1
|
Sahu S, Kumari D, Kusam, Kuila A, Gurjar RS, Sharma K, Verma R. Deep eutectic solvent extraction of polyphenol from plant materials: Current status and future prospects in food applications. Food Chem 2025; 482:144125. [PMID: 40187311 DOI: 10.1016/j.foodchem.2025.144125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The increasing environmental concerns related to biomass waste have led to the exploration of sustainable methods for extracting bioactive compounds from plant materials, especially polyphenols, which are valued for their health benefits and use in functional foods and natural additives. These bioactive compounds are abundant in fruits, vegetables, tea, and herbs, and encompass flavonoids, phenolic acids, tannins, stilbenes, and lignans. Traditional extraction methods often rely on harmful petrochemical solvents, which pose significant environmental and health risks. In contrast, Deep Eutectic Solvents (DESs) have emerged as an eco-friendly alternative, offering advantages such as low toxicity, cost-efficiency, and a wide range of solubility. This review focused recent advancements in DES-based polyphenol extraction, emphasizing their applications in the food industry. It highlights the potential of DES to efficiently extract polyphenols, improving their bioavailability and stability, and exploring future prospect for enhancing food quality, safety, and functionality through functional foods and natural preservatives.
Collapse
Affiliation(s)
- Shivani Sahu
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Diksha Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Kusam
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | | | - Kuldeep Sharma
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Rajpura, Punjab 140401, India
| | - Rajan Verma
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| |
Collapse
|
2
|
Chen H, Zhou X, Du J, Ma Y, Zhong Y, Chen W, Qian H, Huang D. Solvent screening and extraction conditions prediction of subcritical extraction based on improved model: Extraction of lycopene as a case. Food Chem 2025; 475:143257. [PMID: 39952171 DOI: 10.1016/j.foodchem.2025.143257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In recent years, subcritical extraction has developed rapidly due to its environmental friendliness and high efficiency. In the extraction of low-polar and non-polar active substances, the addition of green low-polar solvents to subcritical extraction solvents can increase the yield of active substances. However, solvent screening and extraction conditions prediction are still a challenge. In this study, we employed the Williams formula to incorporate temperature and pressure correction into the Hansen solubility parameter to screen solvent under subcritical conditions by energetic spatial distance Ra between the solvent and solute. Then, an improved model along with corresponding dissolution factor e was established which allowed the prediction of optimum extraction condition range under subcritical conditions. Eventually, we chose the thermosensitive and non-polar substance lycopene as experimental case. Results showed that an e of 0.71 under experimental optimum extraction condition was within the predicted high extraction range, indicating the accuracy of the model predictions.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jingwei Du
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yukun Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Wawoczny A, Wilk J, Shyntum D, Shakibania S, Krukiewicz K, Gibas J, Machulik M, Płonka J, Bajkacz S, Dudek G, Gillner D. Valorization of waste tomato leaves with natural deep eutectic solvents. Food Chem 2025; 472:142884. [PMID: 39826513 DOI: 10.1016/j.foodchem.2025.142884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Waste produced during cultivation of edible plants can be a valuable source of bioactive molecules. Herein, we present the valorization of tomato leaves to obtain biologically active extracts. Deep eutectic solvents (DESs), composed of natural ingredients, were applied as extracting solvents. The extracts were rich in bioactive chemicals such as phenolics and flavonoids, with rutin as the main component (∼6 mg/g of biomass). The obtained extracts showed high antioxidative potential. Moreover, it was possible to recycle DES for subsequent extractions. Evaluation of the antimicrobial activity of the extracts against selected bacteria (Escherichia coli and Staphylococcus epidermidis) and yeast (Candida albicans) revealed that it showed strong antifungal activity, while the pure solvent did not exhibit such properties. The study revealed that by adhering to the principles of the circular economy and extracting waste tomato leaves using natural DESs, valuable antioxidants and antimicrobial agents can be obtained with high yields.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland.
| | - Joanna Wilk
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland.
| | - Divine Shyntum
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Sara Shakibania
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Joanna Gibas
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland
| | - Marcin Machulik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Joanna Płonka
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Sylwia Bajkacz
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| |
Collapse
|
4
|
Su M, Jin R, Zhu J, Pei J, Wang Y, Chai X, Jiang M. Composition and antioxidant activity of flavonoids from two different species of Amomi Fructus extracted using natural deep eutectic solvents. Food Chem 2025; 472:142984. [PMID: 39848052 DOI: 10.1016/j.foodchem.2025.142984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Amomi Fructus, a mature fruit from a ginger family plant, has various species, resulting in inconsistent sourcing and quality. Most studies distinguish species by volatile compounds, yet research shows it also contains flavonoids with notable pharmacological effects. Solely focusing on volatile compounds could lead to considerable resource waste. This study aims to establish flavonoid markers in Amomi Fructus to distinguish its species, assess quality, and promote efficient resource use. Utilizing natural deep eutectic solvents (NADES) and response surface methodology (RSM), an optimal extraction system (choline chloride-ethylene glycol) yielded 41.38 mg RE/g total flavonoids. LC-MS analysis of 18 Amomi Fructus batches identified 26 flavonoids, quantified 19, and highlighted three key markers-epicatechin, procyanidin B2, and procyanidin B4-that effectively differentiate Amomum villosum Lour. (AMV) from Amomum villosum Lour. var. xanthioides T.L. Wu et Senjen (AMVX). Finally, flow cytometry confirmed these markers' antioxidant activity, effectively reducing H₂O₂-induced oxidative damage in GES-1 cells.
Collapse
Affiliation(s)
- Mei Su
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruyi Jin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Zhu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jierong Pei
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Chakarova B, Zagorchev L, Pachedjieva K, Tosheva A, Zagorcheva T, Rusanov K, Teofanova D. Analysis of Variations in the Flavonoid Profiles of Cuscuta campestris and Cuscuta epithymum in Bulgaria as a Potential Chemotaxonomical Marker. PLANTS (BASEL, SWITZERLAND) 2025; 14:1220. [PMID: 40284108 PMCID: PMC12030255 DOI: 10.3390/plants14081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Holoparasitic plants of the genus Cuscuta are generally considered prominent agricultural pests. In addition to their negative economic effect on agriculture and their impact on natural plant societies, they have also been long known in East Asian as medicinal plants with beneficial properties. This underlines the fact that Cuscuta spp. are particularly rich in specialized metabolites, flavonoids, alkaloids, and cumarines, among others. In addition to several well-characterized species, most of the species variety within the genus remains largely unstudied. In the present study we aimed to compare the flavonoid profiles of natural populations of two of the most abundant Cuscuta species in Bulgaria-the native C. epithymum, and the naturalized C. campestris. Based on HPLC-MS/MS analysis, a total of 13 polyphenolics compounds were annotated, with hyperoside and isoquercitrin being some of the most abundant. Some notable differences were found, like the complete absence of dicaffeoylquinic acid in C. campestris, and kaempferol-3,7-O-diglucoside and kaempferol 3-O-β-(6''-O-trans-p-coumaroyl)-glucopyranoside in C. epithymum. The population of the two species clustered separately from each other, with some variations, but with no clear pattern of dependence on the locality or host species. Based on the results it can be concluded that flavonoids may be used as chemotaxonomical markers within the genus, showing that even in different climatic conditions and different host ranges, the two studied species clearly differed from each other. Also, their rich content emphasizes the potential of these parasites as a source of bioactive compounds.
Collapse
Affiliation(s)
- Bilyana Chakarova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (B.C.); (K.P.)
- AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyuben Zagorchev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (B.C.); (K.P.)
| | - Kalina Pachedjieva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (B.C.); (K.P.)
| | - Anita Tosheva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (B.C.); (K.P.)
| | - Tzvetelina Zagorcheva
- AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
- Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111, Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria
| | - Krasimir Rusanov
- AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria
| | - Denitsa Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (B.C.); (K.P.)
| |
Collapse
|
6
|
El-Shiekh RA, Mohamed AF, Mandour AA, Adel IM, Atwa AM, Elgindy AM, Esmail MM, Senna MM, Ebid N, Mustafa AM. Hesperidin in Chronic Fatigue Syndrome: An Integrated Analysis of Traditional Pharmacology and Machine Learning-Based Therapeutic Predictions. Chem Biodivers 2025:e202403506. [PMID: 40234200 DOI: 10.1002/cbdv.202403506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Hesperidin, a bioflavonoid abundantly found in citrus fruits, offers a myriad of health benefits. With the food industry extensively utilizing citrus fruits, particularly for juice production, substantial quantities of by-products such as peels, seeds, cells, and membrane residues accumulate. Remarkably, these by-products serve as a valuable source of hesperidin. Consequently, the extraction of hesperidin from these by-products has garnered significant scientific interest, aiming to harness its potential as a natural antioxidant. By shedding light on these aspects, this review provides a comprehensive review of hesperidin's role in enhancing human well-being, particularly in the context of chronic fatigue syndrome (CFS). By synthesizing current research, we elucidate the compound's antioxidant, anti-inflammatory, and neuroprotective effects, which may mitigate symptoms associated with CFS. Furthermore, we introduce machine learning methodologies to predict hesperidin's efficacy in clinical settings, offering a novel perspective on personalized nutrition strategies. Our findings underscore the need for further empirical studies to validate these predictions and explore hesperidin's mechanisms of action. This review not only bridges the gap between nutrition science and pharmacology but also highlights the promising future of hesperidin as a nutraceutical in combating chronic health conditions.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
7
|
Wang D, Liu Y, Zeng B, Xu Y, Cao S, Luo Y, Xiao S, Teng J. Compositional and biochemical activity evaluation of highly polymerized tea pigments in black tea based on natural deep eutectic solvent extraction. Food Chem X 2025; 27:102413. [PMID: 40236747 PMCID: PMC11999212 DOI: 10.1016/j.fochx.2025.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/26/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025] Open
Abstract
Highly polymeric tea pigments (HPTPs) in black tea have not been comprehensively analyzed because of the complex composition of their structural components. 14 natural deep eutectic solvents (NADESs) were evaluated for extracting HPTPs from black tea, and choline chloride-urea (ChCl-UA) was selected as the best candidate. The HPTPs were separated from the NADES using a dialysis membrane. Microstructural analysis was conducted by XRD, SEM, and AFM, combined with thermal property analysis using TG-DSC and Py-GC-MS determination of biochemical components, and structural analysis through UV-visible, FT-IR, NMR, and SERS spectroscopies. The antioxidant activity analyzed using ABTS, DPPH, and FRAP assays. The results revealed that the extract obtained using the ChCl-UA has a higher tea pigment content, greater polymerization degree, and simpler impurities. The extraction of HPTPs using a NADES and the analysis of the chemical composition and structural characteristics of the extract are helpful for understanding the macromolecular pigments in tea.
