1
|
Sun Q, Chen X, Ran X, Yin Y, Lei X, Li J, Le T. From traditional to modern: Nanotechnology-driven innovation in mycotoxin sensing for Chinese herbal medicines. Talanta 2025; 288:127681. [PMID: 39938420 DOI: 10.1016/j.talanta.2025.127681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
Mycotoxin contamination in Chinese herbal medicines (CHMs) is a pressing concern that jeopardizes their quality and safety, despite their widespread therapeutic use. Conventional detection methods are often limited by complexity, cost, and sensitivity, particularly in resource-limited settings. This gap in effective and efficient mycotoxin detection necessitates a comprehensive review that explores innovative solutions to enhance the safety and efficacy of CHMs. Advancements in nanomaterials and related advanced sensing techniques have emerged as a beacon of hope. Therefore, this review aims to fill the knowledge gap by providing a comprehensive overview of the latest developments in mycotoxin detection in CHMs, spotlighting the transformative role of nanomaterials and advanced sensing techniques. This review stands out for its in-depth exploration of functional nanomaterials across dimensions and their innovative applications in mycotoxin detection. Its innovation stems from a holistic approach that not only surveys current technologies but also charts a forward-looking path, emphasizing novel nanomaterial development, refined pretreatment, and advanced biosensing for on-site detection. It delves into the integration of nanomaterials with advanced sensing technologies, discussing the advantages and limitations of these approaches. A significant innovation of this review lies in the nuanced integration of nanomaterials with machine learning and artificial intelligence, revealing untapped potential for accuracy enhancement. Through this synthesis of knowledge, we hope to inspire further research and development in this critical area, ensuring the continued safe use of CHMs in traditional medicine practices.
Collapse
Affiliation(s)
- Qi Sun
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Xiang Chen
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Xueyan Ran
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Yin
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Xianlu Lei
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Jianmei Li
- Institute of Intelligent Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Tao Le
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| |
Collapse
|
2
|
Lv Q, Xu W, Yang F, Wei W, Chen X, Zhang Z, Liu Y. Reproductive Toxicity of Zearalenone and Its Molecular Mechanisms: A Review. Molecules 2025; 30:505. [PMID: 39942610 PMCID: PMC11821083 DOI: 10.3390/molecules30030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Zearalenone (ZEA) is one of the common mycotoxins in feeds. ZEA and its metabolites have estrogen-like activity and can competitively bind to estrogen receptors, causing reproductive dysfunction and damage to reproductive organs. The toxicity mechanism of ZEA mainly inhibits the antioxidant pathway and antioxidant enzyme activity, induces cell cycle arrest and DNA damage, and blocks the process of cellular autophagy to produce toxic effects. In animal husbandry practice, when animals ingest ZEA-contaminated feed, it is likely to lead to abortion in females, abnormal sperm viability in males with inflammatory reactions in various organs, and cancerous changes in the reproductive organs of humans when they ingest contaminated animal products. In this paper, we reviewed in detail how ZEA induces oxidative damage by inducing the generation of reactive oxygen species (ROS) and regulating the expression of genes related to oxidative pathways, induces germ cell apoptosis through the mitochondrial and death receptor pathways, and activates the expression of genes related to autophagy in order to induce cellular autophagy. In addition, the molecular detoxification mechanism of ZEA is also explored in this paper, aiming to provide a new direction and theoretical basis for the development of new ZEA detoxification methods to better reduce the global pollution and harm caused by ZEA.
Collapse
Affiliation(s)
- Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, China; (W.X.); (W.W.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Guo Z, Zhang M, Zhang H, Ren X, Xiao Y, Sun W, Wang Y, Liu S, Huang J. Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching. Mikrochim Acta 2024; 192:33. [PMID: 39725729 DOI: 10.1007/s00604-024-06883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB2+), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg2+-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy. The presence of OTA triggers CHA and signaling responses along with the formation of G-quadruplex-hemin DNAzyme, which promotes the oxidation of TMB with H2O2, leading to the etching of AuNRs and a reduction in their aspect ratio. AuNRs experienced a blue shift in the longitudinal localized surface plasmon resonance peak, resulting in a color change. The technique has been shown to detect OTA with a low detection limit of 0.309 pg/mL, demonstrating high sensitivity and specificity. The detection technique offers versatility by enabling the detection of other pollutants through a simple replacement of the aptamer, expanding the range of detection platforms available for pollutant determinations.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mingshuo Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Haiping Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xinru Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yijing Xiao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Weiqing Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China.
| |
Collapse
|
4
|
Feng X, Xu Q, Liu Y, Wang S, Cao Y, Zhao C, Peng S. Smartphone-enabled colorimetric immunoassay for deoxynivalenol based on Mn 2+-mediated aggregation of AuNPs. Anal Biochem 2024; 692:115572. [PMID: 38777290 DOI: 10.1016/j.ab.2024.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Deoxynivalenol (DON) is a common mycotoxin in food that mainly pollutes grain crops and feeds, such as barley, wheat and corn. DON has caused widespread concern in the field of food and feed safety. In this study, a colorimetric immunoassay was proposed based on the aggregation of gold nanoparticles (AuNPs) due to the decomposition of Mn2+ from gold-coated manganese dioxide (AuNP@MnO2) nanosheets. In this study, 2-(dihydrogen phosphate)-l-ascorbic acid (AAP) was hydrolyzed by alkaline phosphatase (ALP) and converted to ascorbic acid (AA). Then, AuNP@MnO2 was reduced to Mn2+ and AuNPs aggregation occurred. Using the unique optical characteristics of AuNPs and AuNP@MnO2, visible color changes realized simple detection of DON with high sensitivity and portability. With increasing DON content, the color changed more obviously. To quantitatively detect DON, pictures can be taken and the blue value can be read by a smartphone. The detection limit (Ic10) of this method was 0.098 ng mL-1, which was 326 times higher than that of traditional competitive ELISA, and the detection range was 0.177-6.073 ng mL-1. This method exhibited high specificity with no cross-reaction in other structural analogs. The average recovery rate of DON in corn flour samples was 89.1 %-110.2 %, demonstrating the high accuracy and stability of this assay in actual sample detection. Therefore, the colorimetric immunoassay can be used for DON-related food safety monitoring.
