1
|
Ali MS, Haq M, Park SW, Han JM, Kim JW, Choi MS, Lee SM, Park JS, Chun MS, Lee HJ, Chun BS. Recent advances in recovering bioactive compounds from macroalgae and microalgae using subcritical water extraction: Prospective compounds and biological activities. Food Chem 2025; 469:142602. [PMID: 39724698 DOI: 10.1016/j.foodchem.2024.142602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Algae, widely as a valuable marine biomass, are appreciated globally for their unique chemical compositions and exceptional nutritional benefits. Scientists are increasingly focusing on valorizing algae biomass to recover polysaccharides and bioactive extracts. Conventional methods commonly used to extract bioactive compounds have several limitations. Subcritical water extraction (SWE) is a green extraction technology for extracting bioactive compounds from natural products. SWE has garnered significant attention attributed to its use of safe solvent (water), high extraction efficiency, economical, promising application potential and environmental friendliness. The factors influencing the extraction of bioactive compounds using SWE, including temperature, pressure, extraction time, particle size, and solid-to-solvent ratio, were thoroughly discussed. Furthermore, these bioactive compounds exhibit antioxidant, antimicrobial, antihypertensive, anticancer, and antidiabetic properties. The bioactive compounds from the hydrolysates were not purified, but future research could address this for potential applications. This study provides valuable reference points for both academia and industrial-scale commercialization.
Collapse
Affiliation(s)
- Md Sadek Ali
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Monjurul Haq
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea; Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sin-Won Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Jang-Woo Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Min-Seo Choi
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Sang-Min Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Man-Seog Chun
- Korea Science Academy of KAIST, 105-47, Baegyanggwanmun-ro, Busanjin-gy, Busan 47162, Republic of Korea
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Di Sario L, Boeri P, Matus JT, Pizzio GA. Plant Biostimulants to Enhance Abiotic Stress Resilience in Crops. Int J Mol Sci 2025; 26:1129. [PMID: 39940896 PMCID: PMC11817731 DOI: 10.3390/ijms26031129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The escalating impact of abiotic stress on crop productivity requires innovative strategies to ensure sustainable agriculture. This review examines the promising role of biostimulants in mitigating the adverse effects of abiotic stress on crops. Biostimulants, ranging from simple organic compounds to complex living microorganisms, have demonstrated significant potential in enhancing plant resilience, stress tolerance, and overall performance. The mechanisms underlying biostimulant action-such as enhancing antioxidant defenses, regulating hormonal pathways, and inducing metabolic adjustments-are reviewed. Furthermore, we incorporate the latest research findings, methodologies, and advancements in biostimulant applications for addressing abiotic stressors, including drought, salinity, high temperatures, and nutrient deficiencies. This review also highlights current challenges and future opportunities for optimizing biostimulant use in sustainable crop production. This revision aims to guide researchers and agronomists in applying biostimulants to improve crop resilience in the context of climate change.
Collapse
Affiliation(s)
- Luciana Di Sario
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
| | - Patricia Boeri
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain;
| | - Gastón A. Pizzio
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain;
| |
Collapse
|
3
|
Chadwick M, Carvalho LG, Vanegas C, Dimartino S. A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed. Mar Drugs 2025; 23:27. [PMID: 39852529 PMCID: PMC11766506 DOI: 10.3390/md23010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Fucoidan is a sulfated polysaccharide found in brown seaweed. Due to its reported biological activities, including antiviral, antibacterial and anti-inflammatory activities, it has garnered significant attention for potential biomedical applications. However, the direct relationship between fucoidan extracts' chemical structures and bioactivities is unclear, making it extremely challenging to predict whether an extract will possess a given bioactivity. This relationship is further complicated by a lack of uniformity in the recent literature in terms of the assessment and reporting of extract properties, yield and chemical composition (e.g., sulfate, fucose, uronic acid and monosaccharide contents). These inconsistencies pose significant challenges when directly comparing extraction techniques across studies. This review collected data on extract contents and properties from a selection of available studies. Where information was unavailable directly, efforts were made to extrapolate data. This approach enabled a comprehensive examination of the correlation between extraction techniques and the characteristics of the resulting extracts. A holistic framework is presented for the selection of fucoidan extraction methods, outlining key heuristics to consider when capturing the broader context of a seaweed bioprocess. Future work should focus on developing knowledge within these heuristic categories, such as the creation of technoeconomic models of each extraction process. This framework should allow for a robust extraction selection process that integrates process scale, cost and constraints into decision making. Key quality attributes for biologically active fucoidan are proposed, and areas for future research are identified, such as studies for specific bioactivities aimed at elucidating fucoidan's mechanism of action. This review also sets out future work required to standardize the reporting of fucoidan extract data. Standardization could positively enhance the quality and depth of data on fucoidan extracts, enabling the relationships between physical, chemical and bioactive properties to be identified. Recommendations on best practices for the production of high-quality fucoidan with desirable yield, characteristics and bioactivity are highlighted.
Collapse
Affiliation(s)
- Matthew Chadwick
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK;
| | - Loïc G. Carvalho
- BioMara Ltd., 83 Princes Street, Edinburgh EH2 2ER, UK; (L.G.C.)
| | - Carlos Vanegas
- BioMara Ltd., 83 Princes Street, Edinburgh EH2 2ER, UK; (L.G.C.)
