1
|
Li J, He B, Ren W, Liang Y, Wang J, Guo R, Wei M, Jin H. A template-free one-step synthesis of trimetallic nano-triangular structures significantly enhances the sensitivity of lateral flow immunoassays for acetamiprid detection. Anal Chim Acta 2025; 1352:343938. [PMID: 40210291 DOI: 10.1016/j.aca.2025.343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Acetamiprid (ACE), a commonly used insecticide, is widely applied in agricultural practices to control pests. However, its potential to leave residues in crops has raised significant concerns due to the associated risks to human health through food consumption. This has made the rapid, accurate, and on-site detection of ACE residues a pressing issue in the realm of global food safety. In the present study, we developed an innovative Platinum-Copper-Nickel Alloy Nano-Triangular Structure (PCNATS) to facilitate the rapid detection of ACE using a competitive assay. The PCNATS, featuring a high specific surface area and a complex three-dimensional structure, were conjugated with anti-ACE monoclonal antibodies to create advanced nanoprobes. ELISA results demonstrated that the PCNATS significantly improved the utilization efficiency of monoclonal antibodies, leading to enhanced sensing performance. RESULTS The PCNATS-based lateral flow immunoassay (PCNATS-LFIA) system displayed high sensitivity and accuracy, capable of quantitatively detecting ACE within 10 min. This method exhibited a limit of detection (LOD) of 3.6 ng/kg and a broad detection range from 0.05 pg/mL to 4 μg/mL. Compared to traditional gold nanoparticle-based lateral flow immunoassays (AuNPs-LFIA), the PCNATS-LFIA demonstrated a 1000-fold improvement in sensitivity. Furthermore, the assay showed strong correlation with the fitted standard curve when applied to real celery and papaya samples, achieving a satisfactory recovery rate ranging from 92.9 % to 109.9 % and 101.04 % to 115.76 %, with relative standard deviations (RSD) between 1.68 % to 7.73 % and 1.37 % to 3.02 %. SIGNIFICANCE Therefore, the PCNATS-LFIA system offers a portable, efficient, and cost-effective solution for the rapid, on-site detection of ACE residues in agricultural products.
Collapse
Affiliation(s)
- Jiahao Li
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Rui Guo
- Henan Institute of Product Quality Supervision and Inspection, Zhengzhou, Henan, 450047, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
2
|
Li Y, Ye X, Luo X, Zhu W, Tang Z, Niu Z. Determination of 115 Pesticide Residues in Textiles by Liquid Chromatography-Tandem Mass Spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9992. [PMID: 39865448 DOI: 10.1002/rcm.9992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time. Finally, we established the method as follows: After ultrasonic extraction with methanol, we blew the sample with nitrogen to dry and then took it to a fixed volume by a specific solvent. We used a C18 reversed-phase chromatographic column and detected the samples in the multiple reaction monitoring mass mode. And we verify the limit of detection (LOD), limit of quantitation (LOQ), linearity, recovery, and precision. The LOD and LOQ of the method was 10 and 20 μg/kg separately; the recoveries ranged from 71.3% to 118.4%; and the relative standard deviation was 0.2%-19.9%. We verified the applicability of the developed protocol through the analysis of 21 real textile products.
Collapse
Affiliation(s)
- Ying Li
- Technology Center of Qingdao Customs, Qingdao, China
| | - Xiwen Ye
- Technology Center of Qingdao Customs, Qingdao, China
| | - Xin Luo
- Technology Center of Qingdao Customs, Qingdao, China
| | - Wenxuan Zhu
- Technology Center of Qingdao Customs, Qingdao, China
| | - Zhixu Tang
- Technology Center of Qingdao Customs, Qingdao, China
| | - Zengyuan Niu
- Technology Center of Qingdao Customs, Qingdao, China
| |
Collapse
|
3
|
Yamaguchi U, Honda H, Kumagai S, Takei H. High-throughput HPLC-SERS capable of generating a spectrum from individual eluent droplets based on a superhydrophobic SERS array. ANAL SCI 2025:10.1007/s44211-025-00761-5. [PMID: 40327284 DOI: 10.1007/s44211-025-00761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/27/2025] [Indexed: 05/07/2025]
Abstract
We have developed a protocol for a high-throughput high-performance liquid chromatography-surface enhanced Raman spectroscopy (HPLC-SERS), whereby a 15 μL eluent droplet was captured every second and a series of SERS spectra was obtained to show a time course in the chemical composition within the eluent. To accomplish this, we prepared arrays of SERS spots based on metal film on nanosphere (MFON). Fifty of these spots 3 mm in diameter were formed in a 5 by 10 array format on a special glass slide covered by a hydrophobic coating. In a second version, the SERS spot size was reduced to 1 mm, surrounded by a superhydrophobic area with a contact angle greater than 120 degrees. Here, 2 μL of the eluent droplet was placed on each spot. Heating of the array substrate allowed complete evaporation of the droplet under 3 min, without the adverse coffee ring effect. We demonstrated the utility of such a setup by injecting 1 mM adenine into a portable HPLC instrument and capturing the time course of SERS spectra. We characterize our MFON SERS spots in terms of its dependence on the concentration and incubation time as well as a two-dimensional SERS imaging showing the uniformity in the signal intensity.
Collapse
Affiliation(s)
- Umi Yamaguchi
- Graduate School of Life Sciences, Toyo University, Asaka, Saitama, 351-8510, Japan.
| | | | - Shusuke Kumagai
- Faculty of Life Sciences, Toyo University, Asaka, Saitama, 351-8510, Japan
| | - Hiroyuki Takei
- Faculty of Life Sciences, Toyo University, Asaka, Saitama, 351-8510, Japan
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, 350-0815, Japan
| |
Collapse
|
4
|
Li N, Wang A, Chen A, Wu M, Liu H, Yang Y, Wang C, Sun D. Simultaneous determination of 16 herbicides in Procambarus clarkii. Food Chem 2025; 484:144438. [PMID: 40273879 DOI: 10.1016/j.foodchem.2025.144438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
This study is focused on developing a sensitive and reliable analytical method for determining 16 herbicides in Procambarus clarkii using pass-through solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The samples were extracted with ethyl acetate, concentrated using parallel rotary evaporator, and purified using neutral alumina solid-phase extraction column (Alumina-N SPE). Separation of herbicides was performed on an Eclipse Plus C18 column, followed by detection in positive ion mode via multiple reaction monitoring (MRM) and quantification using an external standard. An excellent linearity in the range of 0.25 to 80.0 μg/L was achieved, with correlation coefficients exceeding 0.99. The average recoveries of the 16 herbicide residues ranged from 73.7 % to 111.9 %, with relative standard deviations (RSDs) below 15 % at spiked levels of 0.4, 2.0, and 4.0 μg/kg. These results demonstrated that the developed method was suitable for detecting triazine, amide and dinitroaniline herbicides in Procambarus clarkii.
Collapse
Affiliation(s)
- Na Li
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China..
| | - Aiying Wang
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Aijing Chen
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Mengmeng Wu
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Hongcai Liu
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Yanyan Yang
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Chao Wang
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Dong Sun
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China..
| |
Collapse
|
5
|
Magar HS, Fayez M, Febbraio F, Hassan RYA. Esterase-2 mutant-based nanostructured amperometric biosensors for the selective determination of paraoxon (Neurotoxin). Anal Biochem 2025; 698:115751. [PMID: 39681172 DOI: 10.1016/j.ab.2024.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Organophosphate pesticides (OPs) are causing non-selective inhibition in enzymatic bioreceptors, thus the enzymatic-inhibition-based traditional assays are not suitable for their specific detection in food and environmental samples. Accordingly, a selective nanostructured electrochemical biosensing system was designed using six mutants of the esterase-2 (EST2 protein) enzymes from A. acidocaldarius to be exploited as targeting bio-receptors for the specific detection of OPs. Each of the EST2 mutant enzymes was immobilized on disposable screen-printed electrodes modified with Aluminum oxide (Al2O3)/Copper (Cu) nanocomposite. Consequently, chronoamperometric assay was fully optimized, and cross-reactivity study was carried out using paraoxon, malathion and chlorpyrifos. The comparative cross-reactivity study was performed on the six mutant proteins in terms of inhibitory percentage over a wide range of pesticide concentrations. Eventually, a wide dynamic inhibition range was achieved while the limit of detection for the paraoxon toxicity was 0.01 nM and the limit of quantification was 0.05 nM. Finally, paraoxon was selectively determined using the newly developed EST-based biosensor in different spiked food samples.
