1
|
Iqbal A, Bao H, Wang J, Liu H, Liu J, Huang L, Li D. Role of jasmonates in plant response to temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112477. [PMID: 40097048 DOI: 10.1016/j.plantsci.2025.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
The ambient temperature exerts a significant influence on the growth and development of plants, which are sessile organisms. Exposure to extreme temperatures, both low and high, has a detrimental impact on plant growth and development, crop yields, and even geographical distribution. Jasmonates constitute a class of lipid hormones that regulate plant tolerance to biotic and abiotic stresses. Recent studies have revealed that jasmonate biosynthesis and signaling pathways are integral to plant responses to both high and low temperatures. Exogenous application of jasmonate improves cold and heat tolerance in plants and reduces cold injury in fruits and vegetables during cold storage. Jasmonate interacts with low and high temperature key response factors and engages in crosstalk with primary and secondary metabolic pathways, including hormones, under conditions of temperature stress. This review presents a comprehensive summary of the jasmonate synthesis and signal transduction pathway, as well as an overview of the functions and mechanisms of jasmonate in response to temperature stress.
Collapse
Affiliation(s)
- Aafia Iqbal
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Henan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Huijie Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jiangtao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Liqun Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Pang L, Lou X, Xu X, Lv Y, Sun Q, Hu C, Zhu Y, Lu X, Xiang C, Guan Y, Cheng J, Lu G, Lv Z. Effects of Tea Polyphenols and Microporous Packaging Treatment on Storage and Preservation of Leaf-Vegetable Sweet Potatoes. Foods 2025; 14:1191. [PMID: 40238359 PMCID: PMC11988725 DOI: 10.3390/foods14071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Leaf-vegetable sweet potatoes incurred significant losses during storage, which resulted in a shortened shelf life and reduced commercial value. This study investigated the effects of tea polyphenols (TPs) fumigation and microporous packaging (MP) during 10 days at 10 °C and 90-95% RH. The results indicated that the preservation effects followed the order TP + MP > MP > TP > CK, with the TP + MP treatment effectively controlling the degradation rate of chlorophyll and delaying leaf yellowing. In addition, TP + MP treatment increased the activity of antioxidant enzymes, especially catalase (CAT) and ascorbate peroxidase (APX), and also enhanced non-enzymatic systems (flavonoids, total phenolics, and ascorbic acid). Pearson's correlation analysis showed a positive correlation between the decline in postharvest quality of leaf-vegetable sweet potatoes and the increase in reactive oxygen species (ROS) levels. This study provided a robust theoretical and technical foundation for the development of effective postharvest preservation strategies for leaf-vegetable sweet potatoes.
Collapse
Affiliation(s)
- Linjiang Pang
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (L.P.); (X.L.); (Y.L.); (X.L.); (Y.G.); (J.C.)
| | - Xuefen Lou
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (L.P.); (X.L.); (Y.L.); (X.L.); (Y.G.); (J.C.)
| | - Ximing Xu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.X.); (Q.S.); (C.H.); (Y.Z.)
| | - You Lv
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (L.P.); (X.L.); (Y.L.); (X.L.); (Y.G.); (J.C.)
| | - Qingyun Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.X.); (Q.S.); (C.H.); (Y.Z.)
| | - Chengyuan Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.X.); (Q.S.); (C.H.); (Y.Z.)
| | - Yueming Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.X.); (Q.S.); (C.H.); (Y.Z.)
| | - Xinghua Lu
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (L.P.); (X.L.); (Y.L.); (X.L.); (Y.G.); (J.C.)
| | - Chao Xiang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Yuge Guan
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (L.P.); (X.L.); (Y.L.); (X.L.); (Y.G.); (J.C.)
| | - Jiyu Cheng
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (L.P.); (X.L.); (Y.L.); (X.L.); (Y.G.); (J.C.)
| | - Guoquan Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.X.); (Q.S.); (C.H.); (Y.Z.)
| | - Zunfu Lv
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.X.); (Q.S.); (C.H.); (Y.Z.)
| |
Collapse
|
3
|
Dobón-Suárez A, Gutiérrez-Pozo M, Serna-Escolano V, Giménez MJ, Valero D, Serrano M, García-Pastor ME, Zapata PJ. Antioxidant metabolism insights into ripening and senescence delay of green pepper fruit through the salicylic acid preharvest treatment. FRONTIERS IN PLANT SCIENCE 2025; 16:1475068. [PMID: 40177016 PMCID: PMC11961999 DOI: 10.3389/fpls.2025.1475068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025]
Abstract
Introduction The systematic investigation of the biochemical and molecular bases of salicylic acid (SA) in the postharvest physiological process of green pepper fruit remains unclear. Methods Accordingly, this study aims to analyze the effects of 0.5 mM-SA preharvest treatments, applied by foliar spraying or irrigation, on the ripening and senescence of green pepper fruit for 28 days of storage at 7 °C. Results The study revealed that the preharvest application of SA, either by foliar spraying or irrigation, significantly delayed losses of weight, firmness and color during postharvest. Additionally, both treatments increased the total soluble solids and total acidity content, which lead to a significantly reduced ripening index after storage. These results were evidenced by a slowing down of the ripening and senescence processes, accompanied by the stimulation of the antioxidant enzymes in those SA-treated green pepper fruits. Furthermore, a significant increase in chlorophylls, phenolics, ascorbic acid and dehydroascorbic acid content was observed. The SA treatments also enhanced the total antioxidant activity, in both hydrophilic and lipophilic phases. These positive effects were mediated by the upregulation of the relative response of the CaAPX, CaPOD, CaPAL, CaDHAR2 genes at harvest. Discussion These findings reinforce the existing knowledge gap regarding the impact of foliar spraying or irrigation SA on the intricate interplay between metabolites and genes related to the antioxidant system in regulating the bell pepper fruit ripening and senescence. The impact of both applications exhibited comparable results; however, the irrigation was identified as the most advantageous due to its ease applicability and cost effectiveness in comparison.
Collapse
Affiliation(s)
- Alicia Dobón-Suárez
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - María Gutiérrez-Pozo
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - Vicente Serna-Escolano
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - María J. Giménez
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - Daniel Valero
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - María Serrano
- Department of Applied Biology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - María E. García-Pastor
- Department of Applied Biology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| | - Pedro J. Zapata
- Department of Agri-Food Technology, Institute for Agri-Food and Agro-Environmental Research and Innovation (CIAGRO), University Miguel Hernández, Alicante, Spain
| |
Collapse
|
4
|
Xie P, Yang Y, Li Y, Wang Y, Bai B, Prusky D, Li Y, Bi Y. Preharvest phenylalanine spraying alleviates chilling injury in harvested muskmelons by maintaining reactive oxygen species homeostasis. Food Chem 2025; 466:142198. [PMID: 39612840 DOI: 10.1016/j.foodchem.2024.142198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
In this study, muskmelon plant and fruit were sequentially sprayed with 8 mM phenylalanine (Phe) four times during fruit development. The effect of preharvest Phe spraying on chilling injury (CI) of harvested muskmelons was assessed and the mechanism involved was investigated. We found that Phe spray activated NADPH oxidase (NOX), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR), and increased glutathione (GSH) and ascorbic acid (AsA) levels during fruit chilling. The spray increased endogenous Phe, total phenolic and flavonoid content, and DPPH and ABTS+ scavenging capacity. In addition, the spray decreased O2.- production rate, H2O2 levels, cell membrane permeability and malondialdehyde (MDA) content, and significantly reduced CI index in fruit, which was 16.5 %, 16.6 %, 13.5 %, 20.2 % and 26.5 % lower than the control after 28 d, respectively. In conclusion, Phe spraying alleviates CI in harvested muskmelons by maintaining ROS homeostasis.
