1
|
Wang YC, Wang JL, Shu YY. Experimental-design-based optimization of dispersive liquid-liquid microextraction coupled with gas chromatography-negative-ion chemical ionization-mass spectrometry for the determination of pyrethroids in agricultural products and drinks. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:359-368. [PMID: 39792623 DOI: 10.1080/19440049.2024.2447054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Pyrethroids are synthetic chemicals that account for 16% of the international insecticide market and have been shown to be of varying toxicity to different species. There are various methods available for detecting pyrethroids in agricultural products, but these products must be pre-treated to remove interference from the food matrix, such as through dispersion liquid-liquid microextraction (DLLME). This study employed two experimental design methods to optimize the continuous and discontinuous experimental parameters of DLLME and investigated whether DLLME combined with GC-NICI-MS is effective for detecting pyrethroids in agricultural products. The Taguchi design with an L9(34) orthogonal array and response surface methodology were employed to optimize the discontinuous and continuous parameters of the DLLME process, respectively. To validate the performance of GC-NICI-MS after optimized DLLME, pyrethroids in mixed standard solutions at levels ranging from 0.02 to 50.00 µg/L were measured, and the resultant calibration curves were fitted. Adequate linearity was found for the six investigated pyrethroids (r = 0.9908-0.9960). The limits of detection and quantification ranged from 0.005 to 0.035 µg/L and 0.02 to 0.1 µg/L, respectively. The proposed approach simplifies the optimization of parameters compared to reported methods and achieves considerably lower limits of detection. The concept of mixed application based on the dual experimental design method can be applied to other regulated compounds to enhance the safety of agricultural products. The feasibility of the method was confirmed by successfully detecting pyrethroids in 13 types of teas, fruit, and vegetables.
Collapse
Affiliation(s)
- Yu-Chieh Wang
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan
- Department of Chemistry, National Central University, Taoyuan City, Taiwan
| | - Jia-Lin Wang
- Department of Chemistry, National Central University, Taoyuan City, Taiwan
| | - Youn-Yuen Shu
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan
| |
Collapse
|
2
|
Tian F, Zhou Z, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Development and validation of a combined QuEChERS and HPLC-MS/MS method for trace analysis of ten diamide insecticides in agricultural products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39969401 DOI: 10.1039/d4ay02117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Diamide insecticides are being widely registered worldwide, yet most of them lack established maximum residue limits (MRLs) in agricultural products. In this study, we combined a QuEChERS (quick, easy, cheap, efficient, rugged, and safe) extraction method with high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) analysis to simultaneously identify and quantify ten diamide insecticides in seven matrices for the first time. The method was validated in accordance with SANTE/11312/2021 guidelines, including sensitivity, linearity, trueness, and precision. Excellent linearity (R2 > 0.99) was obtained for all diamide insecticides within the concentration range of 5-1000 µg kg-1. The limit of detection (LOD) and limit of quantification (LOQ) were 0.01-1 µg kg-1 and 5 µg kg-1, respectively. The recoveries of the ten diamide insecticides at three levels (5, 100, and 1000 µg kg-1) ranged from 76.6% to 108.2% with good intra-day relative standard deviation (RSDr) (1.0-13.4%) and inter-day relative standard deviation (RSDR) (2.3-15.7%). The proposed method was applied to analyze 70 real agricultural product samples, and only six samples contained diamide insecticides. The results demonstrated that the method was both convenient and reliable for detecting diamide insecticides in agricultural products. The method was then applied to analyze agricultural product samples collected in a field trial to estimate the MRLs for the next step.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Zhenzhen Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
3
|
Kaçanbüre D, Bişgin AT. Selective microextraction of erythrosine (E127) in foodstuffs using a new generation high-density type-V deep eutectic solvent. Food Chem 2025; 463:141273. [PMID: 39278080 DOI: 10.1016/j.foodchem.2024.141273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
A novel and selective (deep eutectic solvent) DES-based microextraction method was established for the first time, utilizing a synthesized new generation High-Density Type-V DES for monitoring the dye Erythrosine (E127) in various foodstuffs and drugs. Type-V DES was created from acetophenone and diphenylamine at 3:1 M ratio. The pH, DES amount, and vortex time were optimized using Box-Behnken Design (BBD) of Response Surface Methodology (RSM). The quadratic microextraction model with R2 = 0.9982 was obtained. The limit of detection, preconcentration factor and linear dynamic range were determined to be 12 μg/L, 50 and 41-4000 μg/L, respectively. Effects of matrix components were examined. The developed High-Density Type-V Deep Eutectic Solvent Microextraction (HD-V-DES-ME) method was applied to foodstuffs and drugs to monitor their E127 contents and subsequently validated by applying spiked tests to real samples, with recoveries ranging between 94 and 101 %. The indexes of environmental friendliness and practicality for the method were evaluated using the Analytical GREEnness metric approach tool (AGREE) and the Blue Applicability Grade Index tool (BAGI), respectively.
Collapse
Affiliation(s)
- Damla Kaçanbüre
- Niğde Ömer Halisdemir University, Faculty of Science, Department of Chemistry, 51240 Niğde, Türkiye
| | - Abdullah Taner Bişgin
- Niğde Ömer Halisdemir University, Faculty of Science, Department of Chemistry, 51240 Niğde, Türkiye; Niğde Ömer Halisdemir University, Ulukışla Vocational School, 51900 Niğde, Türkiye.
| |
Collapse
|
4
|
Shi XZ, Zhang XY, Wang YY, Zhao YM, Wang J. Polysaccharides from Hericium erinaceus and its immunomodulatory effects on RAW 264.7 macrophages. Int J Biol Macromol 2024; 278:134947. [PMID: 39173803 DOI: 10.1016/j.ijbiomac.2024.134947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
This study aimed to optimize the extraction of Hericium erinaceus polysaccharides (HEP) using ultrasound-assisted enzymatic extraction combined with Plackett-Burman design (PBD) and response surface methodology (RSM). The optimal extraction conditions were identified as: 33 min extraction time, 30:1 liquid to material ratio, 38 °C extraction temperature, 9 g/kg cellulase amount, pH 4, and 20 % ethanol concentration. Under these conditions, the extraction yield of HEP was 5.87 ± 0.16 %, consistent with the predicted results. Additionally, the potential immunomodulatory activity of HEP on RAW 264.7 macrophage was evaluated. The results revealed that HEP improved the immunostimulatory activity of RAW264.7 cells, evident from increased production of IL-6 and TNF-α. These findings suggest that HEP is capable of enhancing the immune activity of RAW 264.7 macrophage.
Collapse
Affiliation(s)
- Xiao-Zi Shi
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Xin-Yan Zhang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China; Tianjin Beichen Traditional Chinese Medicine Hospital
| | - Yin-Yue Wang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Yong-Ming Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China.
| | - Jin Wang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China.
| |
Collapse
|
5
|
Zambrano-Soria M, Toledo-Ibarra GA, Covantes-Rosales CE, Barajas-Carrillo VW, Rios-Jiménez I, Leyva-Morales JB, Navidad-Murrieta MS, Razura-Carmona FF, Girón-Pérez MI. Pesticide levels in shrimp on Mexican coasts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-21. [PMID: 39206834 DOI: 10.1080/09603123.2024.2393434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The present review aimed to evaluate the current situation of pesticide residues detected in shrimp (commercial species) on the Mexican coasts. The organochlorine pesticides (OC), α-endosulfan (210.01 ng g-1), endosulfan sulfate (127.5 ng g-1), heptachlor (126.04 ng g-1 and γ-HCH (121.04 ng g-1) are identified as the most common pesticides in shrimp tissues, with the Northwest area reporting the highest concentrations of these OC. Given that there is an under-evaluation of pesticide residue levels, there was a greater contribution of studies directed at the Northwest of the country considering that there are states that are among the main shrimp-producing and consumers entities. The concentrations and types of pesticides banned nationally and globally, due to their toxic effects on the population, were reported. Therefore, since the most current information is 19 years out of date, it is necessary to perform recent evaluations with sensible and precise methods.