Collapse
Affiliation(s)
- Xinrui Feng
- College of Public Health, Jilin Medical University, Jilin, Jilin, China; Medical College, Yanbian University, Yanji, Jilin, China
| | - Qinwei Xu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, Jilin, China
| | - Sijia Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
| | - Yong Cao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
| | - Chen Zhao
- College of Public Health, Jilin Medical University, Jilin, Jilin, China; Medical College, Yanbian University, Yanji, Jilin, China.
| | - Shuai Peng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Zhou HX, Jiang Q, He X, Fu X, Liu JY. A complementary method with PFBBr-derivatization based on a GC-EI-MS platform for the simultaneous quantitation of short-, medium- and long-chain fatty acids in murine plasma and feces samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2330-2339. [PMID: 38562090 DOI: 10.1039/d3ay02271d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fatty acids (FAs) are essential molecules in all organisms and are involved in various physiological and pathophysiological processes. Pentafluorobenzyl bromide (PFBBr) is commonly used for FA derivatization for gas chromatography-mass spectrometry (GC-MS) quantification by chemical ionization (CI). While CI is the conventional ionization mode for PFBBr derivatization, the electron ionization (EI) source has also demonstrated efficacy in achieving satisfactory analytical performance for the analysis of PFB esters. In this study, we present a novel approach utilizing PFBBr-derivatization on a GC-EI-MS platform to quantitatively analyze a comprehensive range of 44 fatty acids (FAs) spanning from C2 to C24. The method's sensitivity, precision, accuracy, linearity, recovery, and matrix effect were rigorously validated against predetermined acceptance criteria. In comparison to the conventional CI ionization mode, the utilization of PFBBr-derivatization in GC-EI-MS exhibits a wider range of applications and achieves comparable sensitivity levels to the conventional CI platform. By using this method, we successfully quantified 44 FAs in plasma and feces samples from the mice with deoxynivalenol (DON)-induced kidney injury. Among these, the levels of most FA species were increased in the DON-exposure group compared with the control group. The orthogonal partial least squares discriminant analysis (OPLS-DA) of all the tested FAs showed a visual separation of the two groups, indicating DON exposure resulted in a disturbance of the FA profile in mice. These results indicate that the established method by integration of GC-MS with PFBBr derivatization is an efficient approach to quantify the comprehensive FA profile, which includes short-, medium- and long-chain FAs. In addition, our study provides new insights into the mechanism underlying DON exposure-induced kidney injury.
Collapse
Affiliation(s)
- Hong-Xu Zhou
- CNTTI of the Institute of Life Sciences & Anesthesia Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, 400016, China
| | - Qing Jiang
- CNTTI of the Institute of Life Sciences & Anesthesia Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, 400016, China
| | - Xin He
- CNTTI of the Institute of Life Sciences & Anesthesia Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, 400016, China
| | - Xian Fu
- CNTTI of the Institute of Life Sciences & Anesthesia Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Anesthesia Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, 400016, China
| |
Collapse
|
6
|
Li HZ, Yang C, Qian HL, Xu ST, Yan XP. Pore Size Adjustment Strategy for the Fabrication of Molecularly Imprinted Covalent Organic Framework Nanospheres at Room Temperature for Selective Extraction of Zearalenone in Cereal Samples. Anal Chem 2024; 96:3561-3568. [PMID: 38372135 DOI: 10.1021/acs.analchem.3c05512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Covalent organic frameworks (COFs) are attractive adsorbents for sample pretreatment due to their unique structure and properties. However, the selectivity of COFs for the extraction of hazardous compounds is still limited due to the lack of specific interactions between COFs and targets. Herein, we report a pore size adjustment strategy for room-temperature synthesis of molecularly imprinted COF (MICOF) for selective extraction of zearalenone (ZEN) in complex food samples. The three-dimensional building block tetra(4-aminophenyl) methane was used as a functional monomer, while dialdehyde monomers with different numbers of benzene ring were used to adjust the pore size of MICOF to match with the size of ZEN molecules. The prepared MICOF gave the largest adsorption capacity of 177.2 mg g-1 and the highest imprinting factor of 10.1 for ZEN so far. MICOF was used as the adsorbent for dispersed solid-phase extraction in combination with high-performance liquid chromatography for the determination of trace ZEN in cereals. The high selectivity of the developed method allows simple aqueous standard calibration for the matrix effect-free determination of ZEN in food samples. The limit of detection and the recoveries of the developed method were 0.21 μg kg-1 and 93.7-101.4%, respectively. The precision for the determination of ZEN was less than 3.8% (RSD, n = 6). The developed method is promising for the selective determination of ZEN in complex matrices.
Collapse
Affiliation(s)
- Hao-Ze Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Li X, Zhang L, Yang M, Wang R, Zong S, Ning X, Lv Y, Wang X, Ji W. Synthesis of an ordered macroporous metal-organic framework for efficient solid-phase extraction of aflatoxins from milk products. J Chromatogr A 2024; 1713:464520. [PMID: 37995545 DOI: 10.1016/j.chroma.2023.464520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Aflatoxins (AFs) exhibit hepatotoxicity, immunotoxicity, and carcinogenicity, and their detection in food has attracted widespread concern. An ordered macroporous metal-organic framework (OM-ZIF-8) based on solid-phase extraction (SPE) was used to extract six AFs from milk products. The SPE conditions, including eluting solvent, eluting volume, amounts of OM-ZIF-8, pH of loading solution, loading solvent, ionic strength, loading flow rate, and elution flow rate, were exhaustively optimized. Under optimal parameters, the six AFs were detected by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The OM-ZIF-8 exhibited satisfactory AFs extraction performance through ordered macropore structure, π-π interaction, coordination interaction, and electrostatic interaction. Furthermore, linearity in the range of 0.01-100 ng mL-1 with low detection limits of 0.002-0.0150 ng mL-1 was obtained, and the relative recoveries of AFs were 80.3-110 % with relative standard deviation ≤8.7 %. Thus, this research provides a promising platform for the analysis of trace AFs in complex foods.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lidan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Mingzhu Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Shaojun Zong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaobei Ning
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yingchao Lv
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
8
|
Lou Y, Xu Q, Chen J, Yang S, Zhu Z, Chen D. Advancements in Sample Preparation Methods for the Chromatographic and Mass Spectrometric Determination of Zearalenone and Its Metabolites in Food: An Overview. Foods 2023; 12:3558. [PMID: 37835213 PMCID: PMC10572225 DOI: 10.3390/foods12193558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zearalenone and its metabolites are mycotoxins generated by Fusarium species while crops are growing and can typically be found in various foods, posing a risk to human health. Governments have implemented stricter regulations concerning the permissible levels of zearalenone in food products to safeguard public health. Stricter regulations on zearalenone levels in food have been implemented. However, detecting zearalenone and its metabolites remains challenging due to sample complexity and interference. Surprisingly few reviews of sample preparation methods for zearalenone in food have appeared in the past decade. In this overview, we outline the most recent developments in the sample pre-treatment technology of zearalenone and its metabolites in food samples based on chromatography-mass spectrometry methods since 2012. This review covers some prominent technologies, such as liquid-liquid extraction-based methods, solid-phase extraction-based methods, and QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction, providing valuable insights into their advantages and limitations for potential applications. The assessment of the methods discussed, along with an overview of current challenges and prospects, will guide researchers in advancing the field and ensuring safer food quality for consumers worldwide.