Collapse
Affiliation(s)
- Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Botao Bai
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Shah HMS, Singh Z, Hasan MU, Woodward A, Afrifa-Yamoah E. Preharvest methyl jasmonate application delays cell wall degradation and upregulates phenolic metabolism and antioxidant activities in cold stored raspberries. Food Chem 2025; 462:141020. [PMID: 39216377 DOI: 10.1016/j.foodchem.2024.141020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The effects of preharvest methyl jasmonate (MeJA) spray application on the physicochemical quality, metabolism of phenolics, and cell wall components in raspberries were investigated during a 10-day cold storage period. MeJA spray reduced firmness loss, decay incidence, and weight loss, while maintained higher levels of soluble solids content, ascorbic acid, anthocyanins and flavonoids in raspberries. Furthermore, MeJA application resulted in increased total pectin and protopectin levels, as well as lowered water-soluble pectin, and activities of pectin methyl esterase, polygalacturonase and cellulase enzymes. Additionally, MeJA treatment upregulated the phenylpropanoid pathway, leading to higher endogenous phenolics and activities of phenylalanine-ammonia lyase and shikimate dehydrogenase. In conclusion, preharvest MeJA spray application could be adopted to enhance the storage potential of cold-stored raspberries for 10 days by maintaining higher firmness, assuring better physicochemical quality, and increasing phenolic metabolism, while reducing cell wall hydrolysis.
Collapse
Affiliation(s)
- Hafiz Muhammad Shoaib Shah
- Horticulture, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| | - Zora Singh
- Horticulture, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia.
| | - Mahmood Ul Hasan
- Horticulture, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| | - Andrew Woodward
- Horticulture, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| | - Eben Afrifa-Yamoah
- Horticulture, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| |
Collapse
|
6
|
Hasan MU, Singh Z, Shah HMS, Woodward A, Afrifa-Yamoah E. Methyl jasmonate advances fruit ripening, colour development, and improves antioxidant quality of 'Yoho' and 'Jiro' persimmon. Food Chem 2024; 459:140360. [PMID: 38991443 DOI: 10.1016/j.foodchem.2024.140360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Methyl jasmonate (MJ) has potential to regulate fruit ripening and quality. 'Yoho' and 'Jiro' persimmons were sprayed with MJ (0, 2, 4, and 6 mM), four weeks before anticipated harvest to evaluate its effects on fruit colour and bioactive compounds. Preharvest MJ application significantly improved fruit colour with increased a*, b*, chroma, and colour index. The MJ 6 mM application had significantly enhanced soluble solids content (SSC), reduced total chlorophyll content in peel and pulp, and soluble and total tannins in persimmons. MJ treatments exhibited higher contents of total phenolics, flavonoids, carotenoids, and antioxidant activities. Additionally, MJ treatments enhanced the activities of shikimate dehydrogenase (SKDH), phenylalanine ammonia-lyase (PAL), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and lipoxygenase (LOX) enzymes. Overall, pre-harvest MJ application at 6 mM four weeks before anticipated harvest could be useful for advancing colour and improving bioactive compounds in 'Yoho' and 'Jiro' persimmons.
Collapse
Affiliation(s)
- Mahmood Ul Hasan
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| | - Zora Singh
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia.
| | - Hafiz Muhammad Shoaib Shah
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| | - Andrew Woodward
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| | - Eben Afrifa-Yamoah
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia
| |
Collapse
|
7
|
Yang M, Zheng E, Lin Z, Miao Z, Li Y, Hu S, Gao Y, Jiang Y, Pang L, Li X. Melatonin Rinsing Treatment Associated with Storage in a Controlled Atmosphere Improves the Antioxidant Capacity and Overall Quality of Lemons. Foods 2024; 13:3298. [PMID: 39456360 PMCID: PMC11506858 DOI: 10.3390/foods13203298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Antioxidant capacity is one of the most important biological activities in fruits and vegetables and is closely related to human health. In this study, 'Eureka' lemons were used as experimental materials and stored at 7-8 °C MT (melatonin, 200 μmol, soaked for 15 min) and CA (controlled atmosphere, 2-3% O2 + 15-16% CO2) individually or in combination for 30 d. The changes in lemon fruits' basic physicochemical properties, enzyme activities, and antioxidant capacities were studied. Comparing the combined treatment to the control, the outcomes demonstrated a significant reduction in weight loss, firmness, stomatal opening, and inhibition of polyphenol oxidase (PPO) and peroxidase (POD) activities. Additionally, the combined treatment maintained high levels of titratable acidity (TA), vitamin C (VC), total phenolic content (TPC), and antioxidant capacity and preserved the lemon aroma. Meanwhile, the correlation between fruit color, aroma compounds, and antioxidant capacity was revealed, providing valuable insights into the postharvest preservation of lemons. In conclusion, the combined treatment (MT + CA) was effective in maintaining the quality and antioxidant capacity of lemons.
Collapse
Affiliation(s)
- Mengjiao Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Enlan Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Ziqin Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Ze Miao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yuhang Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Shiting Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yanan Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Lingling Pang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| |
Collapse
|
8
|
Wu H, Han WH, Liang KL, Wang JX, Zhang FB, Ji SX, Liu SS, Wang XW. Using salicylic acid-responsive promoters to drive the expression of jasmonic acid-regulated genes enhances plant resistance to whiteflies. PEST MANAGEMENT SCIENCE 2024. [PMID: 39387811 DOI: 10.1002/ps.8461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Jasmonic acid (JA) is an important phytohormone used to defend against herbivores, but it does not respond to whitefly feeding. Conversely, another phytohormone, salicylic acid (SA), is induced when plants are fed upon by whiteflies. JA has a better anti-whitefly effect than SA; however, there is limited research on how to effectively improve plant resistance by utilizing the different responses of these phytohormones to whitefly feeding. RESULTS We discovered that protease inhibitors 8 (PI8) and terpene synthase 10 (TPS10) located downstream of the JA-regulated pathway in plants have anti-whitefly effects, but these two genes were not induced by whitefly feeding. To identify whitefly-inducible promoters, we compared the transcriptome data of tobacco fed upon by Bemisia tabaci with the control. We focused on pathogenesis-related (PR) genes because they are known to be induced by SA. Among these PR genes, we found that expression levels of pathogenes-related protein 1C-like (PR1) and glucose endo-1,3-beta-glucosidase (BGL) can be significantly induced by whitefly feeding and regulated by SA. We then engineered the whitefly-inducible promoters of BGL and PR1 to drive the expression of PI8 and TPS10. We found that compared with control plants that did not induce the expression of PI8 or TPS10, transformed plants expressing PI8 or TPS10 under the PR1 or BGL promoter showed a significant increase in the expression levels of PI8 and TPS10 after whitefly infection, significantly improving their resistance to whiteflies. CONCLUSION Our findings suggest that using SA-inducible promoters as tools to drive the expression of JA-regulated defense genes can enhance plant resistance to whiteflies. Our study provides a novel pathway for the enhancement of plant resistance against insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- He Wu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kai-Lu Liang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Bin Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Xia Ji
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhang X, Liu Y, Zhang W, Yang W, An S, Guo M, Chen G. Salicylic Acid Treatment Ameliorates Postharvest Quality Deterioration in 'France' Prune ( Prunus domestica L. 'Ximei') Fruit by Modulating the Antioxidant System. Foods 2024; 13:2871. [PMID: 39335799 PMCID: PMC11430936 DOI: 10.3390/foods13182871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The potential of salicylic acid (SA) in delaying postharvest fruit senescence has been extensively documented; nevertheless, its effect on antioxidant activity and quality of 'France' prune fruit is largely unknown. The study investigated the effects of SA (0.5 mM) on postharvest quality deterioration of 'France' prune fruit. Results indicated that SA impeded the increase in respiration rate and weight loss, and mitigated the decrease of soluble solids content (SSC), titratable acidity (TA) content, firmness, and hue angle. SA sustained the ascorbate-glutathione cycle by inducing the production of ascorbic acid (AsA) and glutathione (GSH) and attenuates flavonoids, total phenols, and anthocyanins degradation by inhibiting polyphenol oxidase (PPO) activity and PdPPO. Moreover, SA significantly improved superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and glutathione reductase (GR) activities and gene expression levels, sustained higher 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging capacity, ferric reducing antioxidant power (FRAP), and hydroxyl radical (·OH) inhibition capacity, and impeded the production of hydrogen peroxide (H2O2) and superoxide anion (O2•-). Overall, SA improved the antioxidant capacity by inducing the synthesis of defense response-related substances and promoting antioxidant enzyme activities to sustain the storage quality of 'France' prune fruit.
