1
|
Li M, Dang Y, Liu Y, Jiang F, Yu X, Du SK. Effect of ultrasonic-assisted enzymatic extraction on proso millet bran protein: extraction rate, structural and functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3742-3752. [PMID: 39831562 DOI: 10.1002/jsfa.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/06/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Proso millet bran protein (PMBP), derived from agricultural by-products, possesses high nutritional value, despite its challenging extraction process. The present study proposes an extraction method for PMBP using ultrasound-assisted cellulase technology (UAE), and optimizes the process parameters. Non-waxy (N-PMBP) and waxy (W-PMBP) PMBPs, extracted through alkaline solubilization and acid precipitation (conventional treatment, CT), served as control groups to assess the impact of UAE on the structure and functionality of PMBP, as well as the distinctions between N-PMBPs and W-PMBPs. RESULTS At an ultrasonic power of 420 W, cellulase concentration of 80 U g-1, enzymolysis pH of 5.0, enzymolysis temperature of 55 °C and enzymolysis time of 3 h, the maximum PMBP extraction rate was achieved at 76.80%. Compared to CT, UAE extraction resulted in enhancements in α-helix and random content, particle size, surface hydrophobicity (H0) and ξ-potential value, leading to improved functionality of the PMBPs. Additionally, significant functional and structural disparities were observed between N-PMBPs and W-PMBPs. Although no significant difference in molecular weight was detected, each exhibited three major bands. W-PMBPs exhibited significantly higher beta-sheet content compared to N-PMBPs, whereas the reverse trend was observed for α-helix content. W-PMBPs displayed strong solubility and water/oil holding capacity compared to N-PMBPs, albeit with lower emulsifying properties and H0. CONCLUSION UAE could enhance PMBP extraction, inducing structural and functional changes in PMBPs compared to CT. Significant differences in functionality and structure were observed between N-PMBPs and W-PMBPs, providing fundamental data and a theoretical basis for PMBP development and utilization. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengqing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yueyi Dang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yangjin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Fan Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, China
| |
Collapse
|
2
|
Soni N, Yadav M, M M, Sharma D, Paul D. Current developments and trends in hybrid extraction techniques for green analytical applications in natural products. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124543. [PMID: 40049075 DOI: 10.1016/j.jchromb.2025.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/07/2025]
Abstract
Natural product extraction has advanced significantly due to the growing need for environmentally friendly and sustainable analytical techniques. The medicinal benefits of natural products are gaining worldwide recognition. This shift emphasizes the need for sustainable extraction methods, as traditional organic solvents can negatively impact biodiversity. This review looks at new green extraction methods such as pressurized liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical fluid extraction. The overview describes the main goals, workings, and extraction principles of these techniques, which are used to extract phytochemicals from various plant sources. Additionally covered is how green solvents, more especially bio-based and deep eutectic solvents, can enhance the sustainability of these techniques. This review examines the developments in synergistic extraction, emphasizing how these hybrid techniques can be used to isolate a variety of natural products, including polyphenols, alkaloids, essential oils, and more. It also emphasizes how crucial these techniques are to the development of high-performance, environmentally friendly analytical platforms for the use of natural products. The recent uses of these extraction techniques are covered in this review. Despite the positive results, standardization, selectivity, scalability, and economic viability issues must be recognized and addressed.
Collapse
Affiliation(s)
- Navratan Soni
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Mukul Yadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Malarvannan M
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Dhanashree Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054.
| |
Collapse
|
3
|
Hassanin DS, Abdelhady SR, Ghazi AK, Badawy WZ. Nanoparticles of banana peels as a potential source of bioactive compounds and their activities on HepG2. Sci Rep 2025; 15:11721. [PMID: 40188145 PMCID: PMC11972303 DOI: 10.1038/s41598-025-93382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/06/2025] [Indexed: 04/07/2025] Open
Abstract
Nanoparticles of blanched green banana peels (BGBP) were prepared using physical technique (by grinding) in order to avoid any harm effect on human health that could occurred when metals were used for preparing nanoparticles size (NPs) of banana peels. This work was designed to study the preparation of nano scale (70-135 nm for TEM) (243.4-933.9 nm for SEM) and normal size (0.12-0.25 µm for TEM) (1.150 µm for SEM) from BGBP after milling and evaluate the activities of their extracts as antioxidant, antimicrobial and anticancer agents. The size and shape of nanoparticles were analyzed using Scanning Electron Microscope (SEM) and it cleared the appearance of particle aggregation was attributed to mechanical pressure and friction resulting from the interaction between the abrasive balls and the pulverizing vessel's inner surface. Also, Transmission Electron Microscope (TEM) shows presence of different spherical shapes ranging between 70 and 135 nm, along with the emergence of slender fibrillary shapes., on the other hand, Fourier transform IR (FT-IR) cleared that the higher extraction yields of phenolic compounds and greater antioxidant activities were achieved due to the increased surface area of nano-scale samples following milling. In addition, X-ray diffraction (XRD) determined the materials crystalline structure. Bioactive compounds (mainly phenolic compounds) were recovered by extracting banana peels weather from normal size or (NPs). The extracted bioactive compounds were subjected to evolution as antioxidant, antimicrobial and anticancer agents. Dealing with this study, it was concluded that bioactive compounds extracted from NPS of BGBP showed antioxidant, antimicrobial and anticancer activities higher than those extracted from the normal size ones. So, it is strongly recommended to use NPs of BGBP for producing these bioactive compounds since these compounds are important to protect humans against a lot of dangerous diseases. Finally, the potential applications of these compounds in the pharmaceutical or food industries would be beneficial.
Collapse
Affiliation(s)
- Donia S Hassanin
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Sahar R Abdelhady
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Adel Kh Ghazi
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Waleed Z Badawy
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt.
| |
Collapse
|
4
|
Huang Y, Dabbour M, Mintah BK, Pan J, Wu M, Long R, Zhang S, Liu S, Liao H, He R, Ma H. Extraction and characterization of chitin and chitosan from molts and Eupolyphaga sinensis Walker: Influence of chemical and ultrasound-assisted enzymatic processing. Int J Biol Macromol 2025; 309:142804. [PMID: 40185435 DOI: 10.1016/j.ijbiomac.2025.142804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Chitin was extracted from molts and different life-stages of Eupolyphaga sinensis Walker (ESW) using both chemical and ultrasound-assisted enzymolysis (UAE) methods, followed by deacetylation to produce chitosan. The physicochemical and structural properties of extracted chitosan were characterized and compared with commercially available chitosan (CAC), to validate the methods used. Results illustrated changes in chitosan structure, referencing the growth-stages of ESW, with more significant differences observed between UAE and chemical approaches. UAE method remarkably increased the chitin and chitosan yields, particularly in male nymphs (66.42 %-increase in chitin) and adult males (56.42 %-increase in chitosan), with molts showing the highest chitin (30.49 %) and chitosan (17.16 %). FTIR and XRD spectra indicated that the transmission peaks of the extracted chitosan were consistent with CAC, but the UAE-prepared chitosan (UMC) exhibited higher acetylation (81.00 %-81.82 %) and lower viscosity-average molecular weight compared to chemical method. Scanning electron microscopy showed the surface of ESW chitosan had several pores, whereas the CAC had no voids, implying ESW chitosan possessed higher water- and fat-binding capacity. Furthermore, differential scanning calorimetry analysis showed better homogeneity and thermal stability in UMC. This study suggests that ESW could be used as an alternative source for chitosan production, especially following the application of UAE method.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, P.O. Box M20, Accra, Ghana; Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Minquan Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ruiqi Long
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shengqi Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuixing Liu
- Xinxing Tuyuan Specialized Cooperatives of Huangtang Town, Danyang, Jiangsu 212300, China
| | - Huaijian Liao
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Choudhury DB, Gul K, Sehrawat R, Mir NA, Ali A. Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications. Int J Biol Macromol 2025; 295:139578. [PMID: 39793834 DOI: 10.1016/j.ijbiomac.2025.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed. The physiological benefits of bean proteins, such as antidiabetic, cardioprotective, antioxidant, and neuroprotective effects, are also presented, highlighting their potential for promoting well-being. Our review emphasizes the diversity of bean proteins and highlights ultrasound as the most effective extraction method among available techniques. Beyond their physiological benefits, bean proteins significantly enhance the structural, technological, and nutritional properties of food systems. The functionality can be further improved through various modification techniques, thereby expanding their applicability in the food industry. While studies have explored the impact of bean protein structure on their nutritional and functional properties, further research is needed to investigate advanced modification techniques and the structure-function relationship. This will enhance the utilization of bean proteins in innovative and sustainable food applications.
Collapse
Affiliation(s)
- Debojit Baidya Choudhury
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Nisar Ahmad Mir
- Department of Food Technology, Islamic University of Science and Technology, One University Avenue, Awantipora 192122, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| |
Collapse
|
6
|
Choudhary R, Kaushik R, Chawla P, Manna S. Exploring the extraction, functional properties, and industrial applications of papain from Carica papaya. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1533-1545. [PMID: 39077990 DOI: 10.1002/jsfa.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Papain a protease enzyme naturally present in the Carica papaya has gained significant interest across several industries due to its unique properties and versatility. The unique structure of papain imparts the functionality that assists in elucidating how papain enzyme works and making it beneficial for a variety of purposes. This review highlights recent advancements in papain extraction techniques to enhance production efficiency to meet market demand. The extraction of papain from the Carica papaya plant offers various advantages such as cost-effectiveness, biodegradability, safety, and the ability to withstand a wide range of pH and temperature conditions. Key findings reveal that non-conventional papain extraction techniques offer significant advantages in terms of efficiency, product quality, and environmental sustainability. Furthermore, papain treatment enhances the value of final products due to its anti-bacterial, anti-oxidant, and anti-obesity properties. The ability of papain to hydrolyze a wide range of proteins across various conditions makes it a suitable protease enzyme. While the study emphasizes the advantages of papain, the study also acknowledges limitations such as the continuous research and development to optimize extraction processes which will help unlock papain's potential and meet the growing demand. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rajni Choudhary
- School of Health Sciences and Technology, UPES, Dehradun, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Suvendu Manna
- Sustainibility Cluster, School of Advance Engineering, UPES, Dehradun, India
| |
Collapse
|
7
|
Yildiz S, Karabulut G, Sıçramaz H. High-intensity ultrasound-assisted extraction for functionalized pistachio meal protein concentrate. J Food Sci 2025; 90:e70031. [PMID: 39902918 PMCID: PMC11792781 DOI: 10.1111/1750-3841.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
The residues left over from cold-pressing oilseeds and fruits offer a promising source of plant proteins, serving as an alternative resource within the circular economy framework. This research aims to develop protein concentrates (PCs) from pistachio meal with enhanced functional properties using ultrasound -assisted extraction (UAE). A response surface methodology was employed to optimize UAE considering power (200-600 W), time (5-25 min), and pH (8-11). Through a Box-Behnken experimental design, the optimal extraction conditions were determined as 595 W, pH 11, and 19 min, targeting maximal protein extraction yield (R2: 0.9359, desirability of 0.993). Under these ideal conditions, UAE achieved higher protein extraction yield (51%), compared to the conventional alkaline extraction (AE) (39%). Protein recovery rate increased from 33.1% to 44% by UAE. PCs obtained through the AE (PC-AE) and optimal UAE (PC-UAE) were evaluated for their functional, structural, and morphological properties. UAE significantly improved the emulsion activity index of the PC-UAE by 34.9% (p < 0.05), whereas solubility and foaming activity showed slight increases compared to PC-AE (p > 0.05). US-induced size reduction as observed by smaller and irregular particles in morphological analysis. The Fourier-transform infrared spectroscopy spectra, analyzed using a curve-fitting approach on the second derivative, revealed hidden peaks that highlighted changes in the secondary structure of the PCs, including slight shifts in characteristic wavenumbers and variations in the proportional amounts of β-sheet, α-helix, and random coil structures. This study demonstrated that UAE achieved similar protein purity as AE while producing larger quantities through higher recovery of proteins with improved functional properties. PRACTICAL APPLICATION: Ultrasound-assisted alkaline extraction significantly boosts protein extraction yield and recovery from pistachio meal and enhances functional properties (especially emulsion activity) of the extracted proteins. These improvements make the UAE protein concentrates suitable for applications in food formulations, such as plant-based beverages and emulsified products. UAE offers a sustainable approach to valorize oilseed residues in the context of circular economy.
