1
|
Okeke UJ, Micucci M, Mihaylova D, Cappiello A. The effects of experimental conditions on extraction of polyphenols from African Nutmeg peels using NADESs-UAE: a multifactorial modelling technique. Sci Rep 2025; 15:4890. [PMID: 39930029 PMCID: PMC11811197 DOI: 10.1038/s41598-025-88233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Extraction of polyphenolic compounds from African nutmeg (Monodora myristica (Gaertn.)) peels using natural acidic deep eutectic solvents coupled to ultrasound-assisted extraction (NADESs-UAE) followed many factors at a time (MFAT) screening with response surface optimization was investigated. Fourteen different NADESs based on citric acid as hydrogen bond acceptor (HBA) were designed and tested. Sucrose, fructose, xylitol, glycerol, glycine, and glucose were used as hydrogen bond donors (HBDs). The responses studied are total phenolic compounds (TPC), total flavonoid compounds (TFC), and antioxidant activity (AA) based on cupric ion reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). The UAE procedure was optimized with the most efficient NADES. Quadratic models produced satisfactory fitting of the experimental data regarding TPC (R2 = 0.9999, p < 0.0001), TFC (R2 = 0.9991, p < 0.0001), and AA- CUPRAC (R2 = 0.9988, p < 0.0001) and FRAP (R2 = 1.000, P < 0001). Ultrasound temperature 30°c, extraction time 5 min, solvent volume 25 ml, and solvent concentration 90% (v/v) were considered optimal conditions for the extraction models resulting in TPC 1290.9 ± 5.6 mg/g GAE db, TFC 2398.7 ± 23 µg/g QE db, CUPRAC 38.46 ± 0.4.4 µmol/g TE db, and FRAP 26.15 ± 0.11µmol/g TE db, respectively.
Collapse
Affiliation(s)
- Udodinma Jude Okeke
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Urbino, Italy
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Matteo Micucci
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy.
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Achile Cappiello
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
2
|
Szydłowska-Czerniak A, Kowaluk A, Strzelec M, Sawicki T, Tańska M. Evaluation of Bioactive Compounds and Chemical Elements in Herbs: Effectiveness of Choline Chloride-Based Deep Eutectic Solvents in Ultrasound-Assisted Extraction. Molecules 2025; 30:368. [PMID: 39860236 PMCID: PMC11767781 DOI: 10.3390/molecules30020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC). Among the prepared DESs, the highest antioxidant potential and total contents of phenolic acids, flavonoid aglycones, and flavonoid glycosides in herb extracts were achieved using ChCl:MalA (1:1). Unexpectedly, the selected green solvents extracted significantly lower amounts of total antioxidants from the investigated herbs than 50% alcohols. Additionally, macroelements (K, Na, Ca, Mg), micronutrients (Mn, Zn, Fe, Cu), and a toxic element (Cd) in four herbs were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). Determining the compositions of antioxidants and elements in herbs is essential for understanding their nutritive importance when applied in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Agnieszka Kowaluk
- Central Office of Measures, Laboratory of Electrochemical and Inorganic Analyzes, Department of Physical and Environmental Chemistry, 00-139 Warszawa, Poland; (A.K.); (M.S.)
| | - Michał Strzelec
- Central Office of Measures, Laboratory of Electrochemical and Inorganic Analyzes, Department of Physical and Environmental Chemistry, 00-139 Warszawa, Poland; (A.K.); (M.S.)
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland;
| | - Małgorzata Tańska
- Department of Food Plant Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| |
Collapse
|
3
|
Lopes JDC, Madureira J, Margaça FMA, Cabo Verde S. Grape Pomace: A Review of Its Bioactive Phenolic Compounds, Health Benefits, and Applications. Molecules 2025; 30:362. [PMID: 39860231 PMCID: PMC11767471 DOI: 10.3390/molecules30020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The wine industry generates high amounts of waste, posing current environmental and economic sustainability challenges. Grape pomace, mainly composed of seeds, skins, and stalks, contains significant amounts of bioactive compounds and constitutes the main solid residue of this industry. Various strategies are being explored for its valorization, from a circular economy perspective. This review provides an updated overview of the composition of grape pomace from winemaking, highlighting sustainable methodologies for extracting phenolic compounds and their potential health benefits, including antioxidant, antimicrobial, antidiabetic, cardioprotective, antiproliferative, anti-aging, and gut health properties. Furthermore, this review explores the potential applications of this agro-industrial waste and its extractable compounds across the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Janice da Conceição Lopes
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
| | - Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Fernanda M. A. Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
4
|
Mavai S, Bains A, Sridhar K, Chawla P, Sharma M. Emerging deep eutectic solvents for food waste valorization to achieve sustainable development goals: Bioactive extractions and food applications. Food Chem 2025; 462:141000. [PMID: 39241686 DOI: 10.1016/j.foodchem.2024.141000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Food waste, accounting for about one-third of the total global food resources wasted each year, is a substantial challenge to global sustainability, contributing to adverse environmental impacts. The utilization of food waste as a valuable source for bioactive extraction can be facilitated through the application of DES (Deep Eutectic Solvents). Acknowledging the significant need to tackle this issue, the United Nations integrated food waste management into its Sustainable Development Goals, hence, the present review explores the role of DES in bioactive compounds extraction from food waste. Various extraction processes using the DES system are thoroughly studied and the application of bioactive components as antioxidants, antimicrobials, flavourings, nutraceuticals, functional ingredients, additives, and preservatives is investigated. Most importantly, regulatory considerations and safety aspects of DES in food applications are discussed in-depth along with consumer perception and acceptance of DES in the food sector. The key hypothesis of the review is to evaluate emerging DES systems for their efficiency in bioactive extraction technologies and various food applications. Overall, this review provides a comprehensive understanding of utilizing DES for synthesizing valuable food waste-derived bioactive components, offering a sustainable approach to waste management and the development of high-value products.
Collapse
Affiliation(s)
- Sayani Mavai
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research, and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
5
|
Palos-Hernández A, González-Paramás AM, Santos-Buelga C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024; 30:55. [PMID: 39795112 PMCID: PMC11722096 DOI: 10.3390/molecules30010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Phenolic compounds present in plants and foods are receiving increasing attention for their bioactive and sensory properties, accompanied by consumers' interest in products with health benefits derived from natural rather than artificial sources. This, together with the sustainable development goals for the 21st century, has driven the development of green extraction techniques that allow obtaining these compounds with the safety and quality required to be applied in the food, cosmetic and pharmaceutical industries. Green extraction of natural products involves practices aiming at reducing the environmental impact of the preparation processes, based on using natural or less-polluting solvents, lower energetic requirements and shorter extraction times, while providing greater efficiency in the recovery of target compounds. In this article, the principles of sustainable extraction techniques and the advances produced in recent years regarding green isolation of polyphenols from plants, food and food waste are reviewed.
Collapse
Affiliation(s)
- Andrea Palos-Hernández
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
| | - Ana M. González-Paramás
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Kumar R, Flint-Garcia S, Salazar Vidal MN, Channaiah L, Vardhanabhuti B, Sommer S, Wan C, Somavat P. Optimization of Polyphenol Extraction from Purple Corn Pericarp Using Glycerol/Lactic Acid-Based Deep Eutectic Solvent in Combination with Ultrasound-Assisted Extraction. Antioxidants (Basel) 2024; 14:9. [PMID: 39857343 PMCID: PMC11762350 DOI: 10.3390/antiox14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Purple corn pericarp, a processing waste stream, is an extremely rich source of phytochemicals. Optimal polyphenol extraction parameters were identified using response surface methodology (RSM) by combining a deep eutectic solvent (DES) and ultrasound-assisted extraction (UAE) method. After DES characterization, Plackett-Burman design was used to screen five explanatory variables, namely, time, Temp (temperature), water, Amp (amplitude), and S/L (solid-to-liquid ratio). The total anthocyanin concentration (TAC), total polyphenol concentration (TPC), and condensed tannin (CT) concentration were the response variables. After identifying significant factors, the Box-Behnken design was utilized to identify the optimal extraction parameters. The experimental yields under the optimized conditions of time (10 min), temperature (60 °C), water concentration (42.73%), and amplitude (40%) were 36.31 ± 1.54 g of cyanidin-3-glucoside (C3G), 103.16 ± 6.17 g of gallic acid (GA), and 237.54 ± 9.98 g of epicatechin (EE) per kg of pericarp, with a desirability index of 0.858. The relative standard error among the predicted and experimental yields was <10%, validating the robustness of the model. HPLC analysis identified seven phytochemicals, and significant antioxidant activities were observed through four distinct assays. Metabolomic profiling identified 57 unique phytochemicals. The UAE technique combined with DES can efficiently extract polyphenols from purple corn pericarp in a short time.