Collapse
Affiliation(s)
- Yifeng Lou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Qingyang Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Jiaqi Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| | - Zheng Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. Nanoscale Materials Applying for the Detection of Mycotoxins in Foods. Foods 2023; 12:3448. [PMID: 37761156 PMCID: PMC10528894 DOI: 10.3390/foods12183448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
Collapse
Affiliation(s)
- Xiaochun Hu
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilin Li
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xintao Wen
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Kaboodi A, Mirzaei H, Katiraee F, Javadi A, Afshar Mogaddam MR. Development of deep eutectic solvent-based microwave-assisted extraction combined with temperature controlled ionic liquid-based liquid phase microextraction for extraction of aflatoxins from cheese samples. J Sep Sci 2023; 46:e2300068. [PMID: 37407502 DOI: 10.1002/jssc.202300068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
In this study, for the first time, a deep eutectic solvent-based microwave-assisted extraction was combined with ionic liquid-based temperature controlled liquid phase microextraction for the extraction of several aflatoxins from cheese samples. Briefly, the analytes are extracted from cheese sample (3 g) into a mixture of 1.5 mL choline chloride:ethylene glycol deep eutectic solvent and 3.5 mL deionized water by exposing to microwave irradiations for 60 s at 180 W. The liquid phase was taken and mixed with 55 μL 1-hexyl-3-methylimidazolium hexafluorophosphate. By cooling the solution in the refrigerator centrifuge, a turbid state was obtained and the analytes were extracted into the ionic liquid droplets. The analytes were determined by high-performance liquid chromatography equipped with fluorescence detector. Low limits of detection (9-23 ng kg-1 ) and quantification (30-77 ng kg-1 ), high extraction recovery (66%-83%), acceptable enrichment factor (40-50), and good precision (relative standard deviations ≤ 5.2%) were obtained using the offered approach. These results reveal the high extraction capability of the method for determination of aflatoxins in the cheese samples. In this method, there was no need for organic solvents and it can be considered as green extraction method.
Collapse
Affiliation(s)
- Aso Kaboodi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Hamid Mirzaei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
- Health Promotion Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Farzad Katiraee
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Afshin Javadi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
- Health Promotion Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Marins-Gonçalves L, Martins Ferreira M, Rocha Guidi L, De Souza D. Is chemical analysis suitable for detecting mycotoxins in agricultural commodities and foodstuffs? Talanta 2023; 265:124782. [PMID: 37339540 DOI: 10.1016/j.talanta.2023.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
The assessment of the risks of mycotoxins to humans through consuming contaminated foods resulted in specific legislation that evaluates the presence, quantities, and type of mycotoxins in agricultural commodities and foodstuffs. Thus, to ensure compliance with legislation, food safety and consumer health, the development of suitable analytical procedures for identifying and quantifying mycotoxins in the free or modified form, in low-concentration and in complex samples is necessary. This review reports the application of the modern chemical methods of analysis employed in mycotoxin detection in agricultural commodities and foodstuffs. It is reported extraction methods with reasonable accuracy and those present characteristics according to guidelines of Green Analytical Chemistry. Recent trends in mycotoxins detection using analytical techniques are presented and discussed, evaluating the robustness, precision, accuracy, sensitivity, and selectivity in the detection of different classes of mycotoxins. Sensitivity coming from modern chromatographic techniques allows the detection of very low concentrations of mycotoxins in complex samples. However, it is essential the development of more green, fast and more suitable accuracy extraction methods for mycotoxins, which agricultural commodities producers could use. Despite the high number of research reporting the use of chemically modified voltammetric sensors, mycotoxins detection still has limitations due to the low selectivity from similar chemical structures of mycotoxins. Furthermore, spectroscopic techniques are rarely employed due to the limited number of reference standards for calibration procedures.
Collapse
Affiliation(s)
- Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Mariana Martins Ferreira
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Letícia Rocha Guidi
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil.
| |
Collapse
|
12
|
Yang L, Wang J, Li CY, Liu Q, Wang J, Wu J, Lv H, Ji XM, Liu JM, Wang S. Hollow-structured molecularly imprinted polymers enabled specific enrichment and highly sensitive determination of aflatoxin B1 and sterigmatocystin against complex sample matrix. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131127. [PMID: 36871463 DOI: 10.1016/j.jhazmat.2023.131127] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The biotoxins with high toxicity have the potential to be manufactured into biochemical weapons, seriously threatening international public security. Developing robust and applicable sample pretreatment platforms and reliable quantification methods has been recognized as the most promising and practical approach to solving these problems. Through the integration of the hollow-structured microporous organic networks (HMONs) as the imprinting carriers, we proposed a molecular imprinting platform (HMON@MIP) with enhanced adsorption performance in terms of specificity, imprinting cavity density as well as adsorption capacity. The HMONs core of MIPs provided a hydrophobic surface that enhanced the adsorption of biotoxin template molecules during the imprinting process, resulting in an increased imprinting cavity density. The HMON@MIP adsorption platform could produce a series of MIP adsorbents by changing the biotoxin template, such as aflatoxin and sterigmatocystin, and showed promising generalizability. The limits of detection (LOD) of the HMON@MIP-based preconcentration method for AFT B1 and ST were 4.4 and 6.7 ng L-1, respectively, and the method was applicable to food sample with satisfied recoveries of 81.2-95.1%. And the specific recognition and adsorption sites left on HMON@MIP by the imprinting process can achieve outstanding selectivity for AFT B1 and ST. The developed imprinting platforms hold great potential for application in the identification and determination of various food hazards in complex food sample matrices and contribute to precise food safety inspection.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue-Meng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Detoxification impacts of dietary probiotic and prebiotic supplements against aflatoxins: an updated knowledge. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
The widespread prevalence of food pollutants seriously threatens human and animal health. Mycotoxins are secondary metabolites primarily formed by toxigenic fungal genera, including Aspergillus, Penicillium, Fusarium, and Alternaria, demonstrating one of the principal pollutants in diets or feed products. Mycotoxin contamination in food can harm health, including stunted development, immune system suppression, infertility, vomiting, and gastrointestinal and cancerous conditions. These effects can occur both acutely and chronically. The complex food chain can be contaminated with mycotoxins at any point, including during harvest, industrial processing, shipping, or storage, putting the food sector under societal pressure owing to the waste generated by infected goods. One of the biological controls of mycotoxin is provided by probiotics and prebiotics, controlled as foods and dietary supplements made of bacteria or yeast. Aflatoxin's bioavailability and gastrointestinal absorption can be reduced using various probiotics and prebiotics.