| | - Simone Dimartino
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK;
| |
Collapse
|
4
|
Hans N, Solanki D, Nagpal T, Amir H, Naik S, Malik A. Process optimization and characterization of hydrolysate from underutilized brown macroalgae (Padina tetrastromatica) after fucoidan extraction through subcritical water hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119497. [PMID: 37951112 DOI: 10.1016/j.jenvman.2023.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
The growing demand for macroalgal biomass as a source of proteins, peptides, and amino acids is garnering attention for their biological and functional properties. This study depicts the use of emerging green techniques, i.e. subcritical water, to hydrolyze protein from Padina tetrastromatica. The biomass was treated with subcritical water at varying temperatures between 100 and 220 °C for 10-40 min at a biomass to water proportion of 1:50 (w/v) and pressure of 4.0 MPa. The optimum conditions for recovering the maximum protein (127.2 ± 1.1 mg g-1), free amino acids (58.4 ± 1.0 mg g-1), highest degree of hydrolysis (58.8 ± 1.2 %) and low molecular weight peptides (<650 Da) were found to be 220 °C for 10 min. The amino acid profiling of the hydrolysate revealed that it contains 45 % essential amino acids, with the highest concentration of methionine (0.18 %), isoleucine (0.12 %) and leucine (0.10 %). It was found that the hydrolysate contains phenolics (23.9 ± 1.4 mg GAE g-1) and flavonoids (1.23 ± 0.1 mg QE g-1), which are largely responsible for antioxidant activity. The hydrolysate effectively inhibits acetylcholinesterase and α-amylase in vitro, with IC50 values of 17.9 ± 0.1 mg mL-1 and 16.0 ± 0.5 %, respectively, which can help prevent Alzheimer's disease and diabetes mellitus. Consequently, this study reveals that utilizing eco-friendly subcritical water hydrolysis method, 79 % of the protein was recovered from P. tetrastromatica, which might be an effective source of bioactive peptides in various nutraceutical, pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- Nidhi Hans
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Divyang Solanki
- School of Agriculture and Food Science, The University of Queensland, Brisbane, 4072, Australia.
| | - Tanya Nagpal
- Food Customization and Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Hirah Amir
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Satyanarayan Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
5
|
Flórez-Fernández N, Ferreira-Anta T, Queffelec J, Ingrez IB, Buján M, Muiños A, Domínguez H, Torres MD. Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features. Mar Drugs 2023; 21:618. [PMID: 38132939 PMCID: PMC10744486 DOI: 10.3390/md21120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This work deals with the formulation of natural cosmetics enriched with antioxidant fractions from the ultrasound treatment (US) of the brown seaweed Saccharina latissima. The challenge was the development of a cosmetic matrix without jeopardizing the thermorheological features of the creams, adding microparticles containing the antioxidant fractions using two different carriers, mannitol and alginate. The fundamental chemical characteristics of seaweed and the extracts obtained via sonication, as well as the antioxidant properties of the latter, were analyzed. The highest TEAC (Trolox equivalent antioxidant capacity) value was identified for the extracts subjected to the longest processing time using ultrasound-assisted extraction (240 min). A similar yield of microparticle formulation (around 60%) and load capacity (about 85%) were identified with mannitol and alginate as carriers. Color testing of the creams exhibited small total color differences. The rheological results indicated that the testing temperature, from 5 to 45 °C, notably influenced the apparent viscosity of the matrices. All creams were adequately fitted with the two parameters of the Ostwald-de Waele model, with the flow consistency index following an Arrhenius dependency with the testing temperature. Neither hysteresis nor water syneresis was observed in the proposed cosmetics during 6 months of cold storage at 4-6 °C.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Tania Ferreira-Anta
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Julie Queffelec
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Isa B. Ingrez
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Herminia Domínguez
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - María Dolores Torres
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| |
Collapse
|
6
|
Ferreira-Anta T, Torres MD, Vilarino JM, Dominguez H, Flórez-Fernández N. Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying. Foods 2023; 12:3881. [PMID: 37893773 PMCID: PMC10667999 DOI: 10.3390/foods12203881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The formulation of polymeric microparticles to encapsulate bioactive compounds from two hop varieties (Nugget and Perle) using sequential green extraction processes was performed. The technologies used were ultrasound-assisted extraction (UAE) and pressurized hot water (PHW) extraction. Liquid phases were analyzed for total phenolic content (~2%), antioxidant activity (IC50, DPPH: 3.68 (Nugget); 4.46 (Perle) g/L, TEAC (~4-5%), FRAP (~2-3%), and reducing power (~4%)), protein content (~1%), oligosaccharide content (~45%), and for structural features. The fractions obtained from UAE were selected to continue with the drying process, achieving the maximum yield at 120 °C (Perle) and 130 °C (Nugget) (~77%). Based on these results, the formulation of polymeric microparticles using mannitol as the carrier was performed with these fractions. The production yield (~65%), particle size distribution (Perle: 250-750 µm and Nugget: ~100 µm), and rheological features (30-70 mPa s at 0.1 s-1) were the parameters evaluated. The UAE extracts from hop samples processed using a sustainable aqueous treatment allowed the formulation of microparticles with a suitable yield, and morphological and viscosity properties adequate for potential food and non-food applications.
Collapse
Affiliation(s)
- Tania Ferreira-Anta
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Facultad de Ciencias, 32004 Ourense, Spain; (T.F.-A.); (M.D.T.); (N.F.-F.)
| | - María Dolores Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Facultad de Ciencias, 32004 Ourense, Spain; (T.F.-A.); (M.D.T.); (N.F.-F.)
| | | | - Herminia Dominguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Facultad de Ciencias, 32004 Ourense, Spain; (T.F.-A.); (M.D.T.); (N.F.-F.)
| | - Noelia Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Facultad de Ciencias, 32004 Ourense, Spain; (T.F.-A.); (M.D.T.); (N.F.-F.)
| |
Collapse
|
7
|
Sun XH, Chen XL, Wang XF, Zhang XR, Sun XM, Sun ML, Zhang XY, Zhang YZ, Zhang YQ, Xu F. Cost-effective production of alginate oligosaccharides from Laminaria japonica roots by Pseudoalteromonas agarivorans A3. Microb Cell Fact 2023; 22:179. [PMID: 37689719 PMCID: PMC10492272 DOI: 10.1186/s12934-023-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Alginate oligosaccharides (AOs) are the degradation products of alginate, a natural polysaccharide abundant in brown algae. AOs generated by enzymatic hydrolysis have diverse bioactivities and show broad application potentials. AOs production via enzymolysis is now generally with sodium alginate as the raw material, which is chemically extracted from brown algae. In contrast, AOs production by direct degradation of brown algae is more advantageous on account of its cost reduction and is more eco-friendly. However, there have been only a few attempts reported in AOs production from direct degradation of brown algae. RESULTS In this study, an efficient Laminaria japonica-decomposing strain Pseudoalteromonas agarivorans A3 was screened. Based on the secretome and mass spectrum analyses, strain A3 showed the potential as a cell factory for AOs production by secreting alginate lyases to directly degrade L. japonica. By using the L. japonica roots, which are normally discarded in the food industry, as the raw material for both fermentation and enzymatic hydrolysis, AOs were produced by the fermentation broth supernatant of strain A3 after optimization of the alginate lyase production and hydrolysis parameters. The generated AOs mainly ranged from dimers to tetramers, among which trimers and tetramers were predominant. The degradation efficiency of the roots reached 54.58%, the AOs production was 33.11%, and the AOs purity was 85.03%. CONCLUSION An efficient, cost-effective and green process for AOs production directly from the underutilized L. japonica roots by using strain A3 was set up, which differed from the reported processes in terms of the substrate and strain used for fermentation and the AOs composition. This study provides a promising platform for scalable production of AOs, which may have application potentials in industry and agriculture.