Collapse
Affiliation(s)
- Hend Samy Magar
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza, 2622, Egypt
| | - Muhammad Fayez
- Biosensors Research Lab, Zewail City of Science and Technology, 6th October City, Giza, 12578, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131, Naples, Italy.
| | - Rabeay Y A Hassan
- Biosensors Research Lab, Zewail City of Science and Technology, 6th October City, Giza, 12578, Egypt; Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza, 2622, Egypt.
| |
Collapse
|
6
|
Wang M, Zhang X, Chen H, Li H, Zhang Z, Zhang D, Cong S, Cao X. Determination of multi-pesticide residues in agricultural products with a modified QuEChERS process based on magnetic biochar from coconut clothing. Food Chem 2025; 464:141617. [PMID: 39423525 DOI: 10.1016/j.foodchem.2024.141617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
In this study, the magnetic biochar material derived from coconut clothing was firstly successfully synthesized by in-situ polymerization method and applied as QuEChERS adsorbents for extracting multi-pesticides. The obtained magnetic coconut-clothing biochar (MCCBC) presented alveolate structure with abundant large irregular pores. The Fe3O4 particles was obviously attached on the surface of biochar. Under the optimized conditions, the modified QuEChERS process based on MCCBC coupled with HPLC-MS/MS for simultaneously extracting and determining 12 pesticides (organophosphorus insecticides and strobilurins) from different agricultural products (tomato, cucumber, cabbage, carrot, peach, pear, grape, apple) was established. After pretreated by MCCBC, most of pesticides had weak matrix effect. This proposed method showed good linearity (2-250 ng g-1) with R2 ≥ 0.9915, and the limits of detection and the limits of quantification were in the range of 0.01-2.67 ng g-1 and 0.03-8.91 ng g-1, respectively. The acceptable recovery was between 71.1 % and 114.0 % with relative standard deviations from 0.31 % to 13.94 %. These results fully demonstrated that the developed method was efficient for simultaneously extracting and determining organophosphorus insecticides and strobilurins in complex agricultural matrix, possessing obvious advantages of higher sensitivity, easier operation and good feasibility. More importantly, this study provided a useful strategy for magnetizing biochar, and the novel biochar from coconut clothing was also introduced as potential adsorbent for other trace organic pollutants.
Collapse
Affiliation(s)
- Meiyu Wang
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Xiumei Zhang
- Yantai Marine Economic Research Institute, Yantai 264003, PR China
| | - Haiyan Chen
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Huanmei Li
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Ziping Zhang
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Demeng Zhang
- State key Laboratory of Marine Food Processing & Safety Control, Qingsdao 266400, PR China
| | - Shuang Cong
- College of Life Science, Yantai University, Yantai 264005, PR China.
| | - Xiaolin Cao
- College of Life Science, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
7
|
Płonka J, Kostina-Bednarz M, Barchanska H. Targeted Analysis, Metabolic Profiling, and Fingerprinting Based on an LC(GC)-MS Approach for the Comprehensive Evaluation of Pesticide Content in Edible Plants. Crit Rev Anal Chem 2025:1-26. [PMID: 39784300 DOI: 10.1080/10408347.2024.2449062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pesticides are commonly found in plant-based foods, which inevitably reduces food quality and poses significant health risks to consumers. The extensive variety of crops and the wide range of pesticides used means that no single analytical approach can provide clear and comprehensive information on the pesticide-protection status of a crop. Since most pesticide analyses in food rely on chromatographic techniques combined with various MS platforms, this article focuses exclusively on LC-MS and GC-MS system methodologies. In summary, this paper critically reviews analytical modes-specifically, multi reaction monitoring, data-dependent analysis, and data-independent analysis-and scanning regimes, including full scan, MS, MS/MS, suspect screening, and fingerprinting strategies, for pesticide detection in edible plants. The advantages and disadvantages of these methodologies, as well as their complementary applications, are thoroughly examined.
Collapse
Affiliation(s)
- Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Marianna Kostina-Bednarz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
8
|
Shi G, Li H, Fu Q, Li T, Hou R, Chen Q, Xue P. Effects of biochar and compost on the abundant and rare microbial communities assembly and multifunctionality in pesticide-contaminated soil under freeze‒thaw cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125003. [PMID: 39307339 DOI: 10.1016/j.envpol.2024.125003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Biochar and compost are effective ways to improve soil quality and reduce pesticide pollution. However, the effects of them on the abundant and rare microbial communities in freeze‒thaw soil need to be further clarified. Therefore, this study took biochar, compost, and their combination as examples to explore their effects on the abundant and rare microbial communities and multifunctionality in glyphosate, imidacloprid and pyraclostrobin contaminated soil under freeze‒thaw cycles. We found that freeze‒thaw cycles enhanced the functional groups and surface aromaticity of biochar and compost, thereby improving the adsorption capacity. Biochar and compost reduced the concentration and half-life of three pesticides and enhanced the degradation function of rare taxa in soil. Biochar and compost improved the structure composition and co-occurrence relationship of abundant and rare taxa. Meanwhile, the assembly processes of abundant and rare sub-communities were mainly driven by stochastic processes and the Combined treatment promoted the transition from dispersal limitation to homogenizing dispersal and homogeneous selection. Moreover, the Combined treatment significantly improved the multifunctionality before and after freezing and thawing by increasing the diversity of rare taxa and assembly processes. The results provide new insights for farmland soil remediation in seasonal frozen areas, especially the soil functional cycle of abundant and rare microorganisms.
Collapse
Affiliation(s)
- Guoxin Shi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Heng Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ping Xue
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
9
|
Wei MJ, Wei ZQ, Zhang R, Wang W. A free-metal single covalent organic framework electrochemical detective platform for sensitive sensing of carbendazim. Food Chem 2024; 467:142306. [PMID: 39644667 DOI: 10.1016/j.foodchem.2024.142306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Carbendazim abuse in agriculture can lead to the residue in water and food, which may bring about adverse effects to human's health. In this study, we report the solvothermal synthesis of free-metal single TT-COF with one-step strategy and the TT-COF-based electrochemical sensor is fabricated for the further sensing of carbendazim. The TT-COF possesses high surface area, excellent conductivity and outstanding electrocatalytic activity. Therefore, the TT-COF/GCE is applied for the determination of carbendazim with CV and DPV techniques. This TT-COF/GCE sensor shows wide linear range of 0.005-5 μM and the low limit of detection (LOD) of 2.21 nM towards the detection of carbendazim. More importantly, the projected TT-COF/GCE sensor demonstrates satisfactory recoveries by estimating carbendazim in apple, tomato and pear juice real samples.
Collapse
Affiliation(s)
- Mei-Jie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| | - Ze-Qi Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
10
|
Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Nie L, Liao J, Zhou Q. Covalent organic framework-functionalized magnetic MXene nanocomposite for efficient pre-concentration and detection of organophosphorus and organochlorine pesticides in tea samples before gas chromatography-triple quadrupole mass spectrometry analysis. Food Chem 2024; 459:140352. [PMID: 38991447 DOI: 10.1016/j.foodchem.2024.140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 μg/L and had low limits of detection (0.013-0.018 μg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China..
| |
Collapse
|
11
|
Ying WX, Shi SW, Wang HF, Chen JB, Pan JZ, Fang Q. Falcon Probe: A High-Pressure and Robust Sampling Interface for Coupling Lossless Liquid Chromatography Injection with In Situ Nanoliter-Scale Sample Pretreatment. Anal Chem 2024; 96:12991-12998. [PMID: 39075986 DOI: 10.1021/acs.analchem.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
With the increasing demand for trace sample analysis, injecting trace samples into liquid chromatography-mass spectrometry (LC-MS) systems with minimal loss has become a major challenge. Herein, we describe an in situ LC-MS analytical probe, the Falcon probe, which integrates multiple functions of high-pressure sample injection without sample loss, high-efficiency LC separation, and electrospray. The main body of the Falcon probe is made of stainless steel and fabricated by the computer numerical control (CNC) technique, which has ultrahigh mechanical strength. By coupling a nanoliter-scale droplet reactor made of polyether ether ketone (PEEK) material, the Falcon probe-based LC-MS system was capable of operating at mobile-phase pressures up to 800 bar, which is comparable to those of conventional ultraperformance liquid chromatography (UPLC) systems. Using the probe pressing microamount in situ (PPMI) injection approach, the Falcon probe-based LC-MS system showed high separation efficiency and good repeatability with relative standard deviations (RSDs) of retention time and peak area of 1.8% and 9.9%, respectively, in peptide mixture analysis (n = 6). We applied this system to the analysis of a trace amount of 200 pg of HeLa protein digest and successfully identified an average of 766 protein groups (n = 5). By combining in situ sample pretreatment at the nanoliter range, we further applied the present system in single-cell proteomic analysis, and 241 protein groups were identified in single 293 cells, which preliminarily demonstrated its potential in the analysis of trace amounts of samples with complex compositions.