Collapse
Affiliation(s)
- Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Sherry Flint-Garcia
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, MO 65211, USA;
| | | | - Lakshmikantha Channaiah
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Bongkosh Vardhanabhuti
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Stephan Sommer
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
7
|
Harfoush A, Swaidan A, Khazaal S, Salem Sokhn E, Grimi N, Debs E, Louka N, El Darra N. From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities. Antioxidants (Basel) 2024; 13:1588. [PMID: 39765915 PMCID: PMC11673901 DOI: 10.3390/antiox13121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Tea, one of the most popular beverages worldwide, generates a substantial amount of spent leaves, often directly discarded although they may still contain valuable compounds. This study aims to optimize the extraction of polyphenols from spent black tea (SBT) and spent green tea (SGT) leaves while also exploring their antioxidant and antibacterial properties. Response surface methodology was utilized to determine the optimal experimental conditions for extracting polyphenols from SBT and SGT. The total phenolic content (TPC) was quantified using the Folin-Ciocalteu method, while antioxidant activity was evaluated through the DPPH assay. Antibacterial activity was assessed using the disk diffusion method. Additionally, high-performance liquid chromatography (HPLC) was employed to analyze the phytochemical profiles of the SBT and SGT extracts. Optimal extraction for SBT achieved 404 mg GAE/g DM TPC and 51.5% DPPH inhibition at 93.64 °C, 79.9 min, and 59.4% ethanol-water. For SGT, conditions of 93.63 °C, 81.7 min, and 53.2% ethanol-water yielded 452 mg GAE/g DM TPC and 78.3% DPPH inhibition. Both tea extracts exhibited antibacterial activity against Gram-positive bacteria, with SGT showing greater efficacy against S. aureus and slightly better inhibition of B. subtilis compared to SBT. No activity was observed against the Gram-negative bacteria E. coli and S. typhimurium. HPLC analysis revealed hydroxybenzoic acid as the main phenolic compound in SBT (360.7 mg/L), while rutin was predominant in SGT (42.73 mg/L). The optimized phenolic-rich extracts of SBT and SGT demonstrated promising antioxidant and antibacterial potential, making them strong candidates for use as natural health boosters in food products.
Collapse
Affiliation(s)
- Ahlam Harfoush
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon; (A.H.); (A.S.); (S.K.); (N.E.D.)
| | - Aseel Swaidan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon; (A.H.); (A.S.); (S.K.); (N.E.D.)
| | - Salma Khazaal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon; (A.H.); (A.S.); (S.K.); (N.E.D.)
| | - Elie Salem Sokhn
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon;
| | - Nabil Grimi
- Centre de Recherche Royallieu-CS 60319, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Université de Technologie de Compiègne, 60203 Compiègne CEDEX, France
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon;
| | - Nicolas Louka
- Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Mar Roukos—Dekwaneh, Riad El Solh, P.O. Box 1514, Beirut 1107 2050, Lebanon;
| | - Nada El Darra
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon; (A.H.); (A.S.); (S.K.); (N.E.D.)
| |
Collapse
|
8
|
Basile G, De Luca L, Sorrentino G, Calabrese M, Esposito M, Pizzolongo F, Romano R. Green technologies for extracting plant waste functional ingredients and new food formulation: A review. J Food Sci 2024; 89:8156-8174. [PMID: 39495566 DOI: 10.1111/1750-3841.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Nowadays, there is a growing interest in food waste recovery by both consumers and companies. Food waste of plant origin is a source of bioactive compounds, such as phenolic acids, anthocyanins, flavonoids, phytosterols, carotenoids, and tocopherols, with well-known antioxidant, anti-glycemic, and antimicrobial properties. The use of green and sustainable technologies to recover bioactive compounds from food waste is a possible solution to valorize waste following the principles of green chemistry. Furthermore, today's consumers are more attracted, informed, and aware of the benefits associated with the consumption of functional foods, and with this in mind, the use of extracts rich in beneficial compounds obtained by green technologies from food waste can be a valid alternative to prepare functional foods. In this review, the recovery of polyphenols and fibers with green technologies from food waste for the formulation of functional foods was presented.
Collapse
Affiliation(s)
- Giulia Basile
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Giovanni Sorrentino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Martina Calabrese
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Mariarca Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| |
Collapse
|
9
|
Abbaspour L, Ghareaghajlou N, Afshar Mogaddam MR, Ghasempour Z. An innovative technique for the extraction and stability of polyphenols using high voltage electrical discharge: HVED-Assisted Extraction of Polyphenols. Curr Res Food Sci 2024; 9:100928. [PMID: 39650858 PMCID: PMC11625161 DOI: 10.1016/j.crfs.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Polyphenols are the main group of phytochemicals with several biological activities. Due to the adverse effects of conventional solvent extraction methods, innovative extraction techniques have been used as alternatives to overcome these problems. High voltage electric discharge (HVED) is an eco-friendly innovative extraction technique based on the phenomenon of electrical breakdown in water. This technique induces physical and chemical processes, leading to product fragmentation, cellular damage, and liberation of bioactive compounds. HVED treatment can extract polyphenols at lower temperatures and shorter times than the conventional solvent extraction methods. This review summarizes the effect of HVED processing parameters on the recovery and stability of polyphenols from plant sources. Hydroethanolic solutions improve the HVED-assisted extraction of polyphenols compared to water. Moreover, acidic solvents are suitable for the high recovery and protection of polyphenols during electric discharges. This study revealed the efficacy of the HVED technique in extracting polyphenols for their utilization in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Leila Abbaspour
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Ghareaghajlou
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Ghasempour
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Helmi L, Al Khatib A, Rajha HN, Debs E, Jammoul A, Louka N, El Darra N. Valorization of Potato Peels ( Solanum tuberosum) Using Infrared-Assisted Extraction: A Novel Sprouting Suppressant and Antibacterial Agent. Foods 2024; 13:3445. [PMID: 39517229 PMCID: PMC11544913 DOI: 10.3390/foods13213445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Recently, there has been a growing interest in reducing waste to promote environmental sustainability, with particular focus on agricultural by-products, especially fruits and vegetables. Potato, a widely used crop across various industries, generates a significant amount of peel waste. This study aims to valorize potato peels using water bath extraction (WBE) and infrared-assisted extraction (IRAE), both with distilled water as the solvent, followed by assessments of antioxidant, antibacterial, and anti-sprouting activities. Optimization using response surface methodology identified optimal extraction conditions for WBE (90 °C for 70 min) and IRAE (80 °C for 10 min), with both methods yielding 3.5 mg GAE/g DM in polyphenol content. IRAE demonstrated superior energy efficiency and enhanced antioxidant activity. The extracts exhibited antibacterial properties against both Gram-positive (Listeria monocytogenes) and Gram-negative bacteria (Proteus sp. and Salmonella sp.), with inhibition zones ranging from 10 to 14 mm. Furthermore, the potato peels extract showed significant anti-sprouting effects at room temperature, reducing both the number and size of sprouts compared with the control. HPLC analysis showed the presence of different phenolic compounds such as rutin, catechin, caffeic acid, protocatechuic acid, chlorogenic acid, p-coumaric acid, and gallic acid in one or both extracts. These findings suggest that potato peels extract holds potential for applications in the food industry as a natural preservative due to its antioxidant properties, as well as a sprout suppressant. The antibacterial activity of the extracts suggests their potential as a natural preservative as well, offering protection against both Gram-positive and Gram-negative bacteria that may be present in food.
Collapse
Affiliation(s)
- Layan Helmi
- Faculty of Heath Sciences, Beirut Arab University, Tarik El Jedidah, Riad EL Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon;
| | - Alissar Al Khatib
- Department of Nursing, Faculty of Health Sciences, Almoosa College, Al Ahsa P.O. Box 5098, Saudi Arabia;
| | - Hiba N. Rajha
- Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon; (H.N.R.); (N.L.)
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon;
| | - Adla Jammoul
- Food Department, Lebanese Agricultural Research Institute, P.O. Box 2611, Beirut 1107 2809, Lebanon;
| | - Nicolas Louka
- Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon; (H.N.R.); (N.L.)
| | - Nada El Darra
- Faculty of Heath Sciences, Beirut Arab University, Tarik El Jedidah, Riad EL Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon;
| |
Collapse
|
12
|
Ristivojević P, Krstić Ristivojević M, Stanković D, Cvijetić I. Advances in Extracting Bioactive Compounds from Food and Agricultural Waste and By-Products Using Natural Deep Eutectic Solvents: A Circular Economy Perspective. Molecules 2024; 29:4717. [PMID: 39407645 PMCID: PMC11478183 DOI: 10.3390/molecules29194717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Due to the urgent need for a transition to sustainable, zero-waste green technology, the extraction of bioactives from food and agricultural by-products and waste has garnered increasing interest. Traditional extraction techniques often involve using organic solvents, which are associated with environmental and health risks. Natural deep eutectic solvents (NADESs) have emerged as a promising green alternative, offering advantages such as low toxicity, biodegradability, and the ability to dissolve a wide range of biomolecules. This review provides a comprehensive overview of recent trends in the application of NADESs for extracting bioactive compounds from sustainable sources. The review explains the composition and principles of preparation and highlights various applications of NADESs in extracting different classes of bioactive compounds, emphasizing their potential to revolutionize extraction processes. By summarizing the latest advancements and trends, this review aims to support research and industrial applications of NADESs, promoting more sustainable and efficient extraction methods in the food and agricultural sectors.