Collapse
Affiliation(s)
- Mercedes Zambrano-Soria
- Programa de Doctorado en Ciencias Biológico Agropecuarias en el Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | | | | | | | - Isaías Rios-Jiménez
- Comité Estatal de Sanidad Acuícola del Estado de Nayarit, Tepic, Nayarit, México
| | - José Belisario Leyva-Morales
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, México
| | | | | | - Manuel Iván Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Tepic, Nayarit, México
| |
Collapse
|
6
|
Ahire TR, Thasale RR, Das A, Kulkarni NP, Vyas DM, Perumal S. Multivariate optimization and validation of 200 pesticide residues in the banana matrix by GC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4268-4284. [PMID: 38884146 DOI: 10.1039/d4ay00703d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
GC-MS/MS has been observed from past studies to be an appropriate choice for designing a simple, efficient and sensitive analytical technique. Accordingly, the linearity and working range, Method Limit of Detection (MLOD), Method Limit of Quantification (MLOQ), accuracy, precision (intra-day and inter-day), Matrix Effect (ME) and selectivity were analyzed for the assessment of 200 pesticide residues [organophosphorus pesticides (OPP), organochlorine pesticides (OCP), organonitrogen pesticides (ONP), synthetic pyrethroid pesticides (SPP), and herbicide methyl esters (HME)] in the banana matrix. The procedure involved QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction and clean-up with Multi-Walled Carbon Nanotubes (MWCNTs) and Primary Secondary Amine (PSA) wherein the factors were optimized using the Plackett-Burman and central composite designs. The performance of the method in order to quantitate 200 pesticides at trace levels was evaluated by matrix-matched calibration. The linearity was observed to range from 1 to 100 μg L-1 with determination coefficient (r2) > 0.99. Recovery studies were conducted at 2 levels, 10 μg kg-1 and 25 μg kg-1, and the values obtained were in the range of 71-116% and 72-119%, respectively. The Relative Standard Deviation (RSD) was observed to be less than 20% in line with the recommended guidelines (SANTE/11312/2021). The MLOD and MLOQ were found to be in the range of 0.45-6.33 μg kg-1 and 1.44-9.59 μg kg-1 respectively. The developed method was applied satisfactorily to analyse banana samples cultivated in different regions of Gujarat, India.
Collapse
Affiliation(s)
- Tushar Rajaram Ahire
- Chemical Sciences Division, ICMR - National Institute of Occupational Health, Meghani Nagar, Ahmedabad, India.
- Department of Biochemistry and Forensic Science, Gujarat University, Ahmedabad, India
| | - Rupal Rajesh Thasale
- Chemical Sciences Division, ICMR - National Institute of Occupational Health, Meghani Nagar, Ahmedabad, India.
| | - Ankita Das
- Chemical Sciences Division, ICMR - National Institute of Occupational Health, Meghani Nagar, Ahmedabad, India.
- National Forensic Sciences University, Tripura Campus, India
| | - Nikhil Pradip Kulkarni
- Chemical Sciences Division, ICMR - National Institute of Occupational Health, Meghani Nagar, Ahmedabad, India.
| | - Dhyan Mineshkumar Vyas
- Chemical Sciences Division, ICMR - National Institute of Occupational Health, Meghani Nagar, Ahmedabad, India.
- Department of Biochemistry and Forensic Science, Gujarat University, Ahmedabad, India
| | - Sivaperumal Perumal
- Chemical Sciences Division, ICMR - National Institute of Occupational Health, Meghani Nagar, Ahmedabad, India.
| |
Collapse
|
7
|
Ettouil A, Oubihi A, Imtara H, Atfaoui K, Mothana RA, Noman OM, Tarayrah M, Ouhssine M. Optimizing the Extraction Efficiency of Flaxseed Gum Using a Response Surface Methodology Approach. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:5135565. [PMID: 38957570 PMCID: PMC11217574 DOI: 10.1155/2024/5135565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/15/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
The extraction of gum from natural raw materials is of increasing importance in various industries, including food, pharmaceuticals, and cosmetics, particularly due to their emulsifying properties and potential applications as stabilizers and thickeners. This study presents an insight on the influence of changing parameters like reagents and operating condition on yield and some properties of the flax (Linum usitatissimum L.) seed gum. The extraction conditions were meticulously examined using a full factorial design, highlighting the significant impact of pretreatment, seed preparation, and solvent selection on the extraction yield. A response surface methodology (RSM) was then applied to optimize the water/benzoic acid ratio of the pretreatment step, the ethyl alcohol/water ratio, and the medium pH of the extraction method, resulting in a maximum yield of 14.47%. Furthermore, detailed analyses of the chemical and emulsifying properties of the gum were conducted showing emulsifying capacities over 94%, offering promising application prospects, particularly in the food industry.
Collapse
Affiliation(s)
- Abdessamad Ettouil
- Natural Resources and Sustainable Development Laboratory, Department of Biology, Faculty of Sciences, Ibn Tofail University, Bp: 133, Kenitra, Morocco
| | - Asmaa Oubihi
- Natural Resources and Sustainable Development Laboratory, Department of Biology, Faculty of Sciences, Ibn Tofail University, Bp: 133, Kenitra, Morocco
| | - Hamada Imtara
- Faculty of Medicine, Arab American University Palestine, Jenin 44862, State of Palestine
| | - Khadija Atfaoui
- Natural Resources and Sustainable Development Laboratory, Department of Biology, Faculty of Sciences, Ibn Tofail University, Bp: 133, Kenitra, Morocco
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud Tarayrah
- Groupe Hospitalier Cochin-Port Royal, Faculty of Medicine, Institut Cochin, Paris University, CNRS, IN-SERM, Paris 75000, France
| | - Mohammed Ouhssine
- Natural Resources and Sustainable Development Laboratory, Department of Biology, Faculty of Sciences, Ibn Tofail University, Bp: 133, Kenitra, Morocco
| |
Collapse
|
8
|
de Albuquerque Mendes MK, dos Santos Oliveira CB, da Silva Medeiros CM, Dantas C, Carrilho E, de Araujo Nogueira AR, Lopes Júnior CA, Vieira EC. Application of experimental design as a statistical approach to recover bioactive peptides from different food sources. Food Sci Biotechnol 2024; 33:1559-1583. [PMID: 38623435 PMCID: PMC11016049 DOI: 10.1007/s10068-024-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Bioactive peptides (BAPs) derived from samples of animals and plants have been widely recommended and consumed for their beneficial properties to human health and to control several diseases. This work presents the applications of experimental designs (DoE) used to perform factor screening and/or optimization focused on finding the ideal hydrolysis condition to obtain BAPs with specific biological activities. The collection and discussion of articles revealed that Box Behnken Desing and Central Composite Design were the most used. The main parameters evaluated were pH, time, temperature and enzyme/substrate ratio. Among vegetable protein sources, soy was the most used in the generation of BAPs, and among animal proteins, milk and shrimp stood out as the most explored sources. The degree of hydrolysis and antioxidant activity were the most investigated responses in obtaining BAPs. This review brings new information that helps researchers apply these DoE to obtain high-quality BAPs with the desired biological activities.
Collapse
Affiliation(s)
| | | | | | - Clecio Dantas
- Departamento de Química, Universidade Estadual do Maranhão – UEMA, P.O. Box, 65604-380, Caxias, MA Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590 Brazil
| | | | - Cícero Alves Lopes Júnior
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| | - Edivan Carvalho Vieira
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| |
Collapse
|
9
|
Yan L, Liu R, Zhang C, Fu D. Investigation into the electrochemical advanced oxidation of p-arsanilic acid: Peculiar role of electrolytes and unexpected formation of coupling byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167538. [PMID: 37797755 DOI: 10.1016/j.scitotenv.2023.167538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Although banned in some countries, p-arsanilic acid (ASA) is still widely used as feed additive in poultry production. As a result, ASA is usually released into the aquatic environment without any treatments. Although ASA exhibits low toxicity, it can be transformed into highly toxic aromatic amines and inorganic arsenic species (As (V) as H2AsO4- and HAsO42-) under natural environmental conditions. Hence, it is necessary to develop efficient technologies for its removal or degradation. In this contribution, electrochemical advanced oxidation technology with boron-doped diamond (BDD) had been initially used to degrade ASA pollutants. A five-level central composite rotatable design (CCRD) was implemented to optimize the various influencing factors involved, among applied current density, NaCl concentration, Na2SO4 concentration and NaHCO3 concentration on the oxidation efficiency; the latter was assessed in terms of ASA degradation percentage. The results obtained highlighted the unique and important roles of electrolytes during the electrolytic oxidations. Meanwhile, the major degradation byproducts detected were also strongly dependent on the electrolyte adopted. In particular, several oligomer byproducts with novel structures were initially identified in BDD-treated ASA solutions. Two different electrochemical transformation pathways of ASA on BDD anode were thus proposed. This study demonstrated the effectiveness of BDD technology in the degradation of ASA, as well as the potential minor risk of its application in actual ASA wastewater treatment.