Collapse
Affiliation(s)
- Wei-Xin Ying
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shao-Wen Shi
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Hui-Feng Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Jian-Bo Chen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Cancer Center, Zhejiang University, Hangzhou 310007, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310007, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Wu H, Wu A, Liu L, Kuang H, Sun M, Xu C, Xu X. Computerized analysis of haptens for the ultrasensitive and specific detection of Pyriftalid. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134705. [PMID: 38805812 DOI: 10.1016/j.jhazmat.2024.134705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Pyriftalid (Pyr) is one of the most commonly used herbicides and due to its widespread and improper use, it has led to serious pollution of groundwater, soil and other ecosystems, threatening human health. A rapid method to detect Pyr was urgently needed. A high specific monoclonal antibody (mAb) against Pyr with IC50 values of 4.7 ng/mL was obtained by mAb screening technique and method with enhanced matrix effect. The study firstly proposed colloidal gold immunochromatographic test strips (CGIA) for Pyr, which enables rapid qualitative and quantitative determination of a large number of samples anytime and anywhere, so as to effectively monitor Pyr in environment and grain samples. Based on the properties of the desired Pyr antibody, the hapten Pyr-hapten-4 with high structural similarity to Pyr molecule, similar electrostatic potential distribution, and the ability to expose Pyr functional groups was screened out from five different Pyr haptens, which was consistent with mouse antiserum test. The CGIA quickly analyze the Pyr content in positive samples such as water samples, soil samples, paddy samples, brown rice samples within 10 min, the LOD for Pyr by CGIA as low as 1.84 ng/g, the v LOD value as low as 6 ng/g, and the extinction value as low as 25 ng/g. The content of positive samples detected by CGIA was consistent with the quantitative results of LC-MS/MS, the relative accuracy was within the range of 97-103 %. The recovery rate range for Pyr by CGIA was 92.0-99.7 %, and the coefficient of variation was between 1.30-8.56 %. It indicated Pyr-targeted CGIA test strip was an efficient and fast detection method to detect real environment and food samples.
Collapse
Affiliation(s)
- Huihui Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Li M, Zhang C, Wang Z, Liu N, Wu R, Han J, Wei W, Blecker C, Zhang D. Simultaneous determination of advanced glycation end products and heterocyclic amines in roast/grilled meat by UPLC-MS/MS. Food Chem 2024; 447:138930. [PMID: 38503065 DOI: 10.1016/j.foodchem.2024.138930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Advanced glycation end products (AGEs) and heterocyclic amines (HAs) are main harmful Maillard reaction products of meat products. Simultaneous quantification of both with high sensitivity, selectivity and accuracy remains a major challenge due to inconsistencies in their pre-treatment and instrumental methods and the different polarity of AGEs and HAs. We developed a method for the simultaneous determination of AGEs and HAs in roast/grilled meat by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) using dynamic multiple reaction monitoring (D-MRM). The instrument parameters and pre-treatment method were optimized to achieve reasonably good separation and high response for the 11 target analytes within 8 min. From 10 to 200 ng/mL, the limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.3 to 5.5 μg/L and 0.9 to 6.3 μg/L, respectively, and the correlation coefficient (R2) was >0.99. It was acceptable to recoveries, standard deviations (RSDs), and matrix effects. Six types of roast/grilled meat samples were then tested using the developed method.
Collapse
Affiliation(s)
- Mingyu Li
- Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Chunjiang Zhang
- Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Na Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiyun Wu
- Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiajing Han
- Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenhan Wei
- Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Dequan Zhang
- Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Zorzella Fontana ME, Caiel da Silva R, Duarte Dos Santos I, Neu JP, Wouters RD, Babinski PJ, Hoffmann JF, Rossi RC, Essi L, Pizzutti IR. Comprehensive assessment of clean-up strategies for optimizing an analytical multi-method to determine pesticides and mycotoxins in Brazilian medicinal herbs using QuEChERS-LC-TQ-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5082-5104. [PMID: 38990094 DOI: 10.1039/d4ay00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The use of medicinal herbs has increased significantly. However, the presence of pesticide residues and mycotoxins in medicinal herbs has generated constant discussion and concern among regulatory agencies. Developing and validating an analytical method for determining pesticides and mycotoxins in medicinal plants is challenging due to the naturally occurring substances in these plants. The purpose of this work was to develop and to optimize a sensitive, accurate, precise, effective QuEChERS method for simultaneous determination of over 160 pesticide and mycotoxin residues in complex medicinal plant matrices using LC-TQ-MS/MS. A comprehensive comparison of clean-up procedures and other parameters was conducted to achieve this goal. The validation procedure was performed according to SANTE 11312/2021. More polar analytes, such as acephate, methamidophos and omethoate, presented a higher negative matrix effect in both Melissa officinalis L. and Malva sylvestris L. However, other molecules, such as spirodiclofen, showed a 24% signal enhancement in M. officinalis and a 46% signal suppression in M. sylvestris, indicating that a representative matrix-matched calibration would lead to inaccurate quantification of the analyte. Accuracy and precision were satisfactory according to SANTE 11312/2021 for 157 pesticide residues and mycotoxins in M. officinalis and for 152 molecules in M. sylvestris. LOQs at 10 µg kg-1 were achieved for 117 pesticides in M. officinalis and 99 pesticides in M. sylvestris. Among the mycotoxins, all four aflatoxins (B1, B2, G1 and G2) presented LOQs of 5 µg kg-1, and ochratoxin A had an LOQ of 10 µg kg-1 in M. officinalis. The same LOQ values were shown for these mycotoxins in M. sylvestris, except for aflatoxin B2 and ochratoxin A, which had LOQs of 20 µg kg-1. Moreover, in Southern Brazil, there has been no previous study on mycotoxin and pesticide contamination in medicinal herbs. Therefore, the application of this method was assessed through the analysis of forty-two real samples. Imidacloprid was found in M. officinalis, and methyl pirimiphos was found in M. sylvestris. The proposed method not only serves as a helpful tool for routine monitoring but also offers a basis for further research on risk assessment and control in food safety.
Collapse
Affiliation(s)
- Marlos Eduardo Zorzella Fontana
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Rosselei Caiel da Silva
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Ingrid Duarte Dos Santos
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
- UFSM - Federal University of Santa Maria, Food Science and Technology Department, 97105-900, Santa Maria/RS, Brazil
| | - Júlia Paula Neu
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Robson Dias Wouters
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Paola Jennifer Babinski
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Jessica Fernanda Hoffmann
- UNISINOS - University of Vale do Rio dos Sinos, Health School - Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
| | - Rochele Cassanta Rossi
- UNISINOS - University of Vale do Rio dos Sinos, Health School - Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
| | - Liliana Essi
- UFSM - Federal University of Santa Maria, Biology Department, 97105-900, Santa Maria/RS, Brazil
| | - Ionara Regina Pizzutti
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| |
Collapse
|
15
|
Liu S, Fang Z, Li Y, Kang L, Cong H, Shen Y, Yu B. Four Kinds of Polymer Microspheres Prepared by the Seed Swelling Method Used to Purify the Industrial Production of Phytol. J Chromatogr Sci 2024; 62:508-514. [PMID: 36752419 DOI: 10.1093/chromsci/bmad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/11/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Four monodisperse porous polymer microspheres were successfully prepared by seed emulsion polymerization and used as stationary phases for HPLC and preparative high-performance liquid chromatography (Prep-HPLC). All four polymer microspheres(polystyrene-polystyrene (PS-PS), polystyrene-poly(glycidyl methylate) (PS-PGMA), polystyrene-poly(methyl methylate) and poly(glycidyl methylate)-poly(glycidyl methylate) were used for filling HPLC empty columns. According to the analysis results of the HPLC column, PS-PS and PS-PGMA microspheres were screened out as the stationary phase of Prep-HPLC. The industrial-grade phytol was successfully separated and purified, and the purity of the final phytol was as high as 99%. The two types of polymer microspheres have been applied to industrial-grade phytol purification and have been used in factories.
Collapse
Affiliation(s)
- Shixiang Liu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhipeng Fang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Linlin Kang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
16
|
Ke Q, Yin L, Jayan H, El-Seedi HR, Zou X, Guo Z. Ag-coated tetrapod gold nanostars (Au@AgNSs) for acetamiprid determination in tea using SERS combined with microfluidics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2721-2731. [PMID: 38629244 DOI: 10.1039/d4ay00297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Acetamiprid is an organic and highly toxic compound. Despite being widely used as a pesticide agent on a large scale, acetamiprid poses numerous health risks to living organisms, particularly humans. Herein, a strategy for the detection of acetamiprid in tea employing surface-enhanced Raman scattering (SERS) technology incorporated with a microfluidic chip was developed. Significantly, a seed-mediated growth approach was utilized to engineer Ag-coated tetrapod gold nanostars (core-shell Au@AgNSs) with four sharp tips. The synthesized Au@AgNSs showed an enhancement factor of 7.2 × 106. Solid works was used to figure out the two-channel microfluidic chip featuring four circular split hybrid structures, and COMSOL (Software for Multiphysics Simulation) was utilized to model the fusion effect between the substrate (Au@AgNSs) and the sample (acetamiprid). For the first time, the core-shell Au@AgNSs and acetamiprid were fused in the microfluidic channel to facilitate the detection of acetamiprid using SERS. The outcomes pointed out that the standard curve correlation coefficient between SERS intensity (876 cm-1) and the concentration of acetamiprid in tea specimens was calculated as 0.991, while the limit of detection (LOD) was 0.048 ng mL-1, which is well below the minimum limit set by the European Union (10 ng mL-1). Thus, the developed technique combining SERS and microfluidics demonstrated high potential for the rapid and efficient detection of acetamiprid in tea.