Collapse
Affiliation(s)
- Petar Ristivojević
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Maja Krstić Ristivojević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Dalibor Stanković
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Ilija Cvijetić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| |
Collapse
|
13
|
Alfaleh AA, Sindi HA. Systematic study on date palm seeds (Phoenix dactylifera L.) extraction optimisation using natural deep eutectic solvents and ultrasound technique. Sci Rep 2024; 14:16622. [PMID: 39025988 PMCID: PMC11258289 DOI: 10.1038/s41598-024-67416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Natural deep eutectic solvents (NADES) are emerging, environment-friendly solvents that have garnered attention for their application in extracting phenolic compounds. This study investigated the effects of four synthetic NADES on polyphenols extracted from date seeds (DS) using choline chloride (ChCl) as a hydrogen-bond acceptor and lactic acid (La), citric acid (Citri), glycerol (Gly), and fructose (Fruc) as hydrogen-bond donors, in comparison with DS extracts extracted by conventional solvents (water, 70% methanol, and 70% ethanol). The antioxidant activity (DPPH), total phenolic content (TPC) and 6 phenolic compounds were determined using HPLC. The results showed that the ChCl-La and ChCl-Citri systems exhibited a high extraction efficiency regarding TPC, and DPPH in the DS extracts extracted by NADES compare to those DS extracts extracted with conventional solvents (p ˂ 0.001). HPLC results demonstrated that DS extracted by ChCl-La contained all measured phenolic compounds. Also gallic acid and catechin were the major compounds identified in the DS extracts. In addition DS extracted by ChCl-Citri and ChCl-Gly had the highest concentration of catechin. In conclusion, combining NADES is a promising and environment-friendly alternative to the conventional solvent extraction of phenolic compounds from DS.
Collapse
Affiliation(s)
- Alanood A Alfaleh
- Department of Environmental Sciences, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba A Sindi
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Benítez-Correa E, Bastías-Montes JM, Nelson SA, Iznaga TB, Wong MP, Muñoz-Fariña O. Improving the Composition and Bioactivity of Cocoa (Theobroma cacao L.) Bean Shell Extract by Choline Chloride-Lactic Acid Natural Deep Eutectic Solvent Extraction Assisted by Pulsed Electric Field Pre-Treatment. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:351-358. [PMID: 38517668 DOI: 10.1007/s11130-024-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
An environmentally friendly method for the release of cocoa bean shell (CBS) extracts is proposed in this paper. This work aims to investigate the effect of pulsed electric field (PEF) pre-treatment on subsequent solid-liquid extraction (SLE) of metabolites with choline chloride-lactic acid natural deep eutectic solvent (NaDES) and bioactivity of cocoa bean shell (CBS) extract. Two different media for PEF application were evaluated: water and chlorine chloride-lactic acid. Total polyphenols (TPC), total flavonoids (TFC), individual major compounds, and antioxidant and antibacterial activity of CBS extracts were assessed. The performance of PEF-assisted extraction was compared with SLE and ultrasound-assisted extraction (UAE). The proposed method improved the release of TPC up to 45% and TFC up to 48% compared with the conventional extraction. The CBS extract showed medium growth inhibition of Escherichia coli and high growth inhibition of Salmonella sp, Listeria monocytogenes, and Staphylococcus aureus. Thus, an extract with enhanced antioxidant and antibacterial properties was obtained.
Collapse
Affiliation(s)
- Elaine Benítez-Correa
- Food Engineering Department, University of Bío Bío, Chillán, Chile
- Food Industry Researches Institute, La Habana, Cuba
| | | | | | | | - Mario Pérez Wong
- Food Engineering Department, University of Bío Bío, Chillán, Chile
| | - Ociel Muñoz-Fariña
- Institute of Food Science and Technology, Austral University of Chile, Valdivia, Chile
| |
Collapse
|
15
|
Li S, Wang G, Zhao J, Ou P, Yao Q, Wang W. Ultrasound-Assisted Extraction of Phenolic Compounds from Celtuce ( Lactuca sativa var. augustana) Leaves Using Natural Deep Eutectic Solvents (NADES): Process Optimization and Extraction Mechanism Research. Molecules 2024; 29:2385. [PMID: 38792246 PMCID: PMC11124495 DOI: 10.3390/molecules29102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Natural deep eutectic solvents (NADESs), as emerging green solvents, can efficiently extract natural products from natural resources. However, studies on the extraction of phenolic compounds from celtuce (Lactuca sativa var. augustana) leaves (CLs) by NADESs are still lacking. This study screened the NADES L-proline-lactic acid (Pr-LA), combined it with ultrasound-assisted extraction (UAE) to extract phenolic compounds from CLs, and conducted a comparative study on the extraction effect with traditional extraction solvents. Both SEM and FT-IR confirmed that Pr-LA can enhance the degree of fragmentation of cell structures and improve the extraction rate of phenolic compounds. Molecular dynamics simulation results show that Pr-LA can improve the solubility of phenolic compounds and has stronger hydrogen bonds and van der Waals interactions with phenolic compounds. Single-factor and Box-Behnken experiments optimized the process parameters for the extraction of phenolic compounds from CLs. The second-order kinetic model describes the extraction process of phenolic compounds from CLs under optimal process parameters and provides theoretical guidance for actual industrial production. This study not only provides an efficient and green method for extracting phenolic compounds from CLs but also clarifies the mechanism of improved extraction efficiency, which provides a basis for research on the NADES extraction mechanism.
Collapse
Affiliation(s)
- Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| | - Penghui Ou
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| |
Collapse
|
16
|
Kalyniukova A, Várfalvyová A, Płotka-Wasylka J, Majchrzak T, Makoś-Chełstowska P, Tomášková I, Pešková V, Pastierovič F, Jirošová A, Andruch V. Deep eutectic solvent-based shaking-assisted extraction for determination of bioactive compounds from Norway spruce roots. Front Chem 2024; 12:1385844. [PMID: 38629104 PMCID: PMC11018933 DOI: 10.3389/fchem.2024.1385844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Polyphenolic compounds play an essential role in plant growth, reproduction, and defense mechanisms against pathogens and environmental stresses. Extracting these compounds is the initial step in assessing phytochemical changes, where the choice of extraction method significantly influences the extracted analytes. However, due to environmental factors, analyzing numerous samples is necessary for statistically significant results, often leading to the use of harmful organic solvents for extraction. Therefore, in this study, a novel DES-based shaking-assisted extraction procedure for the separation of polyphenolic compounds from plant samples followed by LC-ESI-QTOF-MS analysis was developed. The DES was prepared from choline chloride (ChCl) as the hydrogen bond acceptor (HBA) and fructose (Fru) as the hydrogen bond donor (HBD) at various molar ratios with the addition of 30% water to reduce viscosity. Several experimental variables affecting extraction efficiency were studied and optimized using one-variable-at-a-time (OVAT) and confirmed by response surface design (RS). Nearly the same experimental conditions were obtained using both optimization methods and were set as follows: 30 mg of sample, 300 mg of ChCl:Fru 1:2 DES containing 30% w/w of water, 500 rpm shaking speed, 30 min extraction time, 10°C extraction temperature. The results were compared with those obtained using conventional solvents, such as ethanol, methanol and water, whereby the DES-based shaking-assisted extraction method showed a higher efficiency than the classical procedures. The greenness of the developed method was compared with the greenness of existing procedures for the extraction of polyphenolic substances from solid plant samples using the complementary green analytical procedure index (ComplexGAPI) approach, while the results for the developed method were better or comparable to the existing ones. In addition, the practicability of the developed procedure was evaluated by application of the blue applicability grade index (BAGI) metric. The developed procedure was applied to the determination of spruce root samples with satisfactory results and has the potential for use in the analysis of similar plant samples.