Collapse
Affiliation(s)
- Di Wang
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yang Liu
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zeng
- Suichuan Tea Research Institute, Ji'an 343009, China
| | - Yuqin Xu
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sheng Cao
- Suichuan Tea Research Institute, Ji'an 343009, China
| | - Yuanyan Luo
- Suichuan Tea Research Institute, Ji'an 343009, China
| | - Shuangling Xiao
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jie Teng
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Ariestanti DM, Mun'im A, Hartrianti P, Nadia B, Chriscensia E, Rattu SA, Fadhila R, Harianto A, Simamora A, Ramadon D, James RJ, Saputri FC, Kato M, Puteri MU. Ultrasonic-assisted extraction (UAE) of Javanese turmeric rhizomes using natural deep eutectic solvents (NADES): Screening, optimization, and in vitro cytotoxicity evaluation. ULTRASONICS SONOCHEMISTRY 2025; 114:107271. [PMID: 39955874 PMCID: PMC11872070 DOI: 10.1016/j.ultsonch.2025.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Javanese turmeric (Curcuma xanthorrhiza Roxb.) is known for its diverse pharmacological activities due to its rich phytoconstituents, including curcuminoids and xanthorrhizol. Typically, these compounds are extracted using organic solvents, which pose health and environmental risks. Therefore, safer and more environmentally friendly green extraction methods are being developed. This study investigated the effect of ultrasound-assisted extraction (UAE) combined with natural deep eutectic solvents (NADES) based on choline chloride and organic acids (lactic, malic, and citric acid) to find the best combination for extracting curcuminoids and xanthorrhizol from Javanese turmeric. Results showed that UAE using choline chloride and malic acid (1:1) (ChCl-MA) yielded the best results. The Box-Behnken Design optimized water addition, solvent-to-powder ratio, and extraction time, with optimal conditions being 25 % water addition, a 20 mL/g ratio, and a 15-minute extraction time. This method yielded 4.58 mg/g of curcuminoids and 12.93 mg/g of xanthorrhizol. Furthermore, the ChCl-MA NADES with UAE extraction showed more cytoselective activity towards the HeLa cancer cell line compared to the non-cancer HaCaT cell line. In contrast, traditional ethanol extraction was non-selective, as indicated by similar cell viability reductions in both HeLa and HaCaT cells at 6.25 ppm. Collectively, this study is the first to report the optimal NADES combination with UAE, based on salts and organic acids, for the extraction of Javanese turmeric rhizomes with selective cytotoxic effects against cancer cells. These findings may contribute to the development of novel, naturally derived anticancer agents using green extraction techniques.
Collapse
Affiliation(s)
- Donna Maretta Ariestanti
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Abdul Mun'im
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Pietradewi Hartrianti
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Basmah Nadia
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Erika Chriscensia
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Shereen Angelina Rattu
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Redhalfi Fadhila
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Anastacia Harianto
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Adelina Simamora
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Richard Johari James
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam, Selangor, Malaysia
| | - Fadlina Chany Saputri
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Meidi Utami Puteri
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia.
| |
Collapse
|
9
|
Khan J, Asaf S, Lubna, Abdelbacki AMM, Jan R, Kim KM. Green Extraction of Antioxidant-Rich Flavonoids from Fagonia cretica Using Deep Eutectic Solvents. Molecules 2025; 30:813. [PMID: 40005126 PMCID: PMC11858234 DOI: 10.3390/molecules30040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This study optimized the extraction of flavonoids from Fagonia cretica using deep eutectic solvents (DESs), focusing on key factors such as the type of DES used, molar ratio, water content, solid/liquid ratio, extraction temperature, and time. Among six DESs tested, the betaine-acetic acid combination exhibited the highest extraction efficiency, attributed to its low viscosity (4.98 mPa·s). Optimal extraction conditions were determined to be a 1:4 molar ratio of betaine to acetic acid, a 25% water content, a solid/liquid ratio of 1:60 g/mL, an extraction temperature of 50 °C, and an extraction time of 30 min. Under these conditions, the flavonoid yield was maximized while preserving bioactivity. Antioxidant assays revealed that flavonoids extracted with DESs exhibited superior scavenging activity against DPPH and hydroxyl radical compared to ethanol-extracted flavonoids, highlighting DESs' potential to enhance antioxidant properties. The recyclability of DESs was demonstrated using ultracapacitor porous activated carbon, achieving an 89.78% recovery efficiency. The reused DES maintained a high flavonoid extraction yield, retaining 92% efficiency after six cycles, emphasizing its sustainability and cost-effectiveness. This study establishes DES-based extraction as an environmentally friendly and efficient approach for isolating flavonoids with strong antioxidant properties, offering significant advantages in green chemistry and bioactive compound recovery.
Collapse
Affiliation(s)
- Jafar Khan
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (L.)
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (L.)
| | - Ashraf M. M. Abdelbacki
- Deanship of Skills Development, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Alperth F, Pogrilz B, Schrammel A, Bucar F. Coumarins in the Flavedo of Citrus limon Varieties-Ethanol and Natural Deep Eutectic Solvent Extractions With HPLC-DAD Quantification. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39865916 DOI: 10.1002/pca.3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Peels are an abundant but still underutilized waste product in the Citrus fruit industry. They contain coumarins with antiadipogenic potential that could be promising targets in new valorization strategies for Citrus peels. OBJECTIVES In this study, these coumarins, that is, citropten, bergamottin, and 5-geranyloxy-7-methoxycoumarin (5G7MC), were investigated in Citrus limon peels of different commercial varieties by HPLC-DAD after extraction with ethanol and choline chloride-based natural deep eutectic solvents (NADES) as alternative extraction agents in green natural product extraction. RESULTS Target coumarins were almost exclusively found in the flavedo (exocarp) peel layer and in whole peel samples, but not in the albedo (mesocarp) layer. Flavedo samples from varieties "Verdelli" (ES) and "Lisbon" (ZA) showed particularly high concentrations in ethanolic extracts. When applying NADES extraction, best results for citropten were achieved with malonic acid, 1,2-propanediol, and citric acid as hydrogen bond donors (HBDs), with higher yields than the reference solvent ethanol. For bergamottin and 5G7MC, promising results were obtained for 1,2-propanediol as HBD, though lower yields than with ethanol. The possible chlorination of coumarin epoxides byakangelicol and oxypeucedanin was recognized for acidic NADES in LC-MS analysis. CONCLUSION Overall, C. limon peels proved to be a relevant starting material for valorization through coumarin extraction with ethanol and NADES.
Collapse
Affiliation(s)
- Fabian Alperth
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Bettina Pogrilz
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| |
Collapse
|
11
|
Wang X, Su Z, Li X, Chen J, Li G, Shan Y, Pan Z, Fu F. Targeted/untargeted metabolomics and antioxidant properties distinguish Citrus reticulata 'Chachi' from Citrus reticulata Blanco. Food Chem 2025; 462:140806. [PMID: 39241684 DOI: 10.1016/j.foodchem.2024.140806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Dried citrus peel (DCP), also called "Chen Pi", has edible and medicinal value. However, the specific differences among various sources remain unknown. Herein, we collected six DCP species, namely, one Citrus reticulata 'Chachi' (CZG) and five Citrus reticulata Blanco (CRB). Targeted high-performance liquid chromatography and untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry were employed to comprehensively compare the phenolic compounds and metabolites in DCP. Interestingly, 13 different phenolic compounds were noted in DCP. The total phenolic compound content in all CRB samples (58.86-127.65 mg/g) was higher than that of CZG (39.47 mg/g). Untargeted metabolomic revealed 1495 compounds, with 115 differentially expressed metabolites for CRBs and CZG, particularly flavonoids (38), terpenoids (15), and phenolic acids and derivatives (9). Lastly, antioxidant assays revealed that all CRB samples exhibited higher antioxidant activities compared with CZG. Therefore, our study results provide a theoretical basis for the high-value utilization of citrus peels and their metabolites.