Collapse
Affiliation(s)
- Qian Ke
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
17
|
Cheng Z, Xiong Y, Ma T, Wang Q, Song M, Zhao Q, Zhang N, Guo J, Wang Y, Hou Z, Lu Z. Dissipation and Risk Assessment of Propaquizafop in Ginseng under Field Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6613-6624. [PMID: 38501445 DOI: 10.1021/acs.jafc.3c07832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Propaquizafop is a highly efficient aryloxy phenoxy propionate chiral herbicide. However, the use of propaquizafop, including its safe use methods, residue patterns, dietary risk assessment, and maximum residue limits, for ginseng, a traditional Chinese medicinal plant, has not been studied. An analytical method was established for the simultaneous determination of propaquizafop and its four metabolites in ginseng soil, fresh ginseng, ginseng plant, and dried ginseng using HPLC-MS/MS. This approach showed good linearity (R2 ranging from 0.9827 to 0.9999) and limit of quantification ranging from 0.01 to 0.05 mg/kg. The intra- and interday recovery rates of this method ranged from 71.6 to 107.1% with relative standard deviation ranging from 1.3 to 23.2%. The method was applied to detect residual samples in the field, and it was found that the degradation of propaquizafop in ginseng plants and soil followed a first-order kinetic equation. R2 was between 0.8913 and 0.9666, and the half-life (t1/2) ranged from 5.04 to 8.05 days, indicating that it was an easily degradable pesticide (T1/2 < 30 days). The final propaquizafop residues in ginseng soil, plants, fresh ginseng, and dried ginseng ranged from 0.017 to 0.691 mg/kg. A dietary risk assessment was conducted on the final propaquizafop residue in fresh and dried ginseng. The results showed that the chronic exposure risk quotient values were less than 100% for fresh and dried ginseng (1.15% for fresh ginseng and 1.13% for dried ginseng). This illustrates that the dietary risk associated with the use of 10% propaquizafop emulsifiable concentrate in ginseng is very low. Thus, applying 750 mL/ha of propaquizafop on ginseng could not pose an unacceptable risk to public health. The results of the present study support the registration of propaquizafop in ginseng.
Collapse
Affiliation(s)
- Zhijia Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yang Xiong
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Tengda Ma
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qingyi Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Mingxia Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qinghui Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ning Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jingbo Guo
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yahe Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
18
|
Yan Z, Nie J, Cheng Y, Han L, Farooq S. Method development, validation, and risk assessment of multiple pesticide residues of fruits in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18826-18841. [PMID: 38353823 DOI: 10.1007/s11356-024-32198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
In this study, a muti-residue analysis method of 40 pesticides in five different categories of fruits in China was developed based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Five hundred real samples were analyzed and assessed for the dietary exposure risk. The sample treatment method was optimized by comparing four clean-up methods. The matrix effects of different fruits were evaluated. The analytical method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision. The results showed that the optimal method was the treatment by clean up with ODS (octadecylsilane) and MgSO4. The matrix effect was the strongest in orange and weakest in apple. The LOD and LOQ of pesticides were 0.04-5.9 μg kg-1 and 0.13-19.5 μg kg-1, respectively. The recoveries at three spiked levels were ranged from 71.2 to 115.2% with the RSDs from 0.1 to 19.6%. Twenty-two pesticides were detected in 500 fruit samples from the major production regions of China, with concentrations ranging from 0.1 to 1930 μg kg-1. A total of 13, 10, 9, 8, and 4 pesticides were detected in peach, orange, grape, apple, and strawberry. Both the acceptable daily intake (ADI) and acute reference dose (ARfD) for all the detected pesticides were lower than 100%, indicating that the dietary intake risks are acceptable and would not pose potential health risks.
Collapse
Affiliation(s)
- Zhen Yan
- Institute of Pomology of Chinese Academy of Agricultural Sciences/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), MARA, Xingcheng, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China.
| | - Yang Cheng
- Institute of Pomology of Chinese Academy of Agricultural Sciences/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), MARA, Xingcheng, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
19
|
Liu W, Liu F, Che A, Chen Y, Cai J, Liu W, Jing G, Li W, Yu J. Investigation of low-temperature partitioning with dispersive solid-phase extraction for quantification of pesticides in apples followed by electrospray-ionization mobility spectrometry: Comparison with conventional procedure. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124014. [PMID: 38306956 DOI: 10.1016/j.jchromb.2024.124014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Ion mobility spectrometry (IMS) has a promising application prospect in food surveillance. However, due to the complexity of food matrix and trace levels of pesticide residues, the effective and rapid detection of pesticides by IMS has been a challenge, especially when using electrospray ionization (ESI) as an ion source. In this study, low-temperature partitioning with dispersive solid-phase extraction (LTP-dSPE) was explored and compared with conventional procedures. Both methods were validated for the quantification of eight pesticides in apples, obtaining a limit of detection (LOD) of 0.02-0.12 mg/kg for LTP-dSPE and 0.02-0.09 mg/kg for conventional solid-phase extraction (SPE), lower than those usually stipulated by government legislation in food matrices. For LTP-dSPE, the matrx effect (ME) ranged from -16.3 to -68.6 %, lower than that for the SPE method, ranging from -70.0 to -92.9 %. The results showed satisfactory efficiency and precision, with recovery values ranging from 67.9 to 115.4 % for LTP-dSPE and from 62.0 to 114.8 % for conventional SPE, with relative standard deviations below 13.0 %. Notably, the proposed LTP-dSPE/ESI-IMS has been shown to be more cost-effective, easier to use, more environment-friendly, more accessible, and, most importantly, less matrix effect than the conventional method, thereby being suitably applicable to a wide range of food safety applications.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Fei Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Anyi Che
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yanjing Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jiayi Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenjie Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Guoxing Jing
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenshan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jianna Yu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
20
|
Gao J, Zhang T, Fang Y, Zhao Y, Yang M, Zhao L, Li Y, Huang J, Zhu G, Guo Y. On-site rapid detection of multiple pesticide residues in tea leaves by lateral flow immunoassay. J Pharm Anal 2024; 14:276-283. [PMID: 38464789 PMCID: PMC10921326 DOI: 10.1016/j.jpha.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.
Collapse
Affiliation(s)
- Junxia Gao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Tianyi Zhang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yihua Fang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Li Zhao
- Shanghai Agricultural Technology Extension Service Center, Shanghai, 201103, China
| | - Ye Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 311200, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 311200, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
Guo Y, Wang Z, He Y, Gao H, Shi H. Profiling of Volatile Compounds in 'Muscat Hamburg' Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS. Molecules 2024; 29:567. [PMID: 38338312 PMCID: PMC10856765 DOI: 10.3390/molecules29030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Aspergillus carbonarius is known to produce the carcinogenic ochratoxin A (OTA) in grapes. The metabolism process before OTA biosynthesis influences the content and composition of the volatile compounds in grapes. In this study, a self-established method based on QuEChERS coupled with high-performance liquid chromatography-fluorescence detection (HPLC-FLD) was used to determine the OTA levels during a seven-day contamination period. The results showed that OTA was detected on the second day after contamination with A. carbonarius. Thus, the first day was considered as the critical sampling timepoint for analyzing the volatiles in grapes before OTA biosynthesis. Additionally, the volatile compounds in grapes were analyzed using headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and dispersive liquid-liquid microextraction gas chromatography-mass spectrometry (DLLME-GC-MS). The corresponding data were evaluated via multivariate data analysis using projection methods, including PCA and OPLS-DA. The results indicated significant differences in the nine volatile compounds in grapes contaminated with A. carbonarius before OTA biosynthesis. The results of the Pearson correlation analysis showed positive correlations between ethyl acetate, styrene, 1-hexanol and OTA; (E)-2-hexenal and nerolic acid were negatively correlated with OTA. Overall, these findings provide a theoretical basis for the early prediction of OTA formation in grape and grape products using GC-MS technology.
