1
|
Rad SS, Sayyari M, Torabi M, Zolfigol MA. Fabrication and investigation of chitosan-based edible coating derived mushroom substrates: Efficient performance on storage and improving postharvest quality of strawberry. Int J Biol Macromol 2025; 309:142731. [PMID: 40174851 DOI: 10.1016/j.ijbiomac.2025.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/04/2025]
Abstract
Spent Mushroom Substrate (SMS) is a by-product resulting from the residual organic material left after the process of mushroom harvesting. In this research, we employed the residual biomass derived from the SMS (Agaricus bisporus). The chitosan obtained from the mushrooms was subjected to thorough characterization utilizing FT-IR, SEM, XRD, and TGA. Subsequently, the chitosan extracted from SMS was applied in the formulation of edible coatings. Within the spectrum of formulations evaluated over a period of 15 days, the chitosan derived from A. bisporus (stalk and cap) exhibited significant improvements in intrinsic characteristics, encompassing reductions in weight loss, pH, TA, TSS, firmness, and the retention of ascorbic acid (55.44 and 52.49 mg.g-1 in comparison to 34.36 mg.g-1 for the control), antioxidant capacity (93.02 and 92.66 % in contrast to 92.04 % for the control), anthocyanin concentration (43.97 and 41.32 mg.g-1 relative to 31.17 mg.g-1 for the control), phenolic content (83.35 and 83.66 mg.g-1 as opposed to 58.48 mg.g-1 for the control), and colorimetric properties. The chitosan extracted from SMS displayed superior resistance to decay induced by Botrytis cinerea, Penicillium sp., and Aspergillus niger in comparison to control samples over the course of the storage period. Moreover, the mushroom chitosan demonstrated minimal levels of cellulase activity, pectin methylesterase activity, and polygalacturonase activity throughout the storage timeframe. The results showed that this edible and low-cost coating has a promising effect on the preservation and sustainability of strawberries, which could overcome one of the major challenges of their preservation in different conditions.
Collapse
Affiliation(s)
- Sepideh Shirani Rad
- Department of Horticultural Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Sayyari
- Department of Horticultural Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
2
|
Guo X, Liu W, Zhang L, Wang X, Mi S. A Combined Impact of Low-Voltage Electrostatic Field and Essential Oil on the Postharvest Properties of Chili Pepper: Insights into Related Molecular Mechanisms. Foods 2024; 13:3686. [PMID: 39594101 PMCID: PMC11593519 DOI: 10.3390/foods13223686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
This research is intended to ascertain the impact of low-voltage electrostatic field (LVEF) together with chili pepper leaf essential oil (CLEO) on the storage quality of chili pepper. Four groups of samples were investigated, namely, control (CK), CLEO, LVEF, and CLEO + LVEF. Chili pepper from the CLEO + LVEF group reduced the weight loss and malondialdehyde content but improved the ascorbic acid contents, antioxidant potential, firmness, and color attributes. CLEO and LVEF could maintain the integral structure and stability of the cell wall by suppressing the activities of hydrolases of pectin, cellulose, and hemicellulose. The positive role of CLEO + LVEF on the color quality was explained by the significantly higher chlorophyll content and lower activities of chlorophyllase, pheophytinase, and Mg-dechelatase compared to the CK group. Taken together, all data provide supporting evidence for a synergistic effect of CLEO and LVEF on the enhancement of postharvest traits of chili peppers.
Collapse
Affiliation(s)
- Xiaoqian Guo
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Road, Baoding 071000, China; (X.G.); (W.L.); (X.W.)
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Road, Baoding 071000, China; (X.G.); (W.L.); (X.W.)
| | - Liyong Zhang
- Fenghe Agriculture Co., Ltd., Qinhuangdao 066408, China;
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Road, Baoding 071000, China; (X.G.); (W.L.); (X.W.)
| | - Si Mi
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Road, Baoding 071000, China; (X.G.); (W.L.); (X.W.)
| |
Collapse
|
3
|
Wang L, Liu Z, Liang J, Wang Y, Zhang C, Shi K, Chen D, Song Q, Wang X, Hu X, Xue X, Jin P, Zheng Y. Theanine enhances resistance to Botrytis cinerea in postharvest strawberry fruit via modulating cell-wall and phenylpropanoid metabolisms. Food Chem X 2024; 23:101772. [PMID: 39280218 PMCID: PMC11399655 DOI: 10.1016/j.fochx.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Theanine (N-ethyl-γ-glutamine), as a unique non-protein amino acid, plays vital roles in abiotic stress resistance, while its roles in biotic stress resistance are still unclear. Gray mold caused by Botrytis cinerea is a major disease in strawberries. Effects of theanine on the development of gray mold, cell-wall and phenylpropanoid metabolisms in strawberries were investigated in this study. Results showed that 5 mmol L-1 theanine treatment reduced disease incidence and severity of gray mold in strawberries with antifungal activity in vitro. Meanwhile, theanine treatment enhanced the accumulation of phenolic compounds and lignin, especially ellagic acid, cyanidin, and quercetin, which was associated with increased phenylpropanoid pathway related enzyme activities. Moreover, theanine induced callose deposition and suppressed cell- wall disassembling enzymes, accompanied by higher levels of water insoluble pectin, hemicellulose and cellulose. Therefore, theanine treatment could alleviate decay of B. cinerea-inoculated strawberries by regulating phenylpropanoid and cell-wall metabolisms, maintaining higher levels of phenolic compounds and cell-wall components, thereby contributing to disease resistance and cell-wall structure integrity.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Zhikang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Yanyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Chen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Kaili Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, 225127
| | - Qingyuan Song
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Xingyue Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Xinran Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Xiuheng Xue
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
4
|
Chen W, Cui K, Jin L, Bai M, Pazilijiang O, Tian R, Ma J. Impacts of Fruit Frosting Coverage on Postharvest Softening of Prunes under Vibration Stress. Foods 2024; 13:3197. [PMID: 39410231 PMCID: PMC11476113 DOI: 10.3390/foods13193197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The surface of prune fruit has a thick layer of frosting, which is easily damaged and lost during prunes harvest or postharvest handling, and there is no clear information on the effect of prune surface frost on postharvest storage quality. To investigate the effect of fruit frosting on the softening of prune fruits during storage under vibration stress, prunes were divided into three grades according to fruit frosting in this study and were vibrated for 8 h at a frequency of 5 Hz at 4 °C; then, samples were selected once every 8 d. The results showed that the heavy fruit frosting (HFF) group maintained higher hardness (21.47%), L* (20.85%), and total soluble solids (12.79%) levels at the end of storage and inhibited cell wall-modifying enzyme activities (polygalacturonase, pectin methylesterase, glycosidase, β-glucosidase, and cellulase) compared to frosting-less fruit (FF) group. This group also showed improved expression of key cell wall-modification genes (ADPG2, PME31, CESA1, BGAL3, XTH33, BGLU41) as well as chelate-soluble pectin (72.11%), Na2CO3-soluble pectin (42.83%), and cellulose (36.89%) solubilization and maintained lower water-soluble pectin (34.23%). Microscopic observations showed that the fruit frosting could delay the dissolution of pectin components and protect the cell wall structure. In summary, fruit frosting can effectively inhibit fruit softening and maintain fruit quality.
Collapse
Affiliation(s)
- Wanting Chen
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (L.J.); (M.B.); (O.P.); (J.M.)
| | - Kuanbo Cui
- Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Lili Jin
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (L.J.); (M.B.); (O.P.); (J.M.)
| | - Menghan Bai
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (L.J.); (M.B.); (O.P.); (J.M.)
| | - Ohaer Pazilijiang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (L.J.); (M.B.); (O.P.); (J.M.)
| | - Rui Tian
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Junjie Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (L.J.); (M.B.); (O.P.); (J.M.)