Collapse
|
14
|
Bian Y, Zhang Y, Zhou Y, Wei B, Feng X. Recent Insights into Sample Pretreatment Methods for Mycotoxins in Different Food Matrices: A Critical Review on Novel Materials. Toxins (Basel) 2023; 15:toxins15030215. [PMID: 36977106 PMCID: PMC10053610 DOI: 10.3390/toxins15030215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Mycotoxins pollution is a global concern, and can pose a serious threat to human health. People and livestock eating contaminated food will encounter acute and chronic poisoning symptoms, such as carcinogenicity, acute hepatitis, and a weakened immune system. In order to prevent or reduce the exposure of human beings and livestock to mycotoxins, it is necessary to screen mycotoxins in different foods efficiently, sensitively, and selectively. Proper sample preparation is very important for the separation, purification, and enrichment of mycotoxins from complex matrices. This review provides a comprehensive summary of mycotoxins pretreatment methods since 2017, including traditionally used methods, solid-phase extraction (SPE)-based methods, liquid-liquid extraction (LLE)-based methods, matrix solid phase dispersion (MSPD), QuEChERS, and so on. The novel materials and cutting-edge technologies are systematically and comprehensively summarized. Moreover, we discuss and compare the pros and cons of different pretreatment methods and suggest a prospect.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| |
Collapse
|
15
|
Wang Y, Hou C, Dai Y, Chu L, Geng S, Zheng S, Kang X. Determination of aflatoxin B1 by novel nanofiber-packed solid-phase extraction coupled with a high performance liquid chromatography-fluorescence detector. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:472-481. [PMID: 36602291 DOI: 10.1039/d2ay01753a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel analytical proposal based on nanofiber-packed solid-phase extraction coupled with high performance liquid chromatography-fluorescence detector (HPLC-FLD) has been successfully developed for determining aflatoxin B1 (AFB1) in foods. Four types of nanofibers, including polystyrene (PS) nanofibers, polypyrrole (PPY) nanofibers, polystyrene-acrylic resin (PS-AR) nanofibers, and polystyrene-polyvinyl pyrrolidone (PS-PVP) nanofibers, were fabricated by electrospinning and utilized to prepare a home-made extraction device. In this study, the factors of different fibers, namely, fiber dosage, pH of extraction solution, type of salt ion, concentration of salt ion, and volume of the eluent were optimized. Under optimized conditions, the method showed good linearity in the range of 0.1-40 ng mL-1 with a correlation coefficient greater than 0.999 and good inter-day accuracy (90.8-112.7% recovery) and precision (1.8-3.6% intra-day RSDs, 2.6% inter-day RSD), and the limit of detection (LOD) was 0.05 ng mL-1. Due to its cost-effective, time-saving, environmentally friendly, and simple performance, it has the potential to be utilized to determine aflatoxins in complicated matrices.
Collapse
Affiliation(s)
- Yunzheng Wang
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Hou
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqi Dai
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lanling Chu
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shiwei Geng
- Animal Products Quality Inspection and Test Center in Jiangsu Province, Nanjing 210036, China
| | - Shenglan Zheng
- Animal Products Quality Inspection and Test Center in Jiangsu Province, Nanjing 210036, China
| | - Xuejun Kang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
16
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
17
|
Bhagat S, Singh S. Nanominerals in nutrition: Recent developments, present burning issues and future perspectives. Food Res Int 2022; 160:111703. [DOI: 10.1016/j.foodres.2022.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
18
|
Wang W, Liu T, Wang Y, Mu G, Zhang F, Yang Q, Hou X. Hydrophilic Covalent Organic Frameworks Coated Steel Sheet As a Mass Spectrometric Ionization Source for the Direct Determination of Zearalenone and Its Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12211-12219. [PMID: 36100997 DOI: 10.1021/acs.jafc.2c02868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zearalenone has attracted worldwide attention due to its toxic properties and threat to public health. A rapid determination method for zearalenone and its derivatives by hydrophilic covalent organic frameworks coated steel sheet (HCOFCS) combined with ambient mass spectrometry (AMS) was developed. The HCOFCS behaved as both a tip for solid-phase microextraction and a solid substrate for electrospray ionization mass spectrometry (ESI-MS). To evaluate the HCOFCS-ESI-MS method, five zearalenone and its derivatives in milk samples were determined, including zearalenone (ZEA), α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol (α-ZAL), and β-zearalanol (β-ZAL). After the extraction procedure, the HCOFCS was directly added with a high voltage for ESI-MS, and the analysis could be completed within 1 min. The developed method showed good linearity in the range 0.1-100 μg/L with a coefficient of determination (R2) > 0.9991. The limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.05 to 0.1 and 0.2 to 0.3 μg/L, respectively. The results demonstrated that the HCOFCS combined with ESI-MS can be used for the rapid and sensitive determination of trace ZEA and its derivatives in milk samples with satisfactory recoveries from 80.58% to 109.98% and reproducibility with relative standard deviations (RSDs) no more than 11.18%. Furthermore, HCOFCS showed good reusability, which could reuse at least 10 extraction cycles with satisfactory adsorption performance.
Collapse
Affiliation(s)
- Wenhua Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Youfa Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Guodong Mu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiudan Hou
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
19
|
Zhang Z, Cai Y, Fan K, Huang Q, Zhao X, Cao H, Zhao Z, Tangni EK, Han Z. Development of a reliable UHPLC-MS/MS method for simultaneous determination of zearalenone and zearalenone-14-glucoside in various feed products. Front Chem 2022; 10:955266. [PMID: 36034652 PMCID: PMC9399508 DOI: 10.3389/fchem.2022.955266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
A reliable ultra-high-performance liquid chromatography-tandem mass spectrometry method (UHPLC-MS/MS) was developed for the simultaneous determination of two mycotoxins, that is, zearalenone (ZEN) and zearalenone-14-glucoside (ZEN-14G) in formula feed, concentrated feed, and premixed feed products. An improved sample pretreatment was achieved with the hydrophilic-lipophilic balance (HLB) cartridges efficiently removing the impurities and enriching the target analytes in different feeds. The critical parameters affecting the performance of the solid-phase extraction (SPE) procedure were carefully optimized, and 20% acetonitrile in water as the loading solution, 50% methanol in water as the washing solvent, and 5 ml of methanol as the elution solvent yielded the optimal purification efficiencies. The established method was thoroughly validated in terms of linearity (R 2 ≥ 0.999), sensitivity (limit of quantification in the range of 0.50-5.00 μg kg-1), recovery (89.35 ± 2.67% to 110.93 ± 1.56%), and precision (RSD, 3.00-14.20%), and it was then successfully applied to investigate a total of 60 feed samples. Among them, 50 samples were found to be contaminated with ZEN (an incidence of 83.3%) at levels ranging from 0.63 to 615.24 μg kg-1, whereas 22 samples were contaminated with ZEN-14G (an incidence of 36.7%) in the range of 0.89-15.31 μg kg-1. The developed method proved to be a specific and reliable tool for intensive monitoring of ZEN and ZEN-14G in complex feed matrices.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yaling Cai
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Kai Fan
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiuying Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haojie Cao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Emmanuel K. Tangni
- Organic Contaminants and Additives, Chemical and Physical Health Risks, Brussels, Belgium
| | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
20
|
Chen J, Ye J, Li L, Wu Y, Liu H, Xuan Z, Chen M, Wang S. One-step automatic sample pretreatment for rapid, simple, sensitive, and efficient determination of aflatoxin M1 in milk by immunomagnetic beads coupled to liquid chromatography-tandem mass spectrometry. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Tang Z, Liu F, Fang F, Ding X, Han Q, Tan Y, Peng C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J Sep Sci 2022; 45:2273-2300. [PMID: 35389521 DOI: 10.1002/jssc.202200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of SPE techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Liu