Collapse
Affiliation(s)
- Xiao-Hui Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Fei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xin-Ru Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Meng Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mei-Ling Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Wang HY, Chen ZF, Zheng ZH, Lei HW, Cong HH, Zhou HX. A Novel Cold-Adapted and High-Alkaline Alginate Lyase with Potential for Alginate Oligosaccharides Preparation. Molecules 2023; 28:6190. [PMID: 37687019 PMCID: PMC10488352 DOI: 10.3390/molecules28176190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Alginate oligosaccharides (AOs) prepared through enzymatic reaction by diverse alginate lyases under relatively controllable and moderate conditions possess versatile biological activities. But widely used commercial alginate lyases are still rather rare due to their poor properties (e.g., lower activity, worse thermostability, ion tolerance, etc.). In this work, the alginate lyase Alyw208, derived from Vibrio sp. W2, was expressed in Yarrowia lipolytica of food grade and characterized in order to obtain an enzyme with excellent properties adapted to industrial requirements. Alyw208 classified into the polysaccharide lyase (PL) 7 family showed maximum activity at 35 °C and pH 10.0, indicating its cold-adapted and high-alkaline properties. Furthermore, Alyw208 preserved over 70% of the relative activity within the range of 10-55 °C, with a broader temperature range for the activity compared to other alginate-degrading enzymes with cold adaptation. Recombinant Alyw208 was significantly activated with 1.5 M NaCl to around 2.1 times relative activity. In addition, the endolytic Alyw208 was polyG-preferred, but identified as a bifunctional alginate lyase that could degrade both polyM and polyG effectively, releasing AOs with degrees of polymerization (DPs) of 2-6 and alginate monomers as the final products (that is, DPs 1-6). Alyw208 has been suggested with favorable properties to be a potent candidate for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (Z.-F.C.); (Z.-H.Z.); (H.-W.L.)
| | - Zhi-Fang Chen
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (Z.-F.C.); (Z.-H.Z.); (H.-W.L.)
- Shandong Peanut Research Institute, Qingdao 266100, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhi-Hong Zheng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (Z.-F.C.); (Z.-H.Z.); (H.-W.L.)
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Hui-Wen Lei
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (Z.-F.C.); (Z.-H.Z.); (H.-W.L.)
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Hai-Hua Cong
- College of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Hai-Xiang Zhou
- Shandong Peanut Research Institute, Qingdao 266100, China
| |
Collapse
|
9
|
Park JS, Han JM, Shin YN, Park YS, Shin YR, Park SW, Roy VC, Lee HJ, Kumagai Y, Kishimura H, Chun BS. Exploring Bioactive Compounds in Brown Seaweeds Using Subcritical Water: A Comprehensive Analysis. Mar Drugs 2023; 21:328. [PMID: 37367653 DOI: 10.3390/md21060328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, we characterized the bioactive properties of three important brown seaweed species, Sargassum thunbergii, Undaria pinnatifida, and Saccharina japonica, by subcritical water extraction (SWE), as these species are well known for their beneficial health effects. Their physiochemical properties, including potential antioxidant, antihypertensive, and α-glucosidase inhibitory activity, and the antibacterial activity of the hydroysates were also analyzed. The highest total phlorotannin, total sugar content, and reducing sugar content in the S. thunbergii hydrolysates were 38.82 ± 0.17 mg PGE/g, 116.66 ± 0.19 mg glucose/g dry sample, and 53.27 ± 1.57 mg glucose/g dry sample, respectively. The highest ABTS+ and DPPH antioxidant activities were obtained in the S. japonica hydrolysates (124.77 ± 2.47 and 46.35 ± 0.01 mg Trolox equivalent/g, respectively) and the highest FRAP activity was obtained in the S. thunbergii hydrolysates (34.47 ± 0.49 mg Trolox equivalent/g seaweed). In addition, the seaweed extracts showed antihypertensive (≤59.77 ± 0.14%) and α-glucosidase inhibitory activity (≤68.05 ± 1.15%), as well as activity against foodborne pathogens. The present findings provide evidence of the biological activity of brown seaweed extracts for potential application in the food, pharmaceutical, and cosmetic sectors.
Collapse
Affiliation(s)
- Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Yu-Na Shin
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Ye-Seul Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Ye-Ryeon Shin
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Sin-Won Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| |
Collapse
|
10
|
Ferreira-Anta T, Torres MD, Dominguez H, Flórez-Fernández N. Formulation of Polymeric Microparticles Using Eco-Friendly Extracted Crude Fucoidans from Edible Brown Seaweed Undaria pinnatifida. Foods 2023; 12:foods12091859. [PMID: 37174397 PMCID: PMC10178044 DOI: 10.3390/foods12091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Several bioactive compounds that hold a potential interest in the food industry as phenolic compounds, polysaccharides, proteins and vitamins, among others, are present in seaweeds. Green extraction technologies are the preferred way to obtain these compounds. Pressurized hot water extraction, from 160 to 220 °C, was tested to achieve high yields of these components from the edible brown seaweed, Undaria pinnatifida. The maximum fucoidan content was recovered at 160 °C, while the phloroglucinol content and antioxidant activity were maximum at 220 °C. The possibility of encapsulating these bioactive fractions using mannitol was assessed. The highest production yield of the polymeric particles was found using the 220 °C fraction (close to 75%). In order to formulate microparticles with bioactive potential, several ratios of liquid phases were assessed, 3:1, 1:1 and 1:3 (w:w), using the liquid fractions obtained at 160 °C and 220 °C. The yield production was always above 67%, being in the 1:3 ratio (160 °C:220 °C) and close to 75%. The rheological results indicated that the presence of microparticles enhanced the apparent viscosity of the aqueous dispersions with non-Newtonian profiles, achieving the highest viscosity for those formulated with microparticles from 160 °C:200 °C (3:1).