| |
Collapse
|
5
|
Lv N, Zhang H, Zhou H, Wang C, Guo C, Wang L. Hot water mobilizes the metabolism of energy, soluble sugar, cell wall, and phenolics to cope with chilling injury in postharvest snap beans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8263-8274. [PMID: 39031598 DOI: 10.1002/jsfa.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Snap beans (Phaseoulus vulgaris L.) are very sensitive to low temperature during postharvest storage. Pitting, rusting, and water-soaked patches are typical chilling injury (CI) symptoms of snap beans. The appearance of these symptoms reduces the storage quality of snap beans. The energy, soluble carbohydrates, cell wall, and phenolic metabolisms of refrigerated snap beans and their relationship to CI treated with 35 °C hot water (HW) were investigated. RESULTS HW treatment reduced CI index and electrolyte leakage and increased the contents of soluble solids, titratable acidity, and chlorophyll. HW treatment maintained higher activities of proton ATPase, calcium ATPase, and cytochrome c oxidase, which resulted in the accumulation of more adenosine triphosphate, adenosine diphosphate, and energy charge. The accumulation of soluble sugar induced by HW treatment was correlated with the stimulation of sucrose phosphate synthase and sucrose synthase. The prevention effect of HW treatment on the degradation of cell wall components was related to the inhibition of pectin methylesterase and cellulase. HW-induced phenol accumulation is associated with an increase in shikimate dehydrogenase, phenylalanine ammonia lyase, cinnamate-4-hydroxylase, and 4-coumarine-coenzyme A ligase, as well as a decrease in polyphenol oxidase. CONCLUSION The alleviating effect of HW on CI is due to its regulation of energy, soluble sugar, cell wall, and phenolic metabolism. Therefore, HW treatment may be an effective means to reduce CI of snap beans. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Na Lv
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Haoyan Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Hongtao Zhou
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Caiping Wang
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Changjie Guo
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Liyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| |
Collapse
|
6
|
Yu P, Li S, Sun Y, Meng X, Shi Q, Zhao X, Yu Y. Transcription Factor VlbZIP14 Inhibits Postharvest Grape Berry Abscission by Directly Activating VlCOMT and Promoting Lignin Biosynthesis. Int J Mol Sci 2024; 25:9479. [PMID: 39273425 PMCID: PMC11395120 DOI: 10.3390/ijms25179479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Sulfur dioxide (SO2) is the most effective preservative for table grapes as it reduces the respiratory intensity of berries and inhibits mold growth. However, excessive SO2 causes berry abscission during storage, resulting in an economic loss postharvest. In this study, grapes were exogenously treated with SO2, SO2 + 1.5% chitosan, SO2 + 1.5% eugenol, and SO2 + eugenol-loaded chitosan nanoparticles (SN). In comparison to SO2 treatment, SN treatment reduced the berries' abscission rate by 74% while maintaining the quality of the berries. Among the treatments, SN treatment most effectively inhibited berry abscission and maintained berry quality. RNA-sequencing (RNA-seq) revealed that SN treatment promoted the expression of genes related to cell wall metabolism. Among these genes, VlCOMT was detected as the central gene, playing a key role in mediating the effects of SN. Dual luciferase and yeast one-hybrid (Y1H) assays demonstrated that VlbZIP14 directly activated VlCOMT by binding to the G-box motif in the latter's promoter, which then participated in lignin synthesis. Our results provide key insights into the molecular mechanisms underlying the SN-mediated inhibition of berry abscission and could be used to improve the commercial value of SO2-treated postharvest table grapes.
Collapse
Affiliation(s)
- Peng Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (P.Y.); (S.L.); (Y.S.); (X.M.); (Q.S.); (X.Z.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Songqi Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (P.Y.); (S.L.); (Y.S.); (X.M.); (Q.S.); (X.Z.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Yadan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (P.Y.); (S.L.); (Y.S.); (X.M.); (Q.S.); (X.Z.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Xiangxuan Meng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (P.Y.); (S.L.); (Y.S.); (X.M.); (Q.S.); (X.Z.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (P.Y.); (S.L.); (Y.S.); (X.M.); (Q.S.); (X.Z.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Xiaochun Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (P.Y.); (S.L.); (Y.S.); (X.M.); (Q.S.); (X.Z.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (P.Y.); (S.L.); (Y.S.); (X.M.); (Q.S.); (X.Z.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| |
Collapse
|
7
|
Du Q, Li R, Liu L, Chen L, Tang J, Deng J, Wang F. Application of Bacillus tequilensis for the control of gray mold caused by Botrytis cinerea in blueberry and mechanisms of action: inducing phenylpropanoid pathway metabolism. Front Microbiol 2024; 15:1455008. [PMID: 39282559 PMCID: PMC11392732 DOI: 10.3389/fmicb.2024.1455008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Background Botrytis cinerea a blueberry gray mold, is one of the main diseases affecting postharvest storage, causing significant losses. Several studies have shown that Bacillus tequilensis can prevent the growth of plant pathogens by producing various antibacterial substances, and can induce plant resistance. However, research on the biological management of post-harvest gray mold in blueberries using B. tequilensis remains unclear. Methods To better control the postharvest gray mold of blueberry, the effects of B. tequilensis KXF6501 fermentation solution (YY) and KXF6501 cell-free supernatant (SQ) on the induction of disease resistance in blueberry fruits were studied using biochemical and transcriptomic analyses. Results We found that YY controlled the conidial germination and mycelial growth of B. cinerea in vitro, followed by SQ. After 3 d of culture, the lesion diameter and incidence of gray mold in blueberry fruits inoculated with YY and SQ were smaller than those in the control group. Therefore, gray mold in blueberries was effectively controlled during the prevention period, and the control effect of YY was better than that of SQ. Transcription spectrum analysis of blueberry peel tissue showed that the YY- and SQ-induced phenylpropane metabolic pathways had more differentially expressed genes (DEGs) than other biological pathways. In addition, biochemical analyses showed that YY treatment effectively enhanced the activity of enzymes related to the phenylpropane pathway (phenylalanine ammonialyase [PAL], cinnamate 4-hydroxylase [C4H], 4-coumarate CoA ligase [4CL], and polyphenol oxidase [PPO]) and stimulated the synthesis of lignin, total phenols, and flavonoids, followed by SQ. Compared with the control, the YY and SQ treatments reduced the weight loss rate and better maintained the appearance and nutritional quality of the blueberry fruits. Conclusion Our findings suggest that B. tequilensis KXF6501 is potentially useful as a suitable bio-control agent in harvested blueberries.
Collapse
Affiliation(s)
- Qianjie Du
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Raoyong Li
- Forestry College, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Li Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Jia Deng
- Forestry College, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| |
Collapse
|
8
|
Ling LZ, Chen LL, Liu ZZ, Luo LY, Tai SH, Zhang SD. Genome sequencing and CAZymes repertoire analysis of Diaporthe eres P3-1W causing postharvest fruit rot of 'Hongyang' kiwifruit in China. PeerJ 2024; 12:e17715. [PMID: 39119104 PMCID: PMC11308996 DOI: 10.7717/peerj.17715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
Postharvest rot caused by various fungal pathogens is a damaging disease affecting kiwifruit production and quality, resulting in significant annual economic losses. This study focused on isolating the strain P3-1W, identified as Diaporthe eres, as the causal agent of 'Hongyang' postharvest rot disease in China. The investigation highlighted cell wall degrading enzymes (CWDEs) as crucial pathogenic factors. Specially, the enzymatic activities of cellulase, β-galactosidase, polygalacturonase, and pectin methylesterases peaked significantly on the second day after infection of D. eres P3-1W. To gain a comprehensive understanding of these CWDEs, the genome of this strain was sequenced using PacBio and Illumina sequencing technologies. The analysis revealed that the genome of D. eres P3-1W spans 58,489,835 bp, with an N50 of 5,939,879 bp and a GC content of 50.7%. A total of 15,407 total protein-coding genes (PCGs) were predicted and functionally annotated. Notably, 857 carbohydrate-active enzymes (CAZymes) were identified in D. eres P3-1W, with 521 CWDEs consisting of 374 glycoside hydrolases (GHs), 108 carbohydrate esterase (CEs) and 91 polysaccharide lyases (PLs). Additionally, 221 auxiliary activities (AAs), 91 glycosyltransferases (GTs), and 108 carbohydrate binding modules (CBMs) were detected. These findings offer valuable insights into the CAZymes of D. eres P3-1W.