Collapse
Affiliation(s)
- Xue Wang
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zhipeng Su
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Xiang Li
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiaxu Chen
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Gaoyang Li
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yang Shan
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zhaoping Pan
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Fuhua Fu
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China.
| |
Collapse
|
12
|
Basile G, De Luca L, Sorrentino G, Calabrese M, Esposito M, Pizzolongo F, Romano R. Green technologies for extracting plant waste functional ingredients and new food formulation: A review. J Food Sci 2024; 89:8156-8174. [PMID: 39495566 DOI: 10.1111/1750-3841.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Nowadays, there is a growing interest in food waste recovery by both consumers and companies. Food waste of plant origin is a source of bioactive compounds, such as phenolic acids, anthocyanins, flavonoids, phytosterols, carotenoids, and tocopherols, with well-known antioxidant, anti-glycemic, and antimicrobial properties. The use of green and sustainable technologies to recover bioactive compounds from food waste is a possible solution to valorize waste following the principles of green chemistry. Furthermore, today's consumers are more attracted, informed, and aware of the benefits associated with the consumption of functional foods, and with this in mind, the use of extracts rich in beneficial compounds obtained by green technologies from food waste can be a valid alternative to prepare functional foods. In this review, the recovery of polyphenols and fibers with green technologies from food waste for the formulation of functional foods was presented.
Collapse
Affiliation(s)
- Giulia Basile
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Giovanni Sorrentino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Martina Calabrese
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Mariarca Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| |
Collapse
|
13
|
Lee TH, Kim KT, Oh HY, Park SY, Lee GJ, Kim HS, Kim HS. Effect of Blood Orange ( Citrus sinensis L. Osbeck) Peel Waste as a Feed Additive on the Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, and Immune Response in Juvenile Black Rockfish ( Sebastes schlegelii). Antioxidants (Basel) 2024; 13:1452. [PMID: 39765781 PMCID: PMC11673260 DOI: 10.3390/antiox13121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
This study evaluated bioactive compounds in blood orange (Citrus sinensis (L.) Osbeck) peel (BOP) as dietary additives. An 8-week feeding trial was conducted to investigate the effects of dietary supplementation on the growth performance, body composition, digestive enzyme activity, antioxidant capacity, and immune response of juvenile black rockfish. A total of 1260 juvenile rockfish (1.4 ± 0.01 g) were randomly distributed into seven treatment groups, each with 50 fish per circular tank. The groups were fed seven different diets containing graded levels of 0 (control, BOP0), 1 (BOP1), 2 (BOP2), 3 (BOP3), 5 (BOP5), 7 (BOP7), and 10 (BOP10) g kg-1, respectively. The BOP10 diet significantly enhanced the final weight, weight gain, specific growth rate, protein efficiency ratio, and protein retention in fish. The BOP treatments notably affected the fishes' whole-body crude protein and lipid contents. Plasma total cholesterol levels of fish fed the BOP0 and BOP1 diets were significantly higher than those fed the BOP7 and BOP10 diets. The activities of trypsin and lipase were significantly affected by dietary BOP levels. The antioxidant enzyme activity in the plasma of fish fed the BOP10 diet was significantly higher than those fed the BOP0 diet. The lysozyme activity and levels of immunoglobulin M and G in fish fed the BOP0 diet were significantly lower than those in fish fed the BOP10 diet. In conclusion, dietary supplementation of BOP at 10 g kg-1 improved the growth performance and overall health of juvenile black rockfish.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (T.H.L.); (H.Y.O.); (S.Y.P.); (G.J.L.)
| | - Ki-Tae Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53017, Republic of Korea;
| | - Hwa Yong Oh
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (T.H.L.); (H.Y.O.); (S.Y.P.); (G.J.L.)
| | - Seo Young Park
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (T.H.L.); (H.Y.O.); (S.Y.P.); (G.J.L.)
| | - Gyu Jin Lee
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (T.H.L.); (H.Y.O.); (S.Y.P.); (G.J.L.)
| | - Hyun-Soo Kim
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Hee Sung Kim
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (T.H.L.); (H.Y.O.); (S.Y.P.); (G.J.L.)
| |
Collapse
|
14
|
Jiang W, Liu K, Huan W, Wu X, Zhu M, Tao H, Song L, Gao F. Specific extraction of bioactive flavonoids from Torreya grandis pomace using magnetic nanoparticles modified with a ChCl/acetamide deep eutectic solvent. Lebensm Wiss Technol 2024; 211:116914. [DOI: 10.1016/j.lwt.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
15
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Sanches VL, de Souza Mesquita LM, Viganó J, Contieri LS, Pizani R, Chaves J, da Silva LC, de Souza MC, Breitkreitz MC, Rostagno MA. Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status. Crit Rev Anal Chem 2024; 54:1173-1199. [PMID: 35993795 DOI: 10.1080/10408347.2022.2107871] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.
Collapse
Affiliation(s)
- Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, Brazil
| | - Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Jaísa Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Laíse Capelasso da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | | | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
17
|
Heck KL, Si L, Jung DJ, Calderón AI. Application of eco-friendly natural deep eutectic solvents (NADES) in HPLC for separation of complex natural products: Current limitations and future directions. J Pharm Biomed Anal 2024; 244:116102. [PMID: 38547649 DOI: 10.1016/j.jpba.2024.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/29/2024]
Abstract
Natural deep eutectic solvents (NADES) have been used in chromatography as extraction media and HPLC mobile phase additives, but only once have they been used as HPLC major mobile phase component. This review illustrates current knowledge and major limitations on use of NADES in HPLC mobile phase as well as to propose possible NADES may be ready for use as HPLC mobile phases and the detectors they can be used with. High viscosity is one of the major roadblocks encountered when using NADES as a mobile phase component in HPLC regardless of detectors employed. A comprehensive review of published literature was conducted to identify articles that focused on using NADES as extraction solvents for natural products, particularly polyphenols or reported NADES viscosities to establish a database of NADES which could be used as HPLC mobile phases under various conditions. Other identified challenges that limit NADES application in HPLC mobile phase include low volatility, NADES wavelength cutoff (UV and Fluorescent detectors) and impurities. Methods for overcoming these limitations are discussed so that NADES may be more integrated into HPLC systems in the future.
Collapse
Affiliation(s)
- Kabre Lynne Heck
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Lin Si
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | - Da Jin Jung
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Angela Isabel Calderón
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
18
|
Roselli V, Pugliese G, Leuci R, Brunetti L, Gambacorta L, Tufarelli V, Piemontese L. Green Methods to Recover Bioactive Compounds from Food Industry Waste: A Sustainable Practice from the Perspective of the Circular Economy. Molecules 2024; 29:2682. [PMID: 38893556 PMCID: PMC11173532 DOI: 10.3390/molecules29112682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time.
Collapse
Affiliation(s)
- Vincenzo Roselli
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Gianluca Pugliese
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Lucia Gambacorta
- Institute of Science of Food Production (ISPA), Research National Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| |
Collapse
|
19
|
Bagder Elmaci S, Schultz J, Isci A, Scherzinger M, Aslanhan DD, Cam MD, Sakiyan O, Kaltschmitt M. Deep eutectic solvent pretreatment of cork dust - Effects on biomass composition, phenolic extraction and anaerobic degradability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:114-127. [PMID: 38608526 DOI: 10.1016/j.wasman.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
In this study, phenolic compounds using deep eutectic solvents (DES) were extracted from cork dust, and the biogas production potential of DES-treated cork dust samples was determined. The DES treatment was carried out using choline chloride and formic acid (1:2 M ratio) at various temperatures (90, 110 and 130 °C) and treatment times (20, 40 and 60 min) at a solid-to-solvent ratio of 1:10 g mL-1. The highest total phenolic content (137 mg gallic acid equivalent (GAE) g-1 dry cork dust) was achieved at 110 °C/20 min. The extracts exhibited an antioxidant capacity of up to 56.3 ± 3.1 % 1,1-diphenyl-2-picrylhydazyl (DPPH) inhibition at a dilution rate of 100. DES treatment resulted in minimal sugar solubilization at low temperatures, while approximately 42 % of the xylan fraction in the biomass degraded under severe conditions (e.g., 130 °C/60 min). Catechin, 4-hydroxybenzoic acid and gallic acid were the major phenolics in DES extracts. The biogas yield of DES-treated cork dust increased with treatment severity. The highest biogas yield (115.1mLN gVS-1) was observed at 130 °C/60 min, representing an increase of 125 % compared to the untreated sample. SEM images revealed that the surface structure of the samples became smoother after mild pretreatment and rougher after harsh pretreatment. Compositional and FTIR analyses indicated that a higher biogas formation potential was associated with increased cellulose content in the substrate, which could be attributed to hemicellulose solubilization in the hydrolysate. Overall, DES pretreatment effectively enhanced phenol extraction and anaerobic degradability.
Collapse
Affiliation(s)
- Simel Bagder Elmaci
- Ankara University, Food Engineering Department, 06830 Golbasi, Ankara, Turkey
| | - Jana Schultz
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Straße 40, 21073 Hamburg, Germany
| | - Asli Isci
- Ankara University, Food Engineering Department, 06830 Golbasi, Ankara, Turkey.
| | - Marvin Scherzinger
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Straße 40, 21073 Hamburg, Germany
| | | | - Miyase Deniz Cam
- Ankara University, Food Engineering Department, 06830 Golbasi, Ankara, Turkey
| | - Ozge Sakiyan
- Ankara University, Food Engineering Department, 06830 Golbasi, Ankara, Turkey
| | - Martin Kaltschmitt
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Straße 40, 21073 Hamburg, Germany
| |
Collapse
|
20
|
Negi T, Kumar A, Sharma SK, Rawat N, Saini D, Sirohi R, Prakash O, Dubey A, Dutta A, Shahi NC. Deep eutectic solvents: Preparation, properties, and food applications. Heliyon 2024; 10:e28784. [PMID: 38617909 PMCID: PMC11015381 DOI: 10.1016/j.heliyon.2024.e28784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Deep Eutectic Solvents (DESs) emerge as innovative 21st-century solvents, supplanting traditional ones like ethanol and n-hexane. Renowned for their non-toxic, biodegradable, and water-miscible nature with reduced volatility, DESs are mostly synthesized through heating and stirring method. Physicochemical properties such as polarity, viscosity, density and surface tension of DESs influenced their application. This review paper gives the overview of application of eco-benign DESs in fruits, vegetables, cereals, pulses, spices, herbs, plantation crops, oil seed crops, medicinal and aromatic plants, seaweed, and milk for the extraction of bioactive compounds. Also, it gives insight of determination of pesticides, insecticides, hazardous and toxic compounds, removal of heavy metals, detection of illegal milk additive, purification of antibiotics and preparation of packaging film. Methodologies for separating bioactive compounds from DESs extracts are systematically examined. Further, safety regulations of DESs are briefly discussed and reviewed literature reveals prevalent utilization of DES-based bioactive compound rich extracts in cosmetics, indicating untapped potential of their application in the food industry.