Collapse
Affiliation(s)
- Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Alica Várfalvyová
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Košice, Slovakia
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Majchrzak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Vítězslava Pešková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Filip Pastierovič
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Anna Jirošová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Vasil Andruch
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Košice, Slovakia
| |
Collapse
|
17
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
18
|
Hammoud M, Debs E, van den Broek LA, Rajha HN, Safi C, van Erven G, Maroun RG, Chokr A, Rammal H, Louka N. Intensification of extraction process through IVDV pretreatment from Eryngium creticum leaves and stems: Maximizing yields and assessing biological activities. Heliyon 2024; 10:e27431. [PMID: 38509897 PMCID: PMC10951497 DOI: 10.1016/j.heliyon.2024.e27431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
"Intensification of Vaporization by Decompression to the Vacuum" (IVDV) has initially emerged as a technology primarily employed for expanding and enhancing the texture of biological products. However, its recent applications have showcased significant promise in the realm of extracting bioactive molecules from various plant materials. In this context, optimization using response surface methodology was conducted to investigate the impact of IVDV pretreatment on the extractability of phenolic compounds from Eryngium creticum leaves and stems, as well as their biological activities. Using IVDV preceding the extraction led to higher total phenolic content (TPC) and enhanced antiradical activities in treated materials compared to untreated ones. The optimal processing conditions in terms of water content, steam pressure and treatment time were determined in order to maximize TPC (89.07 and 20.06 mg GAE/g DM in leaves and stems, respectively) and antiradical (DPPH) inhibition percentage (93.51% and 27.54% in leaves and stems, respectively). IVDV-treated extracts showed superior antioxidant, antibacterial and antibiofilm capacities compared to raw extracts. Using RP-UHPLC-PDA-MS, caffeic acid and rosmarinic acid were identified in IVDV-treated leaves. IVDV can be implemented as an innovative treatment applied prior to extraction to boost the recovery of biomolecules from plant matrices.
Collapse
Affiliation(s)
- Mariam Hammoud
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Université Saint-Joseph, B.P. 17-5208 Riad El Solh, Beirut, Lebanon
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technology, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli P. O. Box 100, Lebanon
| | | | - Hiba N. Rajha
- Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Saint-Joseph University, Mkalles Mar Roukos, Beirut, Lebanon
| | - Carl Safi
- Wageningen Food & Biobased Research, PO Box 17, 6700 AA Wageningen, the Netherlands
| | - Gijs van Erven
- Wageningen Food & Biobased Research, PO Box 17, 6700 AA Wageningen, the Netherlands
| | - Richard G. Maroun
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Université Saint-Joseph, B.P. 17-5208 Riad El Solh, Beirut, Lebanon
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technology, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Hassan Rammal
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technology, Lebanese University, Hadath Campus, Beirut, Lebanon
- Faculty of Agronomy, Lebanese University, Dekweneh-Lebanon
| | - Nicolas Louka
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Université Saint-Joseph, B.P. 17-5208 Riad El Solh, Beirut, Lebanon
| |
Collapse
|
19
|
Lim MW, Quan Tang Y, Aroua MK, Gew LT. Glycerol Extraction of Bioactive Compounds from Thanaka ( Hesperethusa crenulata) Bark through LCMS Profiling and Their Antioxidant Properties. ACS OMEGA 2024; 9:14388-14405. [PMID: 38559928 PMCID: PMC10976408 DOI: 10.1021/acsomega.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Organic solvents are hazardous to human and environmental health. The emergence of interest in finding greener solvents to replace organic solvents has sparked a series of studies in the use of glycerol for extracting bioactive compounds from natural products. In this study, we will first identify the bioactive compounds of glycerol- and nonglycerol-based Thanaka (Hesperethusa crenulata) bark extracts using liquid chromatography-mass spectrometry profiles; then, we will determine their antioxidant capacity, free radical scavenging activity, and total phenolic and flavonoid contents. Thanaka bark powder was extracted using solvents, namely, ethanol (TKE), water (TKW), glycerol (TKG), glycerol/water (1:1, v/v) (TKGW), and glycerol/ethanol (1:1, v/v) (TKGE). Among the five extracts, the extract of TKG has the highest number of bioactive compounds, as well as the highest total flavonoid content. TKGE possessed the highest total phenolic content and highest antioxidant activity shown in azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and ferric-reducing antioxidant power assays among the five extracts. Overall, glycerol has better efficiency in extracting bioactive compounds from Thanaka bark as compared to ethanol and water. Hence, from the phytochemical content and antioxidant properties of Thanaka extracts, we conclude that glycerol is a good green solvent alternative to replace organic solvents.
Collapse
Affiliation(s)
- Min Wen Lim
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yin Quan Tang
- School
of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, No. 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Mohamed Kheireddine Aroua
- Centre
for Carbon Dioxide Capture and Utilization (CCDCU), School of Engineering
and Technology, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, 47500 Petaling
Jaya, Malaysia
- School
of Engineering, Lancaster University, LA1 4YW Lancaster, U.K.
| | - Lai Ti Gew
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
20
|
Wang S, Lei T, Liu L, Tan Z. CO 2-responsive deep eutectic solvents for the enhanced extraction of hesperidin from Fertile orange peel. Food Chem 2024; 432:137255. [PMID: 37643516 DOI: 10.1016/j.foodchem.2023.137255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Hesperidin, also known as vitamin P, is widely studied for its distinctive potential in food and pharmaceutical industries. This work focuses on the research of CO2-responsive deep eutectic solvents (DESs) used as recyclable extractants for efficient extraction of hesperidin from Fertile orange peel. Reversible phase transformation of DES solution was achieved by bubbling CO2/N2. The maximum extraction yield of 22.39 mg/g was obtained for hesperidin under the following conditions: DES-6 (triethanolamine: 4-methoxyphenol = 1:1) used as extractant, water content of 35 wt%, solid-liquid ratio of 1:60 g/mL, extraction temperature of 25 °C, and ultrasonic time of 25 min, which was much higher than that extracted by methanol. Hesperidin of 74.38% was recovered in top phase after CO2 triggering. Density function theory (DFT) results indicated that hydrogen and π-π bonds were the main factors affecting hesperidin extraction. This study provides a new idea for extracting natural bioactive compounds using recyclable extractants.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia Ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Tian Lei
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Leilei Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia Ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China.
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
21
|
Umasekar S, Virivinti N. Advances in modeling techniques for the production and purification of biomolecules: A comprehensive review. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123945. [PMID: 38113723 DOI: 10.1016/j.jchromb.2023.123945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
In response to the growing demand for therapeutic biomolecules, there is a need for continuous and cost-effective bio-separation techniques to enhance extraction yield and efficiency. Aqueous biphasic extractive fermentation has emerged as an integrated downstream processing technique, offering selective partitioning, high productivity, and preservation of biomolecule integrity. However, the dynamic nature of this technique requires a comprehensive understanding of the underlying separation mechanisms. Unfortunately, the analysis of parameters influencing this dynamic behavior can be challenging due to limited resources and time. To address this, mathematical modeling approaches can be employed to minimize the tedious trial-and-error experimentation process. This review article presents mathematical modeling approaches for both upstream and downstream processing techniques, focusing on the production of biomolecules which can be used in pharmaceutical industries in a cost-effective manner. By leveraging mathematical models, researchers can optimize the production and purification processes, leading to improved efficiency and processing cost reduction in biomolecule production.
Collapse
Affiliation(s)
- Srimathi Umasekar
- Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Nagajyothi Virivinti
- Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
22
|
Liu B, Zhou LZ, He GW, Wang C. Highly efficient determination of metal ion in cosmetic samples by reversed-phase liquid-liquid microextraction based on green hydrophobic deep eutectic solvent. ANAL SCI 2024; 40:115-121. [PMID: 37845601 DOI: 10.1007/s44211-023-00437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
In this paper, a green hydrophobic deep eutectic solvent (HDES) composed of menthol and hexanoic acid was employed to dissolve cosmetics containing Cd2+ and Cd2+ was extracted using an EDTA-2Na saturated solution, analyzed by FAAS. The study found that HDES-1 can be recycled and reused well; the stability constants of Cd2+ EDTA chelates play an important role in the extracting process; the optimum conditions were: the solubility of HDES-1 was 20 mL/g for cosmetic sample at an indoor temperature of around 10 °C; the dissolver-extractant ratio was 2:1; the LOD was 0.037 mg/kg; the RSD was 3.5%; and the recovery was 85.5-118.3%. The developed method was successfully applied to actual cosmetic samples with satisfactory results, and it was also applied for the determination of Mg2+, Mn2+, and Cu2+ in cosmetic samples.