Collapse
Affiliation(s)
- Yayun Guo
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Zhe Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Yi He
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Huanhuan Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Hongmei Shi
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| |
Collapse
|
22
|
Liu W, Chen Y, Liu F, Yin X, Cai J, Xia Y, Yu J, Jing G, Li W, Liu W. Effect of resolution enhancement using metal ion assisted strategy based on electrospray ionization-ion mobility spectrometry: A case study of carbendazim and thiabendazole in fruits. Talanta 2024; 267:125151. [PMID: 37672988 DOI: 10.1016/j.talanta.2023.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
A method for the rapid and simultaneous determination of carbendazim and thiabendazole residues by electrospray ionization-ion mobility spectrometry (ESI-IMS) combined with a metal ion-assisted technique was developed and validated in different fruit matrices. The metal ion assisted strategy was performed instead of tedious pre-separation procedures to overcome the limitation of low resolution of IMS. Four transition metal cations, Co(II), Ni(II), Cu(II), and Zn(II), were screened and their interactions with carbendazim and thiabendazole were investigated. The injection flow rate and metal ion concentration were optimized. The Cu(II) assisted approach helped to achieve well-separated peaks with a peak-to-peak resolution of 3.61. This method was then applied to detect carbendazim and thiabendazole simultaneously in apples, pears, bananas, and mangoes. The limit of detection (LOD) were 0.03 mg kg-1 and 0.13 mg kg-1 for carbendazim and thiabendazole, respectively, while spiked recoveries were 61.5-122.0% and 83.5-119.8%, respectively, with RSDs less than 13.9%. These satisfactory evaluation parameters indicated that the approach was capable of performing quantitative analysis of multi-pesticide residues. In addition, the feasibility of using metal ion assisted-ESI-IMS for the simultaneous detection also was theoretically demonstrated through molecular electrostatic potential analysis and binding energy calculation based on density functional theory (DFT). Both experimental and theoretical results revealed the effectiveness of the metal ion assisted strategy in improving the resolution of ESI-IMS.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| | - Yanjing Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Fei Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Xurong Yin
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jiayi Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jianna Yu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Guoxing Jing
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenshan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenjie Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
23
|
Shi Y, Jin HF, Ma XR, Cao J. Highly sensitive determination of multiple pesticide residues in foods by supercritical fluid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Food Res Int 2024; 175:113769. [PMID: 38129060 DOI: 10.1016/j.foodres.2023.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
This experiment aimed to establish a green, simple and highly sensitive method (supercritical fluid chromatography (SFC) coupled with ion mobility quadrupole time-of-flight mass spectrometry (IM-Q-TOF/MS)) for the detection of multiple pesticides in foods. During the experiments, several important SFC parameters, such as stationary phase, modifier, make-up solution, back-temperature and back-pressure were optimized. Here, single-field collision cross section (CCS) values and multifield CCS values of 20 pesticides were examined by IM-Q-TOF/MS as highly specific parameters with excellent experimental precision. In addition, based on accurate mass matching and fragment ion comparison, mass fragments were obtained by IM-Q-TOF/MS, which elucidated the regularities of compound structure and characteristic fragment ions. Under the optimized conditions, satisfactory linearity (R2 ≥ 0.9989) and recoveries (79.60 % to 112.97 %) were obtained. The intra- and interday precisions were favorable, with RSDs lower than 4.91 and 7.65 %, respectively. Additionally, the method showed low limits of detection (0.1-8.8 ng/mL). The proposed method has been successfully applied to the highly sensitive detection of phenylurea herbicide, triazine herbicides, organophosphorus pesticide, pyrethroid insecticide and acaricide in yam and potato.
Collapse
Affiliation(s)
- Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xin-Ran Ma
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
24
|
Neng J, Wang J, Wang Y, Zhang Y, Chen P. Trace analysis of food by surface-enhanced Raman spectroscopy combined with molecular imprinting technology: Principle, application, challenges, and prospects. Food Chem 2023; 429:136883. [PMID: 37506657 DOI: 10.1016/j.foodchem.2023.136883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a rapid detection method with high sensitivity and simple pretreatment, but can be affected by interference from matrix components. By incorporating molecularly imprinted polymers (MIPs) that recognize specific targets, MIP-SERS sensors effectively overcome the interference of complex matrices and offer improved stability and sensitivity. This review provides a comprehensive understanding of the applications of MIP-SERS sensors for the detection of trace toxic substances in food. The underlying mechanism and development of SERS technology and the principle and classification of MIPs technology are discussed. Furthermore, the types of MIP-SERS sensors are introduced, with their advantages and disadvantages systematically illustrated. Recent advances in MIP-SERS technology for the detection of mycotoxins, additives, prohibited dyes, pesticides, veterinary drug residues, and other hazardous substances in food are highlighted. Finally, this review discusses the challenges associated with MIP-SERS technology and proposes future development prospects.
Collapse
Affiliation(s)
- Jing Neng
- College of Food Science and Engineering, Zhejiang University of Technology, Deqing 313299, China.
| | - Jiana Wang
- College of Food Science and Engineering, Zhejiang University of Technology, Deqing 313299, China.
| | - Yan Wang
- College of Food Science and Engineering, Zhejiang University of Technology, Deqing 313299, China.
| | - Yilong Zhang
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310027, China.
| | - Peng Chen
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310027, China.
| |
Collapse
|
25
|
Xu H, Guo C, Yuan W, Zhang W, Sun Q, Wu J, Zhang X. Effects of additives on the performance of a laser-induced graphene sensor modified with ZrO 2 nanoparticles for OP detection. Analyst 2023; 148:5210-5220. [PMID: 37724336 DOI: 10.1039/d3an01215h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In this study, a simple and portable electrochemical sensor based on laser-induced graphene (LIG) has been developed to systematically investigate the feasibility of LIG as an electrode to detect organophosphorus pesticides (OPs). It proves that the LIG-based electrode has a relatively high electrochemically active surface area (ECSA) and heterogeneous electron transfer (HET) of 0.100 cm2 and 0.000825 cm s-1, respectively. In addition, zirconium dioxide nanoparticles (ZrO2 NPs) have been modified on the electrode with three different binders, β-cyclodextrin (β-CD), chitosan (CS) and Nafion, to improve the adsorption capacity of the electrode toward OPs, and the effect of the binders on the performance of the as-fabricated sensor has been investigated in detail. The results show that β-CD increases not only the electrochemically active surface area of the electrode but also the redox peak current of methyl parathion (MP). To evaluate the sensitivity of the sensor, differential pulse voltammetry (DPV) curves have been tested in solutions containing different concentrations of MP using ZrO2-β-CD/LIG as an electrode, which shows a detection range of 5-200 ng ml-1 and a detection limit of 0.89 ng ml-1. In summary, the LIG-based sensor has a low detection limit, high sensitivity and good interference resistance, and thus has tremendous potential for the detection of pesticides in the environment.
Collapse
Affiliation(s)
- Huiyang Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Chuang Guo
- Beijing Spacecrafts, Beijing, 100194, China
| | - Weijian Yuan
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Wenna Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qiu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Xuelin Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
26
|
Chau SL, Zhao A, Jia W, Wang L. Simultaneous Determination of Pesticide Residues and Mycotoxins in Storage Pu-erh Tea Using Ultra-High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2023; 28:6883. [PMID: 37836726 PMCID: PMC10574668 DOI: 10.3390/molecules28196883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Mycotoxins and pesticides are the most concerning chemical contaminants that can affect the quality of Pu-erh tea during its production and storage. This study presents a method that can simultaneously determine 31 pesticide residues and six mycotoxins in Pu-erh tea within 11 min using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) after QuEChERS extraction. The lower limit of quantification (LOQ) for all analytes ranged between 0.06 and 50 ppb. Recoveries for each pesticide and mycotoxin ranged between 62.0 and 130.3%, with intra- and inter-day precisions lower than 15%. Good linear relationships were obtained, with correlation coefficients of r2 > 0.991 for all analytes. The established method was applied to 31 Pu-erh tea samples, including raw and ripened Pu-erh tea with different storage times. As a result, pesticide residues were not detected in any of the collected samples, and the mycotoxins detected in the samples were well below the official maximum residue limits (MRLs). Notably, the levels of aflatoxin B1 (AFB1), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) were lower than 1 ppb in the samples stored for more than 30 years.
Collapse
Affiliation(s)
- Siu Leung Chau
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| | - Aihua Zhao
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China;
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| | - Lu Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| |
Collapse
|
27
|
Xie H, Li Y, Li J, Chen Y, Li J, Kuang L, Shah Bacha SA, Zhang T, Chao Y. Mycotoxin Determination in Peaches and Peach Products with a Modified QuEChERS Extraction Procedure Coupled with UPLC-MS/MS Analysis. Foods 2023; 12:3216. [PMID: 37685149 PMCID: PMC10487233 DOI: 10.3390/foods12173216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Peaches are the most significant temperate fruit crop worldwide. However, peach fruits are susceptible to fungal and mycotoxin contamination. Consequently, monitoring the residual levels of multiple mycotoxins in peaches and related products is essential. In this study, a novel method based on QuEChERS extraction, followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection, was developed for analyzing 14 mycotoxins in peaches and peach products from China. Matrix-matched calibrations were employed to accurately quantify the mycotoxins and compensate for matrix effects. Recoveries for the target analytes ranged from 84.6% to 117.6%, with intra-day and inter-day precision below 20%. The limits of quantification were 2 or 5 μg/L for the 14 mycotoxins. This method was utilized to detect the presence of target mycotoxins in 109 fresh peaches, 100 diseased peaches, and 89 peach products from China. Six mycotoxins were identified in the rotten parts of the diseased peaches, with concentrations ranging from 5.2 to 1664.3 µg/kg. In the remaining parts of the diseased peach samples, only two toxins, alternariol (AOH) and alternariol monomethyl ether (AME), were quantified at levels of 15.3 µg/kg and 15.5 µg/kg, respectively. No mycotoxins were detected in fresh peaches. For peach products, all contamination levels were below the quantitative limits and significantly lower than the maximum legal limits established for the products.
Collapse
Affiliation(s)
- Hong Xie
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yinping Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Lixue Kuang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Syed Asim Shah Bacha
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
28
|
Shao Y, Wang M, Cao J, She Y, Cao Z, Hao Z, Jin F, Wang J, Abd El-Aty AM. A method for the rapid determination of pesticides coupling thin-layer chromatography and enzyme inhibition principles. Food Chem 2023; 416:135822. [PMID: 36893638 DOI: 10.1016/j.foodchem.2023.135822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Herein, we developed a method coupling TLC and enzyme inhibition principles to rapidly detect OPs (dichlorvos, paraoxon and parathion). After the removal of the organic solvent from the samples using TLC and paper-based chips, the enzyme was added to the detection system. The results showed that the current method effectively reduced the effects of solvents on enzyme behavior. Moreover, the pigments could be successfully retained on TLC with 40% ddH2O/ACN solution (v/v) as a developing solvent. Additionally, the detection limits (LODs) were 0.002 µg/mL for dichlorvos, 0.006 µg/mL for paraoxon, and 0.003 µg/mL for parathion. Finally, the method was applied to spiked cabbage, cucumber, and spinach and showed good average recoveries ranging between 70.22% and 119.79%. These results showed that this paper-based chip had high sensitivity, precleaning, and elimination of organic solvent properties. Furthermore, it provides a valuable idea for sample pretreatment and rapid determination of pesticide residues in food.