Collapse
Affiliation(s)
- Semanur Yildiz
- Faculty of Engineering, Department of Food EngineeringSakarya UniversitySakaryaTurkey
- Sustainable Food Processing Laboratory (SuProLab)Sakarya UniversitySakaryaTurkey
- Development and Application Center (SARGEM)Sakarya University ResearchSakaryaTurkey
| | - Gulsah Karabulut
- Faculty of Engineering, Department of Food EngineeringSakarya UniversitySakaryaTurkey
| | - Hatice Sıçramaz
- Faculty of Engineering, Department of Food EngineeringSakarya UniversitySakaryaTurkey
- Sustainable Food Processing Laboratory (SuProLab)Sakarya UniversitySakaryaTurkey
| |
Collapse
|
8
|
Al-haql M, Habbal H, Al Oklah B, Qurabi N. Extraction and characterization of spherical nanocellulose from sesame husks. Heliyon 2025; 11:e41269. [PMID: 39801952 PMCID: PMC11721230 DOI: 10.1016/j.heliyon.2024.e41269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/27/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
The objective of this study was to extract and characterize nanocellulose from sesame husks, which are typically discarded as waste by sesame processing facilities. However, these husks are rich in cellulose, presenting a valuable potential source for nanocellulose. Sesame husk cellulose (SHC) was initially isolated through a multi-step process that removed oil, hemicellulose, and lignin. Sesame husk nanocellulose (SHNC) was subsequently obtained via acid hydrolysis. Energy-dispersive X-ray (EDX) analysis revealed a purity of 99.32 % for SHNC. The yields of SHC and SHNC were 25.16 % and 9.17 %, respectively. SHNC exhibited a lower surface charge (-27.2 mV) compared to SHC (-15.5 mV). FTIR confirmed the presence of characteristic cellulose bands. Dynamic light scattering (DLS) revealed average particle diameters of 2235 nm for SHC and 108.1 nm for SHNC. Atomic force microscopy (AFM) and field-emission scanning electron microscopy (FE-SEM) analyses showed that SHNC particles were spherical to oval-shaped, with average diameters of 78.41 nm and 74.30 nm, respectively. The crystallinity index was higher for SHNC (67.74 %) compared to SHC (41.02 %). Thermogravimetric analysis (TGA) indicated greater thermal stability for SHC (TMax 317 °C) compared to SHNC (TMax 287 °C). These results demonstrate the potential of sesame husks as a sustainable and valuable source of nanocellulose.
Collapse
Affiliation(s)
- Mohammed Al-haql
- Department of Food Science, Faculty of Agriculture, Damascus University, Syria
| | - Hoda Habbal
- Department of Food Science, Faculty of Agriculture, Damascus University, Syria
| | - Bassam Al Oklah
- Department of Food Technology, National Commission for Biotechnology, Damascus, Syria
| | - Nesreen Qurabi
- Department of Food Engineering Technologies, Faculty of Technical Engineering, Aleppo University, Syria
| |
Collapse
|
9
|
Sethi S, Rathod VK. Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: a review. Prep Biochem Biotechnol 2024:1-27. [PMID: 39718248 DOI: 10.1080/10826068.2024.2436952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
With numerous advantages over conventional techniques, ultrasound-assisted extraction (UAE) has become a viable method for the effective extraction of biomolecules from prokaryotic and eukaryotic cells. The fundamentals and workings of UAE are examined in this review, focusing on current developments, including how these impact the extraction of proteins, lipids, enzymes, and other bioactive compounds. UAE not only enhances cell disruption and mass transfer, leading to improved extraction yields, but also preserves the integrity of the extracted bioactive molecules under optimized conditions, making it a preferred choice in Biochemistry and Biotechnology. Additionally, this review explores recent innovative approaches that combine ultrasound with other techniques like enzymatic digestion, supercritical CO2, deep eutectic solvents, and Three-Phase Partitioning (UA-TPP) etc, to further enhance extraction efficiency. The differences in extraction effectiveness between prokaryotic and eukaryotic cells are attributed to cellular structure and ultrasonic conditions. Overall, this review highlights UAE's promise as a viable and efficient substitute for biomolecule extraction concerning prokaryotic and eukaryotic cells while bringing up areas that need additional research and development.
Collapse
Affiliation(s)
- Santosh Sethi
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, India
| | - V K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, India
| |
Collapse
|
10
|
Jiang DZ, Yu DP, Zeng M, Liu WB, Li DL, Liu KY. Optimization of ultrasonic-assisted extraction of total flavonoids from Oxalis corniculata by a hybrid response surface methodology-artificial neural network-genetic algorithm (RSM-ANN-GA) approach, coupled with an assessment of antioxidant activities. RSC Adv 2024; 14:39069-39080. [PMID: 39659600 PMCID: PMC11629873 DOI: 10.1039/d4ra05077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
The objective of this research endeavor is to refine the ultrasonic-assisted extraction technique for total flavonoids from Oxalis corniculata (TFO), utilizing a synergistic approach combining response surface methodology (RSM) and artificial neural network integrated with genetic algorithm (RSM-ANN-GA). The optimized extraction parameters determined through RSM yielded a TFO concentration of 13.538 mg g-1 under the following conditions: an ethanol concentration of 61.95%, a liquid-solid ratio of 41.06 mL g-1, an ultrasonic power setting of 351.57 W, and an ultrasonic exposure duration of 58.95 minutes. Conversely, the RSM-ANN-GA approach identified an even more refined set of conditions, achieving a TFO concentration of 13.7844 mg g-1, with an ethanol concentration of 58.93%, a liquid-solid ratio of 41.16 mL g-1, an ultrasonic power of 350.22 W, and an ultrasonic exposure time of 58.18 minutes. These findings underscore the superior predictive accuracy and enhanced extraction efficiency offered by the RSM-ANN-GA model over the conventional RSM method. Furthermore, the study demonstrated that TFO possesses a potent antioxidant effect, as evidenced by its ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals in vitro, highlighting its potential as a valuable source of natural antioxidants.
Collapse
Affiliation(s)
- Deng-Zhao Jiang
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
- Jiujiang Key Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Northwest Jiangxi Jiujiang 332005 China
| | - Dan-Ping Yu
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
| | - Ming Zeng
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
| | - Wen-Bo Liu
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
| | - Dong-Lin Li
- Analytical and Testing Center, Jiujiang University Jiujiang 332005 China
| | - Ke-Yue Liu
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
- Jiujiang Key Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Northwest Jiangxi Jiujiang 332005 China
| |
Collapse
|
11
|
Yang M, Wang S, Zhou R, Zhao Y, He Y, Zheng Y, Gong H, Wang WD. Optimization and component identification of ultrasound-assisted extraction of functional compounds from waste blackberry (Rubus fruticosus Pollich) seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9169-9179. [PMID: 38979919 DOI: 10.1002/jsfa.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Blackberry seeds, as a by-product of processing, have potential bioactive substances and activities. A response surface method was used to determine the optimal conditions of blackberry seed extracts (BSEs) with high 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity by ultrasound-assisted extraction (UAE). The composition and antioxidant capacity of BSEs were further analyzed. RESULTS The optimal conditions were material-to-liquid ratio of 0.07 g mL-1, ethanol concentration of 56%, extraction temperature of 39 °C and ultrasonic power of 260 W. Using these conditions, the extraction yield and total polysaccharide, phenolic and anthocyanin contents in BSEs were 0.062 g g-1 and 633.91, 36.21 and 3.07 mg g-1, respectively. The Fourier transform infrared spectra of BSEs exhibited characteristic peaks associated with polysaccharide absorption. The antioxidant capacity, DPPH and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity, and ferric reducing antioxidant power of BSEs were 1533.19, 1021.93 and 1093.38 mmol Trolox equivalent g-1, respectively. The delphinidin-3-O-glucoside, paeoniflorin-3-O-glucoside and cyanidin-3-O-arabinoside contents in BSEs were 3.05,12.76 and 1895.90 ± 3.45 μg g-1. Five polyphenols including gallic acid, coumaric acid, ferulic acid, catechin and caffeic acid were identified and quantified in BSEs with its contents at 8850.43, 5053.26, 4984.65, 1846.91 and 192.40 μg g-1. CONCLUSION These results provide a method for preparing BSE containing functional components such as polysaccharides, phenols and anthocyanins through UAE, and BSEs have potential application in food industries. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mo Yang
- College of Food Engineering, Xuzhou University of Technology, Xuzhou, China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Shuai Wang
- College of Food Engineering, Xuzhou University of Technology, Xuzhou, China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Rong Zhou
- College of Food Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yi Zhao
- College of Food Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yu He
- College of Food Engineering, Xuzhou University of Technology, Xuzhou, China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Yi Zheng
- College of Food Engineering, Xuzhou University of Technology, Xuzhou, China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Hao Gong
- College of Food Engineering, Xuzhou University of Technology, Xuzhou, China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Wei-Dong Wang
- College of Food Engineering, Xuzhou University of Technology, Xuzhou, China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
12
|
Yaqoob S, Imtiaz A, Khalifa I, Maqsood S, Ullah R, Shahat AA, Al-Asmari F, Murtaza MS, Qian JY, Ma Y. Multi-frequency sono-fermentation with mono and co-cultures of LAB synergistically enhance mulberry juice: Evidence from metabolic, micromorphological, sensorial, and computational approaches. ULTRASONICS SONOCHEMISTRY 2024; 111:107117. [PMID: 39454510 PMCID: PMC11541811 DOI: 10.1016/j.ultsonch.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The effect of multi-frequency ultrasound-assisted (20/28/40 KHz) lactic acid bacteria (LAB- Lacticaseibacillus casei, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus acidophilus, and Lactobacillus helveticus) fermentation (mono and co-cultures) on the metabolic, structural, micromorphological, and sensorial properties of mulberry juice were evaluated. Results indicated that multi-frequency ultrasound-assisted fermentation significantly modified the microstructure of mulberry juice powder, resulting in more porous and rougher surfaces with irregular indentations. Total phenolic content in the best-performing sample (S10) increased to 365.36 mg GAE/mL, while total flavonoid content rose to 139.20 mg RE/mL (p < 0.05). Antioxidant activity, as measured by DPPH and FRAP assays, also showed considerable improvement, with DPPH scavenging activity increasing to 87.45 % and FRAP-value to 3.27 mM TE/mL (p < 0.05). Additionally, HPLC-UV analysis revealed that the amendment in the concentrations of cyanidin-3-rutinoside (47.47 mg/L) and peonidin-3-O-glucoside (66.86 mg/L) in the S2-based sample. E-nose analysis demonstrated intense flavor profiles in fermented samples, particularly in sample S15. Sensory evaluation also highlighted that the fruity and floral aromas in co-culture fermented samples were enhanced, notably in S10, S7, and S14. Thus, combining multifrequency ultrasonication and fermentation significantly enhances the antioxidants capacity, flavor profile, micro-morphology, and overall quality of mulberry juice.