- Technology Center of Chengdu Customs District P. R. China, Chengdu, China
| | - Fang Fang
- Urumqi Customs District P. R. China, Urumqi, China
| | - Xuelu Ding
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
An ultrasensitive electrochemical aptasensor based on Pd@PCN-222 as a signal probe coupled with exonuclease III-assisted cycling amplification for the detection of ochratoxin A. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Mohebbi A, Nemati M, Mogaddam MRA, Farajzadeh MA, Lotfipour F. Dispersive micro–solid–phase extraction of aflatoxins from commercial soy milk samples using a green vitamin–based metal–organic framework as an efficient sorbent followed by high performance liquid chromatography–tandem mass spectrometry determination. J Chromatogr A 2022; 1673:463099. [DOI: 10.1016/j.chroma.2022.463099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
24
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
25
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
26
|
Wang YF, Mu GD, Wang XJ, Zhang F, Li YL, Lu DJ, Chen FM, Yang ML, He MY, Liu T. Fast construction of core-shell structured magnetic covalent organic framework as sorbent for solid-phase extraction of zearalenone and its derivatives prior to their determination by UHPLC-MS/MS. Mikrochim Acta 2021; 188:246. [PMID: 34235593 DOI: 10.1007/s00604-021-04893-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
Magnetic covalent organic framework nanocomposite denoted as Fe3O4@TAPB-Tp with core-shell structure was fabricated via a simple template-mediated precipitation polymerization method at mild conditions. The polyimine network shell was created through the polymerization of 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and 1,3,5-triformyl-phloroglucinol (Tp) in tetrahydrofuran (THF) by the Schiff-base reaction. Featuring with large specific surface area (163.19 m2 g-1), good solution dispersibility, and high stability, the obtained Fe3O4@TAPB-Tp exhibited high adsorption capacities and fast adsorption for zearalenone and its derivatives (ZEAs). The adsorption isotherms showed multilayer adsorption dominated at low concentration and monolayer adsorption at high concentration between the interface of ZEAs and Fe3O4@TAPB-Tp. With the Fe3O4@TAPB-Tp as sorbent, a magnetic solid-phase extraction-ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for simultaneous adsorption and detection of five ZEAs in complex samples. The proposed method displayed favorable linearity, low limits of detection (0.003 ~ 0.018 μg kg-1), and good repeatability (2.37~10.4%). The developed method has been applied for real sample analysis, with recoveries of 81.27~90.26%. These results showed that Fe3O4@TAPB-Tp has a good application potential for the adsorption of ZEAs in food samples. Magnetic covalent organic framework nanocomposite (Fe3O4@TAPB-Tp) were quickly fabricated at mild conditions and used as effective adsorbent for magnetic solid-phase extraction of zearalenone and its derivatives (ZEAs) from food samples prior to ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis.
Collapse
Affiliation(s)
- You-Fa Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,School of Light Work and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Guo-Dong Mu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiu-Juan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Yin-Long Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Deng-Jun Lu
- School of Light Work and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Feng-Ming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Min-Li Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Mu-Yi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
27
|
Gao J, He S, Nag A, Wong JWC. A Review of the Use of Carbon Nanotubes and Graphene-Based Sensors for the Detection of Aflatoxin M1 Compounds in Milk. SENSORS (BASEL, SWITZERLAND) 2021; 21:3602. [PMID: 34064254 PMCID: PMC8196808 DOI: 10.3390/s21113602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
This paper presents a comprehensive review of the detection of aflatoxin compounds using carbon allotrope-based sensors. Although aflatoxin M1 and its derivative aflatoxin B1 compounds have been primarily found in milk and other food products, their presence above a threshold concentration causes disastrous health-related anomalies in human beings, such as growth impairment, underweight and even carcinogenic and immunosuppressive effects. Among the many sensors developed to detect the presence of these compounds, the employment of certain carbon allotropes, such as carbon nanotubes (CNTs) and graphene, has been highly preferred due to their enhanced electromechanical properties. These conductive nanomaterials have shown excellent quantitative performance in terms of sensitivity and selectivity for the chosen aflatoxin compounds. This paper elucidates some of the significant examples of the CNTs and graphene-based sensors measuring Aflatoxin M1 (ATM1) and Aflatoxin B1 (AFB1) compounds at low concentrations. The fabrication technique and performance of each of the sensors are shown here, as well as some of the challenges existing with the current sensors.
Collapse
Affiliation(s)
- Jingrong Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Shan He
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park 5042, Australia
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Anindya Nag
- School of Information Science and Engineering, Shandong University, Jinan 251600, China
| | - Jonathan Woon Chung Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong 999077, Hong Kong, China;
| |
Collapse
|
28
|
Jing W, Wang J, Kuipers B, Bi W, Chen DDY. Recent applications of graphene and graphene-based materials as sorbents in trace analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. Aflatoxin Detoxification Using Microorganisms and Enzymes. Toxins (Basel) 2021; 13:toxins13010046. [PMID: 33435382 PMCID: PMC7827145 DOI: 10.3390/toxins13010046] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxin contamination causes significant economic loss to food and feed industries and seriously threatens human health. Aflatoxins (AFs) are one of the most harmful mycotoxins, which are produced by Aspergillus flavus, Aspergillus parasiticus, and other fungi that are commonly found in the production and preservation of grain and feed. AFs can cause harm to animal and human health due to their toxic (carcinogenic, teratogenic, and mutagenic) effects. How to remove AF has become a major problem: biological methods cause no contamination, have high specificity, and work at high temperature, affording environmental protection. In the present research, microorganisms with detoxification effects researched in recent years are reviewed, the detoxification mechanism of microbes on AFs, the safety of degrading enzymes and reaction products formed in the degradation process, and the application of microorganisms as detoxification strategies for AFs were investigated. One of the main aims of the work is to provide a reliable reference strategy for biological detoxification of AFs.
Collapse
Affiliation(s)
- Yun Guan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
- Correspondence: (M.L.); (W.W.); (K.K.)
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.L.); (W.W.); (K.K.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (M.L.); (W.W.); (K.K.)
| |
Collapse
|
30
|
Mycotoxins Analysis in Cereals and Related Foodstuffs by Liquid Chromatography-Tandem Mass Spectrometry Techniques. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8888117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the entire world, cereals and related foodstuffs are used as an important source of energy, minerals, and vitamins. Nevertheless, their contamination with mycotoxins kept special attention due to harmful effects on human health. The present paper was conducted to evaluate published studies regarding the identification and characterization of mycotoxins in cereals and related foodstuffs by liquid chromatography coupled to (tandem) mass spectrometry (LC-MS/MS) techniques. For sample preparation, published studies based on the development of extraction and clean-up strategies including solid-phase extraction, solid-liquid extraction, and immunoaffinity columns, as well as on methods based on minimum clean-up (quick, easy, cheap, effective, rugged, and safe (QuEChERS)) technology, are examined. LC-MS/MS has become the golden method for the simultaneous multimycotoxin analysis, with different sample preparation approaches, due to the range of different physicochemical properties of these toxic products. Therefore, this new strategy can be an alternative for fast, simple, and accurate determination of multiclass mycotoxins in complex cereal samples.