Collapse
Affiliation(s)
- Taru Negi
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anil Kumar
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Satish Kumar Sharma
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Neha Rawat
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Deepa Saini
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ranjna Sirohi
- Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
| | - Om Prakash
- Department of Chemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ashutosh Dubey
- Department of Biochemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anuradha Dutta
- Department of Foods & Nutrition, College of Community Sciences, Pantnagar, 263145, Uttarakhand, India
| | - Navin Chand Shahi
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, India
| |
Collapse
|
21
|
Kapre S, Palakurthi SS, Jain A, Palakurthi S. DES-igning the future of drug delivery: A journey from fundamentals to drug delivery applications. J Mol Liq 2024; 400:124517. [DOI: 10.1016/j.molliq.2024.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
22
|
Vo TP, Nguyen THP, Nguyen VK, Dang TCT, Nguyen LGK, Chung TQ, Vo TTH, Nguyen DQ. Extracting bioactive compounds and proteins from Bacopa monnieri using natural deep eutectic solvents. PLoS One 2024; 19:e0300969. [PMID: 38551952 PMCID: PMC10980249 DOI: 10.1371/journal.pone.0300969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
This study employed novel extraction methods with natural deep eutectic solvents (NADES) to extract bioactive compounds and proteins from Bacopa monnieri leaves. The conditional influence of ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzymatic-assisted extraction (EAE) on the recovery efficiency of phenolics, proteins, flavonoids, and terpenoids was evaluated. The conditions of UAE were 50 mL/g LSR, 600W of ultrasonic power, and 30% water content with 40°C for 1 min to obtain the highest bioactive compounds and protein contents. The conditions of MAE were 40 mL/g LSR, 400W of microwave power with 30% water content for 3 min to reach the highest contents of biological compounds. The conditions of EAE were 30 mL/g of LSR, 20 U/g of enzyme concentration with L-Gly-Na molar ratio at 2:4:1, and 40% water content for 60 min to acquire the highest bioactive compound contents. Scanning electron microscopy (SEM) is employed to analyze the surface of Bacopa monnieri leaves before and after extraction. Comparing seven extraction methods was conducted to find the most favorable ones. The result showed that the UMEAE method was the most effective way to exploit the compounds. The study suggested that UMEAE effectively extracts phenolics, flavonoids, terpenoids, and protein from DBMP.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Ha Phuong Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Vy Khang Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Cam Tu Dang
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Gia Kiet Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thanh Quynh Chung
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Thanh Huong Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
23
|
Feng CH, Arai H, Rodríguez-Pulido FJ. Assessment of adenosine triphosphate content in sausages stuffed in different modified casing treatments added with orange extracts, utilising hyperspectral imaging combined with multivariate analysis. Front Nutr 2024; 11:1370339. [PMID: 38501071 PMCID: PMC10945020 DOI: 10.3389/fnut.2024.1370339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction An investigation was conducted using a hyperspectral imaging (HSI) system to non-invasively estimate adenosine triphosphate (ATP) content in vacuum packaged sausages in different modified casing treatments added with orange extracts after a year of storage at 4°C. Methods Various pre-processing combinations were applied to the spectra to enhance the performance of partial least squares regression (PLSR). Results and discussion PLSR models, utilising the full absorbance spectrum with pre-treatment of standard normal variate combined with 1st derivative,exhibited prediction coefficients of determination (Rp2) reaching up to 0.6629. A distribution map developed through MATLAB was employed to display the location and concentration of ATP content in these unique sausages for the first time. The integration of HSI and multivariate analysis not only quantifies but also visually represents the changes in ATP content response to the different casing treatments, demonstrating the significant potential for real-time inspection in the processed meat industry.
Collapse
Affiliation(s)
- Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
- RIKEN Centre for Advanced Photonics, RIKEN, Sendai, Miyagi, Japan
| | - Hirofumi Arai
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| | | |
Collapse
|
24
|
Gao J, Xie L, Peng Y, Li M, Li J, Ni Y, Wen X. Deep Eutectic Solvents as New Extraction Media for Flavonoids in Mung Bean. Foods 2024; 13:777. [PMID: 38472890 DOI: 10.3390/foods13050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Mung beans contain abundant flavonoids like vitexin and isovitexin, which contribute to their strong bioactivities, such as antioxidant effects, so efforts should focus on extracting bioactive flavonoids as well as aligning with the goal of green extraction for specific applications. Deep eutectic solvent coupled with ultrasound-assisted extraction (DES-UAE) was applied to extract flavonoids from mung beans, and eight different DESs were compared on the extraction yield. In addition, the traditional extraction method with 30% ethanol was performed as the reference. The results showed that ethylene glycol-glycolic acid achieved the highest yield among all the DESs, 1.6 times that of the reference values. Furthermore, the DES-UAE parameters were optimized as a 60 mL/g liquid-solid ratio, 30% water content in DES, 200 W ultrasonic power, 67 °C ultrasonic temperature, and 10 min extraction time, leading to the DES extract with the maximum extraction yield of 2339.45 ± 42.98 μg/g, and the significantly stronger DPPH and ABTS radical scavenging ability than the traditional extract. Therefore, employing DES and ultrasonic extraction together offers a green method for extracting flavonoids from mung beans, advancing the development and utilization of plant-derived effective components in a sustainable manner.
Collapse
Affiliation(s)
- Jingyu Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Longli Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Yu Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Mo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
25
|
Li W, Zhang X, Wang S, Gao X, Zhang X. Research Progress on Extraction and Detection Technologies of Flavonoid Compounds in Foods. Foods 2024; 13:628. [PMID: 38397605 PMCID: PMC10887530 DOI: 10.3390/foods13040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Flavonoid compounds have a variety of biological activities and play an essential role in preventing the occurrence of metabolic diseases. However, many structurally similar flavonoids are present in foods and are usually in low concentrations, which increases the difficulty of their isolation and identification. Therefore, developing and optimizing effective extraction and detection methods for extracting flavonoids from food is essential. In this review, we review the structure, classification, and chemical properties of flavonoids. The research progress on the extraction and detection of flavonoids in foods in recent years is comprehensively summarized, as is the application of mathematical models in optimizing experimental conditions. The results provide a theoretical basis and technical support for detecting and analyzing high-purity flavonoids in foods.
Collapse
Affiliation(s)
- Wen Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Xiaofei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
26
|
Oueslati S, Serairi Beji R, Zar Kalai F, Soufiani M, Zorrig W, Aissam S, Msaada K, El Modafar C. Antioxidant potentialities and gastroprotective effect of Reichardia picroides extracts on Ethanol/HCl induced gastric ulcer rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1088-1099. [PMID: 37015007 DOI: 10.1080/09603123.2023.2198760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The goal of this study was to determine for the first time the polyphenol content, antioxidant, and gastroprotective properties of the roots and leaves of Reichardia picroides. TPC considerably varied as a function of organs and solvent nature and ranged from 50 to 284.80 mg GAE/g DW. Leaves exhibited the highest amount of phenolics by using acetone 70%, the same tendency was observed for antioxidant activity. Besides, in vivo gastro-protective effects following HCl/EtOH-induced ulcer models displayed that roots extract at a high dose (500 mg) seemed to be the best performing extract with a decrease of ulceration index (UI) and an increase in the percentage of protection (PP), SOD, CAT, and GPX activities. All these data have been proved with principal component analysis (PCA). Overall, the results indicated that R. picroides could be considered a valuable source of natural compounds, which are beneficial for human health.
Collapse
Affiliation(s)
- Samia Oueslati
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Raja Serairi Beji
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Department of Nutrition, High School of Health Sciences and Technics, Tunis, Tunisia
| | - Feten Zar Kalai
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Merieme Soufiani
- Laboratory of Biotechnology and Molecular Bioengineering, Department of Biology, Faculty of Sciences and Techniques Guéliz, Cadi Ayyad University, Marrakech, Morocco
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Salama Aissam
- Laboratory of Biotechnology and Molecular Bioengineering, Department of Biology, Faculty of Sciences and Techniques Guéliz, Cadi Ayyad University, Marrakech, Morocco
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Cherkaoui El Modafar
- Laboratory of Biotechnology and Molecular Bioengineering, Department of Biology, Faculty of Sciences and Techniques Guéliz, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
27
|
Wang S, Lei T, Liu L, Tan Z. CO 2-responsive deep eutectic solvents for the enhanced extraction of hesperidin from Fertile orange peel. Food Chem 2024; 432:137255. [PMID: 37643516 DOI: 10.1016/j.foodchem.2023.137255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Hesperidin, also known as vitamin P, is widely studied for its distinctive potential in food and pharmaceutical industries. This work focuses on the research of CO2-responsive deep eutectic solvents (DESs) used as recyclable extractants for efficient extraction of hesperidin from Fertile orange peel. Reversible phase transformation of DES solution was achieved by bubbling CO2/N2. The maximum extraction yield of 22.39 mg/g was obtained for hesperidin under the following conditions: DES-6 (triethanolamine: 4-methoxyphenol = 1:1) used as extractant, water content of 35 wt%, solid-liquid ratio of 1:60 g/mL, extraction temperature of 25 °C, and ultrasonic time of 25 min, which was much higher than that extracted by methanol. Hesperidin of 74.38% was recovered in top phase after CO2 triggering. Density function theory (DFT) results indicated that hydrogen and π-π bonds were the main factors affecting hesperidin extraction. This study provides a new idea for extracting natural bioactive compounds using recyclable extractants.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia Ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Tian Lei
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Leilei Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia Ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China.