Collapse
Affiliation(s)
- Tania Ferreira-Anta
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Maria Dolores Torres
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Herminia Dominguez
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Noelia Flórez-Fernández
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
11
|
Zhang L, Freschi G, Rouphael Y, De Pascale S, Lucini L. The differential modulation of secondary metabolism induced by a protein hydrolysate and a seaweed extract in tomato plants under salinity. FRONTIERS IN PLANT SCIENCE 2023; 13:1072782. [PMID: 36726679 PMCID: PMC9884811 DOI: 10.3389/fpls.2022.1072782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Climate change and abiotic stress challenges in crops are threatening world food production. Among others, salinity affects the agricultural sector by significantly impacting yield losses. Plant biostimulants have received increasing attention in the agricultural industry due to their ability to improve health and resilience in crops. The main driving force of these products lies in their ability to modulate plant metabolic processes involved in the stress response. This study's purpose was to investigate the effect of two biostimulant products, including a protein hydrolysate (Clever HX®) and a seaweed extract with high amino acids content (Ascovip®), and their combination, on the metabolomics profile of tomato crops grown under salt stress (150 mM NaCl). Several stress indicators (leaf relative water content, membrane stability index, and photosynthesis activity) and leaf mineral composition after salinity stress exposure were assessed to evaluate stress mitigation, together with growth parameters (shoot and root biomasses). After that, an untargeted metabolomics approach was used to investigate the mechanism of action of the biostimulants and their link with the increased resilience to stress. The application of the biostimulants used reduced the detrimental effect of salinity. In saline conditions, protein hydrolysate improved shoot dry weight while seaweed extracts improved root dry weight. Regarding stress indicators, the application of the protein hydrolysate was found to alleviate the membrane damage caused by salinity stress compared to untreated plants. Surprisingly, photosynthetic activity significantly improved after treatment with seaweed extracts, suggesting a close correlation between root development, root water assimilation capacity and photosynthetic activity. Considering the metabolic reprogramming after plant biostimulants application, protein hydrolysates and their combination with seaweed extracts reported a distinctive metabolic profile modulation, mainly in secondary metabolite, lipids and fatty acids, and phytohormones biosynthetic pathways. However, treatment with seaweed extract reported a similar metabolic reprogramming trend compared to salinity stress. Our findings indicate a different mechanism of action modulated by protein hydrolysate and seaweed extract, suggesting stronger activity as a stress mitigator of protein hydrolysate in tomato crops under salinity stress.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
13
|
Yang Y, Hassan SH, Awasthi MK, Gajendran B, Sharma M, Ji MK, Salama ES. The recent progress on the bioactive compounds from algal biomass for human health applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Bi D, Yang X, Yao L, Hu Z, Li H, Xu X, Lu J. Potential Food and Nutraceutical Applications of Alginate: A Review. Mar Drugs 2022; 20:md20090564. [PMID: 36135753 PMCID: PMC9502916 DOI: 10.3390/md20090564] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Alginate is an acidic polysaccharide mainly extracted from kelp or sargassum, which comprises 40% of the dry weight of algae. It is a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages, possessing various applications in the food and nutraceutical industries due to its unique physicochemical properties and health benefits. Additionally, alginate is able to form a gel matrix in the presence of Ca2+ ions. Alginate properties also affect its gelation, including its structure and experimental conditions such as pH, temperature, crosslinker concentration, residence time and ionic strength. These features of this polysaccharide have been widely used in the food industry, including in food gels, controlled-release systems and film packaging. This review comprehensively covers the analysis of alginate and discussed the potential applications of alginate in the food industry and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Correspondence: (X.X.); (J.L.); Tel.: +86-755-86532680 (X.X.); +64-9-9219999 (ext. 7381) (J.L.)
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- Correspondence: (X.X.); (J.L.); Tel.: +86-755-86532680 (X.X.); +64-9-9219999 (ext. 7381) (J.L.)
| |
Collapse
|
15
|
Li X, Peng B, Chi-Keung Cheung P, Wang J, Zheng X, You L. Depolymerized non-digestible sulfated algal polysaccharides produced by hydrothermal treatment with enhanced bacterial fermentation characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
17
|
Subcritical water extraction for recovery of phenolics and fucoidan from New Zealand Wakame (Undaria pinnatifida) seaweed. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
19
|
Recent Advances in the Valorization of Algae Polysaccharides for Food and Nutraceutical Applications: a Review on the Role of Green Processing Technologies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Flórez-Fernández N, Falqué E, Domínguez H, Torres MD. Green Extraction of Carrageenans from Mastocarpus stellatus. Polymers (Basel) 2022; 14:polym14030554. [PMID: 35160543 PMCID: PMC8839242 DOI: 10.3390/polym14030554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
The recovery of biopolymers from natural resources using eco-friendly extraction technologies that enhance their mechanical properties has gained attention in recent years. In this context, this work deals with the isolation of hybrid carrageenans from Mastocarpus stellatus red seaweed using subcritical water extraction operating in a wide range of thermal conditions (70–190 °C). The extracted biopolymers were analyzed by means of either Fourier-Transform infrared, nuclear magnetic resonance, rheological or cell viability assays. In parallel, the fundamental chemical composition of the seaweed used as raw material, as well as the main phytochemical properties of the soluble liquid extracts, were also studied. Results indicated that thermal extraction conditions significantly affected the rheological behavior of the recovered hybrid carrageenans. The hybrid carrageenan extraction yields varied, with results between 10.2 and 30.2% being the highest values obtained at hydrothermal treatment of 130 °C. A wide palette of viscous features was identified for recovered hybrid carrageenans, with the strongest rheology properties observed at the same temperature. It should be remarked that the maximum inhibitory effect was also obtained at 130 °C for both the ovarian carcinoma cell line (A2780) (65%, IC50: 0.31 mg/mL) and lung carcinoma cell line (A549) (59%, IC50: 0.41 mg/mL).