Collapse
Affiliation(s)
- Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Aysha Imtiaz
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ibrahim Khalifa
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agriculture and Food Sciences, King Saud University, Saudi Arabia
| | - Mian Shamas Murtaza
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China.
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Optimization of ultrasound-assisted extraction of faba bean protein isolate: Structural, functional, and thermal properties. Part 2/2. ULTRASONICS SONOCHEMISTRY 2024; 110:107030. [PMID: 39153419 PMCID: PMC11378250 DOI: 10.1016/j.ultsonch.2024.107030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Environmental concerns linked to animal-based protein production have intensified interest in sustainable alternatives, with a focus on underutilized plant proteins. Faba beans, primarily used for animal feed, offer a high-quality protein source with promising bioactive compounds for food applications. This study explores the efficacy of ultrasound-assisted extraction under optimal conditions (123 W power, 1:15 g/mL solute/solvent ratio, 41 min sonication, 623 mL total volume) to isolate faba bean protein (U-FBPI). The ultrasound-assisted method achieved a protein extraction yield of 19.75 % and a protein content of 92.87 %, outperforming the control method's yield of 16.41 % and protein content of 89.88 %. Electrophoretic analysis confirmed no significant changes in the primary structure of U-FBPI compared to the control. However, Fourier-transform infrared spectroscopy revealed modifications in the secondary structure due to ultrasound treatment. The U-FBPI demonstrated superior water and oil holding capacities compared to the control protein isolate, although its foaming capacity was reduced by ultrasound. Thermal analysis indicated minimal impact on the protein's thermal properties under the applied ultrasound conditions. This research highlights the potential of ultrasound-assisted extraction for improving the functional properties of faba bean protein isolates, presenting a viable approach for advancing plant-based food production and contributing to sustainable protein consumption.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| |
Collapse
|
14
|
Huang J, Zhang M, Mujumdar AS, Semenov G, Luo Z. Technological advances in protein extraction, structure improvement and assembly, digestibility and bioavailability of plant-based foods. Crit Rev Food Sci Nutr 2024; 64:11556-11574. [PMID: 37498207 DOI: 10.1080/10408398.2023.2240892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Plant-based foods are being considered seriously to replace traditional animal-origin foods for various reasons. It is well known that animals release large amounts of greenhouse gases into the environment during feeding, and eating animal-origin foods may also cause some health problems. Moreover, animal resources will likely be in short supply as the world population grows. It is highly likely that serious health problems ascribed to insufficient protein intake in some areas of the world will occur. Studies have shown that environmentally friendly, abundant, and customizable plant-based foods can be an effective alternative to animal-based foods. However, currently, available plant-based foods lack nutrients unique to animal-based foods. Innovative processing technologies are needed to improve the nutritional value and functionality of plant-based foods and make them acceptable to a wider range of consumers. Therefore, protein extraction technologies (e.g., high-pressure extraction, ultrasound extraction, enzyme extraction, etc.), structure improvement and assembly technologies (3D printing, micro-encapsulation, etc.), and technologies to improve digestibility and utilization of bioactive substances (microbial fermentation, physical, etc.) in the field of plant-based foods processing are reviewed. The challenges of plant-based food processing technologies are summarized. The advanced technologies aim to help the food industry solve production problems using efficient, environmentally friendly, and economical processing technologies and to guide the development of plant-based foods in the future.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Gennady Semenov
- Laboratory of Freeze-Drying, Russian Biotechnological University, Moscow, Russia
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd, Ninghai, Zhejiang, China
| |
Collapse
|
15
|
Miran M, Salami M, Yarmand MS, Ferreira-Lazarte A, Ariaeenejad S, Montilla A, Moreno FJ. Arabinoxylo-oligosaccharides production from unexploited agro-industrial sesame (Sesamum indicum L.) hulls waste. Carbohydr Polym 2024; 342:122399. [PMID: 39048235 DOI: 10.1016/j.carbpol.2024.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
This work demonstrates that sesame (Sesamum indicum L.) hull, an unexploited food industrial waste, can be used as an efficient source for the extraction of hemicellulose and/or pectin polysaccharides to further obtain functional oligosaccharides. Different polysaccharides extraction methods were surveyed including alkaline and several enzymatic treatments. Based on the enzymatic release of xylose, arabinose, glucose, and galacturonic acid from sesame hull by using different enzymes, Celluclast®1.5 L, Pectinex®Ultra SP-L, and a combination of them were selected for the enzymatic extraction of polysaccharides at 50 °C, pH 5 up to 24 h. Once the polysaccharides were extracted, Ultraflo®L was selected to produce arabinoxylo-oligosaccharides (AXOS) at 40 °C up to 24 h. Apart from oligosaccharides production from extracted polysaccharides, alternative approaches for obtaining oligosaccharides were also explored. These were based on the analysis of the supernatants resulting from the polysaccharide extraction, alongside a sequential hydrolysis performed with Celluclast®1.5 L and Ultraflo®L of the starting raw sesame hull. The different fractions obtained were comprehensively characterized by determining low molecular weight carbohydrates and monomeric compositions, average Mw and dispersity, and oligosaccharide structure by MALDI-TOF-MS. The results indicated that sesame hull can be a useful source for polysaccharides extraction (pectin and hemicellulose) and derived oligosaccharides, especially AXOS.
Collapse
Affiliation(s)
- Mona Miran
- Department of Food Science, Technology, and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran.
| | - Maryam Salami
- Department of Food Science, Technology, and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran; Functional Food Research Core, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Mohammad Saeid Yarmand
- Department of Food Science, Technology, and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran.
| | - Alvaro Ferreira-Lazarte
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Shohreh Ariaeenejad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREO), Karaj, Iran
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
16
|
Van den Wouwer B, Brijs K, Wouters AGB, Raes K. The effect of ultrasound on the extraction and foaming properties of proteins from potato trimmings. Food Chem 2024; 455:139877. [PMID: 38824726 DOI: 10.1016/j.foodchem.2024.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
High-intensity ultrasonication is an emerging technology for plant protein isolation and modification. In this study, the potential of temperature-controlled ultrasonication to enhance the recovery of functional proteins from potato trimmings was assessed. Different ultrasound energy levels [2000-40,000 J/g fresh weight (FW)] were applied during protein extraction at pH 9.0. True protein yields after ultrasonication significantly increased (up to 91%) compared to conventional extraction (33%). Microstructural analysis of the extraction residues showed more disrupted cells as ultrasonication time increased. Ultrasound treatments (10,000 and 20,000 J/g FW) increased the protein yield without affecting the foaming and air-water interfacial properties of protein isolates obtained after isoelectric precipitation (pH 4.0). However, proteins obtained after extended ultrasonication (40,000 J/g FW) had significantly slower early-stage adsorption kinetics. This was attributed to ultrasound-induced aggregation of the protease inhibitor fraction. In conclusion, ultrasonication shows potential to help overcome some challenges associated with plant protein extraction.
Collapse
Affiliation(s)
- Ben Van den Wouwer
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
17
|
Turker I, Olgun GN, Isleroglu H. Fenugreek seed proteins: Ultrasonic-assisted extraction, characterization, and cupcake application. Food Sci Nutr 2024; 12:6353-6366. [PMID: 39554355 PMCID: PMC11561772 DOI: 10.1002/fsn3.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, fenugreek seed proteins were extracted using ultrasonic-assisted extraction with varying solid:solvent ratios (20-60 g/L) and sonication amplitudes (30%-80%) to determine optimal conditions for the highest extraction yield. The functional, structural, and nutritional characteristics of the protein isolates of fenugreek seeds were investigated. The highest yield (98.74 ± 0.49%) was achieved at a solid:solvent ratio of 43.83 g/L and an amplitude of 67.51%. The coagulated protein values of fenugreek seed protein isolates ranged from ~15.8% to 31.2%, water-holding capacities ranged from ~2.2 to 3.2 g/g, oil-holding capacities ranged from ~2.6 to 4.1 g/g, foaming capacities ranged from ~16.3% to 21.3%, foam stabilities ranged from ~59.7% to 78.1%, emulsion stabilities ranged from ~30.2 to 34.5 min, emulsion activities ranged from ~73.8 to 76.8 m2/g, and emulsion capacities ranged from ~26.9% to 30.5% under different extraction conditions. SDS-PAGE analysis revealed three distinct bands (46, 59, and 80 kDa) for the protein isolates. FT-IR spectroscopy showed a high presence of β-sheet structures. The amino acid composition analysis of fenugreek seed protein isolates was determined, revealing richness in essential amino acids (317.97 g amino acid/kg protein isolate). In addition, cupcakes enriched with protein isolates (5%, 10%, and 20% as flour substitutes) were produced, and quality properties such as color change, browning index, moisture content, water activity, baking yield, bulk density, hardness, volume, symmetry, and uniformity indexes were determined. The application of protein isolates in cupcake production demonstrated the potential of fenugreek seeds as valuable ingredients for enhancing the nutritional profile of bakery products.