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
28
|
Alperth F, Feistritzer T, Huber M, Kunert O, Bucar F. Natural Deep Eutectic Solvents for the Extraction of Spilanthol from Acmella oleracea (L.) R.K.Jansen. Molecules 2024; 29:612. [PMID: 38338357 PMCID: PMC10856685 DOI: 10.3390/molecules29030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
With a growing focus on green chemistry, the extraction of natural products with natural deep eutectic solvents (NADES), which are eutectic mixtures of hydrogen bond donors and acceptors, has become an ever-expanding field of research. However, the use of NADES for the extraction of spilanthol from Acmella oleracea (L.) R.K.Jansen has not yet been investigated. Therefore, in this study, 20 choline chloride-based NADES, and for comparison, ethanol, were used as green extraction agents for spilanthol from Acmella oleracea flower heads. The effects of time, water addition, and temperature on NADES extractions were investigated and analysed by HPLC-DAD quantification. Additionally, UHPLC-DAD-ESI-MSn results for dichloromethane extracts, as well as the isolation of spilanthol and other main constituents as reference compounds, are reported. The best green extraction results were achieved by choline chloride (ChCl) with 1,2-propanediol (P, 1:2 molar ratio, +20% water) at 244.58 µg/mL, comparable to yields with ethanol (245.93 µg/mL). Methylurea (MeU, 1:2, +20% water) also showed promising results as a hydrogen bond donor in combination with choline chloride (208.12 µg/mL). In further experiments with NADES ChCl/P (1:2) and ChCl/MeU (1:2), extraction time had the least effect on spilanthol extraction with NADES, while yield decreased with water addition over 20% and increased with extraction temperature up to 80 °C. NADES are promising extraction agents for the extraction of spilanthol, and these findings could lead to applicable extracts for medicinal purposes, due to their non-toxic constituents.
Collapse
Affiliation(s)
- Fabian Alperth
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (F.A.)
| | - Theresa Feistritzer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (F.A.)
| | - Melanie Huber
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (F.A.)
| | - Olaf Kunert
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria;
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (F.A.)
| |
Collapse
|
29
|
Shi W, Xie H, Ouyang K, Shi Q, Xiong H, Zhao Q. Enhancing the solubility and emulsion properties of rice protein by deamidation of citric acid-based natural deep eutectic solvents. Food Res Int 2024; 175:113762. [PMID: 38128999 DOI: 10.1016/j.foodres.2023.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The characteristics of rice protein deamidated (DRP) by choline chloride-citric acid and glucose-citric acid natural deep eutectic solvents (C-C NADES, G-C NADES) at different dilutions were investigated. Compared with the effect of citric acid deamidation on the structural and functional properties of the protein, the DRP from the NADESs led to remarkable differences in the degree of hydrolysis (DH), SDS-PAGE, morphology, surface hydrophobicity, average particle size, intrinsic fluorescence, amino acid compositions, and emulsion activity. The results of SDS-PAGE, DH, and SEM showed the NADESs reduced the occurrence of uncontrolled hydrolysis of protein during acid deamidation. DRP from C-C and G-C NADESs was found to significantly improve solubility. DRP prepared by C-C NADES showed a more than 40 % solubility over a wide pH range associated with its higher emulsifying activity (37.62-44.19 m2/g) and emulsifying stability (73.76-86.9 min), as well as a better deamidation effect while lower DH. Thus, these findings showed that acid-based NADESs had great potential as a deamidation solvent to expand the application of protein.
Collapse
Affiliation(s)
- Wenyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Qianqian Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
30
|
Kutlu N, Kamiloğlu A, Abca TE, Yilmaz Ö. Ultrasound-assisted deep eutectic solvent extraction of bioactive compounds from persimmon calyx. J Food Sci 2024; 89:294-305. [PMID: 38010748 DOI: 10.1111/1750-3841.16849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023]
Abstract
This study aimed to investigate the ultrasound-assisted extraction of bioactive compounds from persimmon (Diospyros kaki) calyx by deep eutectic solvents (DES) with different molar ratios. For this reason, the prepared DES extracts' total phenolic-flavonoid compounds and antioxidant activities (1,1-diphenyl-2-picrilhydrazyl radical scavenging activity [DPPH•], Cupric Reducing Antioxidant Capacity (CUPRAC), and ferric reducing antioxidant power [FRAP]) were investigated as a result of the experimental design and optimization study conducted for this purpose. A sonication time of 20 min was determined as the optimal condition. Under these conditions, a molar ratio of 1.9:1 (lactic acid:choline chloride) and a water ratio of 70% provided the highest phenolic/flavonoid compounds and antioxidative activity. Correlations among water ratio, molar ratio, and sonication time were determined using principal component analysis (PCA). In conditions where total flavonoid compound, FRAP, and DPPH• are high due to PCA, it can be concluded that the sonication time is at high level; on the contrary, the water and molar ratios are at low level. In conclusion, ultrasound-assisted extraction using DES proved effective in persimmon calyx. Therefore, it can be recommended to use these environmentally friendly green solvents as an alternative to organic solvents in preparing extracts in various fields. PRACTICAL APPLICATION: This study shows the effectiveness of the ultrasound-assisted green extraction method using persimmon calyx specified as waste. These findings are compelling in the food industry in terms of consumers being now aware of green technology and the discovery that calyx is a good source of bioactive compounds.
Collapse
Affiliation(s)
- Naciye Kutlu
- Department of Food Processing, Bayburt University, Bayburt, Turkiye
| | - Aybike Kamiloğlu
- Department of Food Engineering, Bayburt University, Bayburt, Turkiye
| | - Tuğba Elbir Abca
- Department of Food Engineering, Bayburt University, Bayburt, Turkiye
| | - Özlem Yilmaz
- Department of Hotel, Restaurant and Catering, Bayburt University, Bayburt, Turkiye
| |
Collapse
|
31
|
Coscarella M, Nardi M, Alipieva K, Bonacci S, Popova M, Procopio A, Scarpelli R, Simeonov S. Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs. Antioxidants (Basel) 2023; 13:62. [PMID: 38247486 PMCID: PMC10812405 DOI: 10.3390/antiox13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green solvents to a larger audience. Among the most promising, surely DESs (deep eutectic solvents), NaDESs (natural deep eutectic solvents), HDESs (hydrophobic deep eutectic solvents), and HNaDESs (hydrophobic natural deep eutectic solvents), with their unique features, manifest a wide-range of applications, including their use as a means for the extraction of small bioactive compounds. In examining recent advancements, in this review, we want to focus our attention on some of the most interesting and novel 'solvent-free' extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) in relation to the possibility of better exploiting DESs and NaDESs as plausible extracting solvents of the phenolic compounds (PCs) present in different matrices from olive oil components, such as virgin olive pomace, olive leaves and twigs, virgin and extra virgin olive oil (VOO and EVOO, respectively), and olive cake and olive mill wastewaters (OMWW). Therefore, the status of DESs and NaDESs is shown in terms of their nature, efficacy and selectivity in the extraction of bioactive phytochemicals such as secoiridoids, lignans, phenolic acids and alcohols. Related studies on experimental design and processes' optimization of the most promising DESs/NaDESs are also reviewed. In this framework, an extensive list of relevant works found in the literature is described to consider DESs/NaDESs as a suitable alternative to petrochemicals in cosmetics, pharmaceutical, or food applications.
Collapse
Affiliation(s)
- Mario Coscarella
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Monica Nardi
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| | - Sonia Bonacci
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| | - Antonio Procopio
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Rosa Scarpelli
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Svilen Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| |
Collapse
|
32
|
Pradanas-González F, Aragoneses-Cazorla R, Merino-Sierra MÁ, Andrade-Bartolomé E, Navarro-Villoslada F, Benito-Peña E, Moreno-Bondi MC. Extracting mycotoxins from edible vegetable oils by using green, ecofriendly deep eutectic solvents. Food Chem 2023; 429:136846. [PMID: 37467670 DOI: 10.1016/j.foodchem.2023.136846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
In this work, we developed an environmentally friendly liquid-liquid microextraction method using a natural deep eutectic solvent in combination with liquid chromatography for the simultaneous determination of four mycotoxins (deoxynivalenol, alternariol, ochratoxin A and zearalenone) in edible vegetable oils. A chemometric approach assessed the effect of the operational parameters on the mycotoxin extraction efficiency. The extracts were analyzed by HPLC coupled with a diode array and fluorescence detector. The optimum NADES composition resulted in the highest extraction recoveries, and it was applied to coextract the target mycotoxins in several types of edible vegetable oils without using hazardous solvents or requiring further clean-up. The limits of detection ranged from 0.07 to 300 µg kg-1, and recoveries were close to 100%, except for zearalenone (viz. 35%), with relative standard deviations below 9% in all cases. The proposed method was validated following the European Commission 2002/657/EC and 2006/401/EC.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rubén Aragoneses-Cazorla
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Miguel Ángel Merino-Sierra
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Elena Andrade-Bartolomé
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María Cruz Moreno-Bondi
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
33
|
Lee TW, Su YH, Chen C. Recovery and repurposing of waste isopropanol with CO 2-switchable deep eutectic solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165053. [PMID: 37348732 DOI: 10.1016/j.scitotenv.2023.165053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Large amounts of waste isopropanol (IPA) are generated in industry, rendering the recovery of IPA highly desirable due to the economic and environmental benefits. Because it forms an azeotropic mixture with water, IPA is difficult to separate from the waste stream. In the present work, a novel CO2-switchable monoethanolamine-butanol deep eutectic solvent (DES) ([MEA][BuOH]) was identified as a superior medium for separating IPA and water at ambient temperature by forming butanol-IPA mixtures. The switchable solvent system combines the advantages of homogeneous and heterogeneous systems, i.e., rapid mixing due to the low mass transfer limitations and facile product separation, respectively. The low viscosity of [MEA][BuOH], the similar physical features (polarity, dipole moment, and dielectric constant) of butanol and IPA, and the H-bonding interactions of [BuOH] with IPA are thought to enable effective IPA capture from water by the butanol. Recovery of the IPA and formation of a butanol-IPA mixture is appealing because the resultant mixture could serve as an additive or substitute for alternative fuels. The results suggest that the developed process will provide a low-cost, energy-saving, effective, and environmentally benign route to recycling and repurposing waste IPA, an environmental hazard, as a potential alternative fuel.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Yu-Hui Su
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chiaying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan.