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, EQ-2 Group, Facultade de Ciencias, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain; (N.F.-F.); (H.D.)
- Departamento de Ingeniería Química, Facultade de Ciencias, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Elena Falqué
- Departamento de Química Analítica, Facultade de Ciencias, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain;
| | - Herminia Domínguez
- CINBIO, EQ-2 Group, Facultade de Ciencias, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain; (N.F.-F.); (H.D.)
- Departamento de Ingeniería Química, Facultade de Ciencias, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
| | - María Dolores Torres
- CINBIO, EQ-2 Group, Facultade de Ciencias, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain; (N.F.-F.); (H.D.)
- Departamento de Ingeniería Química, Facultade de Ciencias, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
- Correspondence: ; Tel.: +34-988-387-047
| |
Collapse
|
21
|
Bianchi A, Sanz V, Domínguez H, Torres M. Valorisation of the industrial hybrid carrageenan extraction wastes using eco-friendly treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Torres MD, Flórez-Fernández N, Domínguez H. Chondrus crispus treated with ultrasound as a polysaccharides source with improved antitumoral potential. Carbohydr Polym 2021; 273:118588. [PMID: 34560989 DOI: 10.1016/j.carbpol.2021.118588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Ultrasound-assisted extraction was used to recover gelling biopolymers and antioxidant compounds from Chondrus crispus with improved biological potential. The optimal processing conditions were evaluated using a Box-Behnken design, and the impact on the biological and thermo-rheological properties of the carrageenan fraction and on the bioactive features of the soluble extracts were studied. The optimum extraction parameters were defined by extraction time of ~34.7 min; solid liquid ratio of ~2.1 g/100 g and ultrasound amplitude of ~79.0% with a maximum power of 1130 W. The dependent variables exhibited maximum carrageenan yields (44.3%) and viscoelastic modulus (925.9 Pa) with the lowest gelling temperatures (38.7 °C) as well as maximum content of the extract in protein (22.4 mg/g), gallic acid (13.4 mg/g) and Trolox equivalents antioxidant capacity (182.4 mg TEAC/g). Tested hybrid carrageenans exhibited promising biological activities (% of growth inhibition around 91% for four human cancer cellular lines: A549; A2780; HeLa 229; HT-29).
Collapse
Affiliation(s)
- M D Torres
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain.
| | - N Flórez-Fernández
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - H Domínguez
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
23
|
Queffelec J, Flórez-Fernández N, Domínguez H, Torres MD. Microwave hydrothermal processing of Undaria pinnatifida for bioactive peptides. BIORESOURCE TECHNOLOGY 2021; 342:125882. [PMID: 34560434 DOI: 10.1016/j.biortech.2021.125882] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Microwave hydrothermal processing was employed to obtain valuable gelling or bioactive fractions from U. pinnatifida, assessing the processing conditions following a biorefinery concept. It was identified a relevant impact on the antioxidant properties, sulfate, protein and oligosaccharides content, with the highest values above 200 °C, although the maximum in fucose was obtained at 160 °C. The lowest temperature involved the highest minerals and sulfate content of the solid phases. Rheology indicated that hydrothermal treatment at 160 °C is adequate to extract alginates with structural and viscoelastic properties similar to those commercially available. The incorporation of the hydrothermal residual solids in the proposed alginate matrices favored the development of systems with potential non-food applications applications. Selected extracts, after an intensification stage using ultrasound, featured interesting biological activities for two human cancer cell lines (A2780; HeLa 229) with percentage of cellular inhibition > 83 and 57%, without positive effects on A549 and HCT-116.
Collapse
Affiliation(s)
- J Queffelec
- CINBIO, Universidade de Vigo, Deparment of Chemical Engineering, Campus Ourense, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain; IMT Mines Albi, Allée des Sciences, 81000 Albi, France
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Deparment of Chemical Engineering, Campus Ourense, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain
| | - H Domínguez
- CINBIO, Universidade de Vigo, Deparment of Chemical Engineering, Campus Ourense, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain
| | - M D Torres
- CINBIO, Universidade de Vigo, Deparment of Chemical Engineering, Campus Ourense, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain.
| |
Collapse
|
24
|
Del Río PG, Gullón B, Pérez-Pérez A, Romaní A, Garrote G. Microwave hydrothermal processing of the invasive macroalgae Sargassum muticum within a green biorefinery scheme. BIORESOURCE TECHNOLOGY 2021; 340:125733. [PMID: 34426234 DOI: 10.1016/j.biortech.2021.125733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
This study deals with the multiproduct valorization of the invasive macroalgae Sargassum muticum within a green biorefinery concept using microwave hydrothermal treatment. Temperatures of 160 and 180 °C for 0-60 min (severities 1.62-3.54) were evaluated, allowing a recovery of a liquid phase rich in fucoidan-derived compounds (up to 4.81 g/L), oligomers and phenolics with antioxidant capacity (up to 2.85 g TE/L by ABTS assay), and a high-enzymatically susceptible solid (glucan to glucose conversion 76-100% in 9 h) suitable for bioethanol production (20.5 g/L in 18 h, corresponding to 96% ethanol yield). Moreover, energy consumption of the pretreatments' temperature-time binomial was evaluated showing significant differences, demonstrating the advantages of microwave as alternative heating pretreatment.
Collapse
Affiliation(s)
- Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain.
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Alba Pérez-Pérez
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| |
Collapse
|
25
|
Flórez-Fernández N, Domínguez H, Torres MD. Functional Features of Alginates Recovered from Himanthalia elongata Using Subcritical Water Extraction. Molecules 2021; 26:4726. [PMID: 34443312 PMCID: PMC8402157 DOI: 10.3390/molecules26164726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
Subcritical water extraction of Himanthalia elongata and the subsequent acetone fractionation to precipitate crude fucoidans generated a liquid phase which was used to recover alginates with a wide range of viscoelastic features and other soluble extracts with potential biological activities. The precipitated alginate was converted to sodium alginate using an environmentally friendly treatment before being characterized by Fourier transform infrared attenuated total reflectance, nuclear magnetic resonance, high performance size exclusion chromatography and rheological measurements. The cell viability of three human cell lines (A549, HCT-116, T98G) in the presence of the extracts obtained before and after acetone fractionation was assessed. Fractionation with different acetone volumes showed a slight effect in the behavior of the different tested cell lines. Results also indicated a notable effect of the processing conditions on the block structure and molar mass of the extracted biopolymer, with the subsequent impact on the rheological properties of the corresponding gelled matrices.
