matrices with Quercetin and Bacillus clausii for Functional Foods. Polymers (Basel) 2022; 14:polym14235225. [PMID: 36501619 PMCID: PMC9741249 DOI: 10.3390/polym14235225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, demand for functional foods is increasing in the public interest in order to improve life expectations and general health. Food matrices containing probiotic microorganisms and active compounds encapsulated into carrier agents are essential in this context. Encapsulation via the lyophilisation method is widely used because oxidation reactions that affect physicochemical and nutritional food properties are usually avoided. Encapsulated functional ingredients, such as quercetin and Bacillus clausii, using two carrier agents' matrices-I [inulin (IN), lactose (L) and maltodextrin (MX)] and II [arabic (A), guar (G), and xanthan (X) gums)]-are presented in this work. A D-optimal procedure involving 59 experiments was designed to evaluate each matrix's yield, viability, and antioxidant activity (AA). Matrix I (33.3 IN:33.3 L:33.3 MX) and matrix II (33.3 A:33.3 G:33.3 X) exhibited the best yield; viability of 9.7 log10 CFU/g and 9.73 log10 CFU/g was found in matrix I (using a ratio of 33.3 IN:33.3 L:33.3 MX) and matrix II (50 G:50 X), respectively. Results for the antioxidant capacity of matrix I (100 IN:0 L:0M X) and matrix II (0 A:50 G:50 X) were 58.75 and 55.54 (DPPH* scavenging activity (10 µg/mL)), respectively. Synergy between matrices I and II with use of 100IN:0L:OMX and 0A:50G:50X resulted in 55.4 log10 CFU/g viability values; the antioxidant capacity was 9. 52 (DPPH* scavenging activity (10 µg/mL). The present work proposes use of a carrier agent mixture to produce a functional ingredient with antioxidant and probiotic properties that exceed the minimum viability, 6.0 log10 CFU/g, recommended by the FAO/WHO (2002) to be probiotic, and that contributes to the recommended daily quercetin intake of 10-16 mg/day or inulin intake of 10-20 g/day and dietary fibre intake of 25-38 g per day.
Collapse
Affiliation(s)
- Hector Alfonso Enciso-Huerta
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
| | - Miguel Angel Ruiz-Cabrera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
| | - Laura Araceli Lopez-Martinez
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo 78600, Mexico
| | - Raul Gonzalez-Garcia
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
| | - Fidel Martinez-Gutierrez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
| | - Maria Zenaida Saavedra-Leos
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, 11 Carretera Cedral Km, 5+600 Ejido San José de las Trojes, Matehuala 78700, Mexico
- Correspondence:
| |
Collapse
|
44
|
Li Z, Sun B, Zhu Y, Liu L, Huang Y, Lu M, Zhu X, Gao Y. Effect of maltodextrin on the oxidative stability of ultrasonically induced soybean oil bodies microcapsules. Front Nutr 2022; 9:1071462. [DOI: 10.3389/fnut.2022.1071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
IntroductionEncapsulation of soybean oil bodies (OBs) using maltodextrin (MD) can improve their stability in different environmental stresses and enhance the transport and storage performance of OBs.MethodsIn this study, the effects of different MD addition ratios [OBs: MD = 1:0, 1:0.5, 1:1, 1:1.5, and 1:2 (v/v)] on the physicochemical properties and oxidative stability of freeze-dried soybean OBs microcapsules were investigated. The effect of ultrasonic power (150–250 W) on the encapsulation effect and structural properties of oil body-maltodextrin (OB-MD) microcapsules were studied.ResultsThe addition of MD to OBs decreased the surface oil content and improved the encapsulation efficiency and oxidative stability of OBs. Scanning electron microscopy images revealed that the sonication promoted the adsorption of MD on the surface of OBs, forming a rugged spherical structure. The oil-body-maltodextrin (OB-MD) microcapsules showed a narrower particle size distribution and a lower-potential absolute value at an MD addition ratio of 1:1.5 and ultrasonic power of 250 W (32.1 mV). At this time, MD-encapsulated OBs particles had the highest encapsulation efficiency of 85.3%. Ultrasonic treatment improved encapsulation efficiency of OBs and increased wettability and emulsifying properties of MD. The encapsulation of OBs by MD was improved, and its oxidative stability was enhanced by ultrasound treatment, showing a lower hydrogen peroxide value (3.35 meq peroxide/kg) and thiobarbituric acid value (1.65 μmol/kg).DiscussionThis study showed that the encapsulation of soybean OBs by MD improved the stability of OBs microcapsules and decreased the degree of lipid oxidation during storage. Ultrasonic pretreatment further improved the encapsulation efficiency of MD on soybean OBs, and significantly enhanced its physicochemical properties and oxidative stability.
Collapse
|
45
|
de Souza Lima AC, Filho EGA, Sampaio LMF, Pontes CM, Afonso MRA, Ribeiro PRV, Canuto KM, Eça KS, de Siqueira Oliveira L. Evaluation of freeze-dried phenolic extract from cashew apple by-product: Physical properties, in vitro gastric digestion and chemometric analysis of the powders. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100149. [PMID: 36573106 PMCID: PMC9789327 DOI: 10.1016/j.fochms.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The aim of this study was to produce powders from the phenolic extract of the cashew by-product using maltodextrin and gum arabic as encapsulating agents to preserve these bioactive compounds and their antioxidative activity. Extraction was assisted by an ultrasound bath to increase the release of the bioactive compounds, resulting in the hydroalcoholic extract from cashew bagasse. The powders were physically and morphologically characterized, and their total phenolics, antioxidant activity and bioaccessibility were evaluated. All parameters were analyzed by chemometrics. In addition, UPLC-HRMS analysis was used to evaluate the phenolic profile of the extracts, revealing that the powders were able to protect some of the original compounds of the extract, such as catechin, the myricetin fraction and quercetin. The powders showed high total phenolic retention capacity, especially maltodextrin (2893.34 ± 20.18 mg GAE/100 g (DW)), which was the encapsulant that preserved the highest content of polyphenols and antioxidant activity after bioaccessibility in comparison to the unencapsulated extract. The powders showed low water activity (<0.2), low moisture (<8%), high solubility (>60 %) and low hygroscopicity (<4%). The SEM analysis showed that lyophilized extract samples resembled broken glass, which is characteristic of the lyophilization process, and in addition to a predominantly amorphous structure as demonstrated by the X-ray diffraction. The extraction and encapsulation of phenolic compounds from the cashew by-product through lyophilization and using maltodextrin and gum arabic as encapsulants enabled their preservation and potential use of these compounds by the nutraceutical or food industry, and can be used as food additive in order to enrich the content of compounds and the antioxidant activity of numerous products.