Collapse
Affiliation(s)
- Li-Zhen Ling
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Ling-Ling Chen
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
- College of Life and Health, Dalian University, Dalian, Liaoning, China
| | - Zhen-Zhen Liu
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Lan-Ying Luo
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Si-Han Tai
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Shu-Dong Zhang
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| |
Collapse
|
9
|
Yin C, Sun Z, Yang Y, Cui M, Zheng J, Zhang Y. Rapid in situ formation of κ-carrageenan-carboxymethyl chitosan-kaolin clay hydrogel films enriched with arbutin for enhanced preservation of cherry tomatoes. Int J Biol Macromol 2024; 273:132957. [PMID: 38848837 DOI: 10.1016/j.ijbiomac.2024.132957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Food waste resulting from perishable fruits and vegetables, coupled with the utilization of non-renewable petroleum-based packaging materials, presents pressing challenges demanding resolution. This study addresses these critical issues through the innovative development of a biodegradable functional plastic wrap. Specifically, the proposed solution involves the creation of a κ-carrageenan/carboxymethyl chitosan/arbutin/kaolin clay composite film. This film, capable of rapid in-situ formation on the surfaces of perishable fruits, adeptly conforms to their distinct shapes. The incorporation of kaolin clay in the composite film plays a pivotal role in mitigating water vapor and oxygen permeability, concurrently bolstering water resistance. Accordingly, tensile strength of the composite film experiences a remarkable enhancement, escalating from 20.60 MPa to 34.71 MPa with the incorporation of kaolin clay. The composite film proves its efficacy by preserving cherry tomatoes for an extended period of 9 days at 28 °C through the deliberate delay of fruit ripening, respiration, dehydration and microbial invasion. Crucially, the economic viability of the raw materials utilized in the film, coupled with the expeditious and straightforward preparation method, underscores the practicality of this innovative approach. This study thus introduces an easy and sustainable method for preserving perishable fruits, offering a cost-effective and efficient alternative to petroleum-based packaging materials.
Collapse
Affiliation(s)
- Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zhifang Sun
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yufan Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Miao Cui
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Gull S, Ejaz S, Ali S, Ali MM, Sardar H, Azam M, Deng H, Yousef AF, Alrefaei AF, Almutairi MH. Xanthan gum-based edible coating effectively preserve postharvest quality of 'Gola' guava fruits by regulating physiological and biochemical processes. BMC PLANT BIOLOGY 2024; 24:450. [PMID: 38783216 PMCID: PMC11112933 DOI: 10.1186/s12870-024-05117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Guava is a fruit prone to rapid spoilage following harvest, attributed to continuous and swift physicochemical transformations, leading to substantial postharvest losses. This study explored the efficacy of xanthan gum (XG) coatings applied at various concentrations (0.25, 0.5, and 0.75%) on guava fruits (Gola cultivar) over a 15-day storage period. RESULTS The results indicated that XG coatings, particularly at 0.75%, substantially mitigated moisture loss and decay, presenting an optimal concentration. The coated fruits exhibited a modified total soluble soluble solids, an increased total titratable acidity, and an enhanced sugar-acid ratio, collectively enhancing overall quality. Furthermore, the XG coatings demonstrated the remarkable ability to preserve bioactive compounds, such as total phenolics, flavonoids, and antioxidants, while minimizing the levels of oxidative stress markers, such as electrolyte leakage, malondialdehyde, and H2O2. The coatings also influenced cell wall components, maintaining levels of hemicellulose, cellulose, and protopectin while reducing water-soluble pectin. Quantitative analysis of ROS-scavenging enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, revealed significant increases in their activities in the XG-coated fruits compared to those in the control fruits. Specifically, on day 15, the 0.75% XG coating demonstrated the highest SOD and CAT activities while minimizing the reduction in APX activity. Moreover, XG coatings mitigated the activities of fruit-softening enzymes, including pectin methylesterase, polygalacturonase, and cellulase. CONCLUSIONS This study concludes that XG coatings play a crucial role in preserving postharvest quality of guava fruits by regulating various physiological and biochemical processes. These findings offer valuable insights into the potential application of XG as a natural coating to extend the shelf life and maintain the quality of guava fruits during storage.
Collapse
Affiliation(s)
- Shaista Gull
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan.
| | - Shaghef Ejaz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan.
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hasan Sardar
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Muhammad Azam
- Pomology Laboratory, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Honghong Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, 71524, Egypt
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Qin J, Chen X, Tang X, Shao X, Lai D, Xiao W, Zhuang Q, Wang W, Dong T. Near-freezing temperature suppresses avocado (Persea americana Mill.) fruit softening and chilling injury by maintaining cell wall and reactive oxygen species metabolism during storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108621. [PMID: 38604012 DOI: 10.1016/j.plaphy.2024.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
To enhance the postharvest quality of avocado (Persea americana Mill.) fruit, this study investigates alterations in cell wall metabolism and reactive oxygen species (ROS) metabolism during near-freezing temperature (NFT) storage, and explores their impact on fruit softening. The fruit was stored at 25 °C, 5 °C, 2 °C, and NFT, respectively. NFT storage retarded firmness loss and chilling injury in comparison with 25 °C, 5 °C, and 2 °C. NFT storage delayed the decrease of ionic-soluble pectin (ISP) and cellulose (CLL) contents by suppressing cell wall degradation enzyme activities. Correlation analysis showed that cell wall degradation enzyme activities were positively correlated to rates of ethylene release and respiration. Moreover, NFT storage maintained higher levels of DPPH and ABTS scavenging abilities, activities of superoxide dismutase, peroxidase, and catalase, as well as ascorbate-glutathione cycle (ascorbic acid, glutathione, glutathione disulfide, ascorbate peroxidase, cycle-related enzymes), thereby inhibited the increase of ROS content, malondialdehyde content, and cell membrane permeability. Fruit firmness and chilling injury were correlated with the contents of hydrogen (H2O2), superoxide anion (O2.-), ISP, and CLL. These results suggested that NFT could suppress fruit softening and chilling injury by inhibiting cell wall degradation through delaying respiration and ethylene production and suppressing ROS production via activation of antioxidant systems, thereby maintaining quality and prolonged storage life during avocado fruit storage.
Collapse
Affiliation(s)
- Jian Qin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Xi Chen
- Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Xiuhua Tang
- Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Xuehua Shao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Duo Lai
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Weiqiang Xiao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Qingli Zhuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China.
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Malahlela HK, Belay ZA, Mphahlele RR, Sigge GO, Caleb OJ. Recent advances in activated water systems for the postharvest management of quality and safety of fresh fruits and vegetables. Compr Rev Food Sci Food Saf 2024; 23:e13317. [PMID: 38477217 DOI: 10.1111/1541-4337.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/28/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Over the last three decades, decontamination management of fresh fruits and vegetables (FFVs) in the packhouses and along the supply chains has been heavily dependent on chemical-based wash. This has resulted in the emergence of resistant foodborne pathogens and often the deposition of disinfectant byproducts on FFVs, rendering them unacceptable to consumers. The management of foodborne pathogens, microbial contaminants, and quality of FFVs are a major concern for the horticultural industries and public health. Activated water systems (AWS), such as electrolyzed water, plasma-activated water, and micro-nano bubbles, have gained significant attention from researchers over the last decade due to their nonthermal and nontoxic mode of action for microbial inactivation and preservation of FFVs quality. The aim of this review is to provide a comprehensive summary of recent progress on the application of AWS and their effects on quality attributes and microbial safety of FFVs. An overview of the different types of AWS and their properties is provided. Furthermore, the review highlights the chemistry behind generation of reactive species and the impact of AWS on the quality attributes of FFVs and on the inactivation/reduction of spoilage and pathogenic microbes (in vivo or in vitro). The mechanisms of action of microorganism inactivation are discussed. Finally, this work highlights challenges and limitations for commercialization and safety and regulation issues of AWS. The synergistic prospect on combining AWS for maximum microorganism inactivation effectiveness is also considered. AWS offers a potential alternative as nonchemical interventions to maintain quality attributes, inactivate spoilage and pathogenic microorganisms, and extend the shelf-life for FFVs.
Collapse
Affiliation(s)
- Harold K Malahlela
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | | | - Gunnar O Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
13
|
Du R, Deng J, Huang E, Chen L, Tang J, Liu Y, Shi Z, Wang F. Effects of salicylic acid-grafted bamboo hemicellulose on gray mold control in blueberry fruit: The phenylpropanoid pathway and peel microbial community composition. Int J Biol Macromol 2023; 251:126303. [PMID: 37573915 DOI: 10.1016/j.ijbiomac.2023.126303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Bamboo hemicellulose (HC) is a natural plant polysaccharide with good biocompatibility and biodegradability. But its poor antibacterial activity limits its application in fruits preservation. In this study, based on the good inducer of salicylic acid (SA) for plant diseases resistance, a novel antibacterial coating material was synthesized by grafting SA onto HC. The study aimed to investigate the synergistic effect of HC-g-SA on antibacterial ability, induces diseases resistance and microbial community composition of postharvest fruit. The graft copolymer treatment significantly reduced the incidence of gray mold caused by Botrytis cinerea in blueberries during storage (P < 0.05), and significantly stimulated the activity of key enzymes, including phenylalanine ammonia-lyase, chalcone isomerase, laccase, and polyphenol oxidase, leading to an increase in fungicidal compounds such as flavonoids, lignin, and total phenolics produced by the phenylpropanoid pathway in blueberries (P < 0.05). Moreover, the HC-g-SA coating altered bacterial and fungal community composition such that the abundance of postharvest fruit-peel pathogens was significantly reduced. After 8 days storage, the blueberry fruits treated by HC-g-SA had a weight loss rate of 12.42 ± 0.85 %. Therefore, the HC-g-SA graft copolymer had a positive impact on the control of gray mold in blueberry fruit during postharvest storage.