Collapse
Affiliation(s)
- Lihua Yan
- College of Science, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruochen Liu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyong Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
10
|
Chen J, Zhou L, Zhao Q, Qi Z. A New Cell Model Overexpressing sTGFBR3 for Studying Alzheimer's Disease In vitro. Curr Pharm Des 2024; 30:552-563. [PMID: 38362698 DOI: 10.2174/0113816128278324240115104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Recent studies have suggested that abnormal microglial hyperactivation has an important role in the progression of Alzheimer's disease (AD). sTGFBR3 (a shed extracellular domain of the transforming growth factor type III receptor) is a newly identified target of microglia polarization dysregulation, whose overexpression can cause abnormal accumulation of transforming growth factor β1 (TGF-β1), promoting Aβ, tau, and neuroinflammatory pathology. OBJECTIVE The objective of this study is to develop and validate a new cell model overexpressing sTGFBR3 for studying AD in vitro. METHODS BV2 cells (a microglial cell derived from C57/BL6 murine) were used as a cell model. Cells were then treated with different concentrations of lipopolysaccharide (LPS) (0, 1, or 0.3 μg/mL) for 12, 24, or 48h and then with or without sodium pervanadate (100 μM) for 30 min. Next, the effect surface optimization method was used to determine optimal experimental conditions. Finally, the optimized model was used to assess the effect of ZQX series compounds and vasicine on cell viability and protein expression. Expression of TGFBR3 and TNF-α was assessed using Western blot. MTT assay was used to assess cell viability, and enzyme- linked immunosorbent assay (ELISA) was employed to evaluate extracellular TGF-β1 and sTGFBR3. RESULTS LPS (0.3 μg/mL) treatment for 11 h at a cell density of 60% and pervanadate concentration (100 μM) incubation for 30 min were the optimal experimental conditions for increasing membrane protein TGFBR3 overexpression, as well as extracellular sTGFBR3 and TGF-β1. Applying ZQX-5 and vasicine reversed this process by reducing extracellular TGF-β1, promoting the phosphorylation of Smad2/3, a protein downstream of TGF-β1, and inhibiting the release of the inflammatory factor TNF-α. CONCLUSION This new in vitro model may be a useful cell model for studying Alzheimer's disease in vitro.
Collapse
Affiliation(s)
- Jiangxia Chen
- General Hospital of Northern Theatre Command, Bei Fang Hospital of Shenyang Pharmaceutical University, Shenyang, China
| | - Lijun Zhou
- General Hospital of Northern Theatre Command, Bei Fang Hospital of Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- General Hospital of Northern Theatre Command, Bei Fang Hospital of Shenyang Pharmaceutical University, Shenyang, China
| | - Zhentong Qi
- General Hospital of Northern Theatre Command, Bei Fang Hospital of Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Resendiz-Moctezuma C, Fonville APL, Harsh BN, Stasiewicz MJ, Miller MJ. Use of Doehlert Matrix as a Tool for High-Throughput Screening of Organic Acids and Essential Oils on Miniaturized Pork Loins, Followed by Lab-Scale Validation That Confirmed Tested Compounds Do Not Show Synergistic Effects against Salmonella Typhimurium. Foods 2023; 12:4034. [PMID: 37959153 PMCID: PMC10647486 DOI: 10.3390/foods12214034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The many possible treatments and continuously changing consumer trends present a challenge when selecting antimicrobial interventions during pork processing. Thirty-five potential antimicrobials were screened at commercial working concentrations by individually adding them to miniaturized (69 cm3) disks of pork loin ends, followed by inoculation with Salmonella Typhimurium ATCC 19585. Two organic acids and nine essential oils significantly inhibited Salmonella counts on pork (p < 0.05). However, six compounds that represent different levels of significance (p < 0.05-p < 0.0001) were selected as independent variables to build a Response Surface Methodology model based on a Doehlert matrix (Doehlert Matrix-RSM): lactic acid 1.25%, formic acid 0.25%, cumin 0.25%, clove 0.25%, peppermint 0.5%, and spearmint 0.5%. The goal of the Doehlert Matrix-RSM was to study single and paired effects of these antimicrobials on the change in Salmonella over 24 h. The Doehlert Matrix-RSM model predicted that lactic acid, formic acid, cumin, peppermint, and spearmint significantly reduced Salmonella when added alone, while no significant interactions between these antimicrobials were found. A laboratory-scale validation was carried out on pork loin end slices, which confirmed the results predicted by the model. While this screening did not identify novel synergistic combinations, our approach to screening a variety of chemical compounds by implementing a miniaturized pork loin disk model allowed us to identify the most promising antimicrobial candidates to then formally design experiments to study potential interactions with other antimicrobials.
Collapse
Affiliation(s)
- Cristina Resendiz-Moctezuma
- Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, 1302 W. Pennsylvania Ave., Urbana, IL 61801, USA; (C.R.-M.); (M.J.S.)
| | - Arianna P. L. Fonville
- Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, 1302 W. Pennsylvania Ave., Urbana, IL 61801, USA; (C.R.-M.); (M.J.S.)
| | - Bailey N. Harsh
- Animal Sciences Department, University of Illinois at Urbana-Champaign, 1503 Maryland Dr., Urbana, IL 61801, USA;
| | - Matthew J. Stasiewicz
- Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, 1302 W. Pennsylvania Ave., Urbana, IL 61801, USA; (C.R.-M.); (M.J.S.)
| | - Michael J. Miller
- Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, 1302 W. Pennsylvania Ave., Urbana, IL 61801, USA; (C.R.-M.); (M.J.S.)
| |
Collapse
|
12
|
Li J, Liu S, Yang C, Keyhani NO, Pu H, Lin L, Li X, Jia P, Wu D, Pan J, Stevenson PC, Fernández-Grandon GM, Zhang L, Chen Y, Guan X, Qiu J. Characterization of an α-Amylase from the Honeybee Chalk Brood Pathogen Ascosphaera apis. J Fungi (Basel) 2023; 9:1082. [PMID: 37998887 PMCID: PMC10672707 DOI: 10.3390/jof9111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The insect pathogenic fungus, Ascosphaera apis, is the causative agent of honeybee chalk brood disease. Amylases are secreted by many plant pathogenic fungi to access host nutrients through the metabolism of starch, and the identification of new amylases can have important biotechnological applications. Production of amylase by A. apis in submerged culture was optimized using the response surface method (RSM). Media composition was modeled using Box-Behnken design (BBD) at three levels of three variables, and the model was experimentally validated to predict amylase activity (R2 = 0.9528). Amylase activity was highest (45.28 ± 1.16 U/mL, mean ± SE) in media composed of 46 g/L maltose and1.51 g/L CaCl2 at a pH of 6.6, where total activity was ~11-fold greater as compared to standard basal media. The enzyme was purified to homogeneity with a 2.5% yield and 14-fold purification. The purified enzyme had a molecular weight of 75 kDa and was thermostable and active in a broad pH range (> 80% activity at a pH range of 7-10), with optimal activity at 55 °C and pH = 7.5. Kinetic analyses revealed a Km of 6.22 mmol/L and a Vmax of 4.21 μmol/mL·min using soluble starch as the substrate. Activity was significantly stimulated by Fe2+ and completely inhibited by Cu2+, Mn2+, and Ba2+ (10 mM). Ethanol and chloroform (10% v/v) also caused significant levels of inhibition. The purified amylase essentially exhibited activity only on hydrolyzed soluble starch, producing mainly glucose and maltose, indicating that it is an endo-amylase (α-amylase). Amylase activity peaked at 99.38 U/mL fermented in a 3.7 L-bioreactor (2.15-fold greater than what was observed in flask cultures). These data provide a strategy for optimizing the production of enzymes from fungi and provide insight into the α-amylase of A. apis.
Collapse
Affiliation(s)
- Jincheng Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Longbin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Xiaoxia Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Liaoyuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| |
Collapse
|
13
|
Lubinska-Szczygeł M, Polkowska Ż, Rutkowska M, Gorinstein S. Chemical, Aroma and Pro-Health Characteristics of Kaffir Lime Juice-The Approach Using Optimized HS-SPME-GC-TOFMS, MP-OES, 3D-FL and Physiochemical Analysis. Int J Mol Sci 2023; 24:12410. [PMID: 37569785 PMCID: PMC10418508 DOI: 10.3390/ijms241512410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The study aimed to provide the chemical, aroma and prohealth characteristics of the kaffir lime juice. A procedure using solid-phase microextraction with gas chromatography (SPME-GC-TOFMS) was optimized and validated for the determination of terpenes of kaffir lime. Main physicochemical parameters: pH, vitamin C, citric acid and °Brix were evaluated. Micro- and macro elements were determined using microwave plasma optic emission spectrometry (MP-OES). The binding of kaffir lime terpenes to human serum albumin (HSA) was investigated by fluorescence spectroscopy (3D-FL). β-Pinene and Limonene were selected as the most abundant terpenes with the concentration of 1225 ± 35 and 545 ± 16 µg/g, respectively. The values of citric acid, vitamin C, °Brix and pH were 74.74 ± 0.50 g/kg, 22.31 ± 0.53 mg/100 mL, 10.35 ± 0.70 and 2.406 ± 0.086 for, respectively. Iron, with a concentration of 16.578 ± 0.029 mg/kg, was the most abundant microelement. Among the macroelements, potassium (8121 ± 52 mg/kg) was dominant. Kaffir lime binding to HSA was higher than β-Pinene, which may indicate the therapeutic effect of the juice. Kaffir lime juice is a source of terpenes with good aromatic and bioactive properties. Fluorescence measurements confirmed its therapeutic effect. Kaffir lime juice is also a good source of citric acid with potential industrial application. The high content of minerals compared to other citruses increases its prohealth value.