Collapse
Affiliation(s)
- Xinling Zhang
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yuxing Liu
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weida Zhang
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Wanting Yang
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Shuaibing An
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Minrui Guo
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi 832000, China
| | - Guogang Chen
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi 832000, China
| |
Collapse
|
10
|
dos Santos SK, Gomes DDS, Soares VDA, Dantas EFO, de Oliveira AFP, Gusmão MHA, de Matos EM, Souza T, Viccini LF, Grazul RM, Henschel JM, Batista DS. Salicylic Acid and Water Stress: Effects on Morphophysiology and Essential Oil Profile of Eryngium foetidum. Metabolites 2024; 14:241. [PMID: 38668369 PMCID: PMC11052287 DOI: 10.3390/metabo14040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The exogenous application of bioregulators, such as salicylic acid (SA), has exhibited promising outcomes in alleviating drought stress. Nevertheless, its impact on culantro (Eryngium foetidum L.) remains unexplored. Thus, the aim of this study was to assess how SA impacts the growth, morphophysiology, and essential oil composition of culantro when subjected to drought. To achieve this, culantro plants were grown under three different watering regimes: well-watered, drought-stressed, and re-watered. Additionally, they were either treated with SA (100 µM) or left untreated, with water serving as the control. SA application did not mitigate the effects of drought in biomass production but increased biomass, leaf number, leaf area, and photosynthetic pigments under well-irrigated and re-watered conditions. After a drought period followed by re-watering, plants recovered membrane integrity independently of SA application. Water stress and the exogenous application of SA also modulated the profile of essential oils. This is the first report about SA and drought affecting growth and essential oil composition in culantro.
Collapse
Affiliation(s)
- Sabrina Kelly dos Santos
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
| | - Daniel da Silva Gomes
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
| | - Vanessa de Azevedo Soares
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
| | | | | | - Moises Henrique Almeida Gusmão
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (M.H.A.G.); (E.M.d.M.); (L.F.V.)
| | - Elyabe Monteiro de Matos
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (M.H.A.G.); (E.M.d.M.); (L.F.V.)
| | - Tancredo Souza
- Postgraduate Program in Agroecology, Federal University of Paraiba, Bananeiras 58220-000, Paraíba, Brazil;
| | - Lyderson Facio Viccini
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (M.H.A.G.); (E.M.d.M.); (L.F.V.)
| | - Richard Michael Grazul
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.F.P.d.O.); (R.M.G.)
| | - Juliane Maciel Henschel
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
| | - Diego Silva Batista
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
- Department of Agriculture, Federal University of Paraiba, Bananeiras 58220-000, Paraíba, Brazil;
- Postgraduate Program in Agroecology, Federal University of Paraiba, Bananeiras 58220-000, Paraíba, Brazil;
| |
Collapse
|
11
|
Lone ML, Farooq S, ul Haq A, Altaf F, Parveen S, Tahir I. Jasmonates and salicylic acid as enigmatic orchestrators of capitula senescence in Cosmos sulphureus Cav. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1863-1874. [PMID: 38222281 PMCID: PMC10784253 DOI: 10.1007/s12298-023-01407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
The fine-tuning of the intricate network of plant growth hormones empowers the balanced responses of plants to environmental and developmental signals. Salicylic acid and jasmonates are emerging as advanced hormones that provide plants with resistance to environmental stresses. Senescence is characterized by coordinated and systematic crosstalk between phytohormones that remodels the biochemical and physiological mechanisms in plants, resulting in cell death. The present investigation examines the role of jasmonates (methyl jasmonate and jasmonic acid) and salicylic acid (SA) in regulating the petal senescence of detached stalks of Cosmos sulphureus. Based on our results, it was revealed that SA and jasmonic acid (JA) at 40 μM and methyl jasmonate (MJ) at 0.75 μM concentration delayed the senescence of detached flowers of C. sulphureus considerably. These growth regulators improved the membrane stability, reinforced the antioxidant enzyme activities and averted the upsurge of hydrogen peroxide (H2O2) content in the petals. Additionally, SA and jasmonates preserved higher content of total phenols, reducing sugars and soluble proteins in the petals, besides impeding the bacterial growth in testing solutions which corroborated with the maximum solution uptake. The elevated soluble protein content was found to be associated with low specific protease activity (SPA) and α-amino acid content in the petal tissues. Our study concluded that SA and jasmonates delayed flower senescence by averting oxidative stress and maintaining the nutritional status of the petals.
Collapse
Affiliation(s)
- Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Aehsan ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| |
Collapse
|
12
|
Sánchez-Bravo P, Martínez-Tomé J, Hernández F, Sendra E, Noguera-Artiaga L. Conventional vs. Organic: Evaluation of Nutritional, Functional and Sensory Quality of Citrus limon. Foods 2023; 12:4304. [PMID: 38231768 DOI: 10.3390/foods12234304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Organic farming is growing rapidly worldwide since it is perceived as more respectful of the environment than conventional farming. In this sense, organic agriculture is highly appreciated by consumers since consumers around the world believe that organic food has a higher content of beneficial compounds for health and consider it of higher quality. For that reason, the objective of this research was to evaluate the nutritional, sensorial, and functional quality of the 'Fino 49' lemon grafted on Citrus macrophylla in conventional and organic cultivation. Fatty acids, amino acids, total phenol, and polyphenols were quantified, antioxidant activity was measured, and sensory descriptive analysis was performed. Conventional farming led to an increase in amino acid content (641 mg L-1) and an increase in polyunsaturated fatty acids (254 mg 100 g-1) and monounsaturated fatty acids (37.61 mg 100 g-1). On the other hand, organically produced lemon fruits had better sensory profile (highlighting overall aroma (6.5), lemon odor (6.8), sourness (5.8), floral (0.6), and fresh lemon flavor (9.8)), and lower thrombogenicity index (0.15). The type of cultivation (organic and conventional) had no influence on the antioxidant activity (~1.60, ~3.08, and ~4.16 mmol Trolox L-1 for ABTS+, DPPH•, and FRAP, respectively) and polyphenols content (85.51 and 86.69 conventional and organic, respectively). However, to establish the advantages and disadvantages of different types of cultivation on lemon quality more studies are needed.
Collapse
Affiliation(s)
- Paola Sánchez-Bravo
- Research Group "Food Quality and Safety", Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| | - Juan Martínez-Tomé
- Department of Plant Sciences and Microbiology, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| | - Francisca Hernández
- Department of Plant Sciences and Microbiology, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| | - Esther Sendra
- Research Group "Food Quality and Safety", Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| | - Luis Noguera-Artiaga
- Research Group "Food Quality and Safety", Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| |
Collapse
|
13
|
Díaz-Mula HM, López JP, Serrano M, Pretel MT. A New Ready-to-Eat Product Based on Enzymatically Peeled 'Hernandina' Clementine Segments and Citrus Syrup. Foods 2023; 12:3977. [PMID: 37959096 PMCID: PMC10647611 DOI: 10.3390/foods12213977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Ready-to-eat fresh fruit have an increasing presence in international markets due to their convenience and health benefits. However, these products are highly perishable and efficient technologies to increase their shelf life are needed. In the present research, different citrus fruit species and cultivars from organic farming were assessed to obtain enzymatically peeled citrus segments. The best results in terms of segment quality were observed for 'Hernandina' clementine, which was chosen to make a new ready-to-eat product based on peeled citrus segments that were packaged in glass jars with a light syrup made of citrus juice and organic sugar cane. Different citrus juice mixtures were assayed and the most appreciated syrup, based on the sensory scores given by panellists, was that containing 50-50 (v/v) of 'Fino' lemon and 'Hernandina' clementine juices. In addition, different pasteurization treatments were assessed for their effects on conserving the safety, nutritional quality and sensory properties of the product during cold storage. The results show that pasteurization treatment at 50 °C for 45 min was sufficient to prevent microbial contamination with mesophilic and psychrophilic aerobic bacteria or yeast and mould and to maintain sensory properties until five weeks of storage at 4 °C. In addition, only a 10% reduction in vitamin C concentrations was observed in fresh-segments or syrup until the end of the storage period, showing that a high bioactive compound content and health benefits were conserved in the new ready-to-eat product after pasteurization and prolonged cold storage.