Collapse
Affiliation(s)
- Antonia Carlota de Souza Lima
- Department of Food Engineering, Federal University of Ceará, Mister Hull Ave. 2997 – Bloco 858 –Pici Campus, Fortaleza, CE, Brazil
| | - Elenilson G. Alves Filho
- Department of Food Engineering, Federal University of Ceará, Mister Hull Ave. 2997 – Bloco 858 –Pici Campus, Fortaleza, CE, Brazil
| | - Lorena Maria Freire Sampaio
- Department of Food Engineering, Federal University of Ceará, Mister Hull Ave. 2997 – Bloco 858 –Pici Campus, Fortaleza, CE, Brazil
| | - Claudilane Martins Pontes
- Department of Food Engineering, Federal University of Ceará, Mister Hull Ave. 2997 – Bloco 858 –Pici Campus, Fortaleza, CE, Brazil
| | - Marcos Rodrigues Amorim Afonso
- Department of Food Engineering, Federal University of Ceará, Mister Hull Ave. 2997 – Bloco 858 –Pici Campus, Fortaleza, CE, Brazil
| | | | - Kirley Marques Canuto
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2270 - Pici, Fortaleza, CE, Brazil
| | - Kaliana Sitonio Eça
- Department of Food Engineering, Federal University of Ceará, Mister Hull Ave. 2997 – Bloco 858 –Pici Campus, Fortaleza, CE, Brazil
| | - Luciana de Siqueira Oliveira
- Department of Food Engineering, Federal University of Ceará, Mister Hull Ave. 2997 – Bloco 858 –Pici Campus, Fortaleza, CE, Brazil,Corresponding author.
| |
Collapse
|
46
|
Cu2O Nanoparticles Deposited on Y2O3 and CuO: Synthesis and Antimicrobial Properties. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThis paper reports the preparation of copper(I) oxide nanoparticles deposited on yttrium oxide and copper(II) oxide in the presence of acerola and white willow extracts. Through the use of natural compounds, it was possible to modify the surface of the Y2O3 and CuO carriers allowing Cu2O to be deposited to a greater extent, thus improving the antibacterial properties of the materials. Cu2O nanoparticles, by being deposited on a carrier, enable an increase in the contact surface of the nanoparticles with microorganisms, which react to form reactive oxygen species. Cu2O nanoparticles with sizes of about 38 nm and 76 nm were obtained for Y2O3- and CuO-deposited nanoparticles, respectively. The Gram-negative bacteria Escherichia coli shown a greater sensitivity to the degree of inhibition compared to Staphylococcus Aureus already at a concentration of 250 mg/L. For almost all materials, the inhibition level remained above 50% after 48 h. Analysis of the effect of the antimicrobial properties of the materials against Candida albicans fungus shown high activity which was obtained only at the highest concentrations of 8000 mg/L, for which the degree of growth inhibition was 100% also after 48 h for both Y2O3–Cu2O and CuO–Cu2O.
Collapse
|
47
|
Corrêa APF, Veras FF, Lago CC, Noreña CPZ, Brandelli A. Microencapsulation upholds biological activities of sheep whey hydrolysates and protects against in vitro gastrointestinal digestion. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
48
|
Microencapsulation of Monascus red pigments by emulsification/internal gelation with freeze/spray-drying: Process optimization, morphological characteristics, and stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Estupiñan‐Amaya M, Fuenmayor CA, López‐Córdoba A. Evaluation of mixtures of maltodextrin and gum Arabic for the encapsulation of Andean blueberry (
Vaccinium meridionale
) juice by freeze–drying. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mauren Estupiñan‐Amaya
- Facultad Seccional Duitama, Escuela de Administración de Empresas Agropecuarias Universidad Pedagógica y Tecnológica de Colombia Carrera 18 con Calle 22 Duitama, Boyacá 150461 Colombia
- Instituto de Ciencia y Tecnología de Alimentos (ICTA) Universidad Nacional de Colombia Av. Carrera 30 # 45‐03 Bogotá 111321 Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA) Universidad Nacional de Colombia Av. Carrera 30 # 45‐03 Bogotá 111321 Colombia
| | - Alex López‐Córdoba
- Facultad Seccional Duitama, Escuela de Administración de Empresas Agropecuarias Universidad Pedagógica y Tecnológica de Colombia Carrera 18 con Calle 22 Duitama, Boyacá 150461 Colombia
| |
Collapse
|
50
|
Viel AM, Figueiredo CCM, Granero FO, Silva LP, Ximenes VF, Godoy TM, Quintas LEM, Silva RMGD. Antiglycation, antioxidant and cytotoxicity activities of crude extract of Turnera ulmifolia L. before and after microencapsulation process. J Pharm Biomed Anal 2022; 219:114975. [DOI: 10.1016/j.jpba.2022.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
|