Collapse
Affiliation(s)
- Martyna Lubinska-Szczygeł
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel;
| |
Collapse
|
14
|
Ponphaiboon J, Krongrawa W, Aung WW, Chinatangkul N, Limmatvapirat S, Limmatvapirat C. Advances in Natural Product Extraction Techniques, Electrospun Fiber Fabrication, and the Integration of Experimental Design: A Comprehensive Review. Molecules 2023; 28:5163. [PMID: 37446825 DOI: 10.3390/molecules28135163] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The present review explores the growing interest in the techniques employed for extracting natural products. It emphasizes the limitations of conventional extraction methods and introduces superior non-conventional alternatives, particularly ultrasound-assisted extraction. Characterization and quantification of bioactive constituents through chromatography coupled with spectroscopy are recommended, while the importance of method development and validation for biomarker quantification is underscored. At present, electrospun fibers provide a versatile platform for incorporating bioactive extracts and have extensive potential in diverse fields due to their unique structural and functional characteristics. Thus, the review also highlights the fabrication of electrospun fibers containing bioactive extracts. The preparation of biologically active extracts under optimal conditions, including the selection of safe solvents and cost-effective equipment, holds promising potential in the pharmaceutical, food, and cosmetic industries. Integration of experimental design into extraction procedures and formulation development is essential for the efficient production of health products. The review explores potential applications of encapsulating natural product extracts in electrospun fibers, such as wound healing, antibacterial activity, and antioxidant properties, while acknowledging the need for further exploration and optimization in this field. The findings discussed in this review are anticipated to serve as a valuable resource for the processing industry, enabling the utilization of affordable and environmentally friendly, natural, and raw materials.
Collapse
Affiliation(s)
- Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wantanwa Krongrawa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wah Wah Aung
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nawinda Chinatangkul
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Faculty of Pharmacy, Siam University, Bangkok 10160, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
15
|
Altunay N, Ul Haq H, Castro-Muñoz R. Optimization of vortex-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction for quantification of niclosamide in real samples. Food Chem 2023; 426:136646. [PMID: 37356246 DOI: 10.1016/j.foodchem.2023.136646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
In this manuscript, a green and fast vortex-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction (VA-HMDES-DLPME) method was developed for the selective extraction and determination of niclosamide in read samples, including rice, medicine tablets, and water samples. Here, hydrophobic magnetic deep eutectic solvents were used as the extracting solvent without requiring any centrifugation step. In the light of preliminary experiments, important parameters, such as volume of extraction solvent, pH, acetonitrile volume and vortex time, affecting the extraction efficiency of niclosamide were optimized using a Box-Behnken design. The linear dynamic range (0.25-120 µg/L), the limit of detection (0.08 µg/L), the limit of quantitation (0.25 µg/L), preconcentration factor (180), and enrichment factor (130) of the method were determined using optimized data. In particular, the validation parameters of the optimized VA-HMDES-DLPME, including robustness, matrix effect accuracy, and precision, were investigated. In addition to this, intra- and inter-day precisions were determined as ≤3.5 % and ≤4.1%, respectively. Finally, the optimized method was successfully used for the extraction of niclosamide in the selected samples prior to spectrophotometric analysis.
Collapse
Affiliation(s)
- Nail Altunay
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye.
| | - Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| |
Collapse
|
16
|
Diallo T, Makni Y, Lerebours A, Thomas H, Guérin T, Parinet J. Wide-scope screening of multi-class contaminants in seafood using a novel sample preparation (QuEChUP) procedure coupled with UHPLC-Q-TOF-MS: Application for semi-quantitation of real seafood samples. Food Chem 2023; 426:136572. [PMID: 37329790 DOI: 10.1016/j.foodchem.2023.136572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
A high-resolution mass spectrometry screening method was developed and validated based on EU SANTE/11312/2021 guidelines for the analysis of 850 multi-class contaminants in commercial seafood samples. Samples were extracted using a novel sequential QuEChUP preparation method that combines the QuEChERS and QuPPe procedures. The screening detection limits (SDLs) and limits of identification (LOIs) were equal to or lower than 0.01 mg·kg-1 for 92% and 78% of contaminants, respectively. This screening procedure was ultimately applied for a target screening analysis of 24 seafood samples. The concentrations of identified contaminants were assessed using semi-quantitative approach. Two identified contaminants, diuron and diclofenac, showed the highest estimated average concentrations: 0.076 and 0.068 mg·kg-1 respectively in mussel samples. Suspect screening was also performed. Target and suspect screening led to the identification of mixtures of contaminants (pesticides, veterinary products, industrial chemicals and personal care products) and the assessment of their frequencies of appearance (FoA).
Collapse
Affiliation(s)
- Thierno Diallo
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Yassine Makni
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Adélaïde Lerebours
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Julien Parinet
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France.
| |
Collapse
|
17
|
Fattahi R, Lashkarbolooki M, Abedini R, Younesi H. Analysis of the interfacial tension of cationic imidazolium-based ionic liquid, twin-branched tailed anionic surfactant, and a non-ionic emulsifier in the presence of SiO2 nanoparticle and amphiphilic oleic components using response surface method. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
18
|
A multivariate approach to dithiocarbamate fungicides determination in yerba mate (Ilex paraguariensis): A faster, cheaper, robust, and environmentally friendly method. Food Chem 2023; 404:134268. [PMID: 36444030 DOI: 10.1016/j.foodchem.2022.134268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023]
|
19
|
Poly-(MMA-IL) filter paper: A new class of paper-based analytical device for thin-film microextraction of multi-class antibiotics in environmental water samples using LC-MS/MS analysis. Talanta 2023; 254:124188. [PMID: 36521327 DOI: 10.1016/j.talanta.2022.124188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
A paper-based polymeric ionic liquid (p-Poly-(MMA-IL)) was successfully developed by grafting the polymeric ionic liquid on the surface of commercial filter paper (FP) by using the dipping method, presenting a new cost-effective film. The newly developed p-Poly-(MMA-IL) FP was then applied as a paper-based thin-film microextraction (p-TFME) analytical device to extract 14 compounds as representative of five groups of antibiotic drugs, which were sulfonamides, tetracyclines, fluoroquinolones, penicillin and macrolides in environmental water samples. Besides, p-Poly-(MMA-IL) FP, p-Poly-(MMA) FP, and unmodified filter paper were successfully characterised by FTIR, NMR, FESEM, TGA, and XRD techniques. They underwent significant parameters optimisation, which affected the extraction efficiency. Under optimal conditions, the proposed (p-Poly-(MMA-IL) FP-TFME) device method was evaluated and applied to analyse multi-class antibiotic drugs in environmental water samples by using a liquid chromatography-mass spectrometry (LC-MS). The validation method showed that a good linearity (0.1 μg L-1 - 500 μg L-1) was noted (R2 > 0.993, n = 3). Detection and quantification limits were within 0.05 μg L-1 - 4.52 μg L-1 and 0.15 μg L-1 - 13.6 μg L-1, respectively. The relative standard deviation (RSD) values ranged at 1.4%-12.2% (intra-day, n = 15) and 4.4%-11.0% (inter-day, n = 10). The extraction recoveries of environmental water samples ranged from 79.1% to 126.8%, with an RSD of less than 15.4% (n = 3). The newly developed paper-based polymeric ionic liquid (p-Poly-(MMA-IL) FP) for analysis of multi-class antibiotic drugs under the p-TFME analytical device procedure was successfully achieved with limited sample volume and organic solvent, fast extraction, and feasible in daily analysis. The detection concentration and relative RSD of multi-class antibiotics determined in various environmental water samples by the proposed method (n = 5) were within 0.44 μg L-1 - 54.41 μg L-1 and 0.69%-15.56%, respectively. These results signified the potential of the p-Poly-(MMA-IL) FP-TFME device as an efficient, sensitive and environmentally friendly approach for analysing antibiotics.