Collapse
Affiliation(s)
- Izzet Turker
- Faculty of Engineering and Architecture, Food Engineering DepartmentTokat Gaziosmanpasa UniversityTokatTurkey
| | - Gamze Nur Olgun
- Faculty of Engineering and Architecture, Food Engineering DepartmentTokat Gaziosmanpasa UniversityTokatTurkey
| | - Hilal Isleroglu
- Faculty of Engineering and Architecture, Food Engineering DepartmentTokat Gaziosmanpasa UniversityTokatTurkey
| |
Collapse
|
18
|
Gençdağ E, Görgüç A, Anakiz S, Yilmaz FM. Processing of verjuice by ultrasound-assisted microwave heating: An assessment on the enzyme activity retention, technological parameters, and bioactive properties. FOOD SCI TECHNOL INT 2024; 30:545-554. [PMID: 37207287 DOI: 10.1177/10820132231176580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The present study evaluated the effect of ultrasonication prior to microwave heating applied at 60 °C, 70 °C, and 80 °C on the quality characteristics of verjuice. The sole microwave heating and conventional heating were also performed at the same temperature levels, and effectiveness of three different treatments were evaluated. The required treatment times were decided based on obtaining <10% pectin methylesterase (PME) activity, and ultrasound pretreatment provided the least heating durations. Turbidity, browning index, and viscosity values increased by 3.4 to 14.8-fold, 0.24 to 1.26-fold, and 9.2% to 48.0%, respectively, after all thermal treatments, while Brix values decreased by 1.4% to 15.7%. Ultrasound pretreatment revealed relatively lower browning index in all temperature levels, and almost the highest viscosity values were obtained in sonication pretreated microwave heating as compared with sole microwave and conventional heating. The minimum turbidity value (0.035) was determined in ultrasound-assisted microwave heating at 60 °C. The highest antioxidant capacity (DPPH and ABTS) values were achieved by ultrasound-assisted microwave heating (up to 4.96 and 28.4 mmol Trolox equivalent (TE)/kg, respectively) followed by microwave heating (up to 4.30 and 27.0 mmol TE/kg) and conventional heating (up to 3.72 and 26.8 mmol TE/kg). Furthermore, ultrasonication resulted in better retentions of PME residual activity during 60 days of refrigerated storage (4 °C). Ultrasound pretreatment prior to microwave heating could be a convenient approach for juice processing by reducing the required treatment time and by conserving the quality parameters.
Collapse
Affiliation(s)
- Esra Gençdağ
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Efeler, Aydın, Türkiye
| | - Ahmet Görgüç
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Efeler, Aydın, Türkiye
| | - Sena Anakiz
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Efeler, Aydın, Türkiye
| | - Fatih Mehmet Yilmaz
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Efeler, Aydın, Türkiye
| |
Collapse
|
19
|
Bejenaru LE, Radu A, Segneanu AE, Biţă A, Manda CV, Mogoşanu GD, Bejenaru C. Innovative Strategies for Upcycling Agricultural Residues and Their Various Pharmaceutical Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2133. [PMID: 39124251 PMCID: PMC11314045 DOI: 10.3390/plants13152133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This review investigates innovative strategies for upcycling agricultural residues into valuable pharmaceutical compounds. The improper disposal of agricultural residues contributes to significant environmental issues, including increased greenhouse gas emissions and ecosystem degradation. Upcycling offers a sustainable solution, transforming these residues into high-value bioproducts (antioxidants, antitumor agents, antidiabetic compounds, anti-inflammatory agents, and antiviral drugs). Nanotechnology and microbial biotechnology have a crucial role in enhancing bioavailability and targeted delivery of bioactive compounds. Advanced techniques like enzymatic hydrolysis, green solvents, microwave processing, pyrolysis, ultrasonic processing, acid and alkaline hydrolysis, ozonolysis, and organosolv processes are explored for their effectiveness in breaking down agricultural waste and extracting valuable compounds. Despite the promising potential, challenges such as variability in residue composition, scalability, and high costs persist. The review emphasizes the need for future research on cost-effective extraction techniques and robust regulatory frameworks to ensure the safety, efficacy, and quality of bioproducts. The upcycling of agricultural residues represents a viable path towards sustainable waste management and production of pharmaceutical compounds, contributing to environmental conservation and public health improvements. This review provides an analysis of the current literature and identifies knowledge gaps, offering recommendations for future studies to optimize the use of agricultural residues in the drug industry.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Costel-Valentin Manda
- Department of Analytical and Instrumental Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| |
Collapse
|
20
|
Xiao X, Zhang Y, Sun K, Liu S, Li Q, Zhang Y, Godspower BO, Xu T, Zhang Z, Li Y, Liu Y. Enzymatic and ultrasound assisted β-cyclodextrin extraction of active ingredients from Forsythia suspensa and their antioxidant and anti-inflammatory activities. ULTRASONICS SONOCHEMISTRY 2024; 108:106944. [PMID: 38878712 PMCID: PMC11227030 DOI: 10.1016/j.ultsonch.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
With the proposal of the 2030 Agenda for Sustainable Development, the Chinese medicine extraction technology has been innovatively improved to prioritize low energy consumption, sustainability, and minimized organic solvent utilization. Forsythia suspensa (FS) possesses favorable pharmacological properties and is extensively utilized in traditional Chinese medicine. However, due to the limitations of the composition and extraction methods, its potential has not been fully developed. Thus, a combination of ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and β-cyclodextrin extraction (β-CDE) was employed to isolate and purify rutin, phillyrin, and forsythoside A from FS. The results demonstrated that the efficiency of extracting enzymatic and ultrasound assisted β-cyclodextrin extraction (EUA-β-CDE) was highly influenced by the temperature and duration of hydrolysis, as well as the duration of the extraction process. According to the results of the single-factor experiment, Box-Behnken design (BBD) in Response surface method (RSM) was used to optimize the experimental parameters to achieve the maximum comprehensive evaluation value (CEV) value. The EUA-β-CDE compared with other extraction methods, has good extraction effect and low energy consumption by high performance liquid chromatography (HPLC), scanning electron microscopy (SEM), calculation of power consumption and CO2 emission The EUA-β-CDE compared with other extraction methods, has good extraction effect and low energy consumption by HPLC, SEM, calculation of power consumption and CO2 emission. Then, the structural characteristics of EUA-β-CDE of FS extract had significant interaction with β-CD by Fourier infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). In addition, EUA-β-CDE extract has good antioxidant and anti-inflammatory activities. The establishment of EUA-β-CDE of FS provides a new idea for the development and application of other sustainable extraction methods of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Kedi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Shuoqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Qingmiao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Bello-Onaghise Godspower
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China; Department of Animal Science, Faculty of Agriculture, University of Benin City, Nigeria
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| |
Collapse
|
21
|
Ravindran N, Kumar Singh S, Singha P. A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins. Food Res Int 2024; 190:114575. [PMID: 38945599 DOI: 10.1016/j.foodres.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Plant-based proteins offer sustainable and nutritious alternatives to animal proteins with their techno-functional attributes influencing product quality and designer food development. Due to the inherent complexities of plant proteins, proper extraction and modifications are vital for their effective utilization. This review highlights the emerging sources of plant-based proteins, and the recent statistics of the techniques employed for pretreatment, extraction, and modifications. The pretreatment, extraction and modification approach to modify plant proteins have been classified, addressed, and the recent applications of such methodologies are duly indicated. Furthermore, this study furnishes novel perspectives regarding the potential impacts of emerging technologies on the intricate dynamics of plant proteins. A thorough review of 100 articles (2018-2024) shows the researchers' keen interest in investigating novel plant proteins and how they can be used; seeds being the main source for protein extraction, followed by legumes. Use of by-products as a protein source is increasing rapidly, which is noteworthy. Protein studies still lack knowledge on protein fraction, antinutrients, and pretreatments. The use of physical methods and their combination with other techniques are increasing for effective and environmentally friendly extraction and modification of plant proteins. Several studies explore the effect of protein changes on their function and nutrition, especially with a goal of replacing ingredients with plant proteins that have improved or enhanced qualities. However, the next step is to investigate the sophisticated modification methods for deeper insights into food safety and toxicity.
Collapse
Affiliation(s)
- Nevetha Ravindran
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| |
Collapse
|
22
|
Carrillo YS, Ulloa JA, Urías Silvas JE, Ramírez Ramírez JC, Leyva RG. Physicochemical and functional characteristics of a gourd ( Cucurbita argyrosperma Huber) seed protein isolate subjected to high-intensity ultrasound. Heliyon 2024; 10:e32225. [PMID: 38868042 PMCID: PMC11168437 DOI: 10.1016/j.heliyon.2024.e32225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
The impact of high-intensity ultrasound (HIU, 20 kHz) on the physicochemical and functional characteristics of gourd seed protein isolate (GoSPI) was studied. GoSPI was prepared from oil-free gourd seed flour through alkaline extraction (pH 11) and subsequent isoelectric precipitation (pH 4). The crude protein concentration of GoSPI ranged from 91.56 ± 0.17 % to 95.43 ± 0.18 %. Aqueous suspensions of GoSPI (1:3.5 w/v) were ultrasonicated at powers of 200, 400, and 600 W for 15 and 30 min. Glutelins (76.18 ± 0.15 %) were the major protein fraction in GoSPI. HIU decreased the moisture, ash, ether extract, and nitrogen-free extract contents and the hue angle, available water and a* and b* color parameters of the GoSPI in some treatments. The L* color parameter increased (7.70 %) after ultrasonication. HIU reduced the bulk density (52.63 %) and particle diameter (39.45 %), as confirmed by scanning electron microscopy, indicating that ultrasonication dissociated macromolecular aggregates in GoSPI. These structural changes enhanced the oil retention capacity and foam stability by up to 62.60 and 6.84 %, respectively, while the increases in the solvability, water retention capacity, and emulsifying activity index of GoSPI were 90.10, 19.80, and 43.34 %, respectively. The gelation, foaming capacity, and stability index of the emulsion showed no improvement due to HIU. HIU altered the secondary structure of GoSPI by decreasing the content of α-helices (49.66 %) and increasing the content of β-sheets (52.00 %) and β-turns (65.00 %). The electrophoretic profile of the GoSPI was not changed by HIU. The ultrasonicated GoSPI had greater functional attributes than those of the control GoSPI and could therefore be used as a functional food component.