| |
Collapse
|
34
|
Wu Z, Lee S, Kang B, Lee S, Koo K, Lee J, Lim S. Determination of Luteolin 7-Glucuronide in Perilla frutescens (L.) Britt. Leaf Extracts from Different Regions of China and Republic of Korea and Its Cholesterol-Lowering Effect. Molecules 2023; 28:7007. [PMID: 37894485 PMCID: PMC10609570 DOI: 10.3390/molecules28207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Lowering blood cholesterol levels is crucial for reducing the risk of cardiovascular disease in patients with familial hypercholesterolemia. To develop Perilla frutescens (L.) Britt. leaves as a functional food with a cholesterol-lowering effect, in this study, we collected P. frutescens (L.) Britt. leaves from different regions of China and Republic of Korea. On the basis of the extraction yield (all components; g/kg), we selected P. frutescens (L.) Britt. leaves from Hebei Province, China with an extract yield of 60.9 g/kg. After evaluating different concentrations of ethanol/water solvent for P. frutescens (L.) Britt. leaves, with luteolin 7-glucuronide as the indicator component, we selected a 30% ethanol/water solvent with a high luteolin 7-glucuronide content of 0.548 mg/g in Perilla. frutescens (L.) Britt. leaves. Subsequently, we evaluated the cholesterol-lowering effects of P. frutescens (L.) Britt. leaf extract and luteolin 7-glucuronide by detecting total cholesterol in HepG2 cells. The 30% ethanol extract lowered cholesterol levels significantly by downregulating 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression. This suggests that P. frutescens (L.) Britt leaves have significant health benefits and can be explored as a potentially promising food additive for the prevention of hypercholesterolemia-related diseases.
Collapse
Affiliation(s)
- Zhaoyang Wu
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (Z.W.); (S.L.)
| | - Sangyoun Lee
- Institute for Liver and Digestive Diseases, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea;
| | - Beomgoo Kang
- Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (B.K.); (J.L.)
| | - Sookyeong Lee
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (Z.W.); (S.L.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Kyochul Koo
- COSFarm Co., Ltd., Corporate Research Institute, 3F 162, Saeteo-gil, Seonggeo-eup, Seobuk-gu, Cheonan-si 12446, Republic of Korea;
| | - Jaeyong Lee
- Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (B.K.); (J.L.)
| | - Soonsung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (Z.W.); (S.L.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| |
Collapse
|
35
|
Liu YJ, Lou L, Huang Q, Xu W, Li H. Ultrasonic extraction and purification of scutellarin from Erigerontis Herba using deep eutectic solvent. ULTRASONICS SONOCHEMISTRY 2023; 99:106560. [PMID: 37625256 PMCID: PMC10470392 DOI: 10.1016/j.ultsonch.2023.106560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Nowadays, deep eutectic solvent (DES) was widely used in the extraction of bioactive in traditional Chinese medicine (TCM) as an alternative to organic solvents. While as, it is still a challenge for the removal of DES solvents and recovery of the extracted product. In this study, a simple, efficient and green technique of preparing scutellarin from Erigerontis Herba(EH) was proposed, combining ultrasonic assisted-DES extraction with anti-solvent purification. Firstly, different types of DES were prepared and studied for their abilities to extract scutellarin from EH. DES composed of choline chloride and acetamide (1:4 mol/mol) with 30% water obtained the highest extraction yield. Anti-solvent was proved as an efficient method to recover scutellarin from the DES extract with a content of purification up to 71.2%. Moreover, microscopic structural analysis was carried out to investigate the extract process and explain the extraction principle. Furthermore, the antioxidative activities of the DES extracts were evaluated, indicated that the bioactive property of scutellarin were still remained by using DES as the extraction solvent. In conclusion, the proposed simple and green ultrasonic assisted DES extraction method will serve as an effective alternative strategy to extract bioactive compounds from TCM.
Collapse
Affiliation(s)
- Yong-Jing Liu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Li Lou
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qun Huang
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
36
|
Zhou M, Fakayode OA, Li H. Green Extraction of Polyphenols via Deep Eutectic Solvents and Assisted Technologies from Agri-Food By-Products. Molecules 2023; 28:6852. [PMID: 37836694 PMCID: PMC10574355 DOI: 10.3390/molecules28196852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with important biological properties. Their presence in conveniently available low-cost sources, such as agri-food by-products, has gained considerable attention in their recovery and further exploitation. Retrieving polyphenols in a green and sustainable way is crucial. Recently, deep eutectic solvents (DESs) have been identified as a safe and environmentally benign medium capable of extracting polyphenols efficiently. This review encompasses the current knowledge and applications of DESs and assisted technologies to extract polyphenols from agri-food by-products. Particular attention has been paid to fundamental mechanisms and potential applications in the food, cosmetic, and pharmaceutical industries. In this way, DESs and DESs-assisted with advanced techniques offer promising opportunities to recover polyphenols from agri-food by-products efficiently, contributing to a circular and sustainable economy.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| |
Collapse
|
37
|
Vo TP, Nguyen NTU, Le VH, Phan TH, Nguyen THY, Nguyen DQ. Optimizing Ultrasonic-Assisted and Microwave-Assisted Extraction Processes to Recover Phenolics and Flavonoids from Passion Fruit Peels. ACS OMEGA 2023; 8:33870-33882. [PMID: 37744855 PMCID: PMC10515170 DOI: 10.1021/acsomega.3c04550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
This study optimized the ultrasonic-assisted extraction (UAE) and microwave-assisted extraction (MAE) processes to acquire phenolics and flavonoids from passion fruit peels using a mixture of ethanol, acetone, and water. An augmented simplex-centroid design was employed to find the suitable volume ratio among solvent ingredients to attain the highest extraction yield of phenolics and flavonoids. One-factor experiments were conducted to investigate the influence of UAE and MAE parameters on the recovery yield of phenolics and flavonoids before the two processes were optimized using Box-Behnken Design (BBD) models. The optimal UAE conditions for recovering phenolics and flavonoids from passion fruit peel powder (PFP) were 28 mL/g of liquid-to-solid ratio (LSR), 608 W of ultrasonic power, and 63 °C for 20 min to acquire total phenolic content (TPC) and total flavonoid content (TFC) at 39.38 mg of gallic acid equivalents per gram of dried basis (mg GAE/g db) and 25.79 mg of rutin equivalents per gram of dried basis (mg RE/g db), respectively. MAE conditions for attaining phenolics and flavonoids from PFP were 26 mL/g of LSR and 606 W of microwave power for 2 min to recover TPC and TFC at 17.74 mg GAE/g db and 8.11 mg RE/g db, respectively. The second-order kinetic model was employed to determine the UAE and MAE mechanism of TPC and TFC and the thermodynamic parameters of the extraction processes. The antioxidant activities of passion fruit peel extracts at optimal conditions were examined to compare the efficiency of UAE and MAE. This study establishes an effective approach for obtaining phenolics and flavonoids from passion fruit peels.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Nu To Uyen Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Viet Ha Le
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thuy Han Phan
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thi Hoang Yen Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Dinh Quan Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
38
|
Vo TP, Pham TV, Tran TNH, Vo LTV, Vu TT, Pham ND, Nguyen DQ. Ultrasonic-Assisted and Microwave-Assisted Extraction of Phenolics and Terpenoids from Abelmoschus sagittifolius (Kurz) Merr Roots Using Natural Deep Eutectic Solvents. ACS OMEGA 2023; 8:29704-29716. [PMID: 37599925 PMCID: PMC10433328 DOI: 10.1021/acsomega.3c03929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
This research extracted phenolics and terpenoids from Abelmoschus sagittifolius (Kurz) Merr roots using natural deep eutectic solvent-based novel extraction techniques. Twelve natural deep eutectic solvents (NADESs) were produced for recovering phenolics and terpenoids. Citric acid/glucose and lactic acid/glucose, with a molar ratio of 2:1, were determined as the most appropriate NADESs for extracting phenolics and terpenoids, respectively. Afterward, the proper conditions for NADES-based ultrasonic-assisted and microwave-assisted extraction were investigated. Then, the time and liquid-to-solid ratios of ultrasonic- and microwave-combined extraction methods and the sequence of ultrasound and microwave treatments were examined. The conditions of ultrasonic-assisted extraction were 40 mL/g liquid-to-solid ratio, 40% water content, 30°C, 5 min, and 600 W ultrasonic power for the highest terpenoid recovery at 69 ± 2 mg UA/g dw, while 150 W ultrasonic power was suitable for phenolic recovery at 9.56 ± 0.17 mg GAE/g dw. The conditions of microwave-assisted extraction were 50 mL/g liquid-to-solid ratio, 20% water content, 400 W microwave power, and 2 min to acquire the highest phenolics and terpenoids at 22.13 ± 0.75 mg GAE/g dw and 90 ± 1 mg UA/g dw, respectively. Under appropriate conditions, the biological activities, phenolic content, and terpenoid content of obtained extracts from four extraction methods, including ultrasonic-assisted, microwave-assisted, ultrasonic-microwave-assisted, and microwave-ultrasonic-assisted extraction, were compared to select the most proper method. The conditions of ultrasonic-microwave-assisted extraction were 40 mL/g liquid-to-solid ratio, 5 min sonication, and 1 min microwave irradiation to obtain the highest phenolic and terpenoid contents (27.07 ± 0.27 mg GAE/g dw and 111 ± 3 mg UA/g dw, respectively). Ultrasonic-microwave-assisted extraction showed the highest phenolic content, terpenoid content, and biological activities among the four extraction techniques. The changes in the surface morphology were determined using scanning electron microscopy. This study demonstrated that ultrasonic-microwave-assisted extraction was an effective and sustainable method in food and pharmaceutical industries for recovering phenolics and terpenoids from Abelmoschus sagittifolius (Kurz) Merr.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thuy Vy Pham