Collapse
Affiliation(s)
| | - Herminia Domínguez
- Department of Chemical Engineering, Faculty of Sciences, University of Vigo, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain; (N.F.-F.); (M.D.T.)
| | | |
Collapse
|
26
|
González-Ballesteros N, Torres MD, Flórez-Fernández N, Diego-González L, Simón-Vázquez R, Rodríguez-Argüelles MC, Domínguez H. Eco-friendly extraction of Mastocarpus stellatus carrageenan for the synthesis of gold nanoparticles with improved biological activity. Int J Biol Macromol 2021; 183:1436-1449. [PMID: 34023369 DOI: 10.1016/j.ijbiomac.2021.05.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
Carrageenan was extracted from Mastocarpus stellatus using hot water extraction under atmospheric and pressurized conditions. The influence of heating temperature during a non-isothermal heating profile up to temperatures in the range 70-190 °C was studied to evaluate the extraction yields and properties of the carrageenan fraction. Under the selected conditions (130 °C), extracted carrageenan (CMs) was used for the green synthesis of gold nanoparticles (AuNPs). After the optimization of the reaction conditions, the synthesized gold nanoparticles (Au@CMs) were characterized by UV-Vis spectroscopy, Z potential measurements, electron microscopy, and X-ray diffraction analysis, which confirmed the formation of spherical, polycrystalline, and negatively charged nanoparticles with a mean diameter of 14.3 ± 2.1 nm. The study conducted by scanning transmission electron microscopy, energy dispersive X-ray analysis and mapping confirmed the presence of carrageenan stabilizing AuNPs. Finally, Fourier transformed infrared spectroscopy was performed to analyze the functional groups of CMs involved in the reduction and stabilization of AuNPs. The selective cytotoxicity and the antioxidant activity of the Au@CMs were evaluated in different cell lines and compared to the CMs. Au@CMs showed an improved antioxidant capacity in cells under oxidative stress and the induction of apoptosis in a monocytic cell line, while no antitumor effect was observed in a lung endothelial cell line.
Collapse
Affiliation(s)
| | - M D Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - L Diego-González
- CINBIO, Universidade de Vigo, Inmunología, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - R Simón-Vázquez
- CINBIO, Universidade de Vigo, Inmunología, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | | | - H Domínguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| |
Collapse
|
27
|
Monitoring of the ultrasound assisted depolymerisation kinetics of fucoidans from Sargassum muticum depending on the rheology of the corresponding gels. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Matos GS, Pereira SG, Genisheva ZA, Gomes AM, Teixeira JA, Rocha CMR. Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. Foods 2021; 10:foods10030516. [PMID: 33801287 PMCID: PMC7998159 DOI: 10.3390/foods10030516] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023] Open
Abstract
Seaweeds are a renewable natural source of valuable macro and micronutrients that have attracted the attention of the scientists in the last years. Their medicinal properties were already recognized in the ancient traditional Chinese medicine, but only recently there has been a considerable increase in the study of these organisms in attempts to demonstrate their health benefits. The extraction process and conditions to be used for the obtention of value-added compounds from seaweeds depends mainly on the desired final product. Thermochemical conversion of seaweeds, using high temperatures and solvents (including water), to obtain high-value products with more potential applications continues to be an industrial practice, frequently with adverse impact on the environment and products’ functionality. However more recently, alternative methods and approaches have been suggested, searching not only to improve the process performance, but also to be less harmful for the environment. A biorefinery approach display a valuable idea of solving economic and environmental drawbacks, enabling less residues production close to the much recommended zero waste system. The aim of this work is to report about the new developed methods of seaweeds extractions and the potential application of the components extracted.
Collapse
Affiliation(s)
- Gabriela S. Matos
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Sara G. Pereira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Zlatina A. Genisheva
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Ana Maria Gomes
- Centro de Biotecnologia e Química Fina—Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, 4169-005 Porto, Portugal;
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
- Correspondence: ; Tel.: +315-253-604-400
| |
Collapse
|
29
|
Tailoring hybrid carrageenans from Mastocarpus stellatus red seaweed using microwave hydrodiffusion and gravity. Carbohydr Polym 2020; 248:116830. [DOI: 10.1016/j.carbpol.2020.116830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
|
30
|
Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Ponthier E, Domínguez H, Torres M. The microwave assisted extraction sway on the features of antioxidant compounds and gelling biopolymers from Mastocarpus stellatus. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Gabbia D, De Martin S. Brown Seaweeds for the Management of Metabolic Syndrome and Associated Diseases. Molecules 2020; 25:E4182. [PMID: 32932674 PMCID: PMC7570850 DOI: 10.3390/molecules25184182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome is characterized by the coexistence of different metabolic disorders which increase the risk of developing type 2 diabetes mellitus and cardiovascular diseases. Therefore, metabolic syndrome leads to a reduction in patients' quality of life as well as to an increase in morbidity and mortality. In the last few decades, it has been demonstrated that seaweeds exert multiple beneficial effects by virtue of their micro- and macronutrient content, which could help in the management of cardiovascular and metabolic diseases. This review aims to provide an updated overview on the potential of brown seaweeds for the prevention and management of metabolic syndrome and its associated diseases, based on the most recent evidence obtained from in vitro and in vivo preclinical and clinical studies. Owing to their great potential for health benefits, brown seaweeds are successfully used in some nutraceuticals and functional foods for treating metabolic syndrome comorbidities. However, some issues still need to be tackled and deepened to improve the knowledge of their ADME/Tox profile in humans, in particular by finding validated indexes of their absorption and obtaining reliable information on their efficacy and long-term safety.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
33
|
Sanz V, Flórez-Fernández N, Domínguez H, Torres MD. Clean technologies applied to the recovery of bioactive extracts from Camellia sinensis leaves agricultural wastes. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Improving the nutritional performance of gluten-free pasta with potato peel autohydrolysis extract. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Flórez-Fernández N, Álvarez-Viñas M, Guerreiro F, Torres MD, Grenha A, Domínguez H. Hydrothermal Processing of Laminaria ochroleuca for the Production of Crude Extracts Used to Formulate Polymeric Nanoparticles. Mar Drugs 2020; 18:E336. [PMID: 32605020 PMCID: PMC7401254 DOI: 10.3390/md18070336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
A green extraction process using only water was proposed for the simultaneous extraction of alginate and bioactive compounds from Laminaria ochroleuca. Operation was carried out during non-isothermal heating up to maximal temperatures over the range of 70 °C to 100 °C. Once separated, the alginate and the crude extract were characterised and the biological activities and cytotoxicity of the extracts was studied, the latter in intestinal epithelial cells. Those alginates obtained at 90 °C exhibited the highest extraction yields and viscoelastic features of the corresponding hydrogels. The obtained results show that the extracts obtained by non-isothermal extraction were suitable to formulate nanoparticles, which showed the smallest size (≈ 250-350 nm) when the higher content of fucoidan extract was present. Given the evidenced properties, the extracts may find an application in the formulation of nanoparticulate carriers for drug delivery.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- Department of Chemical Engineering, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (N.F.-F.); (M.Á.-V.); (M.D.T.)