Collapse
Affiliation(s)
- Yessica Silva Carrillo
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Km 9, 63780, Xalisco, Nayarit, Mexico
| | - José Armando Ulloa
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Km 9, 63780, Xalisco, Nayarit, Mexico
- Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, 63155, Tepic, Nayarit, Mexico
| | - Judith Esmeralda Urías Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío, 45019, Zapopan, Jalisco, Mexico
| | - José Carmen Ramírez Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera Compostela-Chapalilla, Km 3.5, 63700, Compostela, Nayarit, Mexico
| | - Ranferi Gutiérrez Leyva
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera Compostela-Chapalilla, Km 3.5, 63700, Compostela, Nayarit, Mexico
| |
Collapse
|
23
|
Rosales Pérez A, Esquivel Escalante K. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024; 89:e202300660. [PMID: 38369655 DOI: 10.1002/cplu.202300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Sonochemistry is the use of ultrasonic waves in an aqueous medium, to generate acoustic cavitation. In this context, sonochemistry emerged as a focal point over the past few decades, starting as a manageable process such as a cleaning technique. Now, it is found in a wide range of applications across various chemical, physical, and biological processes, creating opportunities for analysis between these processes. Sonochemistry is a powerful and eco-friendly technique often called "green chemistry" for less energy use, toxic reagents, and residues generation. It is increasing the number of applications achieved through the ultrasonic irradiation (USI) method. Sonochemistry has been established as a sustainable and cost-effective alternative compared to traditional industrial methods. It promotes scientific and social well-being, offering non-destructive advantages, including rapid processes, improved process efficiency, enhanced product quality, and, in some cases, the retention of key product characteristics. This versatile technology has significantly contributed to the food industry, materials technology, environmental remediation, and biological research. This review is created with enthusiasm and focus on shedding light on the manifold applications of sonochemistry. It delves into this technique's evolution and current applications in cleaning, environmental remediation, microfluidic, biological, and medical fields. The purpose is to show the physicochemical effects and characteristics of acoustic cavitation in different processes across various fields and to demonstrate the extending application reach of sonochemistry. Also to provide insights into the prospects of this versatile technique and demonstrating that sonochemistry is an adapting system able to generate more efficient products or processes.
Collapse
Affiliation(s)
- Alicia Rosales Pérez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro Centro Universitario, Santiago de Querétaro, 76010, Mexico
| | - Karen Esquivel Escalante
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, 76010, Mexico
| |
Collapse
|
24
|
Ma J, Li P, Ma Y, Liang L, Jia F, Wang Y, Yu L, Huang W. Extraction of flavonoids from black mulberry wine residues and their antioxidant and anticancer activity in vitro. Heliyon 2024; 10:e31518. [PMID: 38826714 PMCID: PMC11141385 DOI: 10.1016/j.heliyon.2024.e31518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Enhancing the valorization of fruit processing by-products is pivotal for advancing the industry. Black mulberry wine residues, a by-product, contains some bioactive compounds, yet its antioxidant and anticancer potentials remain unverified. In this study, ultrasound-assisted enzymatic extraction was optimized by response surface methodology to obtain the flavonoids extracts from black mulberry wine residues, whose antioxidant capacity and anti-cancer activity in vitro was investigated. The results showed that under the optimal extraction conditions (enzyme ratio at pectinase:cellulose = 2:1, mixed enzyme concentration 0.31 mg/mL, enzymatic hydrolysis temperature 55.35 °C, enzymatic hydrolysis time 79.03 min, and ultrasonic time 22.71 min), the extracts from black mulberry wine residues (BMWR-E) reached 5.672 mg/g. At a concentration of 1.2 mg/mL, BMWR-E exhibited strong DPPH and hydroxyl radical scavenging activities. At a concentration of 2.5 mg/mL, BMWR-E showed a strong superoxide anion radical scavenging capacity, with no significant distinction compared to the positive control group (Vitamin C) (p > 0.05). Cell viability assay results showed that BMWR-E was non-toxic to normal BRL-3A cells when applied at concentrations of 0.1-0.3 mg/mL for an incubation period of 24 h, but BMWR-E exhibited the ability to inhibit the proliferation of HepG2 cells. At concentrations of 0.2 mg/mL and above, BMWR-E could induce late apoptosis of HepG2 cells by increasing the protein expression levels of Bax, caspase-3, and caspase-12, reducing the protein expression levels of Bcl-2, inducing cell cycle arrest at G0/G1 phase, thereby inhibiting the proliferation of HepG2 cells. The bioactive properties make BMWR-E possess potential in developing new antioxidants and anti-cancer agents, which would significantly enhance the economic worth of agricultural by-products in product processing. This research can improve the utilization rate of agricultural product processing by-products and protect the environment.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Peng Li
- Technical Center for Public Testing and Evaluation and Identification, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
- The Work of Forestry Administrative Station of Kirgiz Autonomous Prefecture, Artush, 845350, PR China
| | - Liya Liang
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Feihong Jia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Lijun Yu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| |
Collapse
|
25
|
Zhang Y, Wei S, Xiong Q, Meng L, Li Y, Ge Y, Guo M, Luo H, Lin D. Ultrasonic-Assisted Extraction of Dictyophora rubrovolvata Volva Proteins: Process Optimization, Structural Characterization, Intermolecular Forces, and Functional Properties. Foods 2024; 13:1265. [PMID: 38672937 PMCID: PMC11049406 DOI: 10.3390/foods13081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Dictyophora rubrovolvata volva, an agricultural by-product, is often directly discarded resulting in environmental pollution and waste of the proteins' resources. In this study, D. rubrovolvata volva proteins (DRVPs) were recovered using the ultrasound-assisted extraction (UAE) method. Based on one-way tests, orthogonal tests were conducted to identify the effects of the material-liquid ratio, pH, extraction time, and ultrasonic power on the extraction rate of DRVPs. Moreover, the impact of UAE on the physicochemical properties, structure characteristics, intermolecular forces, and functional attributes of DRVPs were also examined. The maximum protein extraction rate was achieved at 43.34% under the best extraction conditions of UAE (1:20 g/mL, pH 11, 25 min, and 550 W). UAE significantly altered proteins' morphology and molecular size compared to the conventional alkaline method. Furthermore, while UAE did not affect the primary structure, it dramatically changed the secondary and tertiary structure of DRVPs. Approximately 13.42% of the compact secondary structures (α-helices and β-sheets) underwent a transition to looser structures (β-turns and random coils), resulting in the exposure of hydrophobic groups previously concealed within the molecule's core. In addition, the driving forces maintaining and stabilizing the sonicated protein aggregates mainly involved hydrophobic forces, disulfide bonding, and hydrogen bonding interactions. Under specific pH and temperature conditions, the water holding capacity, oil holding capacity, foaming capacity and stability, emulsion activity, and stability of UAE increased significantly from 2.01 g/g to 2.52 g/g, 3.90 g/g to 5.53 g/g, 92.56% to 111.90%, 58.97% to 89.36%, 13.85% to 15.37%, and 100.22% to 136.53%, respectively, compared to conventional alkali extraction. The findings contributed to a new approach for the high-value utilization of agricultural waste from D. rubrovolvata.
Collapse
Affiliation(s)
- Yongqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.Z.); (S.W.); (Q.X.)
- Guizhou Higher Education Key Laboratory of Functional Food, Guizhou Engineering Research Center for Fruit Processing, College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (L.M.); (Y.L.); (Y.G.)
| | - Shinan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.Z.); (S.W.); (Q.X.)
| | - Qinqin Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.Z.); (S.W.); (Q.X.)
| | - Lingshuai Meng
- Guizhou Higher Education Key Laboratory of Functional Food, Guizhou Engineering Research Center for Fruit Processing, College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (L.M.); (Y.L.); (Y.G.)
| | - Ying Li
- Guizhou Higher Education Key Laboratory of Functional Food, Guizhou Engineering Research Center for Fruit Processing, College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (L.M.); (Y.L.); (Y.G.)
| | - Yonghui Ge
- Guizhou Higher Education Key Laboratory of Functional Food, Guizhou Engineering Research Center for Fruit Processing, College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (L.M.); (Y.L.); (Y.G.)
| | - Ming Guo
- Guizhou Jin Chan Da Shan Biotechnology Company Limited, Bijie 553300, China;
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.Z.); (S.W.); (Q.X.)
| | - Dong Lin
- Guizhou Higher Education Key Laboratory of Functional Food, Guizhou Engineering Research Center for Fruit Processing, College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (L.M.); (Y.L.); (Y.G.)
| |
Collapse
|
26
|
Akyüz A, Tekin İ, Aksoy Z, Ersus S. Determination of process parameters and precipitation methods for potential large-scale production of sugar beet leaf protein concentrate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3235-3245. [PMID: 38072666 DOI: 10.1002/jsfa.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Sugar beet is one of the most produced industrial plants in the world, and during manufacturing it produces a large quantity of leaf waste. Because this waste is rich in protein, this study aimed to identify an efficient method for producing large-scale protein concentrate from sugar beet leaves. RESULTS Results showed that protein extraction from fresh leaves was more effective than from dried leaves. Maximum protein extraction was achieved at pH 9, compared with pH 7 or 8. Blanching as a pretreatment reduced protein yield during isoelectric precipitation, with a yield of 2.31% compared to 20.20% without blanching. Consequently, blanching was excluded from the extraction process. After extraction, isoelectric precipitation, heat coagulation, and isoelectric-ammonium sulfate precipitation were compared. Although the latter resulted in the highest protein yield, Fourier transform infrared analysis revealed that excessive salt was not removed during dialysis, making it unsuitable for scale-up due to its additional cost and complexity. Therefore, isoelectric precipitation was selected as the appropriate method for protein precipitation from sugar beet leaves. To increase yield, extractions were assisted by ultrasound or enzyme addition. Ultrasound-assisted extraction resulted in an increased protein yield from 20.20% to 28.60%, while Pectinex Ultra SP-L-assisted extraction was the most effective, increasing protein yield from 20.20% to 38.09%. CONCLUSION Proteins were extracted from fresh sugar beet leaves using optimum conditions (50 °C, 30 min, pH 9) and precipitated at isoelectric point, with enzymatic-assisted extraction yielding the maximum protein recovery. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ayça Akyüz
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Turkey
| | - İdil Tekin
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Turkey
| | - Zülal Aksoy
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Turkey
| | - Seda Ersus
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Turkey
| |
Collapse
|
27
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
28
|
Hua XY, Sim SYJ, Henry CJ, Chiang JH. The extraction of buckwheat protein and its interaction with kappa-carrageenan: Textural, rheological, microstructural, and chemical properties. Int J Biol Macromol 2024; 260:129427. [PMID: 38219932 DOI: 10.1016/j.ijbiomac.2024.129427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Current plant-based foods use plant proteins as a key structuring and texturing ingredient. The use of water for extraction can replace conventional protein extraction methods. Water extraction of protein is environmentally friendly and could prevent the loss of protein functionality due to extreme pH changes. This study demonstrates an aqueous extraction method, coupled with ultrasound as pre-treatment, to obtain buckwheat protein (BWPE) and assess its gelling property and composited gel with kappa-carrageenan (k-carr). Textural and rheological analyses showed that the hardness and storage modulus of the composited gel containing 1 % w/w BWPE and 1 % w/w k-carr was 4.2-fold and 100-fold, respectively, higher than k-carr gel at 1 % w/w. Light microscopy showed a mixed bi-continuous gel system, with k-carr reinforcing the protein gel network. Besides volume exclusion effects, chemical bond and FTIR analyses revealed that adding k-carr to BWPE altered the protein's secondary structure and mediated protein denaturation during heating. This results in greater β-sheet content, which creates a more organised gel structure. These results demonstrated that ultrasound-assisted water-extracted BWPE, together with varying concentrations of k-carr, can be used to develop composited gels of tailorable textural and rheological properties to suit different food applications.
