1
|
Shannon E, Hayes M. Alaria esculenta, Ulva lactuca, and Palmaria palmata as Potential Functional Food Ingredients for the Management of Metabolic Syndrome. Foods 2025; 14:284. [PMID: 39856950 PMCID: PMC11764973 DOI: 10.3390/foods14020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Hypertension, type 2 diabetes (T2D), and obesity raise an individual's risk of suffering from diseases associated with metabolic syndrome (MS). In humans, enzymes that play a role in the prevention and development of MS include angiotensin converting enzyme (ACE-1) associated with hypertension, α-amylase associated with T2D, and lipase linked to the development of obesity. Seaweeds are a rich source of bioactives consisting of proteins/peptides, polysaccharides, and lipids. This study examined the potential of seaweed-derived bioactives from Alaria esculenta, Ulva lactuca, and Palmaria palmata as inhibitors of ACE-1, α-amylase, and lipase. In vitro enzyme inhibitory assays were used to quantify the bioactivity of the seaweed extracts and compare their half-maximal inhibitory (IC50) values to recognised positive control enzyme inhibitory drugs captopril© (an ACE-1 inhibitor), acarbose (an α-amylase inhibitor), and orlistat (a lipase inhibitor). Three seaweed extracts displayed enzyme inhibitory activities equal to, or more effective than, the reference positive control drugs. These were P. palmata peptides (ACE-1 IC50 94.29 ± 3.07 µg/mL, vs. captopril© 91.83 ± 2.68 µg/mL); A. esculenta polyphenol extract (α-amylase IC50 147.04 ± 9.72 µg/mL vs. acarbose 185.67 ± 12.48 µg/mL, and lipase IC50 106.21 ± 6.53 µg/mL vs. orlistat 139.74 ± 9.33 µg/mL); and U. lactuca polysaccharide extract (α-amylase IC50 168.06 ± 10.53 µg/mL vs. acarbose 185.67 ± 12.48 µg/mL). Proximate analysis also revealed that all three seaweeds were a good source of protein, fibre, and polyunsaturated essential fatty acids (PUFAs). These findings highlight the potential of these seaweeds in the management of diseases associated with MS and as foods.
Collapse
Affiliation(s)
| | - Maria Hayes
- Food BioSciences, Teagasc Food Research Centre, Dunsinea Lane, Ashtown, D15 DY05 Dublin, Ireland;
| |
Collapse
|
2
|
Matos M, Custódio L, Reis CP. Marine Invasive Algae's Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study. Mar Drugs 2024; 22:575. [PMID: 39728149 DOI: 10.3390/md22120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Marine invasive species pose significant ecological, economic, and social challenges, disrupting native ecosystems, outcompeting local species and altering biodiversity. The spread of these species is largely driven by global trade, shipping, and climate change, which allow non-native species to establish themselves in new environments. Current management strategies, including early detection, rapid response, and biosecurity measures, have had some success, but the complexity and scale of the problem require continuous monitoring. This review explores the possibility of using some marine invasive species as skincare ingredients and explores the Azorean islands as a case study for the valorization of biomass. Additionally, this review addresses legislative barriers that delay the development of sustainable cosmetic markets from invasive species, highlighting the regulatory landscape as a critical area. It concludes that marine invasive species present a regional and global problem that requires regional and global solutions. Such solutions strongly need to address environmental impacts and net socioeconomic benefits, but such solutions must also consider all regional differences, technical capacities and financial resources available. Thus, as a future perspective, strategies should emphasize the need for international collaboration and the development of more effective policies to prevent the spread of invasive species. There is still much work to be completed. By working together, the biodiversity for future generations will be better monitored and explored.