Collapse
|
20
|
A new multi-factor multi-objective strategy based on a factorial presence-absence design to determine polymer additive residues by means of head space-solid phase microextraction-gas chromatography-mass spectrometry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Rosales-Chimal S, Navarro-Cortez RO, Bello-Perez LA, Vargas-Torres A, Palma-Rodríguez HM. Optimal conditions for anthocyanin extract microencapsulation in taro starch: Physicochemical characterization and bioaccessibility in gastrointestinal conditions. Int J Biol Macromol 2023; 227:83-92. [PMID: 36535350 DOI: 10.1016/j.ijbiomac.2022.12.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This research aims to find the optimal conditions for the encapsulation of anthocyanin extract using taro starch to increase the retention of active compounds (RAC), drying yield (DY), antioxidant activity, stability, and bioaccessibility. The microencapsulation is carried out in a spray dryer, and the process is optimized using response surface method (RSM), applying starch concentration and inlet air temperature as independent parameters. Optimized microcapsules (OM) are obtained with solids concentration of 20.9 % and inlet temperature of 125 °C as optimal conditions. Drying yield (70.1 %), moisture content (5.2 %), water activity (0.211), phenolic compound content (797.8 mg GAE/g), anthocyanins (469.4 mg CE3G/g), ABTS (116.2 mg AAE/g) and DPPH (104.4 mg AAE/g) are analyzed through RSM. Retention percentage in OM show values of 60 % in bioactive compounds up to four weeks of storage under accelerated storage conditions. Bioaccessibility of OM is 10 % higher than that observed in the extract without encapsulation during gastrointestinal digestion. The results in this study show that OM made with taro starch and obtained with RSM effectively protect through digestion and ensure bioactive compound stability during storage.
Collapse
Affiliation(s)
- Sylvia Rosales-Chimal
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico
| | - Ricardo O Navarro-Cortez
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico
| | - Luis A Bello-Perez
- Instituto Politécnico Nacional, CEPROBI, Km 6 Carr. Yautepec-Jojutla, Calle Ceprobi No. 8, Apartado Postal 24, Yautepec 62731, Mexico
| | - Apolonio Vargas-Torres
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico
| | - Heidi M Palma-Rodríguez
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico.
| |
Collapse
|
22
|
Boateng ID, Kuehnel L, Daubert CR, Agliata J, Zhang W, Kumar R, Flint-Garcia S, Azlin M, Somavat P, Wan C. Updating the status quo on the extraction of bioactive compounds in agro-products using a two-pot multivariate design. A comprehensive review. Food Funct 2023; 14:569-601. [PMID: 36537225 DOI: 10.1039/d2fo02520e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Lucas Kuehnel
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO, 65211, USA
| | - Mustapha Azlin
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA. .,Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
23
|
Silva M, Mendiguchía C, Moreno C. Analytical Performance of Electromembranes as a Tool for Nanoconcentrations of Silver in Waters. MEMBRANES 2022; 13:11. [PMID: 36676818 PMCID: PMC9867316 DOI: 10.3390/membranes13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Electromembranes increase the efficiency of metal transport in liquid-phase microextraction systems by applying an electric potential, which accelerates the transport. Nevertheless, to get high extraction percentages in short extraction times it is necessary to take into account a great variety of factors, and multivariate optimization techniques are the best alternative to determine the most influential variables and to optimize the extraction process. In this work, a fractional factorial design was applied to determine the most influential variables in the extraction of silver by electromembranes. Thus, the effect of tri-isobutylphosphine sulphide (Cyanex 471x) concentration in the organic solution, sodium thiosulphate concentration in the acceptor solution, nitrate concentration in the sample solution, extraction time, stirring rate and electric potential on the enrichment factor were studied. Once the most important variables were selected, a small composite design (Draper-Lin) was used to obtain their optimal values to maximize the enrichment factor. Under these conditions, an experimental enrichment factor of 49.91 ± 3.95 was achieved after 22 min. Finally, the effect of saline matrix on the enrichment factor was tested and the optimized system was successfully applied to analyse silver concentrations at ultratrace levels, within the range of 7-29 ng·L-1 in different real seawater samples.
Collapse
|
24
|
Zhou R, Dong Z, Bian C, Wang L, Wu T, Zhou W, Li Y, Li B. Residue analysis, dissipation behavior, storage stability and dietary risk assessment of florpyrauxifen-benzyl in natural paddy field environment using UPLC-QTOF-MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Zhao W, Nan T, Xu J, Zhang C, Fu D. The role of bromides upon electrochemical mineralization of bisphenol A with boron-doped diamond anode. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129794. [PMID: 36007370 DOI: 10.1016/j.jhazmat.2022.129794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Anodic oxidation with boron-doped diamond (BDD) has been regarded as outstanding option for wastewater treatment. However, in the presence of halide, the extreme promise of the technology may be hampered by the formation of toxic halogenated by-products. While the behaviors of chloride are relatively understood, little is currently known about the role of bromide and its effect on the generation of brominated transformation by-products (BTPs). Herein, we reported for the first time the bromide-mediated electrochemical mineralization of bisphenol A with BDD anodes. Firstly, we employed statistical methodology to determine the impacts of the main operating variables on the mineralization performance, and the novel and peculiar roles of bromides during the electrolytic oxidations were identified. Next, LC/MS analysis was used to identify the reaction intermediates, and plenty of BTPs (including oligomers of complex structures) were thus detected. Detailed transformation mechanisms responsible for the BTPs were also proposed. Lastly, we used ECOSAR program to determine the ecological toxicity of all detected by-products, and the structure-toxicity relation involved was discussed. Overall, the above results are of particular interest to understand BTPs formation mechanism in electrochemical oxidation processes, which as well provide guidelines to minimize potential risks of BDD technology for phenolic wastewater treatment.
Collapse
Affiliation(s)
- Wenjia Zhao
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Nan
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangyan Xu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyong Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
26
|
Miyah Y, Benjelloun M, Salim R, Nahali L, Mejbar F, Lahrichi A, Iaich S, Zerrouq F. Experimental and DFT theoretical study for understanding the adsorption mechanism of toxic dye onto innovative material Fb-HAp based on fishbone powder. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Diallo T, Makni Y, Lerebours A, Thomas H, Guérin T, Parinet J. Development and validation according to the SANTE guidelines of a QuEChERS-UHPLC-QTOF-MS method for the screening of 204 pesticides in bivalves. Food Chem 2022; 386:132871. [PMID: 35381542 DOI: 10.1016/j.foodchem.2022.132871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
A qualitative screening high resolution mass spectrometry method was developed and validated according to the EU SANTE/12682/2019 guidelines for the analysis of 204 pesticides in seven commercial bivalve species spiked at three concentrations (0.01, 0.05 and, 0.1 mg.kg-1). Samples were extracted using QuEChERS and analysed using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The QuEChERS method was optimised by the Taguchi Orthogonal Array approach. The best conditions were obtained with pure ACN, MgSO4/NaCl as extraction salts, MgSO4/PSA/C18 as clean-up, and the non-dilution of extracts. The impact of different HRMS acquisition modes on detection and identification rates were also evaluated. The screening detection limits were determined to be 0.01 mg.kg-1 and 0.1 for 66% and 87% of pesticides, respectively. These screening procedure was finally applied to different bivalve samples using target and suspect analysis. This allowed the identification of diuron and its metabolite 1-(3,4-dichlorophenyl)-3-methylurea in the investigated samples.
Collapse
Affiliation(s)
- Thierno Diallo
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Yassine Makni
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Adélaïde Lerebours
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Julien Parinet
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France.
| |
Collapse
|
28
|
Orman E, Bekoe SO, Jato J, Spiegler V, Asare-Nkansah S, Agyare C, Hensel A, Bekoe EO. Quality assessment of African herbal medicine: A systematic review and the way forward. Fitoterapia 2022; 162:105287. [PMID: 36031027 DOI: 10.1016/j.fitote.2022.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND In Africa, herbalism supplements allopathic medicine's efforts to ensure Universal Health Coverage attainment. This review was conducted to identify and to summarise current literature on methodological approaches used for quality control of herbal medicines in Africa, to evaluate the gaps associated with existing strategies within context of best practices, and make recommendations for future improvements. METHODS A systematic search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles were screened and assessed for eligibility. RESULTS 118 articles were included into the study. There was a high preference for impurity profiling tests (77%) indicating the prioritization for tests that guarantee safety despite the limited analytical resources available. Other classes of tests reported included identification tests (29%), physicochemical tests (18%), and content assays (12%). Although standard methods exist in preparing samples for impurity tests, different techniques were observed in different studies, and this could lead to differences in analytical outcomes. Content assays focused on single marker assessments, which may be inadequate to comprehensively assess the quality of products. CONCLUSION This review provides knowledge of existing strengths and challenges for herbal medicine quality assessments in Africa. For future it is recommended to implement more studies on contaminants (e.g. mycotoxins) and pharmaceutical adulterants. The use of chemometrics to develop analytical methods should be promoted. Also, stakeholders in the medicine quality industry in Africa need to effectively collaborate to establish a well co-ordinated and harmonized system to provide a sustainable framework for the GACP and GMP guided production and quality assurance of herbal medicines.