Collapse
|
31
|
Yang S, Luo Y, Mu L, Yang Y, Yang Y. Risk screening of mycotoxins and their derivatives in dairy products using a stable isotope dilution assay and LC-MS/MS. J Sep Sci 2020; 44:782-792. [PMID: 33275836 DOI: 10.1002/jssc.202000822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
An liquid chromatography-tandem mass spectrometry method coupled with a stable isotope dilution assay was established for the simultaneous detection of 17 mycotoxins and their derivatives (aflatoxins B1 , B2 , G1 , G2 , M1 , and M2 ; fumonisins B1 and B2 ; ochratoxin A; zearalenone; zearalanone; α-zearalanol; α-zearalenol; T-2 toxin; deoxynivalenol; deepoxy-deoxynivalenol; and sterigmatocystin) in milk and dairy products. The mycotoxins were extracted with acidified acetonitrile and the lipids were removed using a Captiva EMR-lipid column. The average recoveries of the target compounds from samples spiked at three different concentrations were 67-102%, and the relative standard deviations of the peak areas were less than 10%. Limits of quantification (S/N = 10) of 0.004-1.25 μg/kg were achieved, which are significantly lower than the maximum levels allowed in various countries and regions for each regulated mycotoxin. Milk and yogurt products from local markets and e-commercial platforms were analyzed using the optimized method. The screening showed that aflatoxin M1 , deoxynivalenol, fumonisins B1 and B2 , and zearalenone could be found in milk and yogurt products, especially those products also containing grains or jujube ingredients, indicating that there is a risk of mycotoxins in dairy products.
Collapse
Affiliation(s)
- Shuai Yang
- China Oil & Foodstuffs Corporation (COFCO) Nutrition and Health Research Institute, Beijing, P. R. China.,Beijing Key Laboratory of Nutrition Health and Food Safety, Beijing, P. R. China.,College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Yunjing Luo
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Lei Mu
- China Oil & Foodstuffs Corporation (COFCO) Nutrition and Health Research Institute, Beijing, P. R. China.,Beijing Key Laboratory of Nutrition Health and Food Safety, Beijing, P. R. China
| | - Youyou Yang
- China Oil & Foodstuffs Corporation (COFCO) Nutrition and Health Research Institute, Beijing, P. R. China.,Beijing Key Laboratory of Nutrition Health and Food Safety, Beijing, P. R. China.,Institute of Animal Science of CAAS, Beijing, P. R. China
| | - Yongtan Yang
- Academy of State Administration of Grain, Beijing, P. R. China
| |
Collapse
|
32
|
Sun F, Bai L, Li M, Yu C, Liu H, Qiao X, Yan H. Fabrication of edge-curled petals-like covalent organic frameworks and their properties for extracting indole alkaloids from complex biological samples. J Pharm Anal 2020; 12:96-103. [PMID: 35573883 PMCID: PMC9073138 DOI: 10.1016/j.jpha.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023] Open
Abstract
In this study, a functionalized covalent-organic framework (COF) was first synthesized using porphyrin as the fabrication unit and showed an edge-curled, petal-like and well-ordered structure. The synthesized COF was then introduced to prepare porous organic polymer monolithic materials (POPMs). Two composite POPM/COF monolithic materials with rod shapes, referred to as sorbent A and sorbent B, were prepared in stainless steel tubes using different monomers. Sorbents A and B exhibited relatively uniform porous structures and enhanced specific surface areas of 153.14 m2/g and 80.01 m2/g, respectively. The prepared composite monoliths were used as in-tube solid-phase extraction (SPE) sorbents combined with HPLC for the on-line extraction and quantitative analytical systems. Indole alkaloids (from Catharanthus roseus G. Don and Uncaria rhynchophylla (Miq.) Miq. Ex Havil.) contained in mouse plasma were extracted and quantitatively analyzed using the online system. The two composite multifunctional monoliths showed excellent clean-up ability for complex biological matrices, as well as superior selectivity for target indole alkaloids. Method validation showed that the RSD values of the repeatability (n=6) were ≤ 3.46%, and the accuracy expressed by the spiked recoveries was in the ranges of 99.38%–100.91% and 96.39%–103.50% for vinca alkaloids and Uncaria alkaloids, respectively. Furthermore, sorbents A and B exhibited strong reusability, with RSD values ≤ 5.32%, which were based on the peak area of the corresponding alkaloids with more than 100 injections. These results indicate that the composite POPM/COF rod-shaped monoliths are promising media as SPE sorbents for extracting trace compounds in complex biological samples. Edge-curled petals-like COF was synthesized using porphyrin as the fabrication unit. In-tube monolithic POMP/COF composite SPE sorbents with rod-shape were fabricated. The in-tube sorbents were used to extract hence indole alkaloids from complex samples. The two homemade sorbents show strong reusability of more than 100 times.
Collapse
Affiliation(s)
- Fanrong Sun
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
- Corresponding author. College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Mingxue Li
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Changqing Yu
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Hongyuan Yan
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
- Corresponding author. College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
33
|
The biological detoxification of deoxynivalenol: A review. Food Chem Toxicol 2020; 145:111649. [DOI: 10.1016/j.fct.2020.111649] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/12/2023]
|
34
|
Tanveer ZI, Huang Q, Liu L, Jiang K, Nie D, Pan H, Chen Y, Liu X, Luan L, Han Z, Wu Y. Reduced graphene oxide-zinc oxide nanocomposite as dispersive solid-phase extraction sorbent for simultaneous enrichment and purification of multiple mycotoxins in Coptidis rhizoma (Huanglian) and analysis by liquid chromatography tandem mass spectrometry. J Chromatogr A 2020; 1630:461515. [PMID: 32911177 DOI: 10.1016/j.chroma.2020.461515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
In the current study, a robust dispersive solid-phase extraction (dSPE) strategy using reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposite as the sorbent was proposed for separation, purification and enrichment of 12 mycotoxins in Coptidis rhizoma (Huanglian). The targeted mycotoxins included aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, aflatoxin M1, alternariol-methylether, mycophenolic acid, ochratoxin A, penitrem A, nivalenol, zearalenone and zearalanone. The rGO-ZnO nanocomposite was successfully synthesized through hydrothermal process by a modified Hummers method, and further characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet-visible spectroscopy and X-ray diffraction (XRD). Several key parameters affecting the performance of the dSPE approach were extensively investigated, and after optimization, acetonitrile/water/formic acid (80/19/1, v/v/v) as the extraction solution, 2% acetonitrile as the adsorption solution, 15 mg rGO-ZnO as the sorbent, n-hexane as the washing solution, and methanol/formic acid (99/1, v/v) as the desorption solution presented an excellent purification and enrichment efficiency. Under the optimal dSPE procedure followed by analysis with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), adequate linearity (R2 ≥ 0.991), high sensitivity (limit of quantification in the range of 0.09-0.41 µg kg-1), acceptable recovery (70.3-105.7%) and satisfactory precision (RSD 1.4-15.0%) were obtained. The analysis of 12 selected mycotoxins was also carried out in real Coptidis rhizoma (Huanglian) samples for applicability evaluation of the established method.