Collapse
Affiliation(s)
- Marta Matos
- Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences, (CCMAR/CIMAR LA), Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, Ed. 7, 8005-139 Faro, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Brai A, Hasanaj A, Vagaggini C, Poggialini F, Dreassi E. Infesting Seaweeds as a Novel Functional Food: Analysis of Nutrients, Antioxidants and ACE Inhibitory Effects. Int J Mol Sci 2024; 25:7588. [PMID: 39062831 PMCID: PMC11277057 DOI: 10.3390/ijms25147588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Globalization and climate change are both contributing to an increase in the number of potentially invasive algae in coastal areas. In terms of biodiversity and financial losses, the invasiveness of algae has become a significant issue in Orbetello Lagoon. Indeed, studies from the Tuscany Regional Agency for Environmental Protection show that the reduction in dissolved oxygen caused by algal diffusion is detrimental to fisheries and biodiversity. Considering that wakame and numerous other potentially invasive seaweeds are consumed as food in Asia, we assess the nutritional and nutraceutical qualities of two potentially invasive seaweeds: Valonia aegagrophila and Chaetomorpha linum. We found that both algae are a valuable source of proteins and essential amino acids. Even if the fat content accounts for less than 2% of the dried weight, its quality is high, due to the presence of unsaturated fatty acids. Both algae are rich in antioxidants pigments and polyphenols, which can be exploited as nutraceuticals. Most importantly, human gastrointestinal digestion increased the quantity of polyphenols and originated secondary metabolites with ACE inhibitory activity. Taken together, our data strongly promote the use of Valonia aegagrophila and Chaetomorpha linum as functional foods, with possible application in the treatment of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (A.H.); (C.V.); (F.P.)
| | | | | | | | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (A.H.); (C.V.); (F.P.)
| |
Collapse
|
4
|
Mildenberger J, Rebours C. Green ( Ulva fenestrata) and Brown ( Saccharina latissima) Macroalgae Similarly Modulate Inflammatory Signaling by Activating NF- κB and Dampening IRF in Human Macrophage-Like Cells. J Immunol Res 2024; 2024:8121284. [PMID: 38799117 PMCID: PMC11126347 DOI: 10.1155/2024/8121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-β and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.
Collapse
|
5
|
Schultz J, Berry Gobler DL, Young CS, Perez A, Doall MH, Gobler CJ. Ocean acidification significantly alters the trace element content of the kelp, Saccharina latissima. MARINE POLLUTION BULLETIN 2024; 202:116289. [PMID: 38564822 DOI: 10.1016/j.marpolbul.2024.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Seaweeds are ecosystem engineers that can serve as habitat, sequester carbon, buffer ecosystems against acidification, and, in an aquaculture setting, represent an important food source. One health issue regarding the consumption of seaweeds and specifically, kelp, is the accumulation of some trace elements of concern within tissues. As atmospheric CO2 concentrations rise, and global oceans acidify, the concentrations of elements in seawater and kelp may change. Here, we cultivated the sugar kelp, Saccharina latissima under ambient (~400 μatm) and elevated pCO2 (600-2400 μatm) conditions and examined the accumulation of trace elements using x-ray powder diffraction, sub-micron resolution x-ray imaging, and inductively coupled plasma mass spectrometry. Exposure of S. latissima to higher concentrations of pCO2 and lower pH caused a significant increase (p < 0.05) in the iodine and arsenic content of kelp along with increased subcellular heterogeneity of these two elements as well as bromine. The iodine-to‑calcium and bromine-to‑calcium ratios of kelp also increased significantly under high CO2/low pH (p < 0.05). In contrast, high CO2/low pH significantly reduced levels of copper and cadmium in kelp tissue (p < 0.05) and there were significant inverse correlations between concentrations of pCO2 and concentrations of cadmium and copper in kelp (p < 0.05). Changes in copper and cadmium levels in kelp were counter to expected changes in their free ionic concentrations in seawater, suggesting that the influence of low pH on algal physiology was an important control on the elemental content of kelp. Collectively, these findings reveal the complex effects of ocean acidification on the elemental composition of seaweeds and indicate that the elemental content of seaweeds used as food must be carefully monitored as climate change accelerates this century.