Collapse
Affiliation(s)
- Xin Yi Hua
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 138669, Singapore
| | - Shaun Yong Jie Sim
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 138669, Singapore.
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 138669, Singapore
| | - Jie Hong Chiang
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 138669, Singapore.
| |
Collapse
|
29
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
30
|
Baluken P, Kamiloglu A, Kutlu N. Green Synthesis of Selenium Nanoparticles using Green Coffee Beans: An Optimization Study. Chem Biodivers 2024; 21:e202301250. [PMID: 38359016 DOI: 10.1002/cbdv.202301250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
In this study, ultrasonication extraction of some bioactive compounds from green coffee beans was optimized with the response surface method using Box-Behnken experimental design. The best condition was selected as 90.90 W ultrasonic power, 33.63 min sonication time and 30 % solid concentration. The responses obtained under optimum conditions had TPC, DPPH and CUPRAC values identified as 6603.33±2025.94 ppm GAE, 9638.31±372.17 ppm TE and 98.83 mmol, respectively. Microwave-assisted selenium nanoparticle production was carried out using the extract obtained under optimized conditions. The produced selenium nanoparticles showed absorbance between 350-400 nm. The surface morphology and size of the nanoparticles were determined by transmission electron microscopy (TEM) and spherical nanoparticles of about 100 nm were produced. Functional groups affecting the reduction were determined by FTIR analysis. In addition, the produced selenium nanoparticles had amorphous (non-uniform) structure and could maintain their stability at high temperatures.
Collapse
Affiliation(s)
- Pınar Baluken
- Department of Food Engineering, Bayburt University, Bayburt, 69000, Turkiye
| | - Aybike Kamiloglu
- Department of Food Engineering, Bayburt University, Bayburt, 69000, Turkiye
| | - Naciye Kutlu
- Department of Food Processing, Bayburt University, Aydintepe, Bayburt, 69500, Turkiye
| |
Collapse
|
31
|
Hernández-Pinto FJ, Miranda-Medina JD, Natera-Maldonado A, Vara-Aldama Ó, Ortueta-Cabranes MP, Vázquez Del Mercado-Pardiño JA, El-Aidie SAM, Siddiqui SA, Castro-Muñoz R. Arabinoxylans: A review on protocols for their recovery, functionalities and roles in food formulations. Int J Biol Macromol 2024; 259:129309. [PMID: 38216021 DOI: 10.1016/j.ijbiomac.2024.129309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Arabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last 2-3 years, identifying that the type of method, extraction source, AX physicochemical properties and pre-treatment conditions are the main factors influencing the recovery yield. Alkaline extraction is among the most used methods nowadays, mostly due to its simplicity and high recovery yield. Concurrently, recovered AXs applied in food applications is timely reviewed, such as potential bread ingredient, prebiotic and as a wall material for probiotic encapsulation, in beer and non-alcoholic beverage manufacturing, complementary ingredient in bakery products and cookies, improvers in Chinese noodles, 3D food printing and designing of nanostructures for delivery platforms.
Collapse
Affiliation(s)
- Fernanda Jimena Hernández-Pinto
- Tecnologico de Monterrey, Campus Querétaro. Av. Epigmenio González 500, Tecnológico, 76130 Santiago de Querétaro, Qro., Mexico
| | - Juan Daniel Miranda-Medina
- Tecnologico de Monterrey, Campus Guadalajara, Av. General Ramón Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Abril Natera-Maldonado
- Tecnologico de Monterrey, Campus Chihuahua, Av. H Colegio Militar 4700, Nombre de Dios, Chihuahua, Chih., Mexico
| | - Óscar Vara-Aldama
- Tecnologico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada Sur 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | - Mary Pily Ortueta-Cabranes
- Tecnologico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada Sur 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | | | - Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Department of Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 11/12 Narutowicza St., 80-233 Gdansk, Poland.
| |
Collapse
|
32
|
Ortega MLS, Orellana-Palacios JC, Garcia SR, Rabanal-Ruiz Y, Moreno A, Hadidi M. Olive leaf protein: Extraction optimization, in vitro digestibility, structural and techno-functional properties. Int J Biol Macromol 2024; 256:128273. [PMID: 38000584 DOI: 10.1016/j.ijbiomac.2023.128273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Olive leaf, as an important by-product of olive farming, is generated from the pruning and harvesting of olive trees and represents >10 % of the total olive weight. The present study was conducted to evaluate the composition, functional and structural characterizations, as well as the in vitro digestibility of olive leaf proteins isolated from ultrasonic-assisted extraction, comparing to classical and industrial techniques. The ultrasound-assisted extraction of olive leaf protein was optimized by the simultaneous maximization of the yield and purity of protein using a Box-Behnken design (BBD) of response surface methodology (RSM). The results indicated that the optimal extraction conditions were as follows: pH of 10.99, temperature of 40.48 °C, sonication time of 47.25 min, and solvent/solid ratio of 24.08 mL/g. Under these conditions, the extraction yield and protein content were 11.67 and 51.2 %, respectively, which were significantly higher than those obtained by the conventional techniques. Regarding the functionality of protein, extraction technique had significant impacts on the structural and functional properties of proteins. In general, ultrasound assisted extraction had higher solubility, and better foaming and thermal properties and in vitro digestibility but lower emulsifying stability and fluid binding capacity compared to conventional ones. Ultrasound-assisted alkaline extraction has great potential to produce edible olive leaf protein with modified functional properties that can be used for various aims in the food applications.
Collapse
Affiliation(s)
- Maria Lopez S Ortega
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Jose C Orellana-Palacios
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Samuel Rodriguez Garcia
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Regional Centre for Biomedical Research, University of Castilla-La Mancha, 13001 Ciudad Real, Spain
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
33
|
Shen L, Pang S, Zhong M, Sun Y, Qayum A, Liu Y, Rashid A, Xu B, Liang Q, Ma H, Ren X. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. ULTRASONICS SONOCHEMISTRY 2023; 101:106646. [PMID: 37862945 PMCID: PMC10594638 DOI: 10.1016/j.ultsonch.2023.106646] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
The increasing focus on health and well-being has sparked a rising interest in bioactive components in the food, pharmaceutical, and nutraceutical industries. These components are gaining popularity due to their potential benefits for overall health. The growing interest has resulted in a continuous rise in demand for bioactive components, leading to the exploration of both edible and non-edible sources to obtain these valuable substances. Traditional extraction methods like solvent extraction, distillation, and pressing have certain drawbacks, including lower extraction efficiency, reduced yield, and the use of significant amounts of solvents or resources. Furthermore, certain extraction methods necessitate high temperatures, which can adversely affect certain bioactive components. Consequently, researchers are exploring non-thermal technologies to develop environmentally friendly and efficient extraction methods. Ultrasonic-assisted extraction (UAE) is recognized as an environmentally friendly and highly efficient extraction technology. The UAE has the potential to minimize or eliminate the need for organic solvents, thereby reducing its impact on the environment. Additionally, UAE has been found to significantly enhance the production of target bioactive components, making it an attractive method in the industry. The emergence of ultrasonic assisted extraction equipment (UAEE) has presented novel opportunities for research in chemistry, biology, pharmaceuticals, food, and other related fields. However, there is still a need for further investigation into the main components and working modes of UAEE, as current understanding in this area remains limited. Therefore, additional research and exploration are necessary to enhance our knowledge and optimize the application of UAEE. The core aim of this review is to gain a comprehensive understanding of the principles, benefits and impact on bioactive components of UAE, explore the different types of equipment used in this technique, examine the various working modes and control parameters employed in UAE, and provide a detailed overview of the blending of UAE with other emerging extraction technologies. In conclusion, the future development of UAEE is envisioned to focus on achieving increased efficiency, reduced costs, enhanced safety, and improved reliability. These key areas of advancement aim to optimize the performance and practicality of UAEE, making it a more efficient, cost-effective, and reliable extraction technology.
Collapse
Affiliation(s)
- Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuixiu Pang
- Zhongke Zhigu International Pharmaceutical Biotechnology (Guangdong) Co., Ltd, Guikeng Village, Chuangxing Avenue, Gaoxin District, Qingyuan, Guangdong 511538, China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
34
|
Alasalvar H, Yildirim Z, Yildirim M. Development and characterization of sustainable active pectin films: The role of choline chloride/glycerol-based natural deep eutectic solvent and lavender extracts. Heliyon 2023; 9:e21756. [PMID: 38034708 PMCID: PMC10681944 DOI: 10.1016/j.heliyon.2023.e21756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
This study aimed to evaluate the potential effects of choline chloride: glycerol-based natural deep eutectic solvent (NADES) as a plasticizer, NADES extract (NADESext) of lavender as both plasticizer and active ingredient, as well as the lyophilized extract (LE) of lavender at different concentrations (0.5 %, 1 %, and 2 %) on the physical, mechanical, optical, thermal, barrier, morphological, and antioxidant properties of pectin films. The properties of the films were compared to those of the neat pectin film and the film plasticized with glycerol. The addition of plasticizers and LE increased thickness, water vapor permeability, and elongation at break values of the films while decreasing tensile strength and young modulus. Pectin films plasticized with glycerol, NADES, and NADESext had a similar color property but a lower opacity. The use of LE decreased lightness and increased opacity compared to the films with plasticizers. The addition of plasticizers revealed a smoother surface than neat pectin film while LE triggered the formation of agglomerates on the films. Changes in the FTIR spectra of the films showed some interactions between pectin and polyphenols in LE. The plasticizers had an insignificant effect on the antioxidant capacity of films whereas LE improved antioxidant capacity depending on the concentration. In conclusion, the results suggested that pectin films with NADES and LE could be beneficially used to improve antioxidant packaging technology along with acceptable mechanical properties.