Collapse
Affiliation(s)
- Bangfu Liu
- Hunan Electronic Information Industry Institute, Jiefangdonglu 51, Changsha, 410000, Hunan, People's Republic of China.
| | - Le-Zhou Zhou
- Hunan Prevention and Treatment Institute for Occupational Disease, Changsha, 410007, Hunan, People's Republic of China
| | - Guo-Wen He
- College of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, Hunan, People's Republic of China
| | - Chaoli Wang
- Department of Pharmacy, Air Force Military Medical University, Xi'an, 710000, Shanxii, People's Republic of China
| |
Collapse
|
23
|
Benítez-Correa E, Bastías-Montes JM, Acuña-Nelson S, Muñoz-Fariña O. Effect of choline chloride-based deep eutectic solvents on polyphenols extraction from cocoa ( Theobroma cacao L.) bean shells and antioxidant activity of extracts. Curr Res Food Sci 2023; 7:100614. [PMID: 37840695 PMCID: PMC10570950 DOI: 10.1016/j.crfs.2023.100614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
The effective extraction of natural compounds from cocoa bean shells using deep eutectic solvents could contribute to the sustainable valorization of this waste material. The objective of this study was to: (1) analyze the extraction kinetics of polyphenols released from cocoa (Theobroma cacao L.) bean shells (CBS) by the solid-liquid extraction method using choline chloride-based deep eutectic solvents (ChCl-DES) and their aqueous solutions; (2) investigate the effect of choline chloride-based deep eutectic solvents (ChCl-DES) aqueous solutions on in-vitro antioxidant capacity and the main individual compounds of the extracts. ChCl-DES were prepared with lactic acid, glycerol, and ethylene glycol in a 1:2 ratio. Aqueous solutions (30%, 40%, and 50% water) to obtain solvents with different physicochemical properties were performed. The total phenolic content (TPC) was determined by the Folin-Ciocalteu method. The solution of Fick's law model for plate geometry particles was applied to fit the experimental data and calculate the effective diffusivity coefficient (De). The antioxidant capacity of the extracts was analyzed by a combination of 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) free radical scavenging capacity and ferric-reducing antioxidant power (FRAP) assays. The main bioactive compounds were quantified by high-performance liquid chromatography. The results showed that the type of hydrogen bond donor influences the total phenolic content, antioxidant activity and the main individual compounds in the extracts. Moreover, the washing/diffusion mechanism adequately depicts the extraction kinetics data for total phenolic content. However, the influence of an additional mechanism that enhanced the extraction capacity of deep eutectic solvents compared with organic solvent was confirmed.
Collapse
Affiliation(s)
- Elaine Benítez-Correa
- Food Engineering Department, Universidad Del Bío-Bío, Chillán, Chile
- Food Industry Research Institute, La Habana, Cuba
| | | | | | - Ociel Muñoz-Fariña
- Institute of Food Science and Technology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
24
|
Kavela ETA, Szalóki-Dorkó L, Máté M. The Efficiency of Selected Green Solvents and Parameters for Polyphenol Extraction from Chokeberry ( Aronia melanocarpa (Michx)) Pomace. Foods 2023; 12:3639. [PMID: 37835292 PMCID: PMC10572178 DOI: 10.3390/foods12193639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Chokeberry pomace is a potential source of natural colourants, antimicrobial agents, and anti-senescence compounds due to its high polyphenols content. Therefore, this study assessed the efficiency of green solvents (50% ethanol, 50% glycerol, and 100% distilled water, all acidified with 1% citric acid or 1% formic acid) for anthocyanin and total phenolic content (TPC) extraction from lyophilised chokeberry pomace. Extraction was performed in a water bath at 40, 50, and 60 °C for 60 and 120 min, followed by ultrasonic treatment for 15 and 30 min. Based on the results, 50% ethanol + 1% citric acid yielded significantly higher total anthocyanin content in the case of both spectrometric and HPLC measurements (1783 ± 153 mg CGE/100 g DW and 879.5 mg/100 g DW) at 50 °C for 60 min. Citric acids seem more effective compared to formic acid. The highest values of TPC were obtained with 50% glycerol + 1% formic acid at 50 °C for 60 min (12,309 ± 759 mg GAE/100 g DW). This study provides evidence that a substantial quantity of polyphenols, which can potentially be used as a natural food additive, can be efficiently extracted with 50% ethanol + 1% citric acid or 50% glycerol at 50 °C for 60 min from chokeberry pomace.
Collapse
Affiliation(s)
| | - Lilla Szalóki-Dorkó
- Department of Fruits and Vegetables Processing Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi Street 29-43, H-1118 Budapest, Hungary; (E.T.A.K.); (M.M.)
| | | |
Collapse
|
25
|
Zhou M, Fakayode OA, Li H. Green Extraction of Polyphenols via Deep Eutectic Solvents and Assisted Technologies from Agri-Food By-Products. Molecules 2023; 28:6852. [PMID: 37836694 PMCID: PMC10574355 DOI: 10.3390/molecules28196852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with important biological properties. Their presence in conveniently available low-cost sources, such as agri-food by-products, has gained considerable attention in their recovery and further exploitation. Retrieving polyphenols in a green and sustainable way is crucial. Recently, deep eutectic solvents (DESs) have been identified as a safe and environmentally benign medium capable of extracting polyphenols efficiently. This review encompasses the current knowledge and applications of DESs and assisted technologies to extract polyphenols from agri-food by-products. Particular attention has been paid to fundamental mechanisms and potential applications in the food, cosmetic, and pharmaceutical industries. In this way, DESs and DESs-assisted with advanced techniques offer promising opportunities to recover polyphenols from agri-food by-products efficiently, contributing to a circular and sustainable economy.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| |
Collapse
|
26
|
Vo TP, Pham TV, Weina K, Tran TNH, Vo LTV, Nguyen PT, Bui TLH, Phan TH, Nguyen DQ. Green extraction of phenolics and flavonoids from black mulberry fruit using natural deep eutectic solvents: optimization and surface morphology. BMC Chem 2023; 17:119. [PMID: 37735704 PMCID: PMC10512608 DOI: 10.1186/s13065-023-01041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
This study deployed ultrasonic-assisted extraction (UAE), combined with natural deep eutectic solvents (NADES), to extract phenolics and flavonoids from the black mulberry fruit, and the antioxidant activity was examined. The extraction yields of NADES-based UAE were assessed based on the yields of phenolics and flavonoids extracted from the black mulberry fruit. This study selected the molar ratios of hydrogen bond acceptors (HBA) and hydrogen bond donors HBD at 1:2 from previous studies. Choline chloride-lactic acid showed the highest solubility with phenolics and flavonoids among NADES systems. One-factor experiments evaluated the effect of UAE conditions (liquid-to-solid ratio (LSR), water content in NADES, temperature, and time) on TPC, TFC, and antioxidant activity. The suitable NADES-based UAE conditions for extracting phenolics and flavonoids from the black mulberry fruit were 60 ml/g of LSR, 40% water content, 70 °C, and 15 min. Response surface methodology with the Box-Behnken design model optimized the NADES-based UAE process based on response (TPC, TFC, ABTS, OH, and DPPH). The optimal conditions for the NADES-based UAE process were 70 ml/g of LSR, 38.9% water content in NADES, 67.9 °C, and 24.2 min of extraction time. The predicted values of the Box-Behnken design were compatible with the experimental results. Moreover, scanning electron microscopy (SEM) was used to survey the surface of black mulberry fruit with and without sonication. SEM can assist in demonstrating the destructive effect of NADES and ultrasonic waves on material surfaces. SEM findings indicated the high surface destruction capacity of NADES, which partially contributed to a superior extraction yield of NADES than conventional organic solvents. The study proposes an efficient and green method for extracting bioactive compounds from black mulberry fruits. The black mulberry fruit extracts can be applied to meat preservation and beverages with high antioxidants.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Vy Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Kasia Weina
- Evergreen Labs, My Khue Ward, Danang, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Thao Vy Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Phuc Thanh Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Linh Ha Bui
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Han Phan
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
27
|
Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, Harsányi E, Kovács B. Phytochemical Properties, Extraction, and Pharmacological Benefits of Naringin: A Review. Molecules 2023; 28:5623. [PMID: 37570594 PMCID: PMC10419872 DOI: 10.3390/molecules28155623] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
This review describes the various innovative approaches implemented for naringin extraction as well as the recent developments in the field. Naringin was assessed in terms of its structure, chemical composition, and potential food sources. How naringin works pharmacologically was discussed, including its potential as an anti-diabetic, anti-inflammatory, and hepatoprotective substance. Citrus flavonoids are crucial herbal additives that have a huge spectrum of organic activities. Naringin is a nutritional flavanone glycoside that has been shown to be effective in the treatment of a few chronic disorders associated with ageing. Citrus fruits contain a common flavone glycoside that has specific pharmacological and biological properties. Naringin, a flavone glycoside with a range of intriguing characteristics, is abundant in citrus fruits. Naringin has been shown to have a variety of biological, medicinal, and pharmacological effects. Naringin is hydrolyzed into rhamnose and prunin by the naringinase, which also possesses l-rhamnosidase activity. D-glucosidase subsequently catalyzes the hydrolysis of prunin into glucose and naringenin. Naringin is known for having anti-inflammatory, antioxidant, and tumor-fighting effects. Numerous test animals and cell lines have been used to correlate naringin exposure to asthma, hyperlipidemia, diabetes, cancer, hyperthyroidism, and osteoporosis. This study focused on the many documented actions of naringin in in-vitro and in-vivo experimental and preclinical investigations, as well as its prospective therapeutic advantages, utilizing the information that is presently accessible in the literature. In addition to its pharmacokinetic characteristics, naringin's structure, distribution, different extraction methods, and potential use in the cosmetic, food, pharmaceutical, and animal feed sectors were discussed.