Collapse
Affiliation(s)
- Yunling Shao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China.
| | - Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China.
| | - Zhen Cao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China
| | - Zhenxia Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 Beijing, China
| | - Fen Jin
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| |
Collapse
|
29
|
Li S, Nie C. Determination of tolfenpyrad residues in green tea by GC-MS/MS based on acetonitrile extractant, dispersion solid phase extraction purification. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:515-520. [PMID: 37458407 DOI: 10.1080/03601234.2023.2235249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Green tea is one of people's favorite drinks. However, pesticide residues in green tea can cause harm to the human body, and therefore, detection of pesticide residues in green tea is very important. In recent years, the detection of pesticide residues in tea has become a research hotspot. In this paper, a gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) detection method of tolfenpyrad pesticide residues in green tea was established by using acetonitrile extractant, dispersive solid-phase extraction purification, temperature programming and application retention time lock with the database. After the sample was extracted with acetonitrile, then the sample was purified by QuEChERS extraction purification tube, afterward isomer B was used as the internal standard for the determination by multiple reaction monitoring mode (MRM) of GC-MS/MS. The results indicated that the experimental data accorded with the criterion on quality control of laboratoris(chemical testing of food), and the requirements of recovery, calibration curve, precision.This method was used to detect tolfenpyrad residues in actual green tea samples in multiple batches, and the satisfactory results were obtained.
Collapse
Affiliation(s)
- Songmei Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Changming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| |
Collapse
|
30
|
Cui X, Wang Y, Shi YL, Lu R, Gao H, Zhou W, Huang X. Phenylboronic acid-functionalized magnetic metal-organic framework nanoparticles for magnetic solid phase extraction of five benzoylurea insecticides. J Chromatogr A 2023; 1704:464115. [PMID: 37285619 DOI: 10.1016/j.chroma.2023.464115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
This research involves the construction of a phenylboronic acid-functionalized magnetic UiO-66 metal-organic framework (MOF) nanoparticle (CPBA@UiO-66@Fe3O4). Its design is primarily for the magnetic solid phase extraction (MSPE) of benzoylurea insecticides. An organic ligand, 2-amino terephthalic acid (2-ATPA), facilitated the introduction of amino groups while keeping the original crystal structure of UiO-66 intact. The constructed UiO-66 MOF showcases a porous structure and extensive surface area, thereby providing an optimal platform for further functionalization. The employment of 4-carboxylphenylboronic acid as a modifier notably amplified the extraction efficiency for benzoylureas. This improvement was due to the formation of B-N coordination and other secondary interactions. By integrating this with high-performance liquid chromatography (HPLC), we established a quantitative analytical method for benzoylurea insecticides. This method achieved a wide linear range (2.5-500 μg L-1 or 5-500 μg L-1), satisfactory recoveries (83.3-95.1%), and acceptable limits of detection (LODs: 0.3-1.0 μg L-1). The developed method proved successful when applied to six tea infusion samples, representing China's six major tea categories. Semi-fermented and light-fermented tea samples demonstrated relatively higher spiking recoveries.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China
| | - Yujiao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China
| | - Yao-Lin Shi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Runhua Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China
| | - Haixiang Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China
| | - Wenfeng Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China.
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China.
| |
Collapse
|
31
|
Tripathy V, Sharma KK, Gupta R, Yadav R, Devi S, Sharma K, Singh G, Kalra S, Aggarwal A, Tandekar K, Verma A, Walia S. Simultaneous monitoring and dietary risk assessment of 386 pesticides in market samples of black tea. Food Chem 2023; 420:136103. [PMID: 37040686 DOI: 10.1016/j.foodchem.2023.136103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/13/2023]
Abstract
Black tea samples (390) collected from local markets situated in different locations of India were monitored for the residues of 386 pesticides using QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) based extraction and analysis by gas and liquid chromatography tandem mass spectrometry (GC-MS/MS and LC-MS/MS). Residues of seventeen pesticides were detected, of which propargite, cypermethrin, and novaluron showed the highest % positive detections. A comparison of the concentrations of the detected pesticide residues with the available national and international maximum residue limits (MRLs) showed that seven samples exceeded the Indian MRLs while no sample was found to exceed the CODEX MRLs. The risk due to the detected pesticide levels evaluated in terms of hazard quotient (HQ) and hazard index (HI) was found to be very low (<1), suggesting that the pesticide residues in the tea were safe for consumption by Indian adults and children.
Collapse
Affiliation(s)
- Vandana Tripathy
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Krishan Kumar Sharma
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Ruchi Gupta
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Rajbir Yadav
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Suneeta Devi
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Khushbu Sharma
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Gitansh Singh
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Shobhita Kalra
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Akanksha Aggarwal
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Kesar Tandekar
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Ankita Verma
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Suresh Walia
- Project Coordinating Cell, Pesticide Residue Laboratory, All India Network Project on Pesticide Residues, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110 012, India
| |
Collapse
|
32
|
Bai B, Wu N, Yang H, Liu H, Jin X, Chen L, Huang Z, Zhou C, Wang S, Si W. Development of a Zeolite H-ZSM-5-Based D-μSPE Method for the Determination of Organophosphorus Pesticides in Tea Beverages. Processes (Basel) 2023. [DOI: 10.3390/pr11041027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this study, a novel dispersive micro-solid phase extraction (D-μSPE) technique with H-ZSM-5 zeolite as an adsorbent was developed for the determination of 21 trace pesticides in tea beverages. The adsorption and desorption of H-ZSM-5 zeolites were investigated based on structural characteristics and adsorption properties similar to those of H-beta zeolites. In combination with the properties of the adsorbates, it was explained that the adsorption reaction occurred on the microporous surface and mesopores of H-ZSM-5. Based on optimal parameters, the beverage samples were extracted by 50 mg of zeolite within 1 min. The zeolite was eluted with 2 mL of an acetonitrile-water mixture after separation, and the eluent was filtered prior to HPLC-MS/MS analysis. The D-μSPE protocol demonstrated acceptable accuracy and precision, with recoveries between 62.1% and 106.6% and relative standard deviations of 1.4% to 12.6%, as validated by analytical reliability. The correlation coefficient in the linear range of 0.2–50 ng·mL−1 was greater than 0.98, with limits of detection of 0.05–0.1 ng·mL−1 and limits of quantification of 0.1–0.2 ng·mL−1. The matrix effects ranged from 76.2% to 112.7%. The results indicate that the novel D-μSPE technique based on H-ZSM-5 is a rapid, simple, green and economical method for the determination of pesticide residues in tea beverages. The proposed method achieved simultaneously low adsorbent dosage, 20-fold enrichment factor, rapid pre-concentration in 12 min, minimal organic wastes, and effective reduction of matrix interference.
Collapse
|
33
|
Wang S, Yang G, Tang Y, Wang Y, Shen X, Si W, Yu H, Zhai W, Fodjo EK, Kong C. Multi-Residue Screening of Pesticides in Aquatic Products Using High-Performance Liquid Chromatography-Tandem High-Resolution Mass Spectrometry. Foods 2023; 12:foods12061131. [PMID: 36981058 PMCID: PMC10048222 DOI: 10.3390/foods12061131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Pesticide residues in aquatic products are of great concern due to the risk of environmental transmission and their extensive use in aquaculture. In our work, a quick screening approach was developed for the qualitative and semi-quantitative screening of 87 pesticide residues in aquatic products. The sample preparation was investigated, including extract solvent, extract methods, buffer salts, lipid removal, cleanup materials and filter membranes for aquatic products. Samples were extracted using a modified QuEChERS procedure, and two clean-up procedures were developed for UHPLC-Q/Orbitrap MS analysis based on the fat content of the aquatic products. The screening detection limits for all studied pesticides were distributed between 1 and 500 μg/kg in the three representative matrices. Seventy-one pesticides could be analyzed with a screening limit between 1 and 25 μg/kg in grass carp and crayfish, sixty-one pesticides could be screened for limits between 1 and 50 μg/kg in crab. The accuracy results showed that recoveries ranged from 50 to 120% for 60, 56 and 52 pesticides at medium-level for grass carp, crayfish and crab, respectively. At high spiking levels, 74, 65 and 59 pesticides were recovered within the range of 50-120% for the three matrices, respectively. The relative standard deviations of most compounds in different matrices were less than 20%. With this method, the local farmed aquatic products were tested for pesticide residues. In these samples, ethoxyquinoline, prometryn and phoxim were frequently detected. The majority of these confirmed compounds did not exceed 2.00 μg/kg. A grass carp with trichlorfon at 4.87 μg/kg and two carps with ethoxyquinoline at 200 µg/kg were detected, indicating the potential dietary risk.