Collapse
Affiliation(s)
- Jack Schultz
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America; Westhampton Beach High School, Westhampton Beach, NY 11978, United States of America
| | - Dianna L Berry Gobler
- Westhampton Beach High School, Westhampton Beach, NY 11978, United States of America; Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, United States of America
| | - Craig S Young
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, United States of America
| | - Aleida Perez
- Brookhaven National Laboratory, Department of Educational Programs Upton, NY 11973, United States of America
| | - Michael H Doall
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, United States of America
| | - Christopher J Gobler
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, NY 11968, United States of America.
| |
Collapse
|
6
|
Peltier S, Adib Y, Nicosia L, Ly Ka So S, Da Silva C, Serror K, Duciel L, Proust R, Mimoun M, Bagot M, Bensussan A, des Courtils C, Michel L. In vitro effects of wound-dressings on key wound healing properties of dermal fibroblasts. Exp Dermatol 2024; 33:e15098. [PMID: 38770557 DOI: 10.1111/exd.15098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Healing of complex wounds requires dressings that must, at least, not hinder and should ideally promote the activity of key healing cells, in particular fibroblasts. This in vitro study assessed the effects of three wound-dressings (a pure Ca2+ alginate: Algostéril®, a Ca2+ alginate + carboxymethylcellulose: Biatain alginate® and a polyacrylate impregnated with lipido-colloid matrix: UrgoClean®) on dermal fibroblast activity. The results showed the pure calcium alginate to be non-cytotoxic, whereas the other wound-dressings showed moderate to strong cytotoxicity. The two alginates stimulated fibroblast migration and proliferation, whereas the polyacrylate altered migration and had no effect on proliferation. The pure Ca2+ alginate significantly increased the TGF-β-induced fibroblast activation, which is essential to healing. This activation was confirmed by a significant increase in Vascular endothelial growth factor (VEGF) secretion and a higher collagen production. The other dressings reduced these fibroblast activities. The pure Ca2+ alginate was also able to counteract the inhibitory effect of NK cell supernatants on fibroblast migration. These in vitro results demonstrate that tested wound-dressings are not equivalent for fibroblast activation. Only Algostéril was found to promote all the fibroblast activities tested, which could contribute to its healing efficacy demonstrated in the clinic.
Collapse
Affiliation(s)
- S Peltier
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | - Y Adib
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | - L Nicosia
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | - S Ly Ka So
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
| | - C Da Silva
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
| | - K Serror
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Chirurgie plastique, reconstructive et esthétique, APHP, Hôpital Saint-Louis, Paris, France
| | - L Duciel
- Laboratoires Brothier, Nanterre, France
| | - R Proust
- Laboratoires Brothier, Nanterre, France
| | - M Mimoun
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Chirurgie plastique, reconstructive et esthétique, APHP, Hôpital Saint-Louis, Paris, France
| | - M Bagot
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Dermatologie, APHP, Hôpital Saint Louis, Paris, France
| | - A Bensussan
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | | | - Laurence Michel
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Dermatologie, APHP, Hôpital Saint Louis, Paris, France
| |
Collapse
|
7
|
Sundhar S, Jeya Shakila R, Shalini R, Aanand S, Jayakumar N, Arisekar U, Manikandan B. Bioaccessibility of toxic heavy metals/metalloids in edible seaweeds: Exposure and health risk assessment. Food Res Int 2024; 182:114135. [PMID: 38519158 DOI: 10.1016/j.foodres.2024.114135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
This study assesses the health risk due to heavy metals/metalloids (HMs/Ms) in edible seaweeds (Caulerpa racemosa, Kappaphycus alvarezii, and Ulva lactuca) through an in vitro bioaccessibility study. The percentage of bioabsorbed HMs/Ms in unprocessed and processed C. racemosa, U. lactuca, and K. alvarezii ranged from 3 % to 46 %, 3 % to 42 %, and 3 % to 40 %, respectively. The levels of HMs/Ms in seawater, sediment, and seaweeds were below the levels recommended by the European Commission (EC) and World Health Organization/Food and Agriculture Organization (WHO/FAO). The maximum accumulation of HMs/Ms was found during monsoons and post-monsoon seasons, and Cd, Pb, Hg, Cr, As, and Pb were predominant in all the samples. Tukey's post hoc test and t-test confirmed that thermal processing significantly reduced HMs/Ms in seaweeds. On the basis of the bioabsorption of HMs/Ms, the TTHQ values were found to be < 1, and the LCR values were within the acceptable limit (10-06 to 10-04), indicating no carcinogenic risks through seaweeds.