Collapse
Affiliation(s)
- Zafar Iqbal Tanveer
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qingwen Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Li Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Keqiu Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hongye Pan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lianjun Luan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
35
|
Pellicer-Castell E, Belenguer-Sapiña C, Amorós P, Herrero-Martínez JM, Mauri-Aucejo AR. Bimodal porous silica nanomaterials as sorbents for an efficient and inexpensive determination of aflatoxin M 1 in milk and dairy products. Food Chem 2020; 333:127421. [PMID: 32653681 DOI: 10.1016/j.foodchem.2020.127421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
An extraction procedure was developed for the determination of aflatoxin M1 in milk and dairy products. A sorbent based on UVM-7 mesoporous silica was used as solid phase for the sample clean-up, and the analyte determination was carried out by HPLC coupled to a fluorescence detector. The material architecture was characterized by transmission electronic microscopy, X-ray diffraction, 29Si NMR and nitrogen adsorption-desorption. After the optimization of extraction parameters, the influence of the matrix has been evaluated, obtaining recoveries in the range 78-105% for whole and skimmed milk and yogurt matrix. The reusability of the material was also proved. The sensitivity of the method was also evaluated, and a LOQ (0.015 μg kg-1) below the European legislation limit was obtained. The procedure was successfully applied for the determination of aflatoxin M1 in real samples. The results were compared with those obtained with a reference method, being the results statistically comparable.
Collapse
Affiliation(s)
- Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Dr Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Dr Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - Pedro Amorós
- Institut of Material Science (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Dr Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Dr Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
36
|
Casado N, Gañán J, Morante-Zarcero S, Sierra I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020; 25:E702. [PMID: 32041287 PMCID: PMC7038030 DOI: 10.3390/molecules25030702] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Natural toxins are chemical substances that are not toxic to the organisms that produce them, but which can be a potential risk to human health when ingested through food. Thus, it is of high interest to develop advanced analytical methodologies to control the occurrence of these compounds in food products. However, the analysis of food samples is a challenging task because of the high complexity of these matrices, which hinders the extraction and detection of the analytes. Therefore, sample preparation is a crucial step in food analysis to achieve adequate isolation and/or preconcentration of analytes and provide suitable clean-up of matrix interferences prior to instrumental analysis. Current trends in sample preparation involve moving towards "greener" approaches by scaling down analytical operations, miniaturizing the instruments and integrating new advanced materials as sorbents. The combination of these new materials with sorbent-based microextraction technologies enables the development of high-throughput sample preparation methods, which improve conventional extraction and clean-up procedures. This review gives an overview of the most relevant analytical strategies employed for sorbent-based microextraction of natural toxins of exogenous origin from food, as well as the improvements achieved in food sample preparation by the integration of new advanced materials as sorbents in these microextraction techniques, giving some relevant examples from the last ten years. Challenges and expected future trends are also discussed.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Department of Chemical and Environmental Technology, E.S.C.E.T, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; (N.C.); (J.G.); (S.M.-Z.)
| |
Collapse
|
37
|
|
38
|
Zhao X, Wang W, Liu L, Hu Y, Xu Z, Liu L, Wu N, Li N. Microstructure evolution of sandwich graphite oxide/interlayer-embedded Au nanoparticles induced from γ-rays for carcinoembryonic antigen biosensor. NANOTECHNOLOGY 2019; 30:495501. [PMID: 31443101 DOI: 10.1088/1361-6528/ab3e1e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the capability of inducing small particle sizes of supported metal in graphite oxide (GO), the γ-ray irradiation method applied for preparing graphite oxide-gold (GO-Au) nanocomposites as electrochemical immunosensors has attracted specific attention recently. To study the accurate factors influencing the precise morphology and final performance of the prepared composites in the γ-irradiation system, we proposed a facile method to investigate the evolution of the GO structure, size and dispersion of Au nanoparticles (AuNPs) produced with the addition of isopropyl alcohol to the system. The GO-Au nanocomposites were characterized by Fourier transform infrared spectroscopy, x-ray diffraction spectra, Raman spectra, x-ray photoelectron spectroscopy and high resolution transmission electron microscopy. These nanocomposites with sandwich morphology exhibited an excellent immunosensor performance with a low detection limit of 15.8 pg ml-1 (S/N = 3) and a wide linear range from 1 to 40 ng ml-1 for detecting carcinoembryonic antigens. The enhanced biosensing performance is attributed to the synergistic effect of γ-irradiation and the precise structure of GO, which endows the smaller size and more uniform distribution of AuNPs on the GO as well as the good signal amplification capability. Furthermore, adopting the γ-irradiation method and use of GO as a precursor is propitious for application in large-scale production because of its high-efficiency and high-yielding characteristics.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem 2019; 300:125176. [DOI: 10.1016/j.foodchem.2019.125176] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022]
|
40
|
Monodisperse cobalt(II) based metal-organic coordination polymer beads as a sorbent for solid-phase extraction of chlorophenoxy acid herbicides prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:761. [PMID: 31712903 DOI: 10.1007/s00604-019-3932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Metal-organic coordination polymer beads (MOCBs) are described for use as a sorbent for solid-phase extraction of chlorophenoxy herbides. By applying regulation of Co(II) ions, micro-sized monodisperse MOCBs were obtained through the microwave heating. The MOCBs-based method displays excellent extraction efficiency towards chlorophenoxy herbicides, specifically of 2-chlorophenoxyacetic acid, 4-chlorophenoxyacetic acid, 4-chloromethylphenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid and 2-(2,4-dichlorophenoxy)propionic acid. Following extraction, the herbicides were eluted with 8% formic acid in methanol and quantified by HPLC. The method, when applied to analyze spiked cereals, exhibits a wide linear range (from 0.6 to 1000 ng g-1) and low limits of quantification (ranging from 0.10 to 0.25 ng g-1). For a single column, the inter-day and intra-day precisions, expressed as the relative standard deviation are in the range of 2.5-6.8%. The batch-to-batch reproducibility (for n = 3) is <4.6%. For spiked cereal samples, relative recoveries are very good (90.3-102.3%, for n = 4). The extraction efficiency of MOCBs remains unchanged after reusing for 40 times. Graphical abstractSchematic presentation of Co(II)-doped metal-organic coordination polymer beads (Co(II)@MOCB) using for solid-phase extraction (SPE).
Collapse
|
41
|
Tezerji NS, Foroughi MM, Bezenjani RR, Jandaghi N, Rezaeipour E, Rezvani F. A facile one-pot green synthesis of β-cyclodextrin decorated porous graphene nanohybrid as a highly efficient adsorbent for extracting aflatoxins from maize and animal feeds. Food Chem 2019; 311:125747. [PMID: 31864190 DOI: 10.1016/j.foodchem.2019.125747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 01/05/2023]
Abstract
In this paper, β-cyclodextrin (β-CD) supported on porous graphene nanohybrid (β-CDPG) was obtained by self-assembly of functionalized graphene nanosheets into a three-dimensional network in the presence of ascorbic acid via an in situ graphene oxide reduction and β-CD functionalization process during a hydrothermal reaction. The prepared supramolecular nanohybrid was further packed into a reusable syringe filter holder and applied as an adsorbent for solid phase extraction of four aflatoxins (B1, B2, G1, G2). Under optimal conditions, the detection limits and linear dynamic ranges were achieved in the range of 0.0075-0.030 μg kg-1 and 0.025-100 μg kg-1, respectively and the relative standard deviations were less than 6.1%. Good recoveries were observed for analyzing target AFs in maize and cereal-based chicken feed samples ranged from 90.5 to 105%. The method offered simultaneous advantages of high supramolecular recognition and enrichment capability of β-CD and the high specific surface area of the porous graphene.