Collapse
Affiliation(s)
- Shouying Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Guangxin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunyu Tang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yuan Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xiaosheng Shen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Wenshuai Si
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Huijuan Yu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Essy Kouadio Fodjo
- Laboratory of Constitution and Reaction of Matter (Physical Chemistry), Université Felix Houphouet-Boigny, 22 BP 582 Abidjan, Côte d'Ivoire
| | - Cong Kong
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
34
|
Farajzadeh MA, Shaghaghipour S, Abbaspour M, Afshar Mogaddam MR. Magnetic dispersive solid-phase extraction of some pesticides from fruit juices using monodisperse nanosorbent combined with dispersive liquid-liquid micro-extraction. ANAL SCI 2023; 39:303-312. [PMID: 36539608 DOI: 10.1007/s44211-022-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
In this study, the new synthesized magnetic nanoparticles based on amorphous carbon have been used as a sorbent in magnetic dispersive solid-phase extraction prior to dispersive liquid-liquid micro-extraction. The developed method was applied for analysis of ten pesticides from different fruit juice samples by gas chromatography-flame ionization detection. In this work, a few mg of the sorbent is added into an aqueous solution containing the analytes. Adsorption and desorption of the compounds of interest are accelerated by vortexing and sonication, respectively. To achieve high enrichment factors, a suitable organic solvent (iso-propanol) is used to elute the target analytes from the nanosorbent. The obtained iso-propanol is phased and 1,1,2-trichloroethane are employed as the disperser and extraction solvents, respectively, in the following micro-extraction procedure. The synthesized magnetic nanoparticles were characterized by scanning electron microscope, X-ray diffraction, vibrating sample magnetometer, and Fourier-transform infrared spectrophotometer. To achieve the high extraction efficiency and optimum conditions, all parameters that could affect the extraction yield were investigated. Under optimum conditions, the method had broad linear ranges with a proper linearity (r2 ≥ 0.9987). Limits of detection and quantification for analysis of the selected pesticides were found in the ranges of 0.5-1.0 and 1.7-3.3 µg L-1, respectively. High enrichment factors and extraction recoveries were obtained in the ranges of 321-438 and 64-88%, respectively. To evaluate repeatability of the method, it was performed on two sets of standard solutions at the concentrations of 10 and 50 µg L-1 (each analyte). Relative standard deviations varied in the ranges of 2-6% and 4-7% for intra- (n = 6) and inter-day (n = 5) precisions, respectively.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran. .,Engineering Faculty, Near East University, 99138, Nicosia, Mersin 10, Turkey, North Cyprus.
| | - Shabnam Shaghaghipour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Maryam Abbaspour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Singh J, Phogat A, Kumar V, Malik V. N-Acetylcysteine Mediated Regulation of MnSOD, UCP-2 and Cytochrome C Associated with Amelioration of Monocrotophos-Induced Hepatotoxicity in Rats. Toxicol Int 2023. [DOI: 10.18311/ti/2022/v29i4/30325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Pesticides are now a risk to the environment and public health. Monocrotophos (MCP) is known to cause organ toxicity and impart degenerative effects at cellular levels. N-acetylcysteine (NAC) is a natural antioxidant having various prophylactic properties. Male Wistar rats were given NAC (200 mg/kg b.wt), MCP (0.9 mg/kg b.wt) and NAC followed by MCP; intragastrically for 28 consecutive days. Regulation of MnSOD, UCP-2 and cytochrome c was analyzed by western blotting and polymerase chain reaction. Histology, electron microscopy and weight parameters were evaluated in the liver. MCP exposure significantly decreased body weight gain, relative liver weight, and structural changes. Altered MnSOD protein expression, decreased transcription of UCP-2 and MnSOD, and released cytochrome c indicated that oxidative stress is involved in MCP exposure. Treatment of NAC to MCP-exposed rats normalized the weight and structural changes, restored MnSOD and UCP-2 levels and prevented the release of cytochrome c. The present study suggests that the regulation of UCP-2, MnSOD and cytochrome c is involved in NAC efficacy against MCP toxicity. These findings illustrate that NAC can serve as a potential therapeutic agent for toxicity and oxidative stress in mammals.
Collapse
|
36
|
Li M, Yan A, Huang Y, Lu J, Zhang J, Du Y, Xie J, Shen M, Xie M. Simultaneous quantification of four furfurals in cheeses by gas chromatography-triple quadrupole mass spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
37
|
Li W, Wang P, Chu B, Chen X, Peng Z, Chu J, Lin R, Gu Q, Lu J, Wu D. A highly-sensitive sensor based on carbon nanohorns@reduced graphene oxide coated by gold platinum core–shell nanoparticles for electrochemical detection of carbendazim in fruit and vegetable juice. Food Chem 2023; 402:134197. [DOI: 10.1016/j.foodchem.2022.134197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
|
38
|
Chen H, Yang L, Huang J, Wu J, Zhou J, Tang S, Huang S, Cheng D, Zhang Z. Effect of bifenthrin application at different maturity stages on its dissipation and residues in kumquat (Citrus japonica) and dietary intake risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21588-21597. [PMID: 36272005 DOI: 10.1007/s11356-022-23698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Bifenthrin is a pyrethroid pesticide widely used on kumquats, but the residues in the peel and pulp after bifenthrin application at different maturity stages of kumquats have not been evaluated. This study developed a simple and rapid high-performance liquid chromatography (HPLC) method for the quantitative analysis of bifenthrin residues in whole fruit, kumquat peel, kumquat pulp, and soil. The results showed that regardless of whether bifenthrin was applied one or three times during the near-mature period, the half-lives of the fruit peel and fruit pulp were longer than those in the immature period. Kumquat fruit residues decreased with time at both maturity levels. The residues of bifenthrin in near-mature fruit exceeded the MRL in Guangxi and Fujian 14 days after the three applications of bifenthrin, suggesting that this issue should be focused on in kumquat production and supervision. However, for bifenthrin application in either the near-mature or the immature fruit period, the calculated risks for chronic dietary intake of kumquat were well below 100%. The data demonstrate that the chronic dietary intake risk of bifenthrin through kumquat consumption is low and within acceptable limits. These results provide a reference and risk assessment data for the safe and rational use of bifenthrin insecticides.
Collapse
Affiliation(s)
- Huiya Chen
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Liupeng Yang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajian Huang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Wu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Jingtong Zhou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Shiqi Tang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Suqing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Dongmei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Method Validation for Multi-Pesticide Residue Determination in Chrysanthemum. Molecules 2023; 28:molecules28031291. [PMID: 36770967 PMCID: PMC9921869 DOI: 10.3390/molecules28031291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
The chrysanthemum can be consumed in various forms, representing the "integration of medicine and food". Quantitative analysis of multi-pesticide residues in chrysanthemum matrices is therefore crucial for both product-safety assurance and consumer-risk evaluation. In the present study, a simple and effective method was developed for simultaneously detecting 15 pesticides frequently used in chrysanthemum cultivation in three matrices, including fresh flowers, dry chrysanthemum tea, and infusions. The calibration curves for the pesticides were linear in the 0.01-1 mg kg-1 range, with correlation coefficients greater than 0.99. The limits of quantification (LOQs) for fresh flowers, dry chrysanthemum tea, and infusions were 0.01-0.05 mg kg-1, 0.05 mg kg-1, and 0.001-0.005 mg L-1, respectively. In all selected matrices, satisfactory accuracy and precision were achieved, with recoveries ranging from 75.7 to 118.2% and relative standard deviations (RSDs) less than 20%. The validated method was then used to routinely monitor pesticide residues in 50 commercial chrysanthemum-tea samples. As a result, 56% of samples were detected with 5-13 pesticides. This research presents a method for the efficient analysis of multi-pesticide residues in chrysanthemum matrices.
Collapse
|
40
|
Wu Y, Zhou L, Kang L, Cheng H, Wei X, Pan C. Suspect screening strategy for pesticide application history based on characteristics of trace metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120557. [PMID: 36328280 DOI: 10.1016/j.envpol.2022.120557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Pesticides are widely used to protect crops but can also threaten public health as they can remain in the environment for a long time. Additionally, some transformation products (TPs) of unknown toxicity, stability, or bioaccumulation properties can further be formed from the hydrolysis, photolysis and biodegradation of pesticides. The identification and quantification of those TPs can be challenging for environmental regulation and risk assessment due to a limited understanding about them. In this study, a suspect screening strategy for pesticide application history was developed and then used to organic products (tea). Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) was used to screen and identify the TPs in crops and their toxicity was subsequently predicted with the open-source software (ECOSAR and admetSAR). Finally, the SIRIUS software was applied and 142 TPs from 20 pesticides were identified in tea plants based on the fragmentation-degradation relationship. Of these, standards (level 1) and 53 were considered as tentatively identified (levels 2a and 2b). Some TPs were also found to be present in tea plants and soil after 65 days, thus indicating higher persistency or stability than parent pesticides. While others from diafenthiuron and neonicotinoids had higher predicted toxicity of daphnid, and demonstrated positive for honeybee toxicity. Suspect screening is a powerful tool to screen pesticide TPs on the complex matrix of crops. Such screening can provide potential evidence of pesticide application, especially in cases of illegal practices in organic farming.