Collapse
Affiliation(s)
- Shanmugam Sundhar
- Department of Fish Quality Assurance and Management, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| | - Samraj Aanand
- Erode Bhavanisagar Centre for Sustainable Aquaculture, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Erode 638 451, Tamil Nadu, India
| | - Natarajan Jayakumar
- Department of Fisheries Biology and Resource Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Ulaganatha Arisekar
- Department of Fish Quality Assurance and Management, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Fisheries College and Research Institute, Tuticorin 628 008, Tamil Nadu, India
| | - Boominathan Manikandan
- Department of Fisheries Extension, Economics and Statistics, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
8
|
Diehl N, Li H, Scheschonk L, Burgunter-Delamare B, Niedzwiedz S, Forbord S, Sæther M, Bischof K, Monteiro C. The sugar kelp Saccharina latissima I: recent advances in a changing climate. ANNALS OF BOTANY 2024; 133:183-212. [PMID: 38109285 PMCID: PMC10921839 DOI: 10.1093/aob/mcad173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Collapse
Affiliation(s)
- Nora Diehl
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Huiru Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | | | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean AS, 7465 Trondheim, Norway
| | - Maren Sæther
- Seaweed Solutions AS, Bynesveien 50C, 7018 Trondheim, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Catia Monteiro
- CIBIO, Research Centre in Biodiversity and Genetic Resources – InBIO Associate Laboratory, Campus of Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus of Vairão, Vairão, Portugal
| |
Collapse
|
9
|
Obluchinskaya ED, Pozharitskaya ON, Gorshenina EV, Daurtseva AV, Flisyuk EV, Generalova YE, Terninko II, Shikov AN. Ascophyllum nodosum (Linnaeus) Le Jolis from Arctic: Its Biochemical Composition, Antiradical Potential, and Human Health Risk. Mar Drugs 2024; 22:48. [PMID: 38276650 PMCID: PMC10820375 DOI: 10.3390/md22010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Ascophyllum nodosum is a brown seaweed common in Arctic tidal waters. We have collected A. nodosum samples from the Barents Sea (BS), Irminger Sea (IS), and Norwegian Sea (NS) in different reproductive stages and have evaluated their biochemical composition, radical scavenging potential, and health risks. The total content of dominating carbohydrates (fucoidan, mannitol, alginate, and laminaran) ranged from 347 mg/g DW in NS to 528 mg/g DW in BS. The proportion of two main structural monosaccharides of fucoidan (fucose and xylose) differed significantly between the seas and reproductive phase, reaching a maximum at the fertile phase in the BS sample. Polyphenols and flavonoids totals were highest in NS A. nodosum samples and increased on average in the following order: BS < IS < NS. A positive correlation of free radical scavenging activity for seaweed extracts with polyphenols content was observed. The concentration of elements in A. nodosum from the Arctic seas region was in the following order: Ca > Mg > Sr > Fe > Al > Zn > As total > Rb > Mn > Ba > Cu > Co. Seaweeds from BS had the lowest metal pollution index (MPI) of 38.4. A. nodosum from IS had the highest MPI of 83. According to the calculated target hazard quotient (THQ) and hazard index (HI) values, Arctic A. nodosum samples pose no carcinogenic risk to adult and child health and are safe for regular consumption. Our results suggest that the Arctic A. nodosum has a remarkable potential for food and pharmaceutical industries as an underestimated source of polysaccharides, polyphenols, and flavonoids.