Collapse
Affiliation(s)
- Najmeh Sheibani Tezerji
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran; Iranian National Standards Organization of Hormozgan, Iran
| | - Mohammad Mehdi Foroughi
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran
| | - Rasoul Rezaei Bezenjani
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran; National Iranian Copper Industries Company, Iran
| | - Nezhat Jandaghi
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran
| | - Ebrahim Rezaeipour
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran; Iranian National Standards Organization of Hormozgan, Iran.
| | - Forogh Rezvani
- Iranian National Standards Organization of Hormozgan, Iran
| |
Collapse
|
42
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Hou X, Tang S, Wang J. Recent advances and applications of graphene-based extraction materials in food safety. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Gao S, Wu Y, Xie S, Shao Z, Bao X, Yan Y, Wu Y, Wang J, Zhang Z. Determination of aflatoxins in milk sample with ionic liquid modified magnetic zeolitic imidazolate frameworks. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121778. [PMID: 31499294 DOI: 10.1016/j.jchromb.2019.121778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The ionic liquid (IL) was introduced to the synthesis system of magnetic zeolite imidazolate framework-8 (M/ZIF-8), which was benefit to the formation of binary imidazole and the co-modification of M/ZIF-8. The morphology and textural properties of ILM/ZIF-8 were characterized by SEM, TEM, BET and BJH. The crystal structural shape and size of MZIF-8 was unvaried with the interventional of IL. The ILM/ZIF-8 was applied to the concentration and determination of aflaoxins (AFB1, AFB2, AFG1 and AFG2) in milk samples based on magnetic solid phase extraction (MSPE) coupled with ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The experimental parameters of the MSPE, including amount of ILM/ZIF-8, pH, type and amount of desorption solvent, extraction time and sample volume were investigated by a univariate method and orthogonal screening. The four AFs were concentrated from the 20 mL milk when 90 mg ILM/ZIF-8 was used as magnetic adsorbent. The extraction efficiency of AFs was higher than 80.0% within 15 min. The limits of quantitative and detection were 7.5-26.7 and 2.3-8.1 ng/L, respectively. The proposed method was applied to the determination of milk samples containing trace amounts of AFs and the recoveries ranged from 79.0% to 102.5%, with RSD below 7.7%.
Collapse
Affiliation(s)
- Shiqian Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Yiqiu Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Siyuan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zichun Shao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiumin Bao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yumeng Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Youyi Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junxia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhanen Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
45
|
Zhao Y, Yuan YC, Bai XL, Liu YM, Wu GF, Yang FS, Liao X. Multi-mycotoxins analysis in liquid milk by UHPLC-Q-Exactive HRMS after magnetic solid-phase extraction based on PEGylated multi-walled carbon nanotubes. Food Chem 2019; 305:125429. [PMID: 31505415 DOI: 10.1016/j.foodchem.2019.125429] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
Abstract
A simple and rapid magnetic solid-phase extraction (MSPE) method using PEGylated multi-walled carbon nanotubes magnetic nanoparticles (PEG-MWCNTs-MNP) as absorbents is proposed for isolation and enrichment of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), aflatoxin M1 (AFM1), aflatoxin M2 (AFM2), ochratoxin A (OTA), zearalenone (ZEA), zearalanone (ZAN), α-zeralanol (α-ZAL), β-zeralanol (β-ZAL), α-zeralenol (α-ZOL), and β-zeralenol (β-ZOL) from liquid milk. Combined with ultra-high performance liquid chromatography Q-Exactive high resolution mass spectrometry, simultaneous qualification of these mycotoxins was achieved with sensitivity and specificity. The proposed method showed a good linearity (R2 ≥ 0.995), high sensitivity (limit of detection in the range of 0.005-0.050 μg/kg and limit of quantification in the range of 0.015-0.150 μg/kg), adequate recovery (81.8-106.4%), and good repeatability (intra-day precision in the range of 2.1-8.5% and inter-day precision in the range of 3.9-11.7%). It has been successfully applied to the determination of 13 mycotoxins in real liquid milk samples.
Collapse
Affiliation(s)
- Yan Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sichuan Willtest Technology Co., Ltd., Chengdu 610041, China
| | - Yun-Cong Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi-Ming Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - Gui-Fang Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fa-Shu Yang
- Sichuan Willtest Technology Co., Ltd., Chengdu 610041, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
46
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Tian F, Zhou J, Jiao B, He Y. A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A. NANOSCALE 2019; 11:9547-9555. [PMID: 31049533 DOI: 10.1039/c9nr02872b] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Colorimetric assays have been widely developed for the detection of toxin ochratoxin A (OTA), but most of them suffer from moderate sensitivity when they are adopted for the detection of trace OTA in a complicated food matrix. For the purpose of overcoming this issue, an innovative cascade reaction-based colorimetric aptasensor was developed for the achievement of high sensitivity. The biotin-labelled OTA aptamer was immobilized onto streptavidin magnetic beads by means of the biotin-streptavidin reaction. With OTA binding to its aptamer, the structural switching of the aptamer results in the release of the alkaline phosphatase-labelled oligonucleotide, which is partially complementary to the aptamer. Following the magnetic separation, the cascade reaction is initiated through the enzymatic conversion of ascorbic acid-2-phosphate into ascorbic acid. Subsequent to that, the generated ascorbic acid reduces MnO2 nanosheets to Mn2+ ions, accordingly destroying the oxidase-mimicking activity of MnO2 nanosheets. In consequence, it is not possible to oxidize 3,3',5,5'-tetramethylbenzidine (TMB), a substrate for oxidase, with Mn2+ for the production of the blue colour product (TMB Ox). With the increasing amount of OTA, a colour change occurs from blue to colourless. The cascade reaction has the potential of greatly amplifying the detection signal, together with remarkably improving the sensitivity, making this colorimetric sensor a universal and promising platform for the highly sensitive detection of mycotoxins in the field of public food safety monitoring.
Collapse
Affiliation(s)
- Fengyu Tian
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China.
| | | | | | | |
Collapse
|
48
|
Tittlemier S, Cramer B, Dall’Asta C, Iha M, Lattanzio V, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J. Developments in mycotoxin analysis: an update for 2017-2018. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review summarises developments that have been published in the period from mid-2017 to mid-2018 on the analysis of various matrices for mycotoxins. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes, and zearalenone are covered in individual sections. Advances in sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices, and newly developed comprehensive liquid chromatographic-mass spectrometric based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - B. Cramer
- University of Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 23/A, 43124 Parma, Italy
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| |
Collapse
|