Collapse
Affiliation(s)
- Hamza Alasalvar
- Nigde Omer Halisdemir University, Faculty of Engineering, Department of Food Engineering, 51240, Nigde, Turkey
| | - Zeliha Yildirim
- Nigde Omer Halisdemir University, Faculty of Engineering, Department of Food Engineering, 51240, Nigde, Turkey
| | - Metin Yildirim
- Nigde Omer Halisdemir University, Faculty of Engineering, Department of Food Engineering, 51240, Nigde, Turkey
| |
Collapse
|
35
|
Xie A, Dong Y, Liu Z, Li Z, Shao J, Li M, Yue X. A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies. Foods 2023; 12:3952. [PMID: 37959070 PMCID: PMC10650231 DOI: 10.3390/foods12213952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Plant-based drinks have garnered significant attention as viable substitutes for traditional dairy milk, providing options for individuals who are lactose intolerant or allergic to dairy proteins, and those who adhere to vegan or vegetarian diets. In recent years, demand for plant-based drinks has expanded rapidly. Each variety has unique characteristics in terms of flavor, texture, and nutritional composition, offering consumers a diverse range of choices tailored to meet individual preferences and dietary needs. In this review, we aimed to provide a comprehensive overview of the various types of plant-based drinks and explore potential considerations including their nutritional compositions, health benefits, and processing technologies, as well as the challenges facing the plant-based drink processing industry. We delve into scientific evidence supporting the consumption of plant-based drinks, discuss their potential roles in meeting dietary requirements, and address current limitations and concerns regarding their use. We hope to illuminate the growing significance of plant-based drinks as sustainable and nutritious alternatives to dairy milk, and assist individuals in making informed choices regarding their dietary habits, expanding potential applications for plant-based drinks, and providing necessary theoretical and technical support for the development of a plant-based drink processing industry.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Yushi Dong
- Department of Nutritional Sciences, King’s College London, London SE19NH, UK;
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China;
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
36
|
Wang S, Zhao F, Wu W, Lyu L, Li W. Proteins from Blackberry Seeds: Extraction, Osborne Isolate, Characteristics, Functional Properties, and Bioactivities. Int J Mol Sci 2023; 24:15371. [PMID: 37895052 PMCID: PMC10667993 DOI: 10.3390/ijms242015371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Blackberry fruit contains high levels of nutrients and phenolic compounds. Blackberry pomace accounts for 20~30% of its whole fruit during processing and is generally treated as fertilizer. Blackberry pomace has many seeds that contain carbohydrates, polyphenols, flavonoids, pectin, protein, and other bioactive nutrients. However, its functional properties and seed protein compositions have not been reported. We used a single-factor experiment, response surface, and Osborne isolate method to extract protein isolate, albumin, globulin, glutelin, and prolamin from blackberry seeds for the first time and evaluated their characteristics and functional properties. Glutelin and protein isolate showed good water-holding capacity, emulsification, and foaming capacity, while albumin and globulin showed good oil-holding capacity and thermal stability. They were found to have good antioxidant activities that might be good DPPH free radical scavengers, especially prolamin, which has the lowest IC50 value (15.76 μg/mL). Moreover, globulin had the lowest IC50 value of 5.03 μg/mL against Hela cells, 31.82 μg/mL against HepG2 cells, and 77.81 μg/mL against MCF-7 cells and a high selectivity index (SI), which suggested globulin had better anti-cervical, antihepatoma, and anti-breast activity but relatively low cytotoxicity. These seed proteins may have great prospects for the development and application of food and drugs in the future.
Collapse
Affiliation(s)
- Shaoyi Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Fengyi Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (F.Z.); (W.W.); (L.L.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (F.Z.); (W.W.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (F.Z.); (W.W.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
37
|
Zhao L, Ouyang D, Cheng X, Zhou X, Lin L, Wang J, Wu Q, Jia J. Multi-frequency ultrasound-assisted cellulase extraction of protein from mulberry leaf: Kinetic, thermodynamic, and structural properties. ULTRASONICS SONOCHEMISTRY 2023; 99:106554. [PMID: 37567039 PMCID: PMC10432955 DOI: 10.1016/j.ultsonch.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The effects of different extraction methods (traditional extraction, ultrasound extraction, cellulase extraction, and ultrasound-assisted cellulase extraction) on the yield of mulberry leaf protein (MLP) were investigated, and the results revealed that multi-frequency ultrasound-assisted cellulase extraction was the most efficient extraction method. The mechanism of the synergistic extraction method used to efficiently extract protein from mulberry leave was investigated, focusing on the kinetics and thermodynamics of the enzymatic process. The results revealed that kinetic parameters KM decreased by 14.07% and kA increased by 5.02%, and the thermodynamic parameters Ea, ΔH, and ΔS decreased by 44.81%, 48.41%, and 21.12 %, respectively, following the process of multi-frequency ultrasound (MFU) pretreatment. The spectral analysis with fluorescence spectra manifested that ultrasound exposed hydrophobic groups and induced molecular unfolding of MLP. Atomic force microscope showed that ultrasound decreased particle size while increasing flexibility of MLP. The effect of ultrasound increases the binding frequency of cellulase and substrates, resulting in greater affinity between the two and promoting the solubilization of MLP. This study provides a theoretical basis to improve the application prospects of MLP.
Collapse
Affiliation(s)
- Li Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dongyan Ouyang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xinya Cheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaotao Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lebo Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiongying Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Junqiang Jia
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
38
|
Rahman MM, Maniruzzaman M. A new route of production of the meso-porous chitosan with well-organized honeycomb surface microstructure from shrimp waste without destroying the original structure of native shells: Extraction, modification and characterization study. RESULTS IN ENGINEERING 2023; 19:101362. [DOI: 10.1016/j.rineng.2023.101362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
39
|
Khan ZS, Amir S, Sokač Cvetnić T, Jurinjak Tušek A, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J. Sustainable Isolation of Bioactive Compounds and Proteins from Plant-Based Food (and Byproducts). PLANTS (BASEL, SWITZERLAND) 2023; 12:2904. [PMID: 37631116 PMCID: PMC10458638 DOI: 10.3390/plants12162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Plant-based food produces significantly less greenhouse gases, and due to its wealth of bioactive components and/or plant-based protein, it becomes an alternative in a sustainable food system. However, the processing and production of products from plant sources creates byproducts, which can be waste or a source of useful substances that can be reused. The waste produced during the production and processing of food is essentially nutrient- and energy-rich, and it is recognized as an excellent source of secondary raw materials that could be repurposed in the process of manufacturing and preparing food, or as feed for livestock. This review offers an overview of the sources and techniques of the sustainable isolation of bioactive substances and proteins from various sources that might represent waste in the preparation or production of food of plant origin. The aim is to uncover novel approaches to use waste and byproducts from the process of making food to provide this waste food an additional benefit, not forgetting the expectations of the end user, the consumer. For the successful isolation of bioactive ingredients and proteins from food of plant origin, it is crucial to develop more eco-friendly and efficient extraction techniques with a low CO2 footprint while considering the economic aspects.
Collapse
Affiliation(s)
- Zakir Showkat Khan
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, India
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Saira Amir
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology, C-II Johar Town, Lahore 54700, Pakistan
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
40
|
Sá AGA, Pacheco MTB, Moreno YMF, Carciofi BAM. Processing effects on the protein quality and functional properties of cold-pressed pumpkin seed meal. Food Res Int 2023; 169:112876. [PMID: 37254323 DOI: 10.1016/j.foodres.2023.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Environmental and food security challenges due to a growing world population may be overcome by using alternative protein sources for the human diet. By-products from edible oil processing industries are potential sources due to their high protein content. Pumpkin seed meals were evaluated regarding proximate composition, in vitro protein digestibility (IVPD), amino acid profile and score, and antinutritional factors. Conventional thermal processing, microwave, and ultrasound treatments impact on samples' nutritional quality were assessed using a central composite experimental design. Raw pumpkin seed meal presented up to 45% protein content and 86% IVPD. Processing increased IVPD up to 96%, with optimized conditions of 87.8 °C, pH8.0, and 37 min, for all processes. Lysine was the only limiting amino acid for raw and processed samples. Phytic acid decreased by 31%, while trypsin inhibitory activity was reduced by 84%. Pumpkin seed by-product is a promising high-quality plant protein source for food formulations.
Collapse
Affiliation(s)
- Amanda Gomes Almeida Sá
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | - Bruno Augusto Mattar Carciofi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
41
|
Vilas-Franquesa A, Casertano M, Tresserra-Rimbau A, Vallverdú-Queralt A, Torres-León C. Recent advances in bio-based extraction processes for the recovery of bound phenolics from agro-industrial by-products and their biological activity. Crit Rev Food Sci Nutr 2023; 64:10643-10667. [PMID: 37366277 DOI: 10.1080/10408398.2023.2227261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Usually found bound to other complex molecules (e.g., lignin, hemicellulose), phenolic compounds (PC) are widely present in agro-industrial by-products, and their extraction is challenging. In recent times, research is starting to highlight the bioactive roles played by bound phenolics (BPC) in human health. This review aims at providing a critical update on recent advances in green techniques for the recovery of BPC, focusing on enzymatic-assisted (EAE) and fermentation-assisted extraction (FAE) as well as in the combination of technologies, showing variable yield and features. The present review also summarizes the most recent biological activities attributed to BPC extracts until now. The higher antioxidant activity of BPC-compared to FPC-coupled with their affordable by-product source make them medicinally potent and economically viable, promoting their integral upcycling and generating new revenue streams, business, and employment opportunities. In addition, EAE and FAE can have a biotransformative effect on the PC itself or its moiety, leading to improved extraction outcomes. Moreover, recent research on BPC extracts has reported promising anti-cancer and anti-diabetic activity. Yet further research is needed to elucidate their biological mechanisms and exploit the true potential of their applications in terms of new food products or ingredient development for human consumption.