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Le Thao Vy Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Trong Thuc Vu
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Ngoc Duyen Pham
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Dinh Quan Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
39
|
Wawoczny A, Gillner D. The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433265 PMCID: PMC10375538 DOI: 10.1021/acs.jafc.3c01656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
There is growing interest in reducing the number of synthetic products or additives and replacing them with natural ones. The pharmaceutical, cosmetic, and food industries are especially focused on natural and bioactive chemicals isolated from plants or microorganisms. The main challenge here is to develop efficient and ecological methods for their isolation. According to the strategies and rules of sustainable development and green chemistry, green solvents and environmentally friendly technologies must be used. The application of deep eutectic solvents as efficient and biodegradable solvents seems to be a promising alternative to traditional methods. They are classified as being green and ecological but, most importantly, very efficient extraction media compared to organic solvents. The aim of this review is to present the recent findings on green extraction, as well as the biological activities and the possible applications of natural plant ingredients, namely, phenolics, flavonoids, terpenes, saponins, and some others. This paper thoroughly reviews modern, ecological, and efficient extraction methods with the use of deep eutectic solvents (DESs). The newest findings, as well as the factors influencing the efficiency of extraction, such as water content, and hydrogen bond donor and acceptor types, as well as the extraction systems, are also discussed. New solutions to the major problem of separating DESs from the extract and for solvent recycling are also presented.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
40
|
Meng Y, Sui X, Pan X, Zhang X, Sui H, Xu T, Zhang H, Liu T, Liu J, Ge P. Density-oriented deep eutectic solvent-based system for the selective separation of polysaccharides from Astragalus membranaceus var. Mongholicus under ultrasound-assisted conditions. ULTRASONICS SONOCHEMISTRY 2023; 98:106522. [PMID: 37451008 PMCID: PMC10368916 DOI: 10.1016/j.ultsonch.2023.106522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The water extraction and ethanol precipitation method is an extraction method based on the solubility characteristics of polysaccharides that offers wide applicability in the extraction and separation of plant polysaccharides. However, this method leads to large amounts of proteins, nucleic acids, pigments, and other impurities in the polysaccharides products, which makes downstream purification complicated and time-consuming. In this study, a green, high-density natural deep eutectic solvents was used for the high-purity extraction and separation of polysaccharides from Astragalus membranaceus (Fisch) Bge. var. Mongholicus (Bge.) Hsiao roots under ultrasound-assisted conditions. In this study, 16 different natural deep eutectic solvents were designed to screen the best solvent for extracting Astragalus polysaccharides (APSs). Based on the yield and recovery of APSs, a natural deep eutectic solvents composed of choline chloride and oxalic acid with a molar ratio of 1:2 was selected. The related factors affecting polysaccharides extraction and solvent precipitation were investigated. To improve the operating methodology, single-factor trials, a Plackett-Burman design, and a Box-Behnken design were used. The optimal extraction process conditions were obtained as follows: water content of 55%, liquid-solid ratio of 24 mL/g, ultrasonic irradiation time of 54 min, ultrasonic irradiation temperature of 50 °C, ultrasonic irradiation power of 480 W, ethanol precipitation time of 24 h, and ethanol concentration of 75%. Under optimal extraction conditions, the recovery of APSs was 61.4 ± 0.6 mg/g. Considering the special matrix characteristics of A. membranaceus var. Mongholicus roots, physical-technology-based ultrasonic waves promote penetration, and the mass transfer function also solves the bottleneck of high-viscosity deep eutectic solvents in the extraction stage. In comparison with the conventional method, the proposed method based on deep eutectic solvents isolation can significantly increase APSs recovery, which is beneficial to simplifying the process of polysaccharides purification by using solvent properties to separate extracts and reduce impurities in APSs.
Collapse
Affiliation(s)
- Yue Meng
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xu Pan
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xinyi Zhang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Huimin Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tao Xu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China; Basic Medical College, Heilongjiang University of Chinese Medicine, 150040 Harbin, China.
| | - Jicheng Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Pengling Ge
- Basic Medical College, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| |
Collapse
|
41
|
Taweekayujan S, Somngam S, Pinnarat T. Optimization and kinetics modeling of phenolics extraction from coffee silverskin in deep eutectic solvent using ultrasound-assisted extraction. Heliyon 2023; 9:e17942. [PMID: 37449125 PMCID: PMC10336794 DOI: 10.1016/j.heliyon.2023.e17942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
This research investigates the effect of extraction parameters on total phenolic content (TPC) and the antioxidant capacity of coffee silverskin (CS) extract using ultrasound-assisted extraction (UAE) in deep eutectic solvent (DES). The optimization was carried out in two stages: (i) the optimization of the UAE condition with the highest TPC; and (ii) a four-factor Box-Behnken design (BBD) to optimize the UAE condition with the optimal TPC; 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity; and ferric reducing antioxidant power (FRAP). The results showed that the optimal UAE condition with the highest TPC was 150-250 μm CS particle size; 1,6-hexanediol as hydrogen bond donor (HBD); 1:7 HBA:HBD molar ratio; and 30% (w/w) water content, given choline chloride (ChCl) as hydrogen bond acceptor (HBA), 30 min extraction time and 30 ° C extraction temperature. The BBD-based optimal UAE condition was 30% w/w water content, 45 mL/g liquid/solid ratio, 90 min extraction time and 85 ° C extraction temperature, given the CS particle size of 150-250 μm and the HBA:HBD molar ratio of 1 (ChCl): 7 (1,6 hexanediol), achieving 19.19 ± 0.20 mg GAE/g CS for TPC, 24.06 ± 1.77 mg TE/g CS for DPPH radical scavenging capacity, and 59.13 ± 4.55 mg Fe (II)/g CS for FRAP. The experimental results were in good agreement with the BBD-based predicted results (22.40 mg GAE/g CS for TPC, 24.09 mg TE/g CS for DPPH, and 59.43 mg Fe(II)/g CS for FRAP). The two-site kinetics model best fitted the experimental data, with R2 of 0.991-0.999.
Collapse
Affiliation(s)
- Supawat Taweekayujan
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Supitcha Somngam
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Tanawan Pinnarat
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
42
|
Chen X, Wang R, Tan Z. Extraction and purification of grape seed polysaccharides using pH-switchable deep eutectic solvents-based three-phase partitioning. Food Chem 2023; 412:135557. [PMID: 36724718 DOI: 10.1016/j.foodchem.2023.135557] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
T-butanol is widely used in three-phase partitioning (TPP), which is harmful to the environment. pH-switchable deep eutectic solvents (DESs) can be used as recyclable alternatives to t-butanol. This study aimed to construct DES-based TPP for extracting and purifying grape seed polysaccharides (GSP). The main influence factors were investigated in single-factor experiments. DES-1 (dodecanoic acid: octanoic acid = 1:1)-based extraction was screened, and the extraction yield reached the maximum of 98.04 mg/g under the optimal conditions. Furthermore, DES can be recycled, only suffering a small loss capacity in extraction yield after 25 cycles. Most importantly, the extractability of DES could be completely recovered after switching and regeneration. The molecular weight of obtained GSP was 60 kDa, and the main monosaccharides of GSP included mannose, glucose, galactose, and arabinose. This study provides an efficient and sustainable method for the extraction of bioactive substances.