Collapse
Affiliation(s)
- Huertas M. Díaz-Mula
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
- Instituto Universitario de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Juan P. López
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
| | - María Serrano
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
- Instituto Universitario de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - María T. Pretel
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
| |
Collapse
|
14
|
Wang SY, Pang YB, Tao Y, Shi XC, Zhang YJ, Wang YX, Jiang YH, Ji XY, Wang BL, Herrera-Balandrano DD, Laborda P. Dipicolinic acid enhances kiwifruit resistance to Botrytis cinerea by promoting phenolics accumulation. PEST MANAGEMENT SCIENCE 2023; 79:3177-3189. [PMID: 37024430 DOI: 10.1002/ps.7496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Kiwifruit is highly susceptible to fungal pathogens, such as Botrytis cinerea, which reduce crop production and quality. In this study, dipicolinic acid (DPA), which is one of the main components of Bacillus spores, was evaluated as a new elicitor to enhance kiwifruit resistance to B. cinerea. RESULTS DPA enhances antioxidant capacity and induces the accumulation of phenolics in B. cinerea-infected 'Xuxiang' kiwifruit. The contents of the main antifungal phenolics in kiwifruit, including caffeic acid, chlorogenic acid and isoferulic acid, increased after DPA treatment. DPA enhanced H2 O2 levels after 0 and 1 days, which promoted catalase (CAT) and superoxide dismutase (SOD) activities, reducing long-term H2 O2 levels. DPA promoted the up-regulation of several kiwifruit defense genes, including CERK1, MPK3, PR1-1, PR1-2, PR5-1 and PR5-2. Furthermore, DPA at 5 mM inhibited B. cinerea symptoms in kiwifruit (95.1% lesion length inhibition) more effectively than the commercial fungicides carbendazim, difenoconazole, prochloraz and thiram. CONCLUSIONS The antioxidant properties of DPA and the main antifungal phenolics of kiwifruit were examined for the first time. This study uncovers new insights regarding the potential mechanisms used by Bacillus species to induce disease resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yuan Tao
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Yu Ji
- School of Life Sciences, Nantong University, Nantong, China
| | - Bing-Lin Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
15
|
Chen C, Huang Q, Peng X, Wan C, Zeng J, Zhang Y, Chen J. Alleviatory effects of salicylic acid on postharvest softening and cell wall degradation of 'Jinshayou' pummelo (Citrus maxima Merr.): A comparative physiological and transcriptomic analysis. Food Chem 2023; 424:136428. [PMID: 37247595 DOI: 10.1016/j.foodchem.2023.136428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
The regulatory mechanisms underlying the salicylic acid (SA)-mediated inhibition of senescence in pummelo fruit, the largest known citrus variety, remain unclear. Herein, postharvest 0.3% SA treatment was demonstrated to delay postharvest 'Jinshayou' pummelo senescence, as evidenced by the inhibitions in firmness loss, electrolyte leakage increase, and color change. Using comparative transcriptomic data, a total of 4367, 3769, and 1659 DEGs were identified between CK0 and CK60, CK0 and SA60, and CK60 and SA60, respectively. Further GO analysis revealed that DEGs were mainly implicated in the processes of cell wall modification and phenylpropanoid pathway during fruit senescence. More importantly, postharvest exogenous 0.3% SA treatment was observed to inhibit CWDEs activities and their encoding gene expression, retain higher protopectin, cellulose, and hemicelluloses contents, as well as reduce WSP content, thus maintaining cell wall structure. These findings collectively indicated that postharvest SA treatment was a green and useful preservative for alleviating fruit senescence and prolonging the storage life of harvested 'Jiashayou' pummelo fruit.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qiang Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuan Peng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiaoke Zeng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yajie Zhang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China.
| |
Collapse
|
16
|
Wang X, Miao J, Kang W, Shi S. Exogenous application of salicylic acid improves freezing stress tolerance in alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1091077. [PMID: 36968407 PMCID: PMC10034032 DOI: 10.3389/fpls.2023.1091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Freezing stress is one of the most detrimental environmental factors that can seriously impact the growth, development, and distribution of alfalfa (Medicago sativa L.). Exogenous salicylic acid (SA) has been revealed as a cost-effective method of improving defense against freezing stress due to its predominant role in biotic and abiotic stress resistance. However, how the molecular mechanisms of SA improve freezing stress resistance in alfalfa is still unclear. Therefore, in this study, we used leaf samples of alfalfa seedlings pretreatment with 200 μM and 0 μM SA, which were exposed to freezing stress (-10°C) for 0, 0.5, 1, and 2h and allowed to recover at normal temperature in a growth chamber for 2 days, after which we detect the changes in the phenotypical, physiological, hormone content, and performed a transcriptome analysis to explain SA influence alfalfa in freezing stress. The results demonstrated that exogenous SA could improve the accumulation of free SA in alfalfa leaves primarily through the phenylalanine ammonia-lyase pathway. Moreover, the results of transcriptome analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway-plant play a critical role in SA alleviating freezing stress. In addition, the weighted gene co-expression network analysis (WGCNA) found that MPK3, MPK9, WRKY22 (downstream target gene of MPK3), and TGACG-binding factor 1 (TGA1) are candidate hub genes involved in freezing stress defense, all of which are involved in the SA signaling pathway. Therefore, we conclude that SA could possibly induce MPK3 to regulate WRKY22 to participate in freezing stress to induced gene expression related to SA signaling pathway (NPR1-dependent pathway and NPR1-independent pathway), including the genes of non-expresser of pathogenesis-related gene 1 (NPR1), TGA1, pathogenesis-related 1 (PR1), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione-S-transferase (GST), and heat shock protein (HSP). This enhanced the production of antioxidant enzymes such as SOD, POD, and APX, which increases the freezing stress tolerance of alfalfa plants.
Collapse
|
17
|
Zhang YJ, Huang Q, Li AR, Gan ZY, Zeng JK, Kai WB, Chen CY, Chen JY. Apple polyphenols delay postharvest senescence and quality deterioration of 'Jinshayou' pummelo fruit during storage. FRONTIERS IN PLANT SCIENCE 2023; 13:1117106. [PMID: 36743559 PMCID: PMC9893410 DOI: 10.3389/fpls.2022.1117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Apple polyphenols (AP), derived from the peel of mature-green apples, are widely used as natural plant-derived preservatives in the postharvest preservation of numerous horticultural products. METHODS The goal of this research was to investigate how AP (at 0.5% and 1.0%) influences senescence-related physiological parameters and antioxidant capacity of 'Jinshayou' pummelo fruits stored at 20°C for 90 d. RESULTS The treating pummelo fruit with AP could effectively retard the loss of green color and internal nutritional quality, resulting in higher levels of total soluble solid (TSS) content, titratable acidity (TA) content and pericarp firmness, thus maintaining the overall quality. Concurrently, AP treatment promoted the increases in ascorbic acid, reduced glutathione, total phenols (TP) and total flavonoids (TF) contents, increased the scavenging rates of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and hydroxyl radical (•OH), and enhanced the activities of superoxide dismutase (SOD), catalase, peroxidase, ascorbate peroxidase (APX), and glutathione reductase (GR) as well as their encoding genes expression (CmSOD, CmCAT, CmPOD, CmAPX, and CmGR), reducing the increases in electrolyte leakage, malondialdehyde content and hydrogen peroxide level, resulting in lower fruit decay rate and weight loss rate. The storage quality of 'Jinshayou' pummelo fruit was found to be maintained best with a 1.0% AP concentration. CONCLUSION AP treatment can be regarded as a promising and effective preservative of delaying quality deterioration and improving antioxidant capacity of 'Jinshayou' pummelo fruit during storage at room temperature.