Collapse
Affiliation(s)
- Arnau Vilas-Franquesa
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain, Bellaterra, Spain
| | - Melania Casertano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Anna Tresserra-Rimbau
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autonoma de Coahuila, Unidad Torreón, Viesca, Coahuila, Mexico
| |
Collapse
|
42
|
Zhou Y, Tian Y, Beltrame G, Laaksonen O, Yang B. Ultrasonication-assisted enzymatic bioprocessing as a green method for valorizing oat hulls. Food Chem 2023; 426:136658. [PMID: 37354577 DOI: 10.1016/j.foodchem.2023.136658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Ultrasonication-assisted enzymatic treatments using Viscozyme®, Alcalase®, and feruloyl esterase were applied to recover proteins, avenanthramides, phenolic acids, free sugars, and organic acids from oat hulls (OH). The profiles of the chemical compounds in OH were markedly influenced by the nature of enzymes, ultrasonication frequency, and processing time. A significant increase in the contents of proteins and phenolic acids was observed in the liquid fraction of all enzymatic treatments, which was 2-19 folds higher than those detected in untreated OH. In contrast, avenanthramides were mostly degraded during enzyme hydrolyses. The highest content of proteins (68.9 g/100 g DM) was found in the liquid fraction after the feruloyl esterase treatment assisted with 90 min of ultrasonication at 25 kHz. This fraction also contained 0.07% phenolic acids, 14.1% free sugars, and 1.8% organic acids, which can be potentially used as the ingredient of novel food products.
Collapse
Affiliation(s)
- Ying Zhou
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Ye Tian
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Gabriele Beltrame
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
43
|
Wan Y, Zhou Q, Zhao M, Hou T. Byproducts of Sesame Oil Extraction: Composition, Function, and Comprehensive Utilization. Foods 2023; 12:2383. [PMID: 37372594 DOI: 10.3390/foods12122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Sesame is principally used to generate oil, which is produced by chemical refining or pressing. Sesame meal, as a main byproduct of sesame oil extraction, is usually discarded, causing resource waste and economic loss. Sesame meal is rich in sesame protein and three types of sesame lignans (sesamin, sesamolin, and sesamol). Sesame protein extracted via a physical method and an enzymic method has balanced amino acid composition and is an important protein source, and thus it is often added to animal feed and used as a human dietary supplement. Extracted sesame lignan exhibits multiple biological activities such as antihypertensive, anticancer, and cholesterol-lowering activities, and therefore it is used to improve the oxidative stability of oils. This review summarizes the extraction methods, functional activities, and comprehensive utilization of four active substances (sesame protein, sesamin, sesamolin, and sesamol) in sesame meal with the aim to provide theoretical guidance for the maximum utilization of sesame meal.
Collapse
Affiliation(s)
- Yuan Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Qiaoyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
44
|
Qiu M, Wang N, Pend J, Li Y, Li L, Xie X. Ultrasound-assisted reverse micelle extraction and characterization of tea protein from tea residue. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4068-4076. [PMID: 36495023 DOI: 10.1002/jsfa.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND In this study, ultrasonic-assisted reverse micelles were used to extract tea protein from tea residues. First, the extraction conditions of ultrasonic power, ionic strength and pH were optimized by response surface methodology. Then, structural comparison of ultrasonic-assisted reverse micelle extraction of tea protein (UARME) and ultrasonic-assisted alkali extraction (UAAE) were performed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and amino acid composition. RESULTS The optimum process conditions were determined as follows: ultrasonic power 300 W, KCl 0.15 mol L-1 , pH 8. The extraction rate was 46.29%, which was close to the theoretical value (46.44%). SEM showed that the protein particles extracted by UARME were smaller than those by UAAE. The results of FTIR spectroscopy showed that the protein extracted by UARME had higher α-helix, β-sheet and β-turn, and the contents were 20%, 62.3% and 17.1%, respectively. The content of random coil was 0%, which was significantly lower than that of alkali extraction, indicating that the secondary structure of protein extracted by UARME was more orderly. By comparing the amino acid composition of the two methods, the amino acid content of tea protein extracted by UARME was significantly higher than that of UAAE. CONCLUSION The biological activity of tea protein is closely related to its structure. Compared with alkali extraction, reverse micelles can better protect the secondary structure of proteins, which is of great significance for studying their functional properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minjian Qiu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Nannan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jiamin Pend
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou, China
| |
Collapse
|
45
|
Tang J, Zhu X, Jambrak AR, Sun DW, Tiwari BK. Mechanistic and synergistic aspects of ultrasonics and hydrodynamic cavitation for food processing. Crit Rev Food Sci Nutr 2023; 64:8587-8608. [PMID: 37194650 DOI: 10.1080/10408398.2023.2201834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Compared with traditional methods, cavitation-based processing technology has received extensive attention for its low energy consumption and high processing efficiency. The cavitation phenomenon releases high energy due to the generation and collapse of bubbles, which improves the efficiency of various food processing. This review details the cavitation mechanism of ultrasonic cavitation (UC) and hydrodynamic cavitation (HC), factors affecting cavitation, the application of cavitation technology in food processing, and the application of cavitation technology in the extraction of various natural ingredients. The safety and nutrition of food processed by cavitation technology and future research directions are also discussed. The mechanism of UC refers to longitudinal displacement of the particles of the medium induced by ultrasonic waves causing a series of alternating compression and rarefaction of particles, whereas HC occurs when liquid enters a narrow section and undergoes large pressure differentials, both of which can trigger the generation, growth, and collapse of microbubbles. Cavitation could be applied in microbial inactivation, and drying and freezing processing. In addition, cavitation bubbles can have mechanical and thermal effects on plant cells. In general, cavitation technology is a new sustainable, green, and innovative technology with broad application prospects and capabilities.
Collapse
Affiliation(s)
- Jiafei Tang
- Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Anet Rezek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | | |
Collapse
|
46
|
Tomar GS, Gundogan R, Can Karaca A, Nickerson M. Valorization of wastes and by-products of nuts, seeds, cereals and legumes processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:131-174. [PMID: 37898538 DOI: 10.1016/bs.afnr.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastes and by-products of nuts, seeds, cereals and legumes carry a unique potential for valorization into value-added ingredients due to their protein, dietary fiber, antioxidant, vitamin and mineral contents. The most crucial factor in the recovery of value-added ingredients and bioactives from the wastes and by-products is the utilization of the most efficient extraction technique. This work is an overview of the classification of wastes and by-products of nuts, seeds, cereals and legumes processing, the methods used in the extraction of valuable compounds such as proteins, dietary fibers, phenolics, flavonoids and other bioactives. This chapter provides insights on the promising applications of extracted ingredients in various end products. A special emphasis is given to the challenges and improvement methods for extraction of value-added compounds from wastes and by-products of nuts, seeds, cereals and legumes processing.
Collapse
Affiliation(s)
- Gizem Sevval Tomar
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Rukiye Gundogan
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
47
|
An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
48
|
Song X, Liu C, Zhang Y, Xiao X, Han G, Sun K, Liu S, Zhang Z, Dong C, Zheng Y, Chen X, Xu T, Liu Y, Li Y. Sustainable extraction of ligustilide and ferulic acid from Angelicae Sinensis Radix, for antioxidant and anti-inflammatory activities. ULTRASONICS SONOCHEMISTRY 2023; 94:106344. [PMID: 36871526 PMCID: PMC9988401 DOI: 10.1016/j.ultsonch.2023.106344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The 2030 Agenda for Sustainable Development envisions a rational use of energy and resources in all technological processes. However, in the extraction methods of compounds from medicinal plants and herbs, there is an urgent to reduce the use of organic solvents and increase the energy efficiency of these methods. Therefore, a sustainable extraction method (enzyme and ultrasonic co-assisted aqueous two-phase extraction, EUA-ATPE) of simultaneous extraction and separation of ferulic acid and ligustilide from Angelicae Sinensis Radix (ASR) was developed by integrating enzyme-assisted extraction (EAE) with ultrasonic-assisted aqueous two-phase extraction (UAE- ATPE). The effects of different enzymes, extraction temperature, pH, ultrasonic time, liquid-to-materials ratio, etc., were optimized by single-factor experiments and central composite design (CCD). Under the optimum conditions, the highest comprehensive evaluation value (CEV) and extraction yield were obtained by EUA-ATPE. Furthermore, recovery (R), partition coefficient (K), and scanning electron microscopy (SEM) analysis revealed that enzyme and ultrasonic treatment improved mass transfer diffusion and increased the degree of cell disruption. Besides, the EUA-ATPE extracts have shown great antioxidant and anti-inflammatory activity in vitro. Finally, compared to different extraction methods, EUA-ATPE achieved higher extraction efficiency and higher energy efficiency due to the synergistic effect between EAE and UAE-ATPE. Therefore, the EUA-ATPE provides a sustainable method for extracting bioactive compounds from medicinal plants and herbs, contributing to Sustainable Development Goals (SDG), including SDG-6, SDG-7, SDG-9, SDG-12, and SDG-15.
Collapse
Affiliation(s)
- Xuejiao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoyue Xiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guorui Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kedi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuoqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chunliu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yadan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xueying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
49
|
Ma X, Liu D, Hou F. Sono-activation of food enzymes: From principles to practice. Compr Rev Food Sci Food Saf 2023; 22:1184-1225. [PMID: 36710650 DOI: 10.1111/1541-4337.13108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023]
Abstract
Over the last decade, sono-activation of enzymes as an emerging research area has received considerable attention from food researchers. This kind of relatively new application of ultrasound has demonstrated promising potential in facilitating the modern food industry by broadening the application of various food enzymes, improving relevant industrial unit operation and productivity, as well as increasing the yield of target products. This review aims to provide insight into the fundamental principles and possible industrialization strategies of the sono-activation of food enzymes to facilitate its commercialization. This review first provides an overview of ultrasound application in the activation of food protease, carbohydrase, and lipase. Then, the recent development on ultrasound activation of food enzymes is discussed on aspects including mechanisms, influencing factors, modification effects, and its applications in real food systems for free and immobilized enzymes. Despite the far fewer studies on sono-activation of immobilized enzymes compared with those on free enzymes, we endeavored to summarize the relevant aspects in three stages: ultrasound pretreatment of free enzyme/carrier, assistance in immobilization process, and modification of the already immobilized enzyme. Lastly, challenges for the scalability of ultrasound in these target areas are discussed and future research prospects are proposed.
Collapse
Affiliation(s)
- Xiaobin Ma
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Furong Hou
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
50
|
Aziz NA, Salleh NHM, Fauzi NUMA, Zakaria Z, Kamaruddin AH, Gopinath SCB, Samat AF, Sirozi MI. Optimization of an Ultrasound-Assisted Extraction Method for Phenolic Content in Momordica Charantia Seeds and Its Antifungal Activity Against Pleurotus Ostreatus Green Mold Pathogen. GREEN ENERGY AND TECHNOLOGY 2023:445-455. [DOI: 10.1007/978-981-99-1695-5_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|