Collapse
Affiliation(s)
- Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
| | - Elena V. Gorshenina
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
| | - Anna V. Daurtseva
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
| | - Elena V. Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia;
| | - Yuliya E. Generalova
- Core Shared Research Facilities “Analytical Center”, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia; (Y.E.G.)
| | - Inna I. Terninko
- Core Shared Research Facilities “Analytical Center”, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia; (Y.E.G.)
| | - Alexander N. Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia;
| |
Collapse
|
10
|
Peng Z, He Y, Guo Z, Wu Q, Li S, Zhu Z, Grimi N, Xiao J. Species-specific arsenic species and health risk assessment in seaweeds from tropic coasts of South China Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115634. [PMID: 37897978 DOI: 10.1016/j.ecoenv.2023.115634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Arsenic (As) is a notorious toxic contamination in marine environments, while the toxicity and health risk of As is highly dependent on As species in seafoods. In this study, we hypothesized that the species-specific As bioaccumulation and species resulted in species-specific healthy risk of As in seaweeds. To test the hypothesis, we collected 10 common edible seaweeds from the coast of Hainan Island in South China Sea. Then we comparatively quantified concentration of total As and 5 major As species [AsB, DMA, MMA, As(III), and As(V)] in seaweeds. The results revealed that the concentrations of total As varied significantly among 10 seaweed species. Specially, the highest total As concentration were found in brown seaweeds, followed by red seaweeds, and green seaweeds. Furthermore, the percentage of 5 As species to total As differed significantly among 10 seaweeds. The percentage of AsB was highest in Caulerpa lentillifera (53%) and lowest in Sargassum oligocystum (13%), while that of As(V) was lowest in Caulerpa lentillifera (21%) and highest in Sargassum oligocystum (81%). The iAs [As(III) + As(V)] exhibited highest value in brown seaweeds and least value in green seaweeds. The potential human health risk assessment indicated that the consumption of brown seaweeds of Sargassum oligocystum and Sargassum polycystum could cause a considerable carcinogenic risk and non-carcinogenic risk to residents. Overall, our findings here largely validated our hypothesis that the species-specific As bioaccumulation and As species had great significance to healthy risk of As in seaweeds.
Collapse
Affiliation(s)
- Ziting Peng
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuke He
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqiang Guo
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qian Wu
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Key Laboratory of Industrial Microbiology, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Nabil Grimi
- Sorbonne University, Université de Technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Juan Xiao
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Ungureanu EL, Mocanu AL, Stroe CA, Duță DE, Mustățea G. Assessing Health Risks Associated with Heavy Metals in Food: A Bibliometric Analysis. Foods 2023; 12:3974. [PMID: 37959095 PMCID: PMC10649142 DOI: 10.3390/foods12213974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Bibliometric analysis is an effective method used to identify research trends based on historical publications that involves combining different frameworks, tools and methods, leading to the creation of different metrics. This study employed bibliometric analysis to investigate the global health risk assessment of heavy metals in food from 2000 to 2022 using Web of Science and VOSviewer. We explore publication trends, affiliations, countries, journals, citations, keywords and author collaborations. Of the 573 publications on this topic, there has been a notable increase in recent years. The Ministry of Agriculture and Rural Affairs (China) and Shahid Beheshti University of Medical Sciences (Iran) are the most prolific affiliations. Environmental Science and Pollution Research is the top journal. Notably, "heavy metals", "risk assessment", "cadmium", "lead", and "trace elements" are frequently used keywords. A study by Miraglia et al. in 2009 received the most citations. Amin Mousavi Khaneghah (Poland) is the most prolific author, with 24 papers. Articles mainly focus on contamination levels in fish, seafood, cereals, dairy, meat, and fruit/vegetables. Some studies highlight potential risks, necessitating stricter food product controls for consumer safety.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Mustățea
- National Research & Development Institute for Food Bioresources, 020323 Bucharest, Romania; (E.L.U.); (A.L.M.); (C.A.S.); (D.E.D.)