Collapse
Affiliation(s)
- Emmanuel Orman
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany; Department of Pharmaceutical Chemistry, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Oppong Bekoe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jonathan Jato
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany; Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Verena Spiegler
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Samuel Asare-Nkansah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Agyare
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Emelia Oppong Bekoe
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Ghana, Accra, Ghana
| |
Collapse
|
29
|
Zhao H, Li M, Liu X, Yang J, Li X, Chen J, Dai X, Simal-Gandara J, Kong Z, Li Z. Simultaneous determination of succinate-dehydrogenase-inhibitor fungicide traces in cereals by QuEChERS preparation and UPLC-MS/MS analysis. Food Chem 2022; 396:133708. [PMID: 35878445 DOI: 10.1016/j.foodchem.2022.133708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
A method for the simultaneous determination of 19 succinate dehydrogenase inhibitor (SDHI) fungicide residues in 8 kinds of cereals was established by combining UHPLC-MS/MS with the improved QuEChERS method. MgSO4 and octadecylsilane (C18) were used as the dispersive-solid phase extraction sorbent. The proposed method had good linearity in the range of 10-100 µg/L with correlation coefficients (R2 > 0.99). The limit of quantification of 19 fungicides was 10 µg/L, which is the minimum addition level of the method. The fortified recoveries of 19 SDHI fungicides at three levels were ranged from 79.57 % to 126.25 %. The developed method was utilized for the analysis of 45 real cereal samples, only 5 samples were detected with SDHI fungicides. The contents of the fungicides detected in the real samples are far lower than the MRL. The results indicated that the proposed method is reliable for detecting SDHI fungicides in cereals.
Collapse
Affiliation(s)
- Haoran Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaowei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiajie Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College Life Science & Technology, Xinjiang University, 830046 Shengli Road, Urumqi, China
| | - Xueyao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
30
|
Honorato Santos Neto J, Dos Santos LO, Dos Santos AMP, Galvão Novaes C, Luis Costa Ferreira S. A new and accessible instrumentation to determine urea in UHT milk using digital image analysis. Food Chem 2022; 381:132221. [PMID: 35121324 DOI: 10.1016/j.foodchem.2022.132221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
This research demonstrates the development, optimization and application of a new low-cost detection system, based on digital image analysis, for the detection of urea in ultra-high-temperature (UHT) milk samples. The apparatus built in the laboratory, allows the capture of images through a simple system built by polyvinyl chloride (PVC) tubes, a digital microscope and a peristaltic mini-pump, after the colorimetric reaction between urea and diacetylmonoxime (butane-2,3-dionammonoxime). The red, green and blue (RGB) and hue, saturation and value (HSV) color systems were studied, with the saturation channel of the HSV color system selected as the analytical signal. Subsequently, the experimental chemical conditions were evaluated through multivariate experimental designs and the optimal conditions were defined. The proposed method was validated, and the detection and quantification limits presented by the method were 0.35 mg L-1 and 0.52 mg L-1, respectively; precision, ranged between 1.6 and 2.8 %. The results were compared with those obtained using the mid-infrared technique and no statistically significant differences were observed at a 95 % confidence level. The proposed method was applied to eight UHT milk samples that presented urea content ranging from 187 to 386 mg L-1. The mean values obtained are in agreement with values presented in other studies for the determination of urea in milk. The results indicated that the system described and validated here is promising and can be applied to assess the authenticity and quality of milk.
Collapse
Affiliation(s)
- João Honorato Santos Neto
- Universidade Federal da Bahia, Instituto de Química, Grupo de Pesquisa em Química e Quimiometria, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil.
| | - Liz Oliveira Dos Santos
- Universidade Federal da Bahia, Instituto de Química, Grupo de Pesquisa em Química e Quimiometria, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Universidade Federal do Recôncavo da Bahia, Centro de Ciência e Tecnologia em Energia e Sustentabilidade, 44085-132 Feira de Santana, Bahia, Brazil.
| | - Ana Maria Pinto Dos Santos
- Universidade Federal da Bahia, Instituto de Química, Grupo de Pesquisa em Química e Quimiometria, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil.
| | - Cleber Galvão Novaes
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica III, 45208-091 Jequié, Bahia, Brazil
| | - Sergio Luis Costa Ferreira
- Universidade Federal da Bahia, Instituto de Química, Grupo de Pesquisa em Química e Quimiometria, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil
| |
Collapse
|
31
|
Hsu WH, Chen SY, Lin JH, Yen GC. Application of saponins extract from food byproducts for the removal of pesticide residues in fruits and vegetables. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
do Amaral B, Peralta-Zamora P, Nagata N. Simultaneous multi-residue pesticide analysis in southern Brazilian soil based on chemometric tools and QuEChERS-LC-DAD/FLD method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39102-39115. [PMID: 35098463 DOI: 10.1007/s11356-021-18292-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
A simple and straightforward QuEChERS extraction method was proposed for the simultaneous determination of atrazine (ATZ), desethylatrazine (DEA), desisopropylatrazine (DIA), carbaryl (CBL), carbendazim (CBD), and diuron (DIU) in soil with high agricultural activity from southeastern Brazil, using high-performance liquid chromatography-diode-array detection/fluorescence detection. Screening studies carried out by 24 factorial design indicate better recoveries when less sample (1.0 g) and the volume of solvent (2.0 mL of ACN) were applied, compared to the original QuEChERS method. Furthermore, interactions between factors were not negligible in the experimental set, except for ATZ and DIU, in which only water volume influenced their recovery. The influence of the type (primary secondary amine (PSA), C18, and Florisil) and the sorbent amount ratio to the compounds' concentration were also considered. PSA (25 mg) was selected as the best sorbent without losing analytical response. The limits of quantification (LOQ) were estimated to be 5.0 to 15 µg kg-1 in the soil matrix. Analytical performances were consistent with linearity (R2 ≥ 0.998), recovery from 74.7 to 108%, and relative standard deviations (RSD) between 2.6 and 20.2%. Robustness was assessed by fractional factorial Plackett-Burman design. The method is recommended for chemicals that are soluble in water, and it was successfully applied in the analysis of real soil samples containing the analytes in the range of μg kg-1, proving to be suitable for the study of soils strongly impacted by agricultural activity.
Collapse
Affiliation(s)
- Bianca do Amaral
- Itaipu Technological Park Foundation, Foz do Iguaçu, PR, 85867-900, Brazil.
| | | | - Noemi Nagata
- Chemistry Department, Universidade Federal do Paraná, Curitiba, PR, 81531-980, Brazil
| |
Collapse
|
33
|
Bouchmila I, Bejaoui Kefi B, Djebali K, Souissi R. Optimization and modeling of solid-phase extraction of rare earth elements with chert using design methodology. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Liguori GL, Kisslinger A. Quality Management Tools on the Stage: Old but New Allies for Rigor and Standardization of Extracellular Vesicle Studies. Front Bioeng Biotechnol 2022; 10:826252. [PMID: 35360394 PMCID: PMC8960150 DOI: 10.3389/fbioe.2022.826252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
35
|
Maciel EVS, Lanças FM. A cartridge-based device for automated analyses of solid matrices by online sample prep-capillary LC-MS/MS. Anal Bioanal Chem 2022; 414:2725-2737. [PMID: 35106613 DOI: 10.1007/s00216-022-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Sample preparation is an essential step focused on eliminating interfering compounds while pre-concentrating the analytes. However, its multiple steps are laborious, time-consuming, and a source of errors. Currently, automated approaches represent a promising alternative to overcome these drawbacks. Similarly, miniaturisation has been considered an ideal strategy for creating greener analytical workflows. The combination of these concepts is currently highly desired by analytical chemists. However, most automated and miniaturised sample preparation techniques are primarily concerned with liquid samples, while solids are frequently overlooked. We present an approach based on a cartridge packed with solids (soil samples) coupled with a capillary LC-MS, combining sample preparation and analytical steps into a unique platform. As a proof-of-concept, nine pesticides used in sugarcane crops were extracted and analysed by our proposed method. For optimisation, a fractional factorial design (25-1) was performed with the following variables: aqueous dilution of the sample (V1), extraction strength (V2), matrix washing time (V3), extraction flow (V4), and analytical flow (V5). After, the most influential ones (V1, V2, and V3) were taken into a central composite design (23) to select their best values. Under optimised conditions, the method reported linear ranges between 10 and 125 ng g-1 with R2 > 0.985. Accuracy and precision were in accordance with the values established by the International Council for Harmonisation (Q2(R1)). Therefore, the proposed approach was effective in extracting and analysing selected pesticides in soil samples. Also, we carried out initial qualitative tests for pesticides in honeybees to see if there is the possibility to apply our method in other solids.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil.
| |
Collapse
|
36
|
Hsu CJ, Ding WH. Determination of benzotriazole and benzothiazole derivatives in tea beverages by deep eutectic solvent-based ultrasound-assisted liquid-phase microextraction and ultrahigh-performance liquid chromatography-high resolution mass spectrometry. Food Chem 2022; 368:130798. [PMID: 34411854 DOI: 10.1016/j.foodchem.2021.130798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
Benzotriazole (BTRs) and benzothiazole (BTHs) derivatives are a group of high production volume chemicals with emerging health concern, which found in tea beverages raising potential risks for food safety and human health. The present work describes a simple method using a "green" deep eutectic solvent (DES) based-ultrasound-assisted liquid-phase microextraction (UALPME) to rapidly extract BTRs and BTHs from tea beverages, and then applying UHPLC-electrospray ionization (+)-quadrupole time-of-flight mass spectrometry for detection and quantification. To overcome the challenges related to different experimental conditions, a Factorial Multilevel Categoric Design and a Face Centered Central Composite Design were applied to screen and optimize the parameters for the DES-UALPME procedure, respectively. After optimization, the method was validated and shown to possess low limits of quantification (LOQs; 1.5-12 ng mL-1), high precision (3-13%), and satisfactory accuracy (65-107%). The developed method was then successfully applied for the analysis of some selected BTRs and BTHs in tea beverages.