Collapse
|
18
|
Huang Q, Huang L, Chen J, Zhang Y, Kai W, Chen C. Maintenance of postharvest storability and overall quality of 'Jinshayou' pummelo fruit by salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2023; 13:1086375. [PMID: 36714761 PMCID: PMC9875116 DOI: 10.3389/fpls.2022.1086375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The loss of postharvest storability of pummelo fruit reduces its commodity value for long run. To maintain its storability, the effects of postharvest dipping treatment by salicylic acid (SA) with different concentrations (0, 0.1, 0.2, or 0.3%) were investigated on pummelo fruit (Citrus maxima Merr. cv. Jinshayou) during the room temperature storage at 20 ± 2°C for 90 d. RESULTS AND DISCUSSION Among all treatments, pre-storage SA treatment at 0.3% demonstrated the most significant ability to reduce fruit decay incidence, decrease weight loss, delay peel color-turned process, and inhibit the declines in total soluble solids (TSS) as well as titratable acid (TA) content. The increases in electrolyte leakage, hydrogen peroxide (H2O2), and malondialdehyde (MDA) content of the 0.3% SA-treated pummelo fruit were reduced compared to the control (dipped in distilled water). Pummelo fruit treated with 0.3% SA exhibited the most outstanding ability to excess reactive oxygen species (ROS) accumulation, as evidenced by promoted the increases in glutathione (GSH), total phenolics and flavonoids contents, delayed the AsA decline, and enhanced the activities of antioxidant enzymes and their encoding genes expression. CONCLUSION Pre-storage treatment dipped with SA, particularly at 0.3%, can be used as a useful and safe preservation method to maintain higher postharvest storability and better overall quality of 'Jinshayou' pummelo fruit, and thus delaying postharvest senescence and extend the storage life up to 90 d at room temperature.
Collapse
Affiliation(s)
| | | | - Jinyin Chen
- *Correspondence: Jinyin Chen, ; Chuying Chen,
| | | | | | | |
Collapse
|
19
|
Li S, Xiao L, Chen M, Cao Q, Luo Z, Kang N, Jia M, Chen J, Xiang M. The involvement of the phenylpropanoid and jasmonate pathways in methyl jasmonate-induced soft rot resistance in kiwifruit ( Actinidia chinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1097733. [PMID: 36589109 PMCID: PMC9800925 DOI: 10.3389/fpls.2022.1097733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Botryosphaeria dothidea is a major postharvest causal agent of soft rot in kiwifruit. Methyl jasmonate (MeJA) is an important plant hormone that participates as a plant defense against pathogens from a signal molecule. However, the impact and regulatory mechanism of MeJA on the attenuation of kiwifruit fungal decay remains unknown. This work investigated the effects of exogenous MeJA on the enzyme activity, metabolite content and gene expression of the phenylpropanoid and jasmonate pathways in kiwifruit. The results revealed that MeJA inhibited the expansion of B. dothidea lesion diameter in kiwifruit (Actinidia chinensis cv. 'Hongyang'), enhanced the activity of enzymes (phenylalanine ammonia lyase, cinnamate 4-hydroxylase, 4-coumarate: coenzyme A ligase, cinnamyl alcohol dehydrogenase, peroxidase and polyphenol oxidase), and upregulated the expression of related genes (AcPAL, AcC4H, Ac4CL, and AcCAD). The accumulation of metabolites (total phenolics, flavonoids, chlorogenic acid, caffeic acid and lignin) with inhibitory effects on pathogens was promoted. Moreover, MeJA enhanced the expression of AcLOX, AcAOS, AcAOC, AcOPR3, AcJAR1, AcCOI1 and AcMYC2 and reduced the expression of AcJAZ. These results suggest that MeJA could display a better performance in enhancing the resistance of disease in kiwifruit by regulating the phenylpropanoid pathway and jasmonate pathway.
Collapse
Affiliation(s)
- Shucheng Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Liuhua Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Ming Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Qing Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
- Scientific Research Division, Nanchang Institute of Technology, Nanchang, China
| | - Zhenyu Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Naihui Kang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Mingshu Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Miaolian Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
20
|
Liao L, Li S, Li Y, Huang Z, Li J, Xiong B, Zhang M, Sun G, Wang Z. Pre- or Post-Harvest Treatment with MeJA Improves Post-Harvest Storage of Lemon Fruit by Stimulating the Antioxidant System and Alleviating Chilling Injury. PLANTS (BASEL, SWITZERLAND) 2022; 11:2840. [PMID: 36365293 PMCID: PMC9655630 DOI: 10.3390/plants11212840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Cold storage preserves lemon fruit quality; however, it can result in significant chilling injury (CI). The effects of pre- and post-harvest methyl jasmonate (MeJA) treatments at four concentrations (0, 0.1, 0.3, and 0.5 mM) on CI and sensory quality of lemons during 80 d of storage at 7-10 °C were investigated. Both pre- and post-harvest MeJA treatments reduced CI, weight loss (WL) and maintained higher firmness, total soluble solids (TSS), and total acidity (TA) than in the controls. Antioxidant enzyme activities decreased in the control fruit but increased in both pre- and post-harvest MeJA-treated fruit. In addition, phospholipase D (PLD) and lipoxygenase (LOX) activities and malondialdehyde (MDA) content were higher in the control than in the MeJA-treated fruit. Pre-harvest MeJA treatment generally preserved fruit better than post-harvest MeJA treatment, with the best results observed when MeJA was applied at 0.3 mM, which enhanced the antioxidant system of the lemon fruits, thus reducing the post-harvest incidence of chilling injury. These results have important implications for improved fruit quality post-harvest.
Collapse
Affiliation(s)
- Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Sichen Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| | - Yunjie Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zehao Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
21
|
Wu X, Hu Q, Liang X, Chen J, Huan C, Fang S. Methyl jasmonate encapsulated in protein-based nanoparticles to enhance water dispersibility and used as coatings to improve cherry tomato storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Effect of salicylic acid treatment on antioxidant capacity and endogenous hormones in winter jujube during shelf life. Food Chem 2022; 397:133788. [DOI: 10.1016/j.foodchem.2022.133788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/18/2023]
|
23
|
Ahmad I, Zhu G, Zhou G, Song X, Hussein Ibrahim ME, Ibrahim Salih EG, Hussain S, Younas MU. Pivotal Role of Phytohormones and Their Responsive Genes in Plant Growth and Their Signaling and Transduction Pathway under Salt Stress in Cotton. Int J Mol Sci 2022; 23:ijms23137339. [PMID: 35806344 PMCID: PMC9266544 DOI: 10.3390/ijms23137339] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
The presence of phyto-hormones in plants at relatively low concentrations plays an indispensable role in regulating crop growth and yield. Salt stress is one of the major abiotic stresses limiting cotton production. It has been reported that exogenous phyto-hormones are involved in various plant defense systems against salt stress. Recently, different studies revealed the pivotal performance of hormones in regulating cotton growth and yield. However, a comprehensive understanding of these exogenous hormones, which regulate cotton growth and yield under salt stress, is lacking. In this review, we focused on new advances in elucidating the roles of exogenous hormones (gibberellin (GA) and salicylic acid (SA)) and their signaling and transduction pathways and the cross-talk between GA and SA in regulating crop growth and development under salt stress. In this review, we not only focused on the role of phyto-hormones but also identified the roles of GA and SA responsive genes to salt stress. Our aim is to provide a comprehensive review of the performance of GA and SA and their responsive genes under salt stress, assisting in the further elucidation of the mechanism that plant hormones use to regulate growth and yield under salt stress.
Collapse
Affiliation(s)
- Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (I.A.); (M.E.H.I.); (E.G.I.S.)
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (I.A.); (M.E.H.I.); (E.G.I.S.)
- Correspondence: (G.Z.); (G.Z.)
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (I.A.); (M.E.H.I.); (E.G.I.S.)
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Correspondence: (G.Z.); (G.Z.)
| | - Xudong Song
- Jiangsu Yanjiang Area Institute of Agricultural Sciences, Nantong 226541, China;
| | - Muhi Eldeen Hussein Ibrahim
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (I.A.); (M.E.H.I.); (E.G.I.S.)