| |
Collapse
|
12
|
Siddique MAM, Hossain MS, Chakma B, Islam MM, Hossain MM, Shazada NE, Walker TR. Metal and metalloid bioaccumulation in dried red seaweed Hypnea musciformis and health risk assessment for consumers. MARINE POLLUTION BULLETIN 2023; 194:115302. [PMID: 37480790 DOI: 10.1016/j.marpolbul.2023.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
This study measured 22 metal and metalloid concentrations in Hypnea musciformis from the Bakkhali River estuary and Saint Martin's Island, Bangladesh and determined their potential impact on consumption. Student t-tests showed a significant variation in metal concentrations between the two sampling sites (p < 0.05). Mean concentrations of Co (2.49 ± 0.05 mg/kg), Fe (793.29 ± 11.76 mg/kg), Mn (368.72 ± 4.87 mg/kg), Pb (3.82 ± 0.02 mg/kg), V (11.23 ± 0.20 mg/kg) and Zn (16.60 ± 0.28 mg/kg) were higher in samples collected from the Bakkhali River estuary compared to Saint Martin's Island, while mean concentrations of Ca (484.18 ± 4.68 mg/kg), Cd (2.44 ± 0.03 mg/kg), Mg (2112.70 ± 17.80 mg/kg), Mo (1.57 ± 0.06 mg/kg), Sr (2377.57 ± 29.98 mg/kg), and Ti (258.27 ± 4.62 mg/kg) were higher in samples collected from Saint Martin's Island. Eight heavy metals (Pb, Cd, Zn, Cu, Ni, Mn, Cr, Fe) were used to assess potential health risks for adults, but no potential health risk was detected (HQ value>1). This study reveals positive Se-HBV for H. musciformis collected from both sampling sites, indicating no potential risks involved with Hg toxicity.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Oceanography, Noakhali Science and Technology University, Nokha li-3814, Bangladesh.
| | - Md Shakhawate Hossain
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Bibhuti Chakma
- Department of Oceanography, Noakhali Science and Technology University, Nokha li-3814, Bangladesh
| | - Md Mohidul Islam
- Marine Fisheries & Technology Station, Bangladesh Fisheries, Research Institute, Cox's Bazar 4700, Bangladesh
| | - Md Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Nokhali 3814, Bangladesh
| | - Nururshopa Eskander Shazada
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Nokhali 3814, Bangladesh
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
13
|
Duan X, Subbiah V, Xie C, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. Evaluation of the antioxidant potential of brown seaweeds extracted by different solvents and characterization of their phenolic compounds by LC-ESI-QTOF-MS/MS. J Food Sci 2023; 88:3737-3757. [PMID: 37530606 DOI: 10.1111/1750-3841.16720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Seaweeds, serving as valuable natural sources of phenolic compounds (PCs), offer various health benefits like antioxidant, anti-inflammatory properties, and potential anticancer effects. The efficient extraction of PCs from seaweed is essential to harness their further applications. This study compares the effectiveness of different solvents (ethanol, methanol, water, acetone, and ethyl acetate) for extracting PCs from four seaweed species: Ascophyllum sp., Fucus sp., Ecklonia sp., and Sargassum sp. Among them, the ethanol extract of Sargassum sp. had the highest content of total phenolics (25.33 ± 1.45 mg GAE/g) and demonstrated potent scavenging activity against the 2,2-diphenyl-1-picrylhydrazyl radical (33.65 ± 0.03 mg TE/g) and phosphomolybdate reduction (52.98 ± 0.47 mg TE/g). Ecklonia sp. had the highest content of total flavonoids (0.40 ± 0.02 mg QE/