- Centre for Marine Sciences, Universidade do Algarve, Gambelas Campus, 8005-139 Faro, Portugal;
| | - Milena Álvarez-Viñas
- Department of Chemical Engineering, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (N.F.-F.); (M.Á.-V.); (M.D.T.)
| | - Filipa Guerreiro
- Centre for Marine Sciences, Universidade do Algarve, Gambelas Campus, 8005-139 Faro, Portugal;
| | - María Dolores Torres
- Department of Chemical Engineering, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (N.F.-F.); (M.Á.-V.); (M.D.T.)
| | - Ana Grenha
- Centre for Marine Sciences, Universidade do Algarve, Gambelas Campus, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Faculty of Sciences and Technology, Universidade do Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Herminia Domínguez
- Department of Chemical Engineering, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (N.F.-F.); (M.Á.-V.); (M.D.T.)
| |
Collapse
|
36
|
Torres M, Fradinho P, Rodríguez P, Falqué E, Santos V, Domínguez H. Biorefinery concept for discarded potatoes: Recovery of starch and bioactive compounds. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Wang ZP, Cao M, Li B, Ji XF, Zhang XY, Zhang YQ, Wang HY. Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Mar Drugs 2020; 18:E189. [PMID: 32244721 PMCID: PMC7230187 DOI: 10.3390/md18040189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cold-adapted alginate lyases have unique advantages for alginate oligosaccharide (AOS) preparation and brown seaweed processing. Robust and cold-adapted alginate lyases are urgently needed for industrial applications. In this study, a cold-adapted alginate lyase-producing strain Vibrio sp. W2 was screened. Then, the gene ALYW201 was cloned from Vibrio sp. W2 and expressed in a food-grade host, Yarrowia lipolytica. The secreted Alyw201 showed the activity of 64.2 U/mL, with a molecular weight of approximate 38.0 kDa, and a specific activity of 876.4 U/mg. Alyw201 performed the highest activity at 30 °C, and more than 80% activity at 25-40 °C. Furthermore, more than 70% of the activity was obtained in a broad pH range of 5.0-10.0. Alyw201 was also NaCl-independent and salt-tolerant. The degraded product was that of the oligosaccharides of DP (Degree of polymerization) 2-6. Due to its robustness and its unique pH-stable property, Alyw201 can be an efficient tool for industrial production.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Min Cao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Xiao-Feng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Laboratory of Enzyme Engineering, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
| | - Xin-Yue Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Yue-Qi Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Laboratory of Enzyme Engineering, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
38
|
Del Río PG, Gomes-Dias JS, Rocha CMR, Romaní A, Garrote G, Domingues L. Recent trends on seaweed fractionation for liquid biofuels production. BIORESOURCE TECHNOLOGY 2020; 299:122613. [PMID: 31870706 DOI: 10.1016/j.biortech.2019.122613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Concerns about fossil fuels depletion has led to seek for new sources of energy. The use of marine biomass (seaweed) to produce biofuels presents widely recognized advantages over terrestrial biomasses such as higher production ratio, higher photosynthetic efficiency or carbon-neutral emissions. In here, interesting seaweed sources as a whole or as a residue from seaweed processing industries for biofuel production were identified and their diverse composition and availability compiled. In addition, the pretreatments used for seaweed fractionation were thoroughly revised as this step is pivotal in a seaweed biorefinery for integral biomass valorization and for enabling biomass-to-biofuel economic feasibility processes. Traditional and emerging technologies were revised, with particular emphasis on green technologies, relating pretreatment not only with the type of biomass but also with the final target product(s) and yields. Current hurdles of marine biomass-to-biofuel processes were pinpointed and discussed and future perspectives on the development of these processes given.