Collapse
Affiliation(s)
- Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Liu M, Li X, Han L, Wang Q, Kong X, Xu M, Wang K, Xu H, Shen Y, Gao G, Nie J. Determination and risk assessment of 31 pesticide residues in apples from China's major production regions. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Lang Y, Zhang B, Cai D, Tu W, Zhang J, Shentu X, Ye Z, Yu X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. BIOSENSORS 2022; 13:69. [PMID: 36671904 PMCID: PMC9856088 DOI: 10.3390/bios13010069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Food safety issues caused by foodborne pathogens, chemical pollutants, and heavy metals have aroused widespread concern because they are closely related to human health. Nanozyme-based biosensors have excellent characteristics such as high sensitivity, selectivity, and cost-effectiveness and have been used to detect the risk factors in foods. In this work, the common detection methods for pathogenic microorganisms, toxins, heavy metals, pesticide residues, veterinary drugs, and illegal additives are firstly reviewed. Then, the principles and applications of immunosensors based on various nanozymes are reviewed and explained. Applying nanozymes to the detection of pathogenic bacteria holds great potential for real-time evaluation and detection protocols for food risk factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | | | | |
Collapse
|
43
|
Zhang S, Song N, He Z, Zeng M, Chen J. Multi-Pesticide Residue Analysis Method Designed for the Robot Experimenters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16424-16434. [PMID: 36521107 DOI: 10.1021/acs.jafc.2c06229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Robots replacing humans as the executioners is crucial work for intelligent multi-pesticide residue analysis to maximize reproducibility and throughput while minimizing the expertise required to perform the entire process. Traditional analysis methods are predicated on manual execution, so we configured our robot experimenter, automated the analytical workflow, and achieved the goal of robotics execution. Our robot experimenter with an X-Y-Z axis robotic arm was interfaced with seven modules and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for automated standard solution preparation, sample pre-treatment, and UPLC-MS/MS detection. An algorithm was established to make the prepared matrix-matched standard solutions meet the monitoring requirements. The strategy was demonstrated and validated for the detection of 325 pesticides in 4 typical food matrices, suggesting that the developed method is applicable for the analysis of pesticide residues in vegetables and tea as part of regulatory monitoring programs and other purposes.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ninghui Song
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
44
|
Zheng K, Wu X, Chen J, Chen J, Lian W, Su J, Shi L. Establishment of an LC-MS/MS Method for the Determination of 45 Pesticide Residues in Fruits and Vegetables from Fujian, China. Molecules 2022; 27:molecules27248674. [PMID: 36557806 PMCID: PMC9788273 DOI: 10.3390/molecules27248674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pesticide residues in food have become an important factor seriously threatening human health. Therefore, this study was conducted to determine the pesticide residues in fruits and vegetables commonly found in Fujian, China, with the aim of constructing a simple and rapid method for pesticide residue monitoring. We collected 5607 samples from local markets and analyzed them for the presence of 45 pesticide residues. A fast, easy, inexpensive, effective, robust, and safe (QuEChERS) multi-residue extraction method followed by liquid chromatography equipped with triple-quadrupole mass spectrometry (LC-MS/MS) was successfully established. This 12-min-long analytical method detects and quantifies pesticide residues with acceptable validation performance parameters in terms of sensitivity, selectivity, linearity, the limit of quantification, accuracy, and precision. The linear range of the calibration curves ranged from 5 to 200 mg/L, the limits of detection for all pesticides ranged from 0.02 to 1.90 μg/kg, and the limits of quantification for the pesticides were 10 μg/kg. The recovery rates for the three levels of fortification ranged from 72.0% to 118.0%, with precision values (expressed as RSD%) less than 20% for all of the investigated analytes. The results showed that 726 (12.95%) samples were contaminated with pesticide residues, 94 (1.68%) samples exceeded the maximum residue limit (MRL) of the national standard (GB 2763-2021, China), 632 (11.23%) samples were contaminated with residues below the MRL, and 4881 (87.05%) samples were pesticide residue-free. In addition, the highest number of multiple pesticide residues was observed in bananas and peppers, which were contaminated with acetamiprid, imidacloprid, pyraclostrobin, and thiacloprid.
Collapse
Affiliation(s)
- Kunming Zheng
- Fujian CCIC-Fairreach Food Safety Testing Co., Ltd., Fuzhou 350015, China
- Correspondence:
| | - Xiaoping Wu
- Fujian CCIC-Fairreach Food Safety Testing Co., Ltd., Fuzhou 350015, China
| | - Jiannan Chen
- Fujian CCIC-Fairreach Food Safety Testing Co., Ltd., Fuzhou 350015, China
| | - Jinxing Chen
- Fujian CCIC-Fairreach Food Safety Testing Co., Ltd., Fuzhou 350015, China
| | - Wenhao Lian
- Fujian CCIC-Fairreach Food Safety Testing Co., Ltd., Fuzhou 350015, China
| | - Jianfeng Su
- Fujian CCIC-Fairreach Food Safety Testing Co., Ltd., Fuzhou 350015, China
| | - Lihong Shi
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
45
|
Wang P, Li X, Sun Y, Wang L, Xu Y, Li G. Rapid and reliable detection and quantification of organophosphorus pesticides using SERS combined with dispersive liquid-liquid microextraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4680-4689. [PMID: 36349883 DOI: 10.1039/d2ay01321e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapid and reliable detection and quantification of pesticide residues in complex matrices by surface enhanced Raman spectroscopy (SERS) remain challenging due to the low level of target molecules and the interference of nontarget components. In this study, SERS was combined with dispersive liquid-liquid microextraction (DLLME) to develop a rapid and reliable method for the detection of organophosphorus pesticides (OPPs). In this method, DLLME was used to extract and enrich two representative OPPs (triazophos and parathion-methyl) from a liquid sample, and a portable Raman spectrometer was used to analyze the separated sediment using homemade gold nanoparticles colloids as enhancing substrates. The results showed that the developed method displayed good sensitivity and stability for the detection and quantification of triazophos and parathion-methyl with R2 ≥ 0.98. The calculated limits of detection (LODs) in the simultaneous detection of triazophos and parathion-methyl were 2.17 × 10-9 M (0.679 ppb) and 2.28 × 10-8 M (5.998 ppb), and the calculated limits of quantification (LOQs) were 7.23 × 10-9 M (2.26 ppb) and 7.62 × 10-8 M (19.098 ppb), respectively. Furthermore, the developed SERS method was successfully applied to the detection of triazophos and parathion-methyl in apple juice with recoveries between 78.07% and 110.87% and relative standard deviations (RSDs) ≤ 2.06%. Therefore, the developed DLLME facilitated liquid SERS method exhibited good sensitivity and stability for the rapid detection and quantification of OPPs and had the potential to be applied to the rapid detection of OPPs in complex matrices.
Collapse
Affiliation(s)
- Panxue Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Xiang Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Yan Sun
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Li Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Ying Xu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
46
|
Xie GR, Huang JT, Sung G, Chang J, Chen HJ. Traceable and Integrated Pesticide Screening (TIPS), a Systematic and Retrospective Strategy for Screening 900 Pesticides and Unknown Metabolites in Tea. Anal Chem 2022; 94:16647-16657. [DOI: 10.1021/acs.analchem.2c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Gui-Ru Xie
- Health and Nutrition, SGS Taiwan Ltd., New Taipei City 24886, Taiwan
| | - Jen-Ting Huang
- Health and Nutrition, SGS Taiwan Ltd., New Taipei City 24886, Taiwan
| | - Gar Sung
- Health and Nutrition, SGS Taiwan Ltd., New Taipei City 24886, Taiwan
| | - James Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hong-Jhang Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
47
|
Non-instrumental and Ultrasensitive Detection of Acetamiprid Residue Based on Tyndall Effect of Silver Nanoparticles. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Mishra S, Mishra S, Patel SS, Singh SP, Kumar P, Khan MA, Awasthi H, Singh S. Carbon nanomaterials for the detection of pesticide residues in food: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119804. [PMID: 35926736 DOI: 10.1016/j.envpol.2022.119804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Collapse
Affiliation(s)
- Smriti Mishra
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India
| | - Shivangi Mishra
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Shiv Singh Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Resources Management and Rural Technology, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh- 462026, India
| | - Sheelendra Pratap Singh
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pradip Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Green Engineered Materials and Additive Manufacturing, Council of Scientific and Industrial Research- Advanced Materials and Processes Research Institute, Bhopal - 462026, India
| | - Mohd Akram Khan
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himani Awasthi
- Hygia Institute of Pharmaceutical Education and Research, Lucknow-226020, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
49
|
Ionela Raluca CS, van Staden J(KF, Stefan-van Staden RI. Minireview - Recent Developments in Electrochemical Detection of Atrazine. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Comnea-Stancu Ionela Raluca
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus (Koos) Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
50
|
Liu W, Chen Y, Yin X, Liu F, Li W, Yu J, Jing G, Li W. A Rapid and on-Site detection of Pesticide Residue from Fruit Samples based on Surface Swab-Electrospray Ionization-Ion Mobility Spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|