- Department of Agronomy, College of Agricultural Studies, Sudan University of Science and Technology, Khartoum 13311, Sudan
| | - Ebtehal Gabralla Ibrahim Salih
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (I.A.); (M.E.H.I.); (E.G.I.S.)
| | - Shahid Hussain
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
| | - Muhammad Usama Younas
- Department of Crop Genetics and Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
24
|
Jia X, Ma J, Chen X, Li W, Zhou X, Lei B, Zhao X, Mao Y. Immunoregulation and anti -metalloproteinase bioactive injectable polysalicylate matrixgel for efficiently treating osteoarthritis. Mater Today Bio 2022; 15:100277. [PMID: 35601894 PMCID: PMC9114689 DOI: 10.1016/j.mtbio.2022.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 01/03/2023] Open
Abstract
Current treatments of osteoarthritis, such as oral medication and intra-articular injections, only provided temporary relief from pain and achieved limited advance in inhibiting progression. The development of new treatments is hindered by the complicated and unclear pathological mechanisms. Oxidative stress and immune inflammation are believed to be the important factors in the induction and progression of osteoarthritis. Herein, this work presents a bioactive material strategy to treat osteoarthritis, based on the FPSOH matrixgel with robust anti-inflammatory activity through inhibiting the oxidative stress and nuclear factor kappa B signaling, preventing the metalloproteinase, as well as inducing M2 polarization of macrophage, thereby providing immune regulation of synovial macrophages and suppressing the progression of synovitis and osteoarthritis. In vivo experiments demonstrated that FPSOH hydrogel can prevent papain-induced osteoarthritis and its progression, and provide dual protection for cartilage and synovium, as compared with commercial sodium hyaluronate.
Collapse
Affiliation(s)
- Xinlin Jia
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junping Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xianhao Zhou
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
25
|
Transcriptomic analysis of the mechanisms involved in enhanced antagonistic efficacy of Meyerozyma guilliermondii by methyl jasmonate and disease resistance of postharvest apples. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Bialik-Wąs K, Miastkowska M, Sapuła P, Pluta K, Malina D, Chwastowski J, Barczewski M. Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics 2022; 14:773. [PMID: 35456607 PMCID: PMC9031596 DOI: 10.3390/pharmaceutics14040773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, the preparation method of bio-hybrid hydrogels incorporated into a system of salicylic acid-pH/thermosensitive nanocarriers to speed up the wound-healing process was developed. This combination creates a dual drug delivery system, which releases the model hydrophobic active substance-salicylic acid-in a gradual and controlled manner for an extended time. Our research team has determined the various properties of bio-hybrid hydrogels based on their physicochemical (swelling degree, and degradation), structural (FT-IR), morphological (SEM), and mechanical (elongation tests) traits. Moreover, empty pH/thermosensitive nanocarriers and their salicylic acid-containing systems were characterized using the following methods: DLS, TG/DTG, and DSC. Additionally, salicylic acid release profiles directly from thermosensitive nanocarriers were compared to the bio-hybrid matrix. These studies were conducted in PBS (pH = 7.4) for 7 days using the USP4 method. To evaluate the antibacterial properties of the obtained materials, the inhibition of growth of Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger-as the main microorganisms responsible for human infections-were tested. The obtained results indicated that the pH/thermosensitive nanocarrier-salicylic acid system and bio-hybrid hydrogels are characterized by antibacterial activity against both S. aureus and E. coli.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Klaudia Pluta
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Dagmara Malina
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Jarosław Chwastowski
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Mateusz Barczewski
- Institute of Materials Technology, Faculty of Mechanical Engineering and Management, Poznan University of Technology, 24 Jana Pawła II St., 60965 Poznan, Poland;
| |
Collapse
|
27
|
Zhang M, Shi Y, Liu Z, Zhang Y, Yin X, Liang Z, Huang Y, Grierson D, Chen K. An EjbHLH14-EjHB1-EjPRX12 module is involved in methyl jasmonate alleviation of chilling-induced lignin deposition in loquat fruit. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1668-1682. [PMID: 34893804 DOI: 10.1093/jxb/erab511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Loquat fruit are susceptible to chilling injuries induced by postharvest storage at low temperature. The major symptoms are increased lignin content and flesh firmness, which cause a leathery texture. Pretreatment with methyl jasmonate (MeJA) can alleviate this low-temperature-induced lignification, but the mechanism is not understood. In this study, we characterized a novel class III peroxidase, EjPRX12, and studied its relationship to lignification. Transcript levels of EjPRX12 were attenuated following MeJA pretreatment, consistent with the reduced lignin content in fruit. In vitro enzyme activity assay indicated that EjPRX12 polymerized sinapyl alcohol, and overexpression of EjPRX12 in Arabidopsis promoted lignin accumulation, indicating that it plays a functional role in lignin polymerization. We also identified an HD-ZIP transcription factor, EjHB1, repressed by MeJA pretreatment, which directly bound to and significantly activated the EjPRX12 promoter. Overexpression of EjHB1 in Arabidopsis promoted lignin accumulation with induced expression of lignin-related genes, especially AtPRX64. Furthermore, a JAZ-interacting repressor, EjbHLH14, was characterized, and it is proposed that MeJA pretreatment caused EjbHLH14 to be released to repress the expression of EjHB1. These results identified a novel regulatory pathway involving EjbHLH14-EjHB1-EjPRX12 and revealed the molecular mechanism whereby MeJA alleviated lignification of loquat fruit at low temperature.
Collapse
Affiliation(s)
- Mengxue Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zimeng Liu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yijin Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xueren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zihao Liang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yiqing Huang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
28
|
Sang Y, Sun P, Wang Y, Guo J, Tang Y, Shen P, Guo M, Chen G. Postharvest treatment with 1‐methylcyclopropene and chitosan enhances the antioxidant capacity and maintains the quality of Hui jujube (
Ziziphus jujuba
Mill. cv. Huizao) during cold storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yueying Sang
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Pengcheng Sun
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Yue Wang
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Jingyu Guo
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Yisong Tang
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Peng Shen
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Minrui Guo
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| | - Guogang Chen
- School of Food Science and Technology Shihezi University Shihezi 832000 China
| |
Collapse
|
29
|
Damalas CA, Koutroubas SD. Exogenous application of salicylic acid for regulation of sunflower growth under abiotic stress: a systematic review. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Kaur J, Jawandha SK, Gill PS, Grewal SK, Singh H. Effect of beeswax enriched with sodium nitroprusside coating on antioxidant properties and quality of lemon
cv
. PAU Baramasi Lemon‐1 fruits during low temperature storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jaismeen Kaur
- Department of Fruit Science Punjab Agricultural University Ludhiana India
| | | | - Parmpal Singh Gill
- Department of Fruit Science Punjab Agricultural University Ludhiana India
| | - Satvir Kaur Grewal
- Department of Biochemistry Punjab Agricultural University Ludhiana India
| | - Harminder Singh
- Department of Fruit Science Punjab Agricultural University Ludhiana India
| |
Collapse
|
31
|
Wang C, Zhang J, Xie J, Yu J, Li J, Lv J, Gao Y, Niu T, Patience BE. Effects of Preharvest Methyl Jasmonate and Salicylic Acid Treatments on Growth, Quality, Volatile Components, and Antioxidant Systems of Chinese Chives. FRONTIERS IN PLANT SCIENCE 2022; 12:767335. [PMID: 35069623 PMCID: PMC8777190 DOI: 10.3389/fpls.2021.767335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Methyl jasmonate (MeJA) and salicylic acid (SA) regulate the production of biologically active compounds in plants and stimulate the accumulation of plant aromatic substances. However, the underlying mechanisms of how MeJA and SA influence characteristic flavor compounds and the antioxidant activity of vegetables are poorly understood. Five MeJA and SA concentrations were used to investigate the dose-dependent effects of these phytohormones on the dry and fresh weight; chlorophyll abundance; the contents of vitamin C, soluble protein, and sugar, nitrate, total phenols, flavonoids, volatile components, and enzymatically produced pyruvic acid; and antioxidant activity in Chinese chive. We found that MeJA and SA at concentrations of 500 and 150 μM, respectively, significantly increased the levels of total chlorophyll, phenols and flavonoids, vitamin C, and volatile components and significantly reduced the accumulation of nitrate. In addition, compared with the control, 500 μM of MeJA significantly increased the soluble sugar and protein content, and 150 μM SA significantly increased the dry and fresh weight of Chinese chive. Furthermore, these concentrations of MeJA and SA significantly increased the enzymatic pyruvate content and the amount of sulfide and aromatic volatile compounds and improved the characteristic flavor compounds. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, Trolox-equivalent antioxidant capacity, and ferric-reducing antioxidant capacity were significantly improved after a preharvest treatment with 500 μM MeJA and 150 μM SA, which could improve the antioxidant activity, thus improving the postharvest quality and preservation characteristics of Chinese chives. Taken together, a preharvest treatment with 500 μM MeJA and 150 μM SA is optimal to improve the growth, quality, antioxidant activity, and flavor of Chinese chive, thereby enhancing its commercial value.