Collapse
Affiliation(s)
- Rongyu Du
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China
| | - Jia Deng
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China.
| | - Erbin Huang
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China
| | - Lin Chen
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China
| | - Junrong Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China
| | - Yun Liu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China
| | - Zhengjun Shi
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China
| | - Fang Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
14
|
Shi H, Zhou WH, Xu YY, He XE, He FY, Wang Y. Effect of calcium spray at flowering combined with post-harvest 1-MCP treatment on the preservation of grapes. Heliyon 2023; 9:e19918. [PMID: 37809379 PMCID: PMC10559319 DOI: 10.1016/j.heliyon.2023.e19918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
These tests were carried out to find out how calcium and 1-MCP treatment affected the preservation of grapes, as grapes are highly susceptible to decay during post-harvest storage. The grapes were treated with 5 g/L calcium at the flowering stage, followed by 1 μL/L 1-MCP treatment after harvesting. When grapevines were treated with a combination of calcium and 1-MCP, the marketable fruit rate (At day 56 of storage, the 1-MCP + Ca2+ treatment group was still 93%, an increase of 29.03% compared to the control group.) and quality improved (At day 28 of storage, the VC content of the 1-MCP + Ca2+ treated group was 4.35 mg/100g, an increase of 25.01% compared to the control group.), while the fruit weight loss rate decreased (At day 56 of storage, the weight loss of the control group was 6.97%, an increase of 39.43% compared to the 1-MCP + Ca2+ treated group.). According to the experimental results, there are several reasons for this. First, in the early stages of fruit storage, the concentration of soluble pectin and soluble fiber, as well as the activities of pectinase and cellulase (related gene levels) were decreased. Secondly, the activity of antioxidant enzymes was increased, while MDA content was decreased. Third, during fruit storage, the respiratory intensity and ethylene release rate were reduced, as was the activity of energy metabolism enzymes. As a result, the aging and deterioration of the fruit during storage were delayed. Principal component analysis revealed that the calcium and 1-MCP combination therapy slowed the decline in grape berry quality, followed by the calcium-treated and 1-MCP-treated fruits. In contrast, grape berry quality declined the most rapidly in the control group.
Collapse
Affiliation(s)
- Hao Shi
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Wen hua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yin yu Xu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiao e He
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Fu yin He
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Yun Wang
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
15
|
Zhang W, Hadidi M, Karaca AC, Hedayati S, Tarahi M, Assadpour E, Jafari SM. Chitosan-grafted phenolic acids as an efficient biopolymer for food packaging films/coatings. Carbohydr Polym 2023; 314:120901. [PMID: 37173040 DOI: 10.1016/j.carbpol.2023.120901] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Chitosan (CS), a bio-renewable natural material, has the potential to be utilized as a biopolymer for food packaging films (PFs)/coatings. However, its low solubility in dilute acid solutions and poor antioxidant and antimicrobial activities limit its application in PFs/coatings. To address these restrictions, chemical modification of CS has garnered increasing interest, with graft copolymerization being the most extensively used method. Phenolic acids (PAs) as natural small molecules are used as excellent candidates for CS grafting. This work focuses on the progress of CS grafted PA (CS-g-PA) based films, introducing the chemistry and methods of preparing CS-g-PA, particularly the effects of different PAs grafting on the properties of CS films. In addition, this work discusses the application of different CS-g-PA functionalized PFs/coatings for food preservation. It is concluded that the food preservation capability of CS-based films/coatings can be improved by modifying the properties of CS-based films through PA grafting.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
16
|
Shinga MH, Fawole OA. Opuntia ficus indica mucilage coatings regulate cell wall softening enzymes and delay the ripening of banana fruit stored at retail conditions. Int J Biol Macromol 2023; 245:125550. [PMID: 37356689 DOI: 10.1016/j.ijbiomac.2023.125550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Rapid ripening and softening due to cell wall polysaccharide degradation and disassembly pose major challenges in extending fruit storability. This study aimed to examine the efficacy of Opuntia ficus indica mucilage (OFIM) edible coating in minimizing softening in bananas under retail conditions. Mucilage was extracted from freshly harvested prickly pear cladodes and dried into a powder. Phenolic compounds in OFIM powder were quantified using liquid chromatography-mass spectrometry (LC-MS). OFIM concentrations (1, 2 and 3 % (w/v)) were prepared, and their physicochemical properties were examined. The prepared coatings were applied to harvested banana fruit by dipping and stored at room temperature for 12 days. During the experiment, several parameters were measured, including fruit weight loss, total soluble solids (TSS), titratable acidity (TA), peel color, pulp firmness, ethylene production, respiration rate, ion leakage, malondialdehyde (MDA) content, total chlorophyll and carotenoids, chlorophyll-degrading enzymes, protopectin content and water-soluble pectin (WSP) and softening-related enzymes in the peel. Results showed that mucilage treatments effectively delayed cell wall and chlorophyll degradation, as well as carotenoid accumulation, thus inhibiting ripening-associated processes compared to control fruit. OFIM-treated fruit exhibited significantly higher firmness, chlorophyll content, and TA, lower TSS content, ethylene production, respiration rate, MDA concentration, ion leakage and protopectin content than uncoated fruit. This suggests that OFIM edible coating has the potential to maintain quality and extend the shelf life of bananas by suppressing softening enzymes during storage.
Collapse
Affiliation(s)
- Mawande Hugh Shinga
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi Amos Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
17
|
Yang X, Lan W, Sun X. Antibacterial and antioxidant properties of phenolic acid grafted chitosan and its application in food preservation: A review. Food Chem 2023; 428:136788. [PMID: 37467692 DOI: 10.1016/j.foodchem.2023.136788] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Chitosan is a bio-renewable natural polymeric material. The antibacterial and antioxidant activity of chitosan can be enhanced by grafting with phenolic acids to further expand its application in food. Therefore, this paper focuses on reviewing the structure, antimicrobial and antioxidant activities and their mechanisms with phenolic acid-g-CS, evaluating its cytotoxicity, and describing its application in various food preservation. In general, different reaction mechanisms of phenolic acid-g-CS synthesis lead to different product structures. Compared to chitosan, phenolic acid-g-chitosan exhibited enhanced antibacterial and antioxidant activities. The toxicity assessment showed that phenolic acid-g-CS is not cytotoxic. Moreover, phenolic acid-g-CS has been applied to a variety of food products such as fruits, vegetables and meat with good results. Overall, this review provides a certain reference for subsequent researchers to design phenolic acid-g-CS more rationally and for the subsequent development of phenolic acid-g-CS in food preservation.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
18
|
Chen C, Huang Q, Peng X, Wan C, Zeng J, Zhang Y, Chen J. Alleviatory effects of salicylic acid on postharvest softening and cell wall degradation of 'Jinshayou' pummelo (Citrus maxima Merr.): A comparative physiological and transcriptomic analysis. Food Chem 2023; 424:136428. [PMID: 37247595 DOI: 10.1016/j.foodchem.2023.136428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
The regulatory mechanisms underlying the salicylic acid (SA)-mediated inhibition of senescence in pummelo fruit, the largest known citrus variety, remain unclear. Herein, postharvest 0.3% SA treatment was demonstrated to delay postharvest 'Jinshayou' pummelo senescence, as evidenced by the inhibitions in firmness loss, electrolyte leakage increase, and color change. Using comparative transcriptomic data, a total of 4367, 3769, and 1659 DEGs were identified between CK0 and CK60, CK0 and SA60, and CK60 and SA60, respectively. Further GO analysis revealed that DEGs were mainly implicated in the processes of cell wall modification and phenylpropanoid pathway during fruit senescence. More importantly, postharvest exogenous 0.3% SA treatment was observed to inhibit CWDEs activities and their encoding gene expression, retain higher protopectin, cellulose, and hemicelluloses contents, as well as reduce WSP content, thus maintaining cell wall structure. These findings collectively indicated that postharvest SA treatment was a green and useful preservative for alleviating fruit senescence and prolonging the storage life of harvested 'Jiashayou' pummelo fruit.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qiang Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuan Peng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiaoke Zeng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yajie Zhang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China.