Collapse
Affiliation(s)
- Pablo G Del Río
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Joana S Gomes-Dias
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
39
|
Torres M, Flórez-Fernández N, Simón-Vázquez R, Giménez-Abián J, Díaz J, González-Fernández Á, Domínguez H. Fucoidans: The importance of processing on their anti-tumoral properties. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Sanz V, Flórez-Fernández N, Domínguez H, Torres MD. Valorisation of Camellia sinensis branches as a raw product with green technology extraction methods. Curr Res Food Sci 2019; 2:20-24. [PMID: 32914107 PMCID: PMC7473358 DOI: 10.1016/j.crfs.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This work deals with the study of tea stalks from pruning debris using environmental friendly extraction technology to offer new healthy properties. In the manufacturing tea industry, tea trees require to be pruned every year and most of their remains are discarded as a waste with no economic value. Microwave aqueous extraction and pressurized hot water extraction process (autohydrolysis) were used to recover bioactive compounds from the tea branches. Operating at a fixed solid: liquid ratio (1:15), the effect of the maximum heating temperatures from 140 to 220 °C was studied. Liquid extracts were analysed for total phenolic, oligosaccharides, protein, mineral and heavy metals content, as well as for antioxidant capacity. The antitumoral possibilities were also determined for selected samples. The obtained results indicated that both processes could be used as an alternative to recover bioactive compounds from tea wastes, although microwave-assisted extraction allowed saving time when compared with autohydrolysis processing. The temperature exhibited a relevant effect on the total phenolic content and antioxidant capacity, decreasing with the microwave treatment and increasing with the autohydrolysis temperature. The obtained extracts could be adequate for incorporation in food and non-food fields. Tea pruning remains were valorised using green extractions by microwave (MW) and autohydolysis (AH). MW and AH were efficient technologies to recover bioactive compounds. Values above 40 mg gallic acid equivalents/g extract and 0.10 g Trolox/g extract were identified. Future applications in cosmetics, pharmacy or food industries should be explored.
Collapse
Affiliation(s)
- V Sanz
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - N Flórez-Fernández
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - H Domínguez
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - M D Torres
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| |
Collapse
|
41
|
Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:127-185. [PMID: 32402443 DOI: 10.1016/bs.afnr.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing concern about chronic diseases such as obesity, diabetes, hypertension, hypercholesterolemia, cancer and cardiovascular diseases resulting from profound changes in the western lifestyle. Aquaculture by-products are generated in large quantities and they can be profitably recycled through their bioactive compounds used for health or food supplements. Improving waste utilization in the field of aquaculture is essential for a sustainable industry to prevent or minimize the environmental impact. In this sense fish by-products are a great source of protein and omega-3 polyunsaturated fatty acids which are particularly studied on Atlantic salmon or rainbow trout. Fish protein hydrolysate (FPH) obtained from chemical, enzymatical and microbial hydrolysis of processing by-products are being used as a source of amino acids and peptides with high digestibility, fast absorption and important biological activities. Omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) from fish discards have been reported to decrease postprandial triacylglycerol levels, reduction of blood pressure, platelet aggregation and the inflammatory response. Crustacean by-products can also be used to produce chitosan with antioxidant and antimicrobial activity for food and pharmaceutical industries and carotenoids with important biological activity. Seaweeds are rich in bioactive compounds such as alginate, carrageenan, agar, carotenoids and polyphenols with different biological activities such as antioxidant, anticancer, antidiabetic, antimicrobial or anti-inflammatory activity. Finally, regarding harvest microalgae, during the past decades, they were mainly used in the healthy food market, with >75% of the annual microalgal biomass production, used for the manufacture of powders, tablets, capsules or pills. We will report and discuss the present and future role of aquaculture by-products as sources of biomolecules for the design and development of functional foods/beverages. This chapter will focus on the main bioactive compounds from aquaculture by-products as functional compounds in food and their applications in biomedicine for the prevention and treatment of diseases.
Collapse
|
42
|
Efficiently Anti-Obesity Effects of Unsaturated Alginate Oligosaccharides (UAOS) in High-Fat Diet (HFD)-Fed Mice. Mar Drugs 2019; 17:md17090540. [PMID: 31533255 PMCID: PMC6780860 DOI: 10.3390/md17090540] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity and its related complications have become one of the leading problems affecting human health. However, current anti-obesity treatments are limited by high cost and numerous adverse effects. In this study, we investigated the use of a non-toxic green food additive, known as unsaturated alginate oligosaccharides (UAOS) from the enzymatic degradation of Laminaria japonicais, which showed effective anti-obesity effects in a high-fat diet (HFD) mouse model. Compared with acid hydrolyzed saturated alginate oligosaccharides (SAOS), UAOS significantly reduced body weight, serum lipid, including triacylglycerol (TG), total cholesterol (TC) and free fatty acids (FFA), liver weight, liver TG and TC, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels, adipose mass, reactive oxygen species (ROS) formation, and accumulation induced in HFD mice. Moreover, the structural differences in β-d-mannuronate (M) and its C5 epimer α-l-guluronate (G) did not cause significant functional differences. Meanwhile, UAOS significantly increased both AMP-activated protein kinase α (AMPKα) and acetyl-CoA carboxylase (ACC) phosphorylation in adipocytes, which indicated that UAOS had an anti-obesity effect mainly through AMPK signaling. Our results indicate that UAOS has the potential for further development as an adjuvant treatment for many metabolic diseases such as fatty liver, hypertriglyceridemia, and possibly diabetes.
Collapse
|
43
|
Cernadas H, Flórez-Fernández N, González-Muñoz MJ, Domínguez H, Torres MD. Retrieving of high-value biomolecules from edible Himanthalia elongata brown seaweed using hydrothermal processing. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Li SY, Wang ZP, Wang LN, Peng JX, Wang YN, Han YT, Zhao SF. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. BIORESOURCE TECHNOLOGY 2019; 281:84-89. [PMID: 30802819 DOI: 10.1016/j.biortech.2019.02.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Alginate oligosaccharides (AOS) showed various biological activities. Traditional protocol for producing AOS was a multiple-step and high-pollution procedure. In this study, a rapid and efficient AOS producing method was developed directly from Laminaria japonica. Natural sun-dried L. japonica with a feed ratio of 1:7 (w/v) was pretreated using cellulase with a dry weight of 3%, for releasing the fermentable sugars (8.5 g/L glucose and 15.2 g/L mannitol). Then, the engineered yeast Yarrowia lipolytica strain with alginate lyase activity was grown using an algae-based medium. After fermentation for 72 h, glucose and mannitol were completely consumed, and 71.8 mM AOS was extracted from the fermentation supernatant. The degree of polymerization (DP) was ranging from 2 to 3. The recovery yield of AOS was about 91.7%. The purity of the extracted AOS was 92.6%. Overall, our work provided new insights for the development of green biotechnologies for oligosaccharide production from seaweed.
Collapse
Affiliation(s)
- Shang-Yong Li
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Lin-Na Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ji-Xing Peng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ya-Nan Wang
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yan-Tao Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Shou-Feng Zhao
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| |
Collapse
|