Collapse
Affiliation(s)
| | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Effect of calcium chloride and 1-methylcyclopropene combined treatment on pectin degradation and textural changes of Eureka lemon during postharvest storage. Curr Res Food Sci 2022; 5:1412-1421. [PMID: 36105889 PMCID: PMC9464902 DOI: 10.1016/j.crfs.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
During post-harvest storage, the cell wall properties are closely associated with the physical, chemical, and biological properties of the fruit. The degradation of pectin in the cell walls and middle lamella is critical to these properties. The effects of calcium chloride (CaCl₂) and 1-methylcyclopropene (1-MCP) combined treatment on the pectin degradation, texture, and peel color of Eureka lemon were investigated during post-harvest storage. The in-situ light microscope analysis, rapid method, and FTIR test were used to investigate the spatial distribution, the pectin content, and its degradation. The results showed a reduction in pectin degradation, by 42 d the CaCl₂ and 1-MCP combined treated fruits presented a 36.7% pectin content loss which was lower than the control which was 48.3%. The treated fruits significantly exhibited enhanced textural properties, delayed weight loss, higher total acids, and improvement of other physicochemical properties in comparison to the control. The treatment deaccelerated the fruit peel color change from green to yellow and also had a better visual appearance on the final day. Overall, the results suggest that the control treatment for pectin degradation can reduce the fruit texture decline and peel color change and maintain a good visual appearance. The influence of pectin degradation on the texture and physicochemical properties of lemon provides a theoretical basis for fruit storage optimization, quality control, and shelf-life extension. Combined CaCl₂ and 1-MCP treatment delayed lemon postharvest degeneration. Treatment suppressed pectin degradation and improved the visual appearance. Treatment greatly delayed softening, reduce decay rate, and extended the shelf life. Methylesterified pectin was localized and visualized by qualitative microscopic analysis.
Collapse
|
33
|
García-Pastor ME, Giménez MJ, Serna-Escolano V, Guillén F, Valero D, Serrano M, García-Martínez S, Terry LA, Alamar MC, Zapata PJ. Oxalic Acid Preharvest Treatment Improves Colour and Quality of Seedless Table Grape 'Magenta' Upregulating on-Vine Abscisic Acid Metabolism, Relative VvNCED1 Gene Expression, and the Antioxidant System in Berries. FRONTIERS IN PLANT SCIENCE 2021; 12:740240. [PMID: 34790211 PMCID: PMC8591251 DOI: 10.3389/fpls.2021.740240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The effect of oxalic acid (OA) in determining poorly coloured table grape quality remains relatively unknown. Some red cultivars, such as seedless table grape 'Magenta' are characterised by a poor berry colour, an attribute highly demanded by the consumer. The aim of this research was to elucidate the effect of a preharvest OA treatment (5 mM) on berry colour and quality of table grape by investigating its role in berry development, on-vine ripening, and postharvest senescence. We found that OA significantly increased abscisic acid (ABA) and ABA glucose ester (ABA-GE) content in treated berries. This increase was mediated by changes in the ABA biosynthetic pathway, specifically by the upregulation of the 9-cis-epoxycarotenoid dioxygenase (VvNCED1) gene. The accumulation of ABA in treated berries resulted in colour improvement and a higher individual and total anthocyanins content at harvest compared with control; whereas at harvest, OA-treated table grapes showed a significantly lower glucose and fructose content and a higher content of tartaric, ascorbic, and succinic acids. Furthermore, antioxidant enzyme activity was increased during berry development in OA-treated berries. On the other hand, those berries treated with OA showed a delay in loss of firmness and colour during cold storage, as well as less susceptibility to postharvest decay incidence. This effect of OA delaying the senescence process was also related to enzymatic antioxidant system stimulation. For the first time, the role of OA on increasing quality, mainly colour, in table grapes was elucidated, highlighting that this treatment upregulated ABA metabolism, relative VvNCED1 gene expression and antioxidant system, delaying postharvest berry senescence.
Collapse
Affiliation(s)
| | - María J. Giménez
- Department of Food Technology, EPSO, University Miguel Hernández, Alicante, Spain
| | | | - Fabián Guillén
- Department of Food Technology, EPSO, University Miguel Hernández, Alicante, Spain
| | - Daniel Valero
- Department of Food Technology, EPSO, University Miguel Hernández, Alicante, Spain
| | - María Serrano
- Department of Applied Biology, EPSO, University Miguel Hernández, Alicante, Spain
| | | | - Leon A. Terry
- Plant Science Laboratory, Cranfield University, Bedfordshire, United Kingdom
| | - M. Carmen Alamar
- Plant Science Laboratory, Cranfield University, Bedfordshire, United Kingdom
| | - Pedro J. Zapata
- Department of Food Technology, EPSO, University Miguel Hernández, Alicante, Spain
| |
Collapse
|
34
|
Yang L, Wang X, He S, Luo Y, Chen S, Shan Y, Wang R, Ding S. Heat shock treatment maintains the quality attributes of postharvest jujube fruits and delays their senescence process during cold storage. J Food Biochem 2021; 45:e13937. [PMID: 34532870 DOI: 10.1111/jfbc.13937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 01/01/2023]
Abstract
The effects of heat shock (HT), 1-methylcyclopropene (1-MCP), or their combination (HT + 1-MCP) on the quality of fresh jujube fruits during cold storage were studied. Among them, HT showed the best preservation effect on jujube fruits, which was more effective than others in inhibiting the increase of red index, decay incidence, and weight loss and delaying the decrease of firmness, soluble solids content (SSC), titratable acidity (TA), and ascorbic acid (AsA) content. Besides, it could delay the degradation rate of the cell wall to maintain the integrity of cell membrane, and keep the high activity of active oxygen scavenging enzymes. During cold storage, malondialdehyde (MDA) content and relative electrolyte leakage (REL) of the HT group were significantly lower than those of the control group, 1-MCP, and HT + 1-MCP group (p < .05), while superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were significantly higher than those of other groups (p < .05). It was concluded that the postharvest HT treatment could effectively delay the senescence and decay of jujube fruits. PRACTICAL APPLICATIONS: Jujube fruits have high nutritional value used for food and medicine. However, they are not tolerant to storage after harvest, resulting in high economic losses. Therefore, it is of great significance to find a suitable method to maintain the quality of jujube fruits. Our results revealed the effect of HT, 1-MCP, and their combination on the quality maintenance of jujube fruits, and found that HT could effectively maintain the quality of them, which could be used as an effective method for keeping jujube fruits fresh.