| |
Collapse
|
19
|
Wang S, Liu C, Su X, Chen L, Zhu Z. Transcriptome analysis reveals key metabolic pathways and gene expression involving in cell wall polysaccharides-disassembling and postharvest fruit softening in custard apple (Annona squamosa L.). Int J Biol Macromol 2023; 240:124356. [PMID: 37031786 DOI: 10.1016/j.ijbiomac.2023.124356] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
This study aimed to investigate the effect of custard apple cell wall polysaccharides-disassembling on postharvest fruit softening and to explore its key metabolic pathways and gene expression. Custard apple fruit was stored at 15 ± 0.5 °C for 12 days, it was found that the decreased significantly in fruit firmness, contents of Na2CO3-soluble pectin, hemicellulose and cellulose, and the increased significantly in water-soluble pectin and CDTA-soluble pectin. The activities of cell wall-degrading relevant enzymes in fruit were improved significantly during storage, including cellulase, polygalacturonase, pectin methyl esterase, neutral xylanase, β-galactosidase, and β-D-glucosidase. The RNA sequencing results revealed 41,545 nonredundant unigenes and 7571 differentially expressed genes (DEGs) in custard apple fruit samples. Functional annotation and DEGs data revealed cell wall degradation potentially involved in starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, galactose metabolism, pentose and glucuronate interconversions. Specifically, two EG and six β-Glc genes controlled the cellulose decomposition, and one β-xyl and one GATU genes involved in the degradation of hemicellulose, and two PME, one Pel, and four PG genes were the major regulators of pectin disassembling. These results provide a molecular foundation for explaining fruit softening and extending shelf life of custard apple.
Collapse
Affiliation(s)
- Siqiang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chunyu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xueru Su
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lisha Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
20
|
Guo S, Ji Y, Zheng Y, Watkins CB, Ma L, Wang Q, Liang H, Bai C, Fu A, Li L, Meng D, Liu M, Zuo J. Transcriptomic, metabolomic, and ATAC-seq analysis reveal the regulatory mechanism of senescence of post-harvest tomato fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1142913. [PMID: 36968400 PMCID: PMC10032333 DOI: 10.3389/fpls.2023.1142913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Several physiological changes occur during fruit storage, which include the regulation of genes, metabolisms and transcription factors. In this study, we compared 'JF308' (a normal tomato cultivar) and 'YS006' (a storable tomato cultivar) to determine the difference in accumulated metabolites, gene expression, and accessible chromatin regions through metabolome, transcriptome, and ATAC-seq analysis. A total of 1006 metabolites were identified in two cultivars. During storage time, sugars, alcohols and flavonoids were found to be more abundant in 'YS006' compared to 'JF308' on day 7, 14, and 21, respectively. Differentially expressed genes, which involved in starch and sucrose biosynthesis were observed higher in 'YS006'. 'YS006' had lower expression levels of CesA (cellulose synthase), PL (pectate lyase), EXPA (expansin) and XTH (xyglucan endoglutransglucosylase/hydrolase) than 'JF308'. The results showed that phenylpropanoid pathway, carbohydrate metabolism and cell wall metabolism play important roles in prolonging the shelf life of tomato (Solanum lycopersicum) fruit. The ATAC-seq analysis revealed that the most significantly up-regulated transcription factors during storage were TCP 2,3,4,5, and 24 in 'YS006' compared to 'JF308' on day 21. This information on the molecular regulatory mechanisms and metabolic pathways of post-harvest quality changes in tomato fruit provides a theoretical foundation for slowing post-harvest decay and loss, and has theoretical importance and application value in breeding for longer shelf life cultivars.
Collapse
Affiliation(s)
- Susu Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanhai Ji
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanyan Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Christopher B. Watkins
- School of Integrative Plant Science, Horticulture Section, College of Agriculture and Life Science, Cornell University, NY, Ithaca, United States
| | - Lili Ma
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hao Liang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunmei Bai
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ling Li
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Mingchi Liu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
21
|
Huang Q, Huang L, Chen J, Zhang Y, Kai W, Chen C. Maintenance of postharvest storability and overall quality of 'Jinshayou' pummelo fruit by salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2023; 13:1086375. [PMID: 36714761 PMCID: PMC9875116 DOI: 10.3389/fpls.2022.1086375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The loss of postharvest storability of pummelo fruit reduces its commodity value for long run. To maintain its storability, the effects of postharvest dipping treatment by salicylic acid (SA) with different concentrations (0, 0.1, 0.2, or 0.3%) were investigated on pummelo fruit (Citrus maxima Merr. cv. Jinshayou) during the room temperature storage at 20 ± 2°C for 90 d. RESULTS AND DISCUSSION Among all treatments, pre-storage SA treatment at 0.3% demonstrated the most significant ability to reduce fruit decay incidence, decrease weight loss, delay peel color-turned process, and inhibit the declines in total soluble solids (TSS) as well as titratable acid (TA) content. The increases in electrolyte leakage, hydrogen peroxide (H2O2), and malondialdehyde (MDA) content of the 0.3% SA-treated pummelo fruit were reduced compared to the control (dipped in distilled water). Pummelo fruit treated with 0.3% SA exhibited the most outstanding ability to excess reactive oxygen species (ROS) accumulation, as evidenced by promoted the increases in glutathione (GSH), total phenolics and flavonoids contents, delayed the AsA decline, and enhanced the activities of antioxidant enzymes and their encoding genes expression. CONCLUSION Pre-storage treatment dipped with SA, particularly at 0.3%, can be used as a useful and safe preservation method to maintain higher postharvest storability and better overall quality of 'Jinshayou' pummelo fruit, and thus delaying postharvest senescence and extend the storage life up to 90 d at room temperature.
Collapse
Affiliation(s)
| | | | - Jinyin Chen
- *Correspondence: Jinyin Chen, ; Chuying Chen,
| | | | | | | |
Collapse
|
22
|
Lin L, Chen Y, Lin H, Lin Y, Fan Z, Wang H, Lu W, Chen J, Chen Y, Lin Y. The difference of the cell wall metabolism between ‘Fuyan’ and ‘Dongbi’ longans and its relationship with the pulp breakdown. Curr Res Food Sci 2023; 6:100496. [PMID: 37033742 PMCID: PMC10073989 DOI: 10.1016/j.crfs.2023.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/28/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The aims of present works were to explore the difference in pulp breakdown of 'Fuyan' and 'Dongbi' longans and its relationship with cell wall metabolism. Comparison with 'Fuyan' longan fruit, postharvest 'Dongbi' longan fruit showed lower pulp breakdown index, lower activities of PE, PG, cellulase, β-Gal, XET, and lower expression levels of their corresponding genes. In addition, higher levels of cell wall polysaccharides including ISP, CSP, cellulose and hemicellulose were exhibited in 'Dongbi' longan pulp. These findings implied that, the reduced activities of enzymes and the down-regulated expressions of genes-involved in cell wall disassembly were shown in 'Dongbi' longan pulp, which might reduce the dissolution of polysaccharides and maintain a higher structural integrity in 'Dongbi' longan pulp cell wall, and consequently the mitigated pulp breakdown was displayed in 'Dongbi' longan during storage.
Collapse
|
23
|
Dong W, Shi L, Li S, Xu F, Yang Z, Cao S. Hydrogen-rich water delays fruit softening and prolongs shelf life of postharvest okras. Food Chem 2023; 399:133997. [DOI: 10.1016/j.foodchem.2022.133997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
|
24
|
Li R, Yuan S, Zhou Y, Wang S, Zhou Q, Ding Z, Wang Y, Yao Y, Liu J, Guo J. Comparative Transcriptome Profiling of Cassava Tuberous Roots in Response to Postharvest Physiological Deterioration. Int J Mol Sci 2022; 24:ijms24010246. [PMID: 36613690 PMCID: PMC9820078 DOI: 10.3390/ijms24010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cassava is one of the most versatile tuberous-root crops on Earth. However, the postharvest storage properties of cassava tuberous root mean that it is perishable through a process known as postharvest physiological deterioration (PPD), which seriously affects its starch quality. Therefore, a comprehensive understanding of the transcriptional regulatory activity of cassava against the PPD response is necessary in order to extract key molecular mechanisms related to PPD tolerance. In this study, we found that RYG1 tuberous roots showed delayed PPD compared to those of SC8. In addition, RYG1 roots maintained a more stable cell wall structure after storage than those of SC8. The transcriptome changes in tuberous roots were analyzed for both RYG1 and SC8 after 21 days of storage (SR and SS) compared to fresh (FR and FS) by the RNA-Seq method. The total number of differentially expressed genes (DEGs) in the various comparisons of these four samples ranged from 68 to 3847. Of these, a total of 2008 co-DEGs in SR vs. SS were shared by either SR vs. FR or SS vs. FS. GO and KEGG enrichment analysis revealed that upregulated co-DEGs in SR vs. SS were mainly enriched in photosynthesis, protein processing, hormone and cutin, suberine and wax biosynthesis. By contrast, the downregulated co-DEGs were mainly related to cell wall organization, starch and sucrose metabolism, galactose metabolism, phenylpropanoid biosynthesis, diterpenoid biosynthesis, cysteine and methionine metabolism and flavonoid biosynthesis. The protein-protein interaction (PPI) networks of the co-DEGs showed a complex interaction of genes in different pathways, and 16 hub genes were characterized to have a degree in excess of 15, among which eight genes were associated with photosynthesis. These results provide new information for the study of cassava resistance to PPD and lay a foundation for the further molecular breeding of storage-tolerant cassava varieties.