Collapse
Affiliation(s)
- Xueying Chen
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Runping Wang
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
43
|
Afifi SM, Gök R, Eikenberg I, Krygier D, Rottmann E, Stübler AS, Aganovic K, Hillebrand S, Esatbeyoglu T. Comparative flavonoid profile of orange ( Citrus sinensis) flavedo and albedo extracted by conventional and emerging techniques using UPLC-IMS-MS, chemometrics and antioxidant effects. Front Nutr 2023; 10:1158473. [PMID: 37346911 PMCID: PMC10279959 DOI: 10.3389/fnut.2023.1158473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Citrus fruits are one of the most frequently counterfeited processed products in the world. In the juice production alone, the peels, divided into flavedo and albedo, are the main waste product. The extracts of this by-product are enriched with many bioactive substances. Newer extraction techniques generally have milder extraction conditions with simultaneous improvement of the extraction process. Methods This study presents a combinatorial approach utilizing data-independent acquisition-based ion mobility spectrometry coupled to tandem mass spectrometry. Integrating orthogonal collision cross section (CCS) data matching simultaneously improves the confidence in metabolite identification in flavedo and albedo tissues from Citrus sinensis. Furthermore, four different extraction approaches [conventional, ultrasonic, High Hydrostatic Pressure (HHP) and Pulsed Electric Field (PEF)] with various optimized processing conditions were compared in terms of antioxidant effects and flavonoid profile particularly polymethoxy flavones (PMFs). Results A total number of 57 metabolites were identified, 15 of which were present in both flavedo and albedo, forming a good qualitative overlapping of distributed flavonoids. For flavedo samples, the antioxidant activity was higher for PEF and HHP treated samples compared to other extraction methods. However, ethyl acetate extract exhibited the highest antioxidant effects in albedo samples attributed to different qualitative composition content rather than various quantities of same metabolites. The optimum processing conditions for albedo extraction using HHP and PEF were 200 MPa and 15 kJ/kg at 10 kV, respectively. While, HHP at medium pressure (400 MPa) and PEF at 15 kJ/kg/3 kV were the optimum conditions for flavedo extraction. Conclusion Chemometric analysis of the dataset indicated that orange flavedo can be a valid source of soluble phenolic compounds especially PMFs. In order to achieve cross-application of production, future study should concentrate on how citrus PMFs correlate with biological engineering techniques such as breeding, genetic engineering, and fermentation engineering.
Collapse
Affiliation(s)
- Sherif M. Afifi
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Recep Gök
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Dennis Krygier
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| | | | | | - Kemal Aganovic
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
44
|
Shao Q, Fang S, Fang X, Zhang M, Huang W, Wang F, Duan X, Wu Y, Luo J. Boosting short-chain fatty acids production from co-fermentation of orange peel waste and waste activated sludge: Critical role of pH on fermentation steps and microbial function traits. BIORESOURCE TECHNOLOGY 2023; 380:129128. [PMID: 37137449 DOI: 10.1016/j.biortech.2023.129128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
The anaerobic co-fermentation of orange peel waste (OPW) and waste activated sludge (WAS) for useful short-chain fatty acids (SCFAs) generation presents an environmentally friendly and efficient method for their disposal. This study amied to investigate the effects of pH regulation on OPW/WAS co-fermentation, and found that the alkaline pH regulation (pH 9) significantly enhanced the promotion of SCFAs (11843 ± 424 mg COD/L), with a high proportion of acetate (51%). Further analysis revealed that alkaline pH regulation facilitated solubilization, hydrolysis, and acidification while simultaneously inhibiting methanogenesis. Furthermore, the functional anaerobes, as well as the expressions of corresponding gene involved in SCFAs biosynthesis, were generally improved under alkaline pH regulation. Alkaline treatment might played a critical role in alleviating the toxicity of OPW, resulting in improving microbial metabolic activity. This work provided an effective strategy to recover biomass waste as high-value products, and insightful understanding of microbial traits during OPW/WAS co-fermentation.
Collapse
Affiliation(s)
- Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xinyang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Minghong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
45
|
Vo TP, Pham ND, Pham TV, Nguyen HY, Vo LTV, Tran TNH, Tran TN, Nguyen DQ. Green extraction of total phenolic and flavonoid contents from mangosteen (Garcinia mangostana L) rind using natural deep eutectic solvents. Heliyon 2023; 9:e14884. [PMID: 37095977 PMCID: PMC10121615 DOI: 10.1016/j.heliyon.2023.e14884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
This research combined ultrasonic-assisted extraction (UAE) and natural deep eutectic solvent (NADES) to recover phenolic and flavonoid components from mangosteen rind. The antioxidant activities were determined using DPPH, ABTS+, and hydroxyl assays. NADES prepared from lactic and 1,2-propanediol had the highest extraction efficiency based on the total flavonoid content (TFC) and phenolic contents (TPC). Single-factor experiments were employed to assess the influence of UAE conditions (liquid-to-solid ratio, temperature, water content in NADES, and time) on TFC, TPC, and antioxidant activities. NADES-based UAE conditions were optimized using response surface methodology with the Box-Behnken design model on five dependent responses (TPC, TFC, DPPH, ABTS, and OH). The optimal conditions for the lactic-1,2-Propanediol-based UAE process were 76.7 ml liquid/g solid with 30.3% of water content at 57.5 °C for 9.1 min. Scanning electron microscopy (SEM) was applied to examine the surface morphology of mangosteen rind before and after sonication. This study proposes an efficient, green, and practical approach for recovering phenolics and flavonoids from mangosteen rinds.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ngoc Duyen Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy Vy Pham
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoang Yen Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Thao Vy Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tri Nguyen Tran
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Corresponding author. Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
| |
Collapse
|
46
|
Wong YS, Yusoff R, Ngoh GC. Phenolic compounds extraction by assistive technologies and natural deep eutectic solvents. REV CHEM ENG 2023. [DOI: 10.1515/revce-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Abstract
Phenolic compounds are known to have a significant effect on human defense system due to their anti-inflammatory efficacy. This can slow down the aging process and strengthen the human immune system. With the growing interest in green chemistry concept, extraction of phenolic compounds from plants has been geared towards a sustainable path with the use of green and environmentally friendly solvents such as natural deep eutectic solvents (NADES). This review discusses both the conventional extraction and the advanced extraction methods of phenolic compounds using NADES with focus on microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) techniques ensued by a rationale comparison between them. Employing choline chloride-based natural deep eutectic solvents (NADES) is highlighted as one of the promising strategies in green solvent extraction of phenolic compounds in terms of their biodegradability and extraction mechanism. The review also discusses assistive extraction technologies using NADES for a better understanding of their relationship with extraction efficiency. In addition, the review includes an overview of the challenges of recovering phenolic compounds from NADES after extraction, the potential harmful effects of NADES as well as their future perspective.
Collapse
|
47
|
Liu Z, Deng M, Qu Y, Liang N, Zhao L. An efficient extraction method for ergosterol from Lentinus edodes stem by ultrasonic-assisted natural deep eutectic solvent. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
48
|
Del Mar Contreras-Gámez M, Galán-Martín Á, Seixas N, da Costa Lopes AM, Silvestre A, Castro E. Deep eutectic solvents for improved biomass pretreatment: Current status and future prospective towards sustainable processes. BIORESOURCE TECHNOLOGY 2023; 369:128396. [PMID: 36503832 DOI: 10.1016/j.biortech.2022.128396] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Pretreatment processes - recognized as critical steps for efficient biomass refining - have received much attention over the last two decades. In this context, deep eutectic solvents (DES) have emerged as a novel alternative to conventional solvents representing a step forward in achieving more sustainable processes with both environmental and economic benefits. This paper presents an updated review of the state-of-the-art of DES-based applications in biorefinery schemes. Besides describing the fundamentals of DES composition, synthesis, and recycling, this study presents a comprehensive review of existing techno-economic and life cycle assessment studies. Challenges, barriers, and perspectives for the scale-up of DES-based processes are also discussed.
Collapse
Affiliation(s)
- María Del Mar Contreras-Gámez
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Ángel Galán-Martín
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Nalin Seixas
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal
| | - André M da Costa Lopes
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal; CECOLAB - Collaborative Laboratory Towards Circular Economy, R. Nossa Senhora da Conceição, Oliveira do Hospital, 3405-155, Portugal
| | - Armando Silvestre
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain.
| |
Collapse
|
49
|
Maimulyanti A, Nurhidayati I, Mellisani B, Amelia Rachmawati Putri F, Puspita F, Restu Prihadi A. Development of Natural Deep Eutectic Solvent (NADES) based on Choline Chloride as a Green Solvent to Extraction Phenolic Compound from Coffee Husk Waste. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
50
|
Feng C, Guo H, Zhao X, Tang X, Xiong Y. Extraction, separation and kinetics of phenylethanosides from Plantago asiatica L. by an innovative extraction technology-deep eutectic solvent-based ultrasound-assisted extraction. Prep Biochem Biotechnol 2023; 53:978-987. [PMID: 36719813 DOI: 10.1080/10826068.2022.2163257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this paper, the total phenylethanosides (TPS) were extracted efficiently by an innovative extraction technology--deep eutectic solvent-based ultrasound-assisted extraction (DES-UAE) from Plantago asiatica L. Ten diverse types of DESs were synthesized as alternative extraction solutions. The extraction efficiency of DES-3 (constituted by choline chloride and lactic acid) was much higher than those of other DESs. On the basis of single factor tests and Box-Behnken design (BBD), the optimum processing parameters of DES-UAE as follow: DES-3 with molar ratio of 1:3, extraction temperature 51 °C, solid/liquid 22.5 mg/ml, water content 30%, ultrasonic power 65 W, extraction time 23 min. The extraction efficiency of TPS from Plantago asiatica L. was 8.395 mg/ml, which was more superior than those of organic solvents (water, methanol, 50% methanol, ethanol, 50% ethanol). The extraction kinetics experiment results showed that water content had a significant influence upon the extraction efficiency of TPS. At the same time, AB-8 macroporous resin column was used to efficiently isolate TPS from DES extraction with a recovery rate of 88.5%.
Collapse
Affiliation(s)
- Chuanhua Feng
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiling Guo
- The Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiaojuan Zhao
- The First Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiaolin Tang
- Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Yaokun Xiong
- The Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|