Collapse
Affiliation(s)
- Che-Jui Hsu
- Department of Chemistry, National Central University, Chung-Li 320, Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University, Chung-Li 320, Taiwan.
| |
Collapse
|
37
|
Liu C, Zuo Z, Xu F, Wang Y. Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review. Crit Rev Anal Chem 2022; 53:1393-1418. [PMID: 34991387 DOI: 10.1080/10408347.2021.2023460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.
Collapse
Affiliation(s)
- Chunlu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
38
|
Optimization of Grouting Material Mixture Ratio Based on Multi-Objective Optimization and Multi-Attribute Decision-Making. SUSTAINABILITY 2021. [DOI: 10.3390/su14010399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a solid waste produced by coal combustion, fly ash will cause serious environmental pollution. However, it can be considered as a sustainable and renewable resource to replace partial cement in grouting materials. Fly ash grouting materials re-cement the broken rock mass and improve the mechanical properties of the original structure. It can reinforce the broken surrounding rock of mine roadway. The utilization of fly ash also reduces environmental pollution. Therefore, this paper establishes a new material mixture ratio optimization model to meet the requirement of material property through combining the methods of experimental design and numerical analysis. Based on the Box–Behnken design with 3 factors and 3 levels, a mathematical model is constructed to fit the nonlinear multiple regression functions between material properties and raw materials ratios. The influence of raw materials is analyzed on material properties (the material’s 7-day uniaxial compressive strength, initial setting time, and slurry viscosity). Then, 80 Pareto solutions are obtained through NASG-II algorithm which takes the regression functions as the objective functions for multi-objective optimization of the grouting material ratio. Finally, the best ratio solution of water-cement ratio—0.71, silica fume content—1.73%, and sodium silicate content—2.61% is obtained through the NNRP-TOPSIS method.
Collapse
|
39
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Ferreira BL, Junior TK, Block JM, Granato D, Nunes IL. Innovative approach for obtaining phenolic compounds from guava (Psidium guajava L.) coproduct using ionic liquid ultrasound-assisted extraction (IL-UAE). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Highly effective pre-concentration of thymol and carvacrol using nano-sized magnetic molecularly imprinted polymer based on experimental design optimization and their trace determination in summer savoury, Origanum majorana and Origanum vulgare extracts. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122941. [PMID: 34534848 DOI: 10.1016/j.jchromb.2021.122941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023]
Abstract
To ascertain thymol and carvacrol in pharmaceutical syrups, a valid and effective magnetic molecular imprinted polymer dispersive solid phase microextraction (MMIP-DSPME) process was developed in this study, which was in combination with a high performance liquid chromatography-ultra violet (HPLC-UV) technique for the assessment of thymol and carvacrol separation and pre-concentration. Contact time, eluent kind and volume, pH, the mass of the MMIP were all taken into consideration as key factors. Design expert and multi-objective response surface methodology (RSM) were used to optimize these variables. The mass of the MMIP, sample pH, eluent kind, time of sorption, the volume of eluent, and time of elution were 10 mg, 6, acetonitrile, 28 min, 200 µL, and 5.5 min, respectively, for the maximum extraction recovery of the analytes. The limit of detection (LOD) was 0.042 ng mL-1 at the optimal conditions, while the value for the limit of quantification (LOQ) was 0.140 ng mL-1. At the optimized conditions for thymol and carvacrol, the suggested MMIP sorbent had sorption capacities of 64.1 and 72.6 mg g-1, respectively. Furthermore, for triplicate measurements, the linear dynamic range (LDR) was 0.40-5000 ng mL-1, and the method's accuracy (RSD %) was 6.26%. The saturation magnetization for the MMIP was 19.0 emu g-1 obtained by VSM, allowing the sorbent to be separated quickly. The sorption experiments confirmed the large sorption capacity of the MMIP for thymol and carvacrol, as well as its homogeneous binding sites. The extraction recovery for thymol and carvacrol was 96.9-103.8% and 96.6-105.4%, respectively, at all spiked amounts (20, 100, 200, and 500 ng mL-1). The findings of seven desorption-regeneration cycles using MMIP demonstrated the high stability of the sorbent. The MMIP revealed a particular behavior of sorption for thymol and carvacrol, implying a selective, simple, effective, and flexible analytical method.
Collapse
|
42
|
Zhang C, Jiang C, Lan L, Ping J, Ye Z, Ying Y. Nanomaterial-based biosensors for agro-product safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Du Y, Huang P, Jin W, Li C, Yang J, Wan H, He Y. Optimization of Extraction or Purification Process of Multiple Components from Natural Products: Entropy Weight Method Combined with Plackett-Burman Design and Central Composite Design. Molecules 2021; 26:5572. [PMID: 34577043 PMCID: PMC8469851 DOI: 10.3390/molecules26185572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, the optimization of the extraction/purification process of multiple components was performed by the entropy weight method (EWM) combined with Plackett-Burman design (PBD) and central composite design (CCD). We took the macroporous resin purification of Astragalus saponins as an example to discuss the practicability of this method. Firstly, the weight of each component was given by EWM and the sum of the product between the componential content and its weight was defined as the comprehensive score, which was taken as the evaluation index. Then, the single factor method was adopted for determining the value range of each factor. PBD was applied for screening the significant factors. Important variables were further optimized by CCD to determine the optimal process parameters. After the combination of EWM, PBD and CCD, the resulting optimal purification conditions were as follows: pH value of 6.0, the extraction solvent concentration of 0.15 g/mL, and the ethanol volume fraction of 75%. Under the optimal conditions, the practical comprehensive score of recoveries of saponins was close to the predicted value (n = 3). Therefore, the present study provided a convenient and efficient method for extraction and purification optimization technology of multiple components from natural products.
Collapse
Affiliation(s)
- Yu Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (P.H.); (W.J.)
| | - Pengcheng Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (P.H.); (W.J.)
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (P.H.); (W.J.)
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (P.H.); (W.J.)
| |
Collapse
|
44
|
Li YJ, Ding WH. Determination of benzotriazole and benzothiazole derivatives in human urine by eco-friendly deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction followed by ultrahigh performance liquid chromatography quadrupole-time-of-flight mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117530. [PMID: 34261225 DOI: 10.1016/j.envpol.2021.117530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Benzotriazole (BTRs) and benzothiazole (BTHs) derivatives have been classified as high production volume pollutants of emerging concern. The present work describes a rapid and simple process using an eco-friendly deep eutectic solvent (DES) based-ultrasound-assisted liquid-liquid microextraction (DES-UALLME) technique to effectively extract five BTRs and four BTHs in human urine samples, and then applying ultrahigh-performance liquid chromatography and electrospray ionization (+)-quadrupole time-of-flight mass spectrometry (UHPLC-ESI(+)-QTOF-MS) for their detection and quantification. DESs are a group of novel "green" solvents, and their applications in sample pretreatment are appropriate for the requirements for green chemistry, environmental protection and sustainable development. Furthermore, to overcome the challenges related to different experimental conditions, multivariate experimental design approaches conducted by means of a multilevel categorical design and a Box-Behnken Design were applied to screen and optimize parameters that have significant influences on the extraction efficiency of DES-UALLME. After optimization, the method was validated and shown to possess low limits of quantitation (LOQs; 0.4 - 9 ng mL-1), high precision (3-12%), and high accuracy (mean spiked recoveries; 80-101%). The developed method was then successfully applied for the analysis of BTRs and BTHs in human urine samples. Interestingly, 5,6-dimethyl-1H-benzotriazole (XTR) was detected in almost all of the urine samples, which correlates with its high production and widely applications in industry processes and consumer products in Taiwan. These target analytes could potentially be used as biomarkers to assess exposure of BTRs and BTHs in biomonitoring programs and studies.