Collapse
Affiliation(s)
- Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shuai Yuan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yangjiao Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shijia Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qin Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhongping Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yajie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Correspondence: (J.L.); (J.G.); Tel.: +86-898-6698-6031 (J.L.); +86-898-6696-2953 (J.G.)
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Correspondence: (J.L.); (J.G.); Tel.: +86-898-6698-6031 (J.L.); +86-898-6696-2953 (J.G.)
| |
Collapse
|
25
|
Preharvest Application of Commercial Products Based on Chitosan, Phosphoric Acid Plus Micronutrients, and Orange Essential Oil on Postharvest Quality and Gray Mold Infections of Strawberry. Int J Mol Sci 2022; 23:ijms232415472. [PMID: 36555113 PMCID: PMC9779177 DOI: 10.3390/ijms232415472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Strawberry is a perishable fruit with a limited shelf life after harvest due to deterioration of quality and the development of gray mold, Rhizopus rot and other minor diseases. In this study, the effectiveness of commercial compounds based on chitosan, phosphoric acid plus micronutrients, and sweet orange essential oil (EO) in reducing decay and optimizing the quality of strawberries was analyzed. The plant canopy of a greenhouse crop was sprayed once and strawberry fruit were harvested three days later. Gray mold infections were evaluated after chilled storage for seven days at 4 ± 0.5 °C followed by five days shelf life. The qualitative parameters were recorded at harvest (initial day) and after three days of storage at room temperature (RT, 20 °C) or after cold storage and shelf life (CS, 4 °C). The application of sweet orange EO increased the antioxidant and flavonoid content at harvest, while a decrease was reported following three days of storage at RT. At the same time, increased ethylene production and weight loss were observed during CS three days after harvesting. Chitosan treatment maintained the harvest fruit quality and was effective in the control of postharvest decay. Our results suggest that the investigated natural compounds could improve strawberry quality after harvest. Since chitosan performed best in terms of maintaining quality and reducing postharvest decay, it could be considered as a good substitute for chemical-synthetic fungicides for the preservation of strawberry postharvest gray mold.
Collapse
|
26
|
Yang X, Lan W, Lu M, Wang Z, Xie J. Characterization of different phenolic acids grafted chitosan and their application for Japanese sea bass (Lateolabrax japonicus) fillets preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Su Q, Li X, Wang L, Wang B, Feng Y, Yang H, Zhao Z. Variation in Cell Wall Metabolism and Flesh Firmness of Four Apple Cultivars during Fruit Development. Foods 2022; 11:3518. [PMID: 36360131 PMCID: PMC9656455 DOI: 10.3390/foods11213518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Fruit ripening and softening are highly complex processes, and there is an interplay and coordination between the metabolic pathways that are involved in the biological processes. In this study, we aimed to elucidate the variation in the characters and possible causes of cell wall materials and morphological structure during apple fruits development. We studied the cell wall material (CWM), structure, cellular morphology, hydrolase activity, and the transcriptional levels of the related genes in four apple varieties 'Ruixue' and 'Ruixianghong' and their parents ('Pink Lady' and 'Fuji') during fruit development. The decrease in the contents of CWMs, sodium carbonate soluble pectin, hemicellulose, and cellulose were positively correlated with the decline in the hardness during the fruit development. In general, the activities of polygalacturonase, β-galactosidase, and cellulase enzymes increased during the late developmental period. As the fruit grew, the fruit cells of all of the cultivars gradually became larger, and the cell arrangement became more relaxed, the fruit cell walls became thinner, and the intercellular space became larger. In conclusion, the correlation analysis indicated that the up-regulation of the relative expression levels of ethylene synthesis and cell wall hydrolase genes enhanced the activity of the cell wall hydrolase, resulting in the degradation of the CWMs and the depolymerization of the cell wall structure, which affected the final firmness of the apple cultivars in the mature period.
Collapse
Affiliation(s)
- Qiufang Su
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Xianglu Li
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Lexing Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Bochen Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yifeng Feng
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Huijuan Yang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Yangling 712100, China
| | - Zhengyang Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Yangling 712100, China
| |
Collapse
|
28
|
Delaying fruit softening of ‘France’ prune (Prunus domestica L.) using near-freezing temperature storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Zhou Y, Hu L, Chen Y, Liao L, Li R, Wang H, Mo Y, Lin L, Liu K. The combined effect of ascorbic acid and chitosan coating on postharvest quality and cell wall metabolism of papaya fruits. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Ruan X, Li P, Wang C, He Z, Liu Y, Zhou C, Du L, Song S, Yang Z. Synergistic antibacterial activity of chitosan modified by double antibacterial agents as coating material for fruits preservation. Int J Biol Macromol 2022; 222:3100-3107. [DOI: 10.1016/j.ijbiomac.2022.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
31
|
Sinha A, Gill P, Jawandha S, Grewal S. Composite coating of chitosan with salicylic acid retards pear fruit softening under cold and supermarket storage. Food Res Int 2022; 160:111724. [DOI: 10.1016/j.foodres.2022.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
32
|
Ding X, Zhao L, Khan IM, Yue L, Zhang Y, Wang Z. Emerging chitosan grafted essential oil components: A review on synthesis, characterization, and potential application. Carbohydr Polym 2022; 297:120011. [DOI: 10.1016/j.carbpol.2022.120011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023]
|
33
|
Lin Y, Lin H, Lin M, Zheng Y, Chen Y, Wang H, Fan Z, Chen Y, Lin Y. DNP and ATP modulate the developments of pulp softening and breakdown in Phomopsis longanae Chi-infected fresh longan through regulating the cell wall polysaccharides metabolism. Food Chem 2022; 397:133837. [DOI: 10.1016/j.foodchem.2022.133837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
|
34
|
Li J, Wu Z, Zhu Z, Xu L, Wu B, Li J. Botrytis cinerea mediated cell wall degradation accelerates spike stalk browning in Munage grape. J Food Biochem 2022; 46:e14271. [PMID: 35715997 DOI: 10.1111/jfbc.14271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Munage grape (Vitis vinifera L. cv. Munage.) is a unique cultivar in southern Xinjiang, China. Spike stalk browning in this species has becomes more common in recent years, negatively impacting the shelf life, and causing severe economic losses during storage. This study investigated the changes in metabolisms of cell wall by Botrytis cinerea infection in association with spike stalk browning. Morphological and physiological observations showed that preharvest B. cinerea infection accelerates the spike stalk browning during storage in Munage grapes by promoting cell wall degradation. Accordingly, the cell structures in infected spike stalk showed severe collapse, while the cell structures in uninfected spike stalk remained relatively complete. Furthermore, the contents of CDTA-soluble pectin (CSP), Na2 CO3 -soluble pectin (NSP), cellulose, and hemicellulose were reduced, while the water-soluble pectin (WSP) content was increased during infection. In addition, the activities of polygalacturonase (PG), pectin methylesterase (PME), beta-galactosidase (β-Gal), and cellulase (Cx) were highly promoted by B. cinerea. Correspondingly, the expression levels of VvPG were markedly upregulated after inoculation and played a major role in cell wall degradation. Additionally, the spike stalk inoculated by B. cinerea showed higher activities of PPO and POD, and content of total phenolics. These results contribute to elucidating the relationship between cell wall degradation induced by B. cinerea during spike stalk browning and provide a basis for future research on improving the ability of the host cell wall to resist degrading enzymes. PRACTICAL APPLICATIONS: Botrytis cinerea is the main fungal pathogen causing the gray mold of grapes. It usually enters the tissue early in crop development, has a long incubation period, and rapidly infects the tissue when the environment is favorable and the host physiology changes. Gray mold has been reported as one of the major postharvest diseases of grapes. However, there are relatively few reports on the pathways through which B. cinerea causes the browning of grape stalks. Controlling browning caused by B. cinerea may require clarification of the physiological and molecular mechanisms by which browning occurs. The elucidation of the role of B. cinerea in causing browning of grape stalks through the cell wall degradation pathway will help to provide scientific basis for further controlling browning, maintaining freshness of stalks, developing biological agents to prevent browning, improving grape quality, and extending storage period.