Collapse
Affiliation(s)
- VS Shilpa
- Department of Food Technology & Nutrition, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology & Nutrition, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Malda 732141, West Bengal, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur 209402, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Harsányi
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Land Utilization, Engineering and Precision Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
28
|
Soares Mateus AR, Barros S, Pena A, Sanches-Silva A. The potential of citrus by-products in the development of functional food and active packaging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:41-90. [PMID: 37898542 DOI: 10.1016/bs.afnr.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Food by-product valorization has become an important research area for promoting the sustainability of the food chain. Citrus fruits are among the most widely cultivated fruit crops worldwide. Citrus by-products, including pomace, seeds, and peels (flavedo and albedo), are produced in large amounts each year. Those by-products have an important economic value due to the high content on bioactive compounds, namely phenolic compounds and carotenoids, and are considered a valuable bio-resource for potential applications in the food industry. However, green extraction techniques are required to ensure their sustainability. This chapter addresses the main components of citrus by-products and their recent applications in food products and active food packaging, towards a circular economy. In addition, the concern regarding citrus by-products contamination (e.g. with pesticides residues and mycotoxins) is also discussed.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal
| | - Silvia Barros
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Angelina Pena
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal
| | - Ana Sanches-Silva
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal.
| |
Collapse
|
29
|
Del-Castillo-Llamosas A, Rodríguez-Rebelo F, Rodríguez-Martínez B, Mallo-Fraga A, Del-Río PG, Gullón B. Valorization of Avocado Seed Wastes for Antioxidant Phenolics and Carbohydrates Recovery Using Deep Eutectic Solvents (DES). Antioxidants (Basel) 2023; 12:1156. [PMID: 37371886 DOI: 10.3390/antiox12061156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Avocado seeds represent the chief waste produced in avocado processing, leading not only to environmental problems regarding its elimination but to a loss of economic profitability. In fact, avocado seeds are known as interesting sources of bioactive compounds and carbohydrates, so their utilization may reduce the negative effect produced during the industrial manufacture of avocado-related products. In this sense, deep eutectic solvents (DES) are a novel greener alternative than organic solvents to extract bioactive polyphenols and carbohydrates. The study was based on a Box-Behnken experimental design to study the effect of three factors, temperature (40, 50, 60 °C), time (60, 120, 180 min) and water content (10, 30, 50% v/v) on the responses of total phenolic (TPC) and flavonoid content (TFC), antioxidant capacity (measured as ABTS and FRAP) and xylose content in the extract. The DES Choline chloride:glycerol (1:1) was used as solvent on avocado seed. Under optimal conditions, TPC: 19.71 mg GAE/g, TFC: 33.41 mg RE/g, ABTS: 20.91 mg TE/g, FRAP: 15.59 mg TE/g and xylose: 5.47 g/L were obtained. The tentative identification of eight phenolic compounds was assayed via HPLC-ESI. The carbohydrate content of the solid residue was also evaluated, and that solid was subjected to two different processing (delignification with DES and microwave-assisted autohydrolysis) to increase the glucan susceptibility to enzymes, and was also assayed reaching almost quantitative glucose yields. These results, added to the non-toxic, eco-friendly, and economic nature of DES, demonstrate that these solvents are an efficient alternative to organic solvents to recover phenolics and carbohydrates from food wastes.
Collapse
Affiliation(s)
| | - Fernando Rodríguez-Rebelo
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Adrián Mallo-Fraga
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Pablo G Del-Río
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Beatriz Gullón
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
30
|
Nastasi JR, Daygon VD, Kontogiorgos V, Fitzgerald MA. Qualitative Analysis of Polyphenols in Glycerol Plant Extracts Using Untargeted Metabolomics. Metabolites 2023; 13:metabo13040566. [PMID: 37110224 PMCID: PMC10146371 DOI: 10.3390/metabo13040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Glycerol is a reliable solvent for extracting polyphenols from food and waste products. There has been an increase in the application of glycerol over benchmark alcoholic solvents such as ethanol and methanol for natural product generation because of its non-toxic nature and high extraction efficiency. However, plant extracts containing a high glycerol concentration are unsuitable for mass spectrometry-based investigation utilising electrospray ionization, inhibiting the ability to analyse compounds of interest. In this investigation, a solid phase extraction protocol is outlined for removing glycerol from plant extracts containing a high concentration of glycerol and their subsequent analysis of polyphenols using ultra-performance liquid chromatography coupled with quadrupole time of flight tandem mass spectrometry. Using this method, glycerol-based extracts of Queen Garnet Plum (Prunus salicina) were investigated and compared to ethanolic extracts. Anthocyanins and flavonoids in high abundance were found in both glycerol and ethanol extracts. The polyphenol metabolome of Queen Garnet Plum was 53% polyphenol glycoside derivatives and 47% polyphenols in their aglycone forms. Furthermore, 56% of the flavonoid derivates were found to be flavonoid glycosides, and 44% were flavonoid aglycones. In addition, two flavonoid glycosides not previously found in Queen Garnet Plum were putatively identified: Quercetin-3-O-xyloside and Quercetin-3-O-rhamnoside.
Collapse
Affiliation(s)
- Joseph Robert Nastasi
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Venea Dara Daygon
- Queensland Metabolomics and Proteomics Facility, Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vassilis Kontogiorgos
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melissa A Fitzgerald
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Ma W, Liang Y, Lin H, Chen Y, Xie J, Ai F, Yan Z, Hu X, Yu Q. Fermentation of grapefruit peel by an efficient cellulose-degrading strain, (Penicillium YZ-1): Modification, structure and functional properties of soluble dietary fiber. Food Chem 2023; 420:136123. [PMID: 37094537 DOI: 10.1016/j.foodchem.2023.136123] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
In the study, a highly efficient cellulose-degrading strain was screened, which was identified as a fungus in the genus Penicillium sp., named YZ-1. The content of soluble dietary fiber was greatly increased by the treatment of this strain. In addition, the effects of soluble dietary fiber from high-pressure cooking group (HG-SDF), strain fermentation group (FG-SDF) and control group (CK-SDF) on the physicochemical structure, and in vitro hypolipidemic activity were investigated. The results showed that the physicochemical structure of the raw materials was improved after fermentation, and FG-SDF exhibited the loosest structure, the highest viscosity and thermal stability. Furthermore, compared to CK-SDF and HG-SDF, FG-SDF showed the most significant improvement in functional properties, including cholesterol adsorption capacity (CAC), inhibition of pancreatic lipase activity (LI) and mixed bile acid adsorption capacity (BBC). Overall, these findings will provide new insights into dietary fiber modification and improve the comprehensive use value of grapefruit by-products.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Liang
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Huasi Lin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Fengling Ai
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Ziwen Yan
- School of Food Science and Technology, Nanchang University, 330031, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
32
|
Wong YS, Yusoff R, Ngoh GC. Phenolic compounds extraction by assistive technologies and natural deep eutectic solvents. REV CHEM ENG 2023. [DOI: 10.1515/revce-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Abstract
Phenolic compounds are known to have a significant effect on human defense system due to their anti-inflammatory efficacy. This can slow down the aging process and strengthen the human immune system. With the growing interest in green chemistry concept, extraction of phenolic compounds from plants has been geared towards a sustainable path with the use of green and environmentally friendly solvents such as natural deep eutectic solvents (NADES). This review discusses both the conventional extraction and the advanced extraction methods of phenolic compounds using NADES with focus on microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) techniques ensued by a rationale comparison between them. Employing choline chloride-based natural deep eutectic solvents (NADES) is highlighted as one of the promising strategies in green solvent extraction of phenolic compounds in terms of their biodegradability and extraction mechanism. The review also discusses assistive extraction technologies using NADES for a better understanding of their relationship with extraction efficiency. In addition, the review includes an overview of the challenges of recovering phenolic compounds from NADES after extraction, the potential harmful effects of NADES as well as their future perspective.