Collapse
Affiliation(s)
- Yen-Jou Li
- Department of Chemistry, National Central University, Chung-Li, 320, Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University, Chung-Li, 320, Taiwan.
| |
Collapse
|
45
|
Mancinelli S, Turcato A, Kisslinger A, Bongiovanni A, Zazzu V, Lanati A, Liguori GL. Design of transfections: Implementation of design of experiments for cell transfection fine tuning. Biotechnol Bioeng 2021; 118:4488-4502. [PMID: 34406655 PMCID: PMC9291525 DOI: 10.1002/bit.27918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Transfection is the process by which nucleic acids are introduced into eukaryotic cells. This is fundamental in basic research for studying gene function and modulation of gene expression as well as for many bioprocesses in the manufacturing of clinical‐grade recombinant biologics from cells. Transfection efficiency is a critical parameter to increase biologics' productivity; the right protocol has to be identified to ensure high transfection efficiency and therefore high product yield. Design of experiments (DoE) is a mathematical method that has become a key tool in bioprocess development. Based on the DoE method, we developed an operational flow that we called “Design of Transfections” (DoT) for specific transfection modeling and identification of the optimal transfection conditions. As a proof of principle, we applied the DoT workflow to optimize a cell transfection chemical protocol for neural progenitors, using polyethyleneimine (PEI). We simultaneously varied key influencing factors, namely concentration and type of PEI, DNA concentration, and cell density. The transfection efficiency was measured by fluorescence imaging followed by automatic counting of the green fluorescent transfected cells. Taking advantage of the DoT workflow, we developed a new simple, efficient, and economically advantageous PEI transfection protocol through which we were able to obtain a transfection efficiency of 34%.
Collapse
Affiliation(s)
- Sara Mancinelli
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | | | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Valeria Zazzu
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | | | - Giovanna Lucia Liguori
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| |
Collapse
|
46
|
Hsieh CZ, Chung WH, Ding WH. Experimental design approaches to optimize ultrasound-assisted simultaneous-silylation dispersive liquid-liquid microextraction for the rapid determination of parabens in water samples. RSC Adv 2021; 11:23607-23615. [PMID: 35479786 PMCID: PMC9036600 DOI: 10.1039/d1ra04195a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
This work describes a rapid solvent-minimized process to effectively determine four common paraben preservatives (methyl-, ethyl-, propyl- and butyl-paraben) in surface water samples. The method involved the use of a combination of a novel ultrasound-assisted simultaneous-silylation within dispersive liquid–liquid microextraction (UASS-DLLME) with detection by gas chromatography-tandem mass spectrometry (GC-MS/MS). To overcome the challenges related to the different experimental conditions, multivariate experimental design approaches conducted by means of a multilevel categorical design and a Box–Behnken design were utilized to screen and optimize parameters that have significant influences on the efficiency of silylation and extraction. The method was then validated and shown to provide low limits of quantitation (LOQs; 1–5 ng L−1), high precision (3–11%), and satisfactory mean spiked recoveries (accuracy; 79–101%). Upon analyzing samples of surface water obtained from the field, we found that, in total, there was a relatively high concentration of the target parabens ranging from 200 to 1389 ng L−1. The sources of the elevated levels of these parabens may be from the release of untreated municipal wastewater in this region, and also due to the widespread application of parabens in personal care and food products. This work describes a rapid solvent-minimized process to effectively determine four common paraben preservatives (methyl-, ethyl-, propyl- and butyl-paraben) in surface water samples.![]()
Collapse
Affiliation(s)
- Chi-Zhong Hsieh
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| | - Wu-Hsun Chung
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905.,Department of Chemical Engineering, Army Academy ROC Chung-Li 320 Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| |
Collapse
|
47
|
Cerqueira UMFM, Bezerra MA, Ferreira SLC, de Jesus Araújo R, da Silva BN, Novaes CG. Doehlert design in the optimization of procedures aiming food analysis - A review. Food Chem 2021; 364:130429. [PMID: 34284258 DOI: 10.1016/j.foodchem.2021.130429] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
In the present paper is presented a review on the application of Doehlert design in the optimization of some of the steps of analytical procedures aimed the analysis of food samples. The theoretical principles and the main characteristics of this type of design are described. In addition, the main advantages and limitations of Doehlert design over other designs (Central Composite Design and Box-Behnken) and its application in the area of food analysis are discussed. Finally, to illustrate its potential, some examples of Doehlert design application in other areas of food chemistry without the purpose of analytical determination will be briefly presented.
Collapse
Affiliation(s)
| | - Marcos Almeida Bezerra
- Universidade Federal da Bahia, Instituto de Química, Campus da Federação/Ondina, Rua Barão de Geremoabo s/n, 40.170-115 Salvador, Bahia, Brazil; Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Departamento de Ciências e Tecnologias, Rua José Moreira Sobrinho s/n, 45.206-190 Jequié, Bahia, Brazil.
| | - Sérgio Luís Costa Ferreira
- Universidade Federal da Bahia, Instituto de Química, Campus da Federação/Ondina, Rua Barão de Geremoabo s/n, 40.170-115 Salvador, Bahia, Brazil
| | - Rodrigo de Jesus Araújo
- Universidade Federal da Bahia, Instituto de Química, Campus da Federação/Ondina, Rua Barão de Geremoabo s/n, 40.170-115 Salvador, Bahia, Brazil
| | - Bruno Novaes da Silva
- Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Departamento de Ciências e Tecnologias, Rua José Moreira Sobrinho s/n, 45.206-190 Jequié, Bahia, Brazil
| | - Cleber Galvão Novaes
- Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Departamento de Ciências e Tecnologias, Rua José Moreira Sobrinho s/n, 45.206-190 Jequié, Bahia, Brazil
| |
Collapse
|
48
|
Jiménez-González O, Guerrero-Beltrán JÁ. Extraction, Microencapsulation, Color Properties, and Experimental Design of Natural Pigments Obtained by Spray Drying. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09288-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Tavares Luiz M, Santos Rosa Viegas J, Palma Abriata J, Viegas F, Testa Moura de Carvalho Vicentini F, Lopes Badra Bentley MV, Chorilli M, Maldonado Marchetti J, Tapia-Blácido DR. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm 2021; 165:127-148. [PMID: 33992754 DOI: 10.1016/j.ejpb.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/05/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has been widely applied to develop drug delivery systems to improve therapeutic performance. The effectiveness of these systems is intrinsically related to their physicochemical properties, so their biological responses are highly susceptible to factors such as the type and quantity of each material that is employed in their synthesis and to the method that is used to produce them. In this context, quality-oriented manufacturing of nanoparticles has been an important strategy to understand and to optimize the factors involved in their production. For this purpose, Design of Experiment (DoE) tools have been applied to obtain enough knowledge about the process and hence achieve high-quality products. This review aims to set up the bases to implement DoE as a strategy to improve the manufacture of nanocarriers and to discuss the main factors involved in the production of the most common nanocarriers employed in the pharmaceutical field.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Viegas
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University, Araraquara, SP, Brazil
| | | | - Delia Rita Tapia-Blácido
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
50
|
González-Fernández FM, Bianchera A, Gasco P, Nicoli S, Pescina S. Lipid-Based Nanocarriers for Ophthalmic Administration: Towards Experimental Design Implementation. Pharmaceutics 2021; 13:447. [PMID: 33810399 PMCID: PMC8067198 DOI: 10.3390/pharmaceutics13040447] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Nanotherapeutics based on biocompatible lipid matrices allow for enhanced solubility of poorly soluble compounds in the treatment of ophthalmic diseases, overcoming the anatomical and physiological barriers present in the eye, which, despite the ease of access, remains strongly protected. Micro-/nanoemulsions, solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) combine liquid and/or solid lipids with surfactants, improving drug stability and ocular bioavailability. Current research and development approaches based on try-and-error methodologies are unable to easily fine-tune nanoparticle populations in order to overcome the numerous constraints of ocular administration routes, which is believed to hamper easy approval from regulatory agencies for these systems. The predictable quality and specifications of the product can be achieved through quality-by-design (QbD) implementation in both research and industrial environments, in contrast to the current quality-by-testing (QbT) framework. Mathematical modelling of the expected final nanoparticle characteristics by variation of operator-controllable variables of the process can be achieved through adequate statistical design-of-experiments (DoE) application. This multivariate approach allows for optimisation of drug delivery platforms, reducing research costs and time, while maximising the understanding of the production process. This review aims to highlight the latest efforts in implementing the design of experiments to produce optimised lipid-based nanocarriers intended for ophthalmic administration. A useful background and an overview of the different possible approaches are presented, serving as a starting point to introduce the design of experiments in current nanoparticle research.
Collapse
Affiliation(s)
- Felipe M. González-Fernández
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy;
| | - Annalisa Bianchera
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| | - Paolo Gasco
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy;
| | - Sara Nicoli
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| | - Silvia Pescina
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| |
Collapse
|