Collapse
Affiliation(s)
- Lvzhu Yang
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Xinyu Wang
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Shuang He
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Yaohua Luo
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Sheng Chen
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Yang Shan
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shenghua Ding
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China.,Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha, China
| |
Collapse
|
35
|
Fatma M, Iqbal N, Sehar Z, Alyemeni MN, Kaushik P, Khan NA, Ahmad P. Methyl Jasmonate Protects the PS II System by Maintaining the Stability of Chloroplast D1 Protein and Accelerating Enzymatic Antioxidants in Heat-Stressed Wheat Plants. Antioxidants (Basel) 2021; 10:antiox10081216. [PMID: 34439464 PMCID: PMC8388886 DOI: 10.3390/antiox10081216] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/24/2023] Open
Abstract
The application of 10 µM methyl jasmonate (MeJA) for the protection of wheat (Triticum aestivum L.) photosystem II (PS II) against heat stress (HS) was studied. Heat stress was induced at 42 °C to established plants, which were then recovered at 25 °C and monitored during their growth for the study duration. Application of MeJA resulted in increased enzymatic antioxidant activity that reduced the content of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) and enhanced the photosynthetic efficiency. Exogenous MeJA had a beneficial effect on chlorophyll fluorescence under HS and enhanced the pigment system (PS) II system, as observed in a JIP-test, a new tool for chlorophyll fluorescence induction curve. Exogenous MeJA improved the quantum yield of electron transport (ETo/CS) as well as electron transport flux for each reaction center (ET0/RC). However, the specific energy fluxes per reaction center (RC), i.e., TR0/RC (trapping) and DI0/RC (dissipation), were reduced by MeJA. These results indicate that MeJA affects the efficiency of PS II by stabilizing the D1 protein, increasing its abundance, and enhancing the expression of the psbA and psbB genes under HS, which encode proteins of the PS II core RC complex. Thus, MeJA is a potential tool to protect PS II and D1 protein in wheat plants under HS and to accelerate the recovery of the photosynthetic capacity.
Collapse
Affiliation(s)
- Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (Z.S.)
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (Z.S.)
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Prashant Kaushik
- Kikugawa Research Station, Yokohama Ueki, 2265, Kamo, Kikugawa City, Shizuoka 439-0031, Japan;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (Z.S.)
- Correspondence: or (N.A.K.); or (P.A.)
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: or (N.A.K.); or (P.A.)
| |
Collapse
|
36
|
Preharvest Treatment with Oxalic Acid Improves Postharvest Storage of Lemon Fruit by Stimulation of the Antioxidant System and Phenolic Content. Antioxidants (Basel) 2021; 10:antiox10060963. [PMID: 34203940 PMCID: PMC8232715 DOI: 10.3390/antiox10060963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Lemon trees (Citrus limon (L.) Burm. F) were treated monthly with oxalic acid (OA) at 0.1, 0.5, and 1 mM from initial fruit growth on the tree until harvest in2019. The experiment was repeated in 2020, with the application of OA 1 mM (according to the best results of 2019). In both years, fruit from OA-treated trees and the controls were stored for 35 days at 10 °C. Results showed that all treatments reduced weight loss (WL) and maintained higher firmness, total soluble solids (TSS), and total acidity (TA) than in the controls. Meanwhile, colour (hue angle) did not show significant differences. The activity of antioxidant enzymes, catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) in the flavedo of the fruit from the OA-treated trees was higher than in the controls at harvest and after 35 days of storage. Similarly, the total phenolic content (TPC) in the flavedo and juice of the fruit from the OA-treated trees were higher than in the controls. The increase in the activity of the antioxidant enzymes and TPC started with the first preharvest OA treatment and were maintained during fruit development on the tree until harvest. Preharvest OA treatments enhanced the antioxidant system of the lemon fruits, reducing the postharvest incidence of decay. Thus, OA could be a useful tool to increase the quality and functional properties of lemon fruits.
Collapse
|
37
|
Rong T, Chunchun Z, Wei G, Yuchen G, Fei X, Tao L, Yuanyuan J, Chenbin W, Wenda X, Wenqing W. Proteomic insights into protostane triterpene biosynthesis regulatory mechanism after MeJA treatment in Alisma orientale (Sam.) Juz. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140671. [PMID: 33991668 DOI: 10.1016/j.bbapap.2021.140671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Protostane triterpenes in Alisma orientale (Sam.) Juz. have unique structural features with distinct pharmacological activities. Previously we have demonstrated that protostane triterpene biosynthesis could be regulated by methyl jasmonate (MeJA) induction in A. orientale. Here, proteomic investigation reveals the MeJA mediated regulation of protostane triterpene biosynthesis. In our study, 281 differentially abundant proteins were identified from MeJA-treated compared to control groups, while they were mainly associated with triterpene biosynthesis, α-linolenic acid metabolism, carbohydrate metabolism and response to stress/defense. Key enzymes 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), squalene epoxidase (SE), oxidosqualene cyclase (OSC) and cytochrome P450s which potentially involved in protostane triterpene biosynthesis were significantly enriched in MeJA-treated group. Basic Helix-loop-helix (bHLH), MYB, and GRAS transcription factors were enhanced after MeJA treatment, and they also improved the expressions of key enzymes in Mevalonate pathway and protostane triterpene. Then, MeJA also could increase the expression of α-galactosidase (α-GAL), thereby promoting carbohydrate decomposition, and providing energy and carbon skeletons for protostane triterpene precursor biosynthesis. As well, exogenous MeJA treatment upregulated 13-lipoxygenase (13-LOX), allene oxide synthase (AOS) and allene oxide cyclase (AOC) involved in α-linolenic acid metabolism, leading to the accumulation of endogenous MeJA and activation of the protostane triterpene biosynthesis transduction. Finally, MeJA upregulated stress/defence-related proteins, as to enhance the defence responses activity of plants. These results were further verified by quantitative real-time PCR analysis of 19 selected genes and content analysis of protostane triterpene. The results provide some new insights into the role of MeJA in protostane triterpene biosynthesis.
Collapse
Affiliation(s)
- Tian Rong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhang Chunchun
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Gu Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Gu Yuchen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji Yuanyuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Chenbin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Wenda
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wu Wenqing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
38
|
Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:39-49. [PMID: 33590621 DOI: 10.1111/plb.13246] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/03/2021] [Indexed: 05/28/2023]
Abstract
The free radical nitric oxide (NO) and the phenolic phytohormone salicylic acid (SA) are signal molecules which exert key functions at biochemical and physiological levels. Abiotic stresses, especially in early plant development, impose the biggest threats to agricultural systems and crop yield. These stresses impair plant growth and subsequently cause a reduction in root development, affecting nutrient uptake and crop productivity. The molecules NO and SA have been identified as robust tools for efficiently mitigating the negative effects of abiotic stress in plants. SA is engaged in an array of tasks under adverse environmental situations. The function of NO depends on its cellular concentration; at a low level, it acts as a signal molecule, while at a high level, it triggers nitro-oxidative stress. The crosstalk between NO and SA involving different signalling molecules and regulatory factors modulate plant function during stressful situations. Crosstalk between these two signalling molecules induces plant tolerance to abiotic stress and needs further investigation. This review aims to highlight signalling aspects of NO and SA in higher plants and critically discusses the roles of these two molecules in alleviating abiotic stress.
Collapse
Affiliation(s)
- V Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - V P Singh
- Department of Botany, C.M.P. Degree College, A Constitute PG College of University of Allahabad, Prayagraj, India
| | - D K Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - S Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - F J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
39
|
Wang SY, Shi XC, Liu FQ, Laborda P. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review. Food Chem 2021; 353:129482. [PMID: 33725541 DOI: 10.1016/j.foodchem.2021.129482] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Methyl jasmonate (MeJA) is a volatile hormone involved in a number of plant processes, acting as a signal in response to external stresses and modulating the biosynthesis of other phytohormones. Here, we are reviewing for the first time all reports related to the effects of exogenous MeJA on postharvest fruits. Application of MeJA during preharvest and postharvest stages has been demonstrated to enhance fruit antioxidant capacity and phenolics content, which in turn extended fruit shelf-life, enhanced fruit quality and reduced chilling injury. The postharvest application of MeJA has been reported to alter volatiles pattern and to enhance the innate disease resistance of postharvest fruits against pathogenic fungi. The results obtained using different treatment conditions, such as temperature, storage time and concentration, have been highlighted and compared along the manuscript in order to provide new insights on the applicability of MeJA for enhancing postharvest fruit quality and preservation.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 226019, People's Republic of China.
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|