Collapse
Affiliation(s)
- Jie Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Zhonghong Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, People's Republic of China
| | - Zhaoshuai Zhu
- Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi, People's Republic of China
| | - Le Xu
- College of Food and Pharmacology, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, People's Republic of China
| | - Jiang Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi, People's Republic of China
| |
Collapse
|
35
|
Zhong Z, Zhou L, Yu K, Jiang F, Xu J, Zou L, Du L, Liu W. Effects of Microporous Packaging Combined with Chitosan Coating on the Quality and Physiological Metabolism of Passion Fruit after Harvest. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Chen C, Cai N, Wan C, Huang Q, Chen J. Cell wall modification and lignin biosynthesis involved in disease resistance against Diaporthe citri in harvested pummelo fruit elicited by carvacrol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3140-3149. [PMID: 34791654 DOI: 10.1002/jsfa.11657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phomopsis stem-end rot caused by Diaporthe citri, causes significant commercial postharvest losses of pummelo fruit during storage. Carvacrol (CVR) is a known generally recognized as safe and has the ability to prolong the preservation of harvested fruits. In the present study, the inhibitory effects of CVR treatment at the appropriate concentration on Phomopsis stem-end rot development of harvested pummelo fruit inoculated with D. citri were evaluated by the amounts of cell wall components, the activities and gene expressions of related enzymes involved in cell wall modification and lignin biosynthesis. RESULTS Results indicated that CVR completely inhibited D. citri growth in vitro at 200 mg L-1 and significantly controlled Phomopsis stem-end rot development in harvested pummelo. The CVR treatment delayed peel softening and browning, and retarded electrolyte leakage, superoxide radical (O2 •- ) production, and malondialdehyde content. The CVR-treated fruit maintained higher amounts of cell wall material, protopectin, hemicelluloses, and cellulose, but exhibited lower water-soluble pectin amount. Moreover, in D. citri-inoculated fruit, CVR treatment suppressed the activities and gene expressions of cell wall disassembling-enzymes, including pectin methylesterase, polygalacturonase, cellulase, and β-galactosidase, while the development of cell wall degradation was reduced. Meanwhile, the CVR treatment enhanced the lignin biosynthesis by increasing the activities and up-regulating the gene expressions of phenylalanine ammonialyase, cinnamic alcohol dehydrogenase, and peroxidase accompanied with elevated level of lignin in pummelo fruit. CONCLUSION The disease resistance to D. citri in pummelo fruit elicited by CVR treatment is related to delaying cell wall degradation and enhancing lignin biosynthesis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuying Chen
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Nan Cai
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Chunpeng Wan
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Qiang Huang
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Jinyin Chen
- Provincial Key Laboratory for Preservation Technology and Non-Destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi Province, 337055, P. R. China
| |
Collapse
|
37
|
Sinha A, Gill P, Jawandha S, Kaur P, Grewal S. Salicylic acid enriched beeswax coatings suppress fruit softening in pears by modulation of cell wall degrading enzymes under different storage conditions. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Sun Y, Li M, Ji S, Cheng S, Zhou Q, Zhou X, Li M, Wei B. Effect of exogenous melatonin treatment on quality and softening of jujube fruit during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yinghan Sun
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Mingyang Li
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Shujuan Ji
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Shunchang Cheng
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Qian Zhou
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Xin Zhou
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Meilin Li
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Baodong Wei
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| |
Collapse
|
39
|
Effects of phenolic acid grafted chitosan on moisture state and protein properties of vacuum packaged sea bass (Lateolabrax japonicus) during refrigerated storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Sun J, Chen H, Xie H, Li M, Chen Y, Hung YC, Lin H. Acidic electrolyzed water treatment retards softening and retains cell wall polysaccharides in pulp of postharvest fresh longans and its possible mechanism. Food Chem X 2022; 13:100265. [PMID: 35498983 PMCID: PMC9040007 DOI: 10.1016/j.fochx.2022.100265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
AEW delayed pulp softening of longans via suppressing cell wall disassembly. AEW down-regulated expression levels of longan pulp cell wall degrading-related genes. AEW decreased activities of cell wall degrading enzymes in pulp of harvested longans. AEW retained higher levels of longan pulp CWM, CSP, ISP, cellulose, and hemicellulose.
Effects of acidic electrolyzed water (AEW) treatment (pH = 2.5, ACC = 80 mg L−1, 10 min) on pulp firmness, amounts of CWM and CWP, activities and expression of relevant genes of CWDEs in pulp of Fuyan longan during storage at 25 °C were evaluated. Compared to control samples, during storage, AEW-treated fruit retained a higher pulp firmness, prevented WSP formation, reduced the degradation of CSP, cellulose and hemicellulose, and lowered CWDEs activities and their corresponding gene expression. When stored for 5 d, pulp firmness (113.6 g mm−1), CWM (13.9 g kg−1), and CSP (1.4 g kg−1) in AEW-treated fruit displayed the clearly higher contents than those in control samples. These data suggest that AEW treatment can slow down the pulp softening and retain higher pulp CWP levels in postharvest fresh longans, which was because AEW lowered activities of CWDEs and its gene expression levels, and maintained the cell wall structure's integrity.
Collapse
Key Words
- 1-MCP, 1-methylcyclopropene
- AEW, acidic electrolyzed water
- Acidic electrolyzed water
- CEL, cellulase
- CSP, covalent-soluble pectin
- CWDEs, cell wall degrading enzymes
- CWM, cell wall materials
- CWP, cell wall polysaccharides
- Cell wall degrading enzymes
- Cell wall polysaccharides
- Gene expression
- ISP, ionic-soluble pectin
- Longan fruit
- NFT, near freezing temperature
- PE, pectinesterase
- PG, polygalacturonase
- Pulp firmness
- WSP, water-soluble pectin
- XET, xyloglucan endotransglycosylase
- β-Gal, β-galactosidase
Collapse
Affiliation(s)
- Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hongbin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Huilin Xie
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors.
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors.
| |
Collapse
|
41
|
Saleem MS, Ejaz S, Anjum MA, Ali S, Hussain S, Nawaz A, Naz S, Maqbool M, Abbas AM. Aloe vera gel coating delays softening and maintains quality of stored persimmon (Diospyros kaki Thunb.) Fruits. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3296-3306. [PMID: 35876768 PMCID: PMC9304499 DOI: 10.1007/s13197-022-05412-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
Abstract
The effect of Aloe vera (AV) gel coating was studied on antioxidant enzymes activities, oxidative stress, softening and associated quality attributes of persimmon fruits. The fruits were coated with 0 and 50% AV-gel coating and stored for 20 days at 20 ± 1 ºC. AV-gel coated fruits exhibited considerably less weight loss, hydrogen peroxide level, electrolyte leakage and malondialdehyde content. AV-gel coated fruits had significantly higher ascorbate peroxidase, peroxidase, superoxide dismutase and catalase activities. In addition, AV-gel coating suppressed pectin methylesterase, polygalacturonase and cellulase activities and showed higher ascorbic acid, DPPH scavenging antioxidants and phenolics, and lower sugars and carotenoids. To the best of our knowledge, these results are the first evidence that AV-gel coating modulates the activities of cell wall degrading enzymes to delay ripening in climacteric fruits. So, AV-gel coating prohibited the onset of senescence by activating enzymatic antioxidant system, accumulating bioactive compounds and suppressing cell wall degradation. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05412-5.