Collapse
|
33
|
Ben Hsouna A, Sadaka C, Generalić Mekinić I, Garzoli S, Švarc-Gajić J, Rodrigues F, Morais S, Moreira MM, Ferreira E, Spigno G, Brezo-Borjan T, Akacha BB, Saad RB, Delerue-Matos C, Mnif W. The Chemical Variability, Nutraceutical Value, and Food-Industry and Cosmetic Applications of Citrus Plants: A Critical Review. Antioxidants (Basel) 2023; 12:481. [PMID: 36830039 PMCID: PMC9952696 DOI: 10.3390/antiox12020481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Citrus fruits occupy an important position in the context of the fruit trade, considering that both fresh fruits and processed products are produced on a large scale. Citrus fruits are recognized as an essential component of the human diet, thanks to their high content of beneficial nutrients such as vitamins, minerals, terpenes, flavonoids, coumarins and dietary fibers. Among these, a wide range of positive biological activities are attributed to terpenes and flavonoids derivatives. In this review, a list of bibliographic reports (from 2015 onwards) on the phytochemical composition, beneficial effects and potential applications of citrus fruits and their by-products is systematically summarized. In detail, information regarding the nutraceutical and medicinal value closely linked to the presence of numerous bioactive metabolites and their growing use in the food industry and food packaging, also considering any technological strategies such as encapsulation to guarantee their stability over time, were evaluated. In addition, since citrus fruit, as well as its by-products, are interesting alternatives for the reformulation of natural cosmetic products, the sector of the cosmetic industry is also explored. More in-depth knowledge of the latest information in this field will contribute to future conscious use of citrus fruits.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | | | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Jaroslava Švarc-Gajić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Francisca Rodrigues
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Manuela M. Moreira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Eduarda Ferreira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Giorgia Spigno
- DiSTAS, Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Tanja Brezo-Borjan
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| |
Collapse
|
34
|
Aqueous Two-Phase Systems Based on Ionic Liquids and Deep Eutectic Solvents as a Tool for the Recovery of Non-Protein Bioactive Compounds—A Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aqueous two-phase systems (ATPS) based on ionic liquids (IL) and deep eutectic solvents (DES) are ecofriendly choices and can be used to selectively separate compounds of interest, such as bioactive compounds. Bioactive compounds are nutrients and nonnutrients of animal, plant, and microbial origin that benefit the human body in addition to their classic nutritional properties. They can also be used for technical purposes in food and as active components in the chemical and pharmaceutical industries. Because they are usually present in complex matrices and low concentrations, it is necessary to separate them in order to increase their availability and stability, and ATPS is a highlighted technique for this purpose. This review demonstrates the application of ATPS based on IL and DES as a tool for recovering nonprotein bioactive compounds, considering critical factors, results and the most recent advances in this field. In addition, the review emphasizes the perspectives for expanding the use of nonconventional ATPS in purification systems, which consider the use of molecular modelling to predict experimental conditions, the investigation of diverse compounds in phase-forming systems, the establishment of optimal operational parameters, and the verification of bioactivities after the purification process.
Collapse
|
35
|
Bhatti SA, Hussain MH, Mohsin MZ, Mohsin A, Zaman WQ, Guo M, Iqbal MW, Siddiqui SA, Ibrahim SA, Ur-Rehman S, Korma SA. Evaluation of the antimicrobial effects of Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1043823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The extensive use of antibiotics and vaccines against microbial infections can result in long-term negative effects on humans and the environment. However, there are a number of plants that have antimicrobial effects against various disease-causing microbes such as bacteria, viruses, and fungi without negative side effects or harm to the environment. In this regard, four particular plants- Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta have been widely considered due to their excellent antimicrobial effect and ample availability. In this review, we discuss their antimicrobial effects due to the presence of thymoquinone, p-cymene, pinene, alkaloids, limonene, camphene, and melanin. These antimicrobial compounds disrupt the cell membrane of microbes, inhibit cellular division, and form biofilm in bacterial species, eventually reducing the number of microbes. Extraction of these compounds from the respective plants is carried out by different methods such as soxhlet, hydro-distillation, liquid-liquid extraction (LLE), pressurized liquid extraction (PLE), solid-phase extraction (SPE), supercritical fluid extraction (SFE), pulsed electric field (PEF), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), ultrasound-assisted extraction (UAE), and high-voltage electrical discharge. Suitable selection of the extraction technique highly depends upon the associated advantages and disadvantages. In order to aid future study in this field, this review paper summarizes the advantages and disadvantages of each of these approaches. Additionally, the discussion covers how antimicrobial agents destroy harmful bacteria. Thus, this review offers in-depth knowledge to researchers on the antibacterial properties of Capsicum, Nigella sativa, Musa paradisiaca L. peels, and Citrus limetta.
Collapse
|
36
|
Green Extraction of Polyphenols from Waste Bentonite to Produce Functional Antioxidant Excipients for Cosmetic and Pharmaceutical Purposes: A Waste-to-Market Approach. Antioxidants (Basel) 2022; 11:antiox11122493. [PMID: 36552701 PMCID: PMC9774313 DOI: 10.3390/antiox11122493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In an ever-growing perspective of circular economy, the development of conscious, sustainable and environmental-friendly strategies to recycle the waste products is the key point. The scope of this work was to validate the waste bentonite from the grape processing industries as a precious matrix to extract polyphenols by applying a waste-to-market approach aimed at producing novel functional excipients. The waste bentonite was recovered after the fining process and opportunely pre-treated. Subsequently, both the freeze dried and the so-called "wet" bentonites were subjected to maceration. PEG200 and Propylene Glycol were selected as solvents due to their ability to dissolve polyphenols and their wide use in the cosmetic/pharmaceutical field. The extracts were evaluated in terms of yield, density, pH after water-dilution, total phenolic (Folin-Ciocalteu) and protein (Bradford) contents, antioxidant power (DPPH), amount of some representative polyphenols (HPLC-DAD), cytocompatibility and stability. Both solvents validated the bentonite as a valuable source of polyphenols and led to colored fluids characterized by an acidic pH after water-dilution. The best extract was obtained from the wet bentonite with PEG200 and highlighted the highest phenolic content and consequently the strongest antioxidant activity. Additionally, it displayed proliferative properties and resulted almost stable over time. Hence, it might be directly used as polyphenols-enriched functional novel raw material for cosmetic and pharmaceutics purposes.
Collapse
|
37
|
Testing of a new high voltage electrical discharge generator prototype at high frequencies to assist anthocyanin extraction from blueberries. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Plastiras OE, Samanidou V. Applications of Deep Eutectic Solvents in Sample Preparation and Extraction of Organic Molecules. Molecules 2022; 27:7699. [PMID: 36431799 PMCID: PMC9693881 DOI: 10.3390/molecules27227699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The use of deep eutectic solvents (DES) is on the rise worldwide because of the astounding properties they offer, such as simplicity of synthesis and utilization, low-cost, and environmental friendliness, which can, without a doubt, replace conventional solvents used in heaps. In this review, the focus will be on the usage of DES in extracting a substantial variety of organic compounds from different sample matrices, which not only exhibit great results but surpass the analytical performance of conventional solvents. Moreover, the properties of the most commonly used DES will be summarized.