Collapse
|
42
|
Sinha A, Gill PS, Jawandha SK, Grewal SK. Suppression of internal browning and maintenance of antioxidants in beeswax plus salicylic acid coated pear fruit during different storage conditions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aeshna Sinha
- Department of Fruit Science Punjab Agricultural University Ludhiana Punjab 141004 India
| | - Parmpal Singh Gill
- Department of Fruit Science Punjab Agricultural University Ludhiana Punjab 141004 India
| | - Sukhit Kaur Jawandha
- Department of Fruit Science Punjab Agricultural University Ludhiana Punjab 141004 India
| | - Satvir Kaur Grewal
- Department of Biochemistry Punjab Agricultural University Ludhiana Punjab 141004 India
| |
Collapse
|
43
|
Mixed pretreatment based on pectinase and cellulase accelerates the oil droplet coalescence and oil yield from olive paste. Food Chem 2022; 369:130915. [PMID: 34496318 DOI: 10.1016/j.foodchem.2021.130915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
Commercial enzymatic pretreatment is being classically used for enhancing the oil extraction yield in the olive oil industry in China. Nevertheless, the mechanism is not yet clearly defined. The aim was to study the action of pectinase and cellulase for improving the oil yield from the aspects of oil droplets coalescence and rheological properties changes of olive paste during malaxation process. From confocal laser scanning microscopy imaging, the bound oil droplets were released and gradually coalesced into larger droplets, eventually formed a continuous oil phase with enzymatic pretreatment. Furthermore, the mixed enzymatic pretreatment effectively decreased viscosity of the olive pastes and promoted the depolymerization and solubilization of pectic polymers involved in the cell-cell adhesion, thus further enhanced the oil extraction yield from 7.15 % to 11.68 % (w/w). Finally, the mixed enzymatic pretreatment improved the droplet release and coalescence, reduced the viscosity of olive paste, and increased the oil yield.
Collapse
|
44
|
Zizania latifolia Cell Wall Polysaccharide Metabolism and Changes of Related Enzyme Activities during Postharvest Storage. Foods 2022; 11:foods11030392. [PMID: 35159542 PMCID: PMC8834342 DOI: 10.3390/foods11030392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The metabolism of polysaccharides in the Zizania latifolia cell wall helps maintain the postharvest quality during storage. Fresh Z. latifolia was stored at 4 °C and 25 °C to evaluate the hardness, cell wall polysaccharide composition, cell wall structure, active ingredients, and cell wall metabolism-related enzyme activities. The results showed that hardness declined concomitantly with an increase in water-soluble pectin content during storage, as well as with a decrease in propectin and cellulose contents. Correlation analysis showed that lower activities of cell wall-degrading enzymes, such as polygalacturonase, cellulase, and β-galactosidase in Z. latifolia stored at 4 °C, were associated with lighter fiberization and greater hardness, compared with those stored at 25 °C. Additionally, the results of infrared spectroscopy showed that texture softening may be attributed to a decrease in the degree of esterification of water-soluble polysaccharides at 25 °C compared to that at 4 °C.
Collapse
|
45
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
46
|
QU G, BA L, WANG R, LI J, MA C, JI N, CAO S. Effects of melatonin on blueberry fruit quality and cell wall metabolism during low temperature storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Jiangkuo LI
- National Engineering and Technology Research Center for Preservation of Agricultural Products, P. R. China
| | - Chao MA
- Guiyang University, P. R. China
| | - Ning JI
- Guiyang University, P. R. China
| | - Sen CAO
- Guiyang University, P. R. China
| |
Collapse
|
47
|
M M, Gill PS, Jawandha SK, Kaur N, Gill MS. Effect of chitosan coating incorporated with pomegranate peel extract on pear fruit softening, quality, and cell wall degrading enzymes during cold storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Megha M
- Department of Fruit Science Punjab Agricultural University Ludhiana India
| | - Parmpal S. Gill
- Department of Fruit Science Punjab Agricultural University Ludhiana India
| | | | - Nirmaljit Kaur
- Department of Botany Punjab Agricultural University Ludhiana India
| | - Mandeep S. Gill
- Department of Fruit Science Punjab Agricultural University Ludhiana India
| |
Collapse
|
48
|
Illuri R, M E, M K, R SB, P P, Nguyen VH, Bukhari NA, Hatamleh AA, P B. Bio-prospective potential of Pleurotus djamor and Pleurotus florida mycelial extracts towards Gram positive and Gram negative microbial pathogens causing infectious disease. J Infect Public Health 2021; 15:297-306. [PMID: 34690095 DOI: 10.1016/j.jiph.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The emergence of resistance to commonly used antibiotics by human infections occurred mostly due to their overuse, that prompted individuals to pursue novel and innovative treatments. The phytochemical characteristics, antibacterial activity, and cytotoxicity of MCF7 cells were evaluated in two Pleurotus spp. mycelial extracts in this work. METHODS Pleurotus djamor and Pleurotus florida mycelial extracts from pure cultures were tested for antibacterial activity by a well-diffusion assay and antimicrobial activity against mold fungi was evaluated for biomass inhibition. Mycelial extracts were obtained from dichloromethane extracts and their biophysical characteristics are analyzed by UV-vis spectrum and FTIR analysis. By spraying detection reagents onto TLC plates, the chemicals in dichloromethane extraction of chosen mushroom fungus mycelia were identified. Using the MTT test, the cytotoxic effect of dichloromethane extracts of selected mushroom fungi was evaluated on MCF7 Cell lines. RESULTS Mycelial extracts of P. djamor and P. florida exhibited significant antimicrobial effect on the bacterial and fungal pathogens tested. Dichloromethane mycelial extracts were obtained using soxhlet extraction which response positive for various phytochemical analysis. Detection of metabolites in thin layer chromatography using spray reagents documented one of few first accounts on flavonoids, anthroquinone and terpenoid compounds in P. djamor and P. florida. P. djamor and P. florida had dose-dependent antiproliferative activity against MCF7 cells, with an inhibitory impact of 55.72% and 64.47% percent at 125 μg/mL, respectively. CONCLUSION The study has reported the identification with the potent biological activity of some of the key bioactive components present in DCM extracts from the mycelia of P. djamor and P. florida.
Collapse
Affiliation(s)
- Ramanaiah Illuri
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| | - Eyini M
- PG and Centre for Research in Botany, Thiagarajar College, Madurai, Tamilnadu, India
| | - Kumar M
- Department of Plant Biology and Plant Biotechnology, Madras Christian College (Autonomous), Tambaram, Chennai, Tamilnadu, India
| | - Suresh Babu R
- Department of Neurological Sciences, Rush University Medical Center, Rush University, Chicago, IL 60612, USA
| | - Prema P
- Department of Zoology, VHNSN College (Autonomous), Virudhunagar, Tamilnadu, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Najat A Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf A Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Balaji P
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India.
| |
Collapse
|
49
|
Liu Y, Sun Q, Su Y, Zhang X, Chen F, Zhang Z, Yang G. Morphological evolution of
self‐assembled PS‐g‐PA6
graft copolymer via in situ polymerization. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Liu
- College of Chemical Engineering and Safety Binzhou University Binzhou China
- Wenjing College Yantai University Yantai China
| | - Qiquan Sun
- Technology Research Center Luye Pharma Group Yantai China
| | - Yinhe Su
- College of Chemical Engineering and Safety Binzhou University Binzhou China
| | - Xin Zhang
- College of Chemical Engineering and Safety Binzhou University Binzhou China
| | - Fei Chen
- College of Chemical Engineering and Safety Binzhou University Binzhou China
| | - Zhifei Zhang
- College of Chemical Engineering and Safety Binzhou University Binzhou China
| | - Guisheng Yang
- Research and Development Center Shanghai Genius Advanced Materials Co., Ltd Shanghai China
| |
Collapse
|
50
|
Chen C, Peng X, Chen J, Gan Z, Wan C. Mitigating effects of chitosan coating on postharvest senescence and energy depletion of harvested pummelo fruit response to granulation stress. Food Chem 2021; 348:129113. [PMID: 33508609 DOI: 10.1016/j.foodchem.2021.129113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The effect of chitosan coating exposure on juice sac granulation and energy metabolism in harvested pummelo fruit was investigated. Pummelo fruits were exposed to 1.5% chitosan coating, and then stored at 20 ± 2 °C for about 150 days. Postharvest chitosan coating treatment apparently alleviated the development of juice sac granulation as well as the increases in weight loss, pulp firmness, cell membrane permeability and cellulose content. The levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and energy charge (EC) in the chitosan-coated fruit showed significantly higher levels than those of the respective controls. Meanwhile, the enzymses actively engaged in energy metabolism such as H+-ATPase, Ca2+-ATPase, Mg2+-ATPase, cytochrome C oxidase (CCO), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) were markedly maintained by chitosan coating. Besides, notably high contents of acetyl-CoA, cis-aconitate, succinate, fumarate and oxaloacetate were observed in the chitosan-coated fruit. The results highlighted that chitosan coating could delay postharvest senescence of pummelo fruit by reducing the rate of energy depletion while maintaining higher levels of key metabolites taking part in tricarboxylic acid (TCA) cycle at room temperature storage.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuan Peng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China.
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|