Collapse
Affiliation(s)
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
39
|
Rodríguez-Martínez B, Ferreira-Santos P, Alfonso IM, Martínez S, Genisheva Z, Gullón B. Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Molecules 2022; 27:molecules27196646. [PMID: 36235183 PMCID: PMC9572341 DOI: 10.3390/molecules27196646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Avocado peels are the main agro-industrial residue generated during the avocado processing, being a rich source of bioactive compounds like phenolic compounds. The growing demand for more sustainable processes requires the development of new and effective methods for extracting bioactive compounds from industrial waste. Deep eutectic solvents (DESs) are a new sustainable alternative to toxic organic solvents due to their non-toxicity and biocompatibility. In this study, five selected DESs were applied for the extraction of bioactive phenolic compounds from avocado peels. The extraction efficiency was evaluated by measuring the total phenolics and flavonoids content. The best extraction results were obtained with choline chloride-acetic acid and -lactic acid (92.03 ± 2.11 mg GAE/g DAP in TPC and 186.01 ± 3.27 mg RE/g DAP); however, all tested DESs show better extraction efficiency than ethanol. All the obtained NADES extracts have high antioxidant activity (FRAP: 72.5-121.1 mg TE/g; TAC: 90.0-126.1 mg AAE/g). The synthesized DESs and avocado peels DES extracts had activity against all tested bacteria (Staphylococcus aureus, Streptococcus dysgalactiae, Escherichia coli and Pseudomonas putida), and the extracts prepared with choline chloride-acetic acid and -lactic acid have the highest antibacterial activity against all microorganisms. These results, coupled with the non-toxic, biodegradable, low-cost, and environmentally friendly characteristics of DESs, provide strong evidence that DESs represent an effective alternative to organic solvents for the recovery of phenolic bioactive compounds from agro-industrial wastes.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| | - Irene Méndez Alfonso
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Sidonia Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Zlatina Genisheva
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
40
|
Hejazi S, Siahpoush V, Ostadrahimi A, Kafil Gazi Jahani B, Ghasempour Z. High-voltage electric discharge as pretreatment for efficient extraction of bioactive compounds from red onion peel. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Adeyi O, Okolo BI, Oke EO, Adeyi AJ, Otolorin JA, Olalere OA, Taiwo AE, Okhale S, Gbadamosi B, Onu PN, Aremu OS, Qwebani-Ogunleye T. Preliminary techno-economic assessment and uncertainty analysis of scaled-up integrated process for bioactive extracts production from Senna alata (L.) leaves. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Mushtaq M, Butt FW, Akram S, Ashraf R, Ahmed D. Deep Eutectic Liquids as Tailorable Extraction Solvents: A Review of Opportunities and Challenges. Crit Rev Anal Chem 2022; 54:1634-1660. [PMID: 36148704 DOI: 10.1080/10408347.2022.2125284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Deep Eutectic Liquids (DELs) fall among the rapidly evolving discoveries of the 21st century, and these liquids are considered as alternative solvents to toxic and volatile organic liquids. Nevertheless, the emerging trend regarding the use of DELs in every field of physical and biological sciences, a lot of ambiguities and misconceptions exist about their formation, mechanism, and efficiencies observed or projected. A review of available technical data makes it obvious that these liquids have the potential to revolutionize the underdeveloped areas of analytical chemistry particularly the extraction/enrichment of analytes. To ensure the green and sustainable use of DELs, the researchers need to have a thorough understanding of DELs, their classification, chemistry, the nature and strength of molecular entanglements, and their tailorable features. Many researchers have declared these liquids recyclable but more attentive trials are needed to develop an authentic and straightforward DELs recycling methodology. The present review covers sound background knowledge and expert opinions about the technical definition of DELs, their classification, formation, recyclability, and tailorable features for their application as extraction solvent/sorbent in analytical chemistry.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
43
|
More PR, Jambrak AR, Arya SS. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Liu B, Tan Z. Separation and Purification of Astragalus membranaceus Polysaccharides by Deep Eutectic Solvents-Based Aqueous Two-Phase System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165288. [PMID: 36014526 PMCID: PMC9412596 DOI: 10.3390/molecules27165288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
(1) Background: Aqueous two-phase systems (ATPSs) have been widely used in the separation and purification of bioactive substances in recent years. (2) Methods: In this study, deep eutectic solvents (DESs)-based ATPSs were employed for the extraction and separation of Astragalus membranaceus polysaccharides (AMP). The optimal DES (choline chloride:urea = 1:1) was first screened to extract AMP, and the effect of DES concentration, solid-liquid ratio, pH, extraction temperature, and extraction time on the extraction yield of AMP were investigated. (3) Results: The maximum extraction yield was 141.11 mg/g under the optimum conditions. AMP was then preliminarily purified by ATPS, to further realize the recycling and reuse of DES. The effect of type of salts, salt concentration, and extraction temperature on extraction efficiency was investigated. The extraction efficiency was 97.85% for AMP under the optimum ATPS conditions. Finally, the obtained AMP was studied by molecular weight determination, infrared spectroscopy analysis, and monosaccharide composition analysis. (4) Conclusions: This ATPS extraction based on DESs is simple, environmentally friendly, low-cost, and has high extraction efficiency, which provides new ideas for the extraction of plant polysaccharides and other bioactive compounds.
Collapse
Affiliation(s)
- Bangfu Liu
- Hunan Electronic Information Industry Institute, Changsha 410012, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Correspondence: ; Tel.: +86-731-8899-8517
| |
Collapse
|
45
|
Barba FJ, Rajha HN, Debs E, Abi-Khattar AM, Khabbaz S, Dar BN, Simirgiotis MJ, Castagnini JM, Maroun RG, Louka N. Optimization of Polyphenols’ Recovery from Purple Corn Cobs Assisted by Infrared Technology and Use of Extracted Anthocyanins as a Natural Colorant in Pickled Turnip. Molecules 2022; 27:molecules27165222. [PMID: 36014470 PMCID: PMC9416142 DOI: 10.3390/molecules27165222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
An ecofriendly extraction technology using infrared (IR) irradiation Ired-Irrad® was applied to purple corn cobs to enhance polyphenol recovery for the first time. The IR extraction efficiency was compared to that of the water bath (WB) method. Response surface methodology (RSM) using a central composite design was conducted to determine the effect of the experimental conditions (extraction time and treatment temperature) and their interactions on the total polyphenol and anthocyanin yields. Optimal extraction of total phenolic compounds (37 mg GAE/g DM) and total monomeric anthocyanins (14 mg C3G/g DM) were obtained at 63 °C for 77 min using IR as an extraction technique and water as a solvent. HPLC revealed that the recovery of peonidin 3-O-glucoside and cyanidin 3-O-glucoside was enhanced by 26% and 34%, respectively, when using IR. Finally, purple corn cobs’ spray-dried extract was proven to be an important natural colorant of pickled turnip. It offers great potential for use as a healthy alternative to the carcinogenic rhodamine B synthetic dye, which was banned.
Collapse
Affiliation(s)
- Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-544-972
| | - Hiba N. Rajha
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
- Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph de Beyrouth, CST Mkalles Mar Roukos, Beirut 1107 2050, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon
| | - Anna-Maria Abi-Khattar
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Stéphanie Khabbaz
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Basharat Nabi Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 192122, India
| | - Mario J. Simirgiotis
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Elena Haverbeck S-N, Valdivia 5090000, Chile
| | - Juan Manuel Castagnini
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Richard G. Maroun
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Nicolas Louka
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| |
Collapse
|
46
|
Zhou X, Wu Y, Wang Y, Zhou X, Chen X, Xi J. An efficient approach for the extraction of anthocyanins from Lycium ruthenicum using semi-continuous liquid phase pulsed electrical discharge system. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Moreno Martínez P, Ortiz-Martínez V, Sánchez Segado S, Salar-García M, de los Ríos A, Hernández Fernández F, Lozano-Blanco L, Godínez C. Deep eutectic solvents for the extraction of fatty acids from microalgae biomass: recovery of omega-3 eicosapentaenoic acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Hernández-Corroto E, Boussetta N, Marina ML, García MC, Vorobiev E. High voltage electrical discharges followed by deep eutectic solvents extraction for the valorization of pomegranate seeds (Punica granatum L.). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Csuti A, Sik B, Ajtony Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography - a Review. Crit Rev Anal Chem 2022; 54:473-486. [PMID: 35658668 DOI: 10.1080/10408347.2022.2082241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Naringin is a flavonoid found primarily in citrus species with especially high concentrations being present in grapefruit (Citrus paradisi), bitter orange (Citrus aurantium), and pomelo (Citrus grandis). Because of its many positive effects on human health, naringin has been the focus of increasing attention in recent years. Recently, conventional extraction methods have been commonly replaced with unconventional methods, such as ultrasound-assisted extraction (UAE) and other, more eco-friendly extraction methods requiring little-to-no environmentally harmful solvents or significantly less energy. Naringin analysis is most commonly done via high-performance liquid chromatography (HPLC), and ultrahigh-performance liquid chromatography (UHPLC) coupled with a mass spectrometer (MS) or a photodiode array (DAD) detector. The aim of this review is to provide an overview of recent trends developments in the extraction, sample preparation, and liquid chromatographic analysis of the compound originating from citrus fruits or their products.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| | - Beatrix Sik
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| | - Zsolt Ajtony
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| |
Collapse
|
50
|
Wang L, Huang J, Li Z, Liu D, Fan J. A review of the polyphenols extraction from apple pomace: novel technologies and techniques of cell disintegration. Crit Rev Food Sci Nutr 2022; 63:9752-9765. [PMID: 35522079 DOI: 10.1080/10408398.2022.2071203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Apple pomace, a solid waste produced during industrial processing of apple juice or cider, is a rich source of high value-added compounds such as polyphenols. This review summarizes present studies on the qualitative and quantitative methods, including Folin-Ciocalteu colorimetric, high pressure liquid chromatography (HPLC) and fluorescence spectrum, as well as enhanced extraction methods of polyphenols in apple pomace by different traditional and novel technologies, including ultrasounds (US), microwave (MW), pulsed electric fields (PEF), high voltage electrical discharges (HVED) and enzyme. The principles and characteristics of different effective enhanced extraction technologies of polyphenols in apple pomace were compared. In addition, the different cell disruption analysis methods, such as destructive detection method (electrical conductivity disintegration index, Zc), image analysis method (including scanning electron microscopy, SEM, and confocal laser scanning microscopy, CLSM), and nondestructive method (such as magnetic resonance imaging, MRI) are presented in this review. The study proved that there was a correlation between destructive detection method and image analysis method. However, each of the technologies reviewed in this study has some disadvantages to overcome, and some mechanisms need to be further substantiated. Therefore, more competitive techniques for polyphenols extraction and analysis of cell disintegration are needed to emerge in the future.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- bSorbonne Université, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, Compiègne Cedex, France
| | - Jingzhe Huang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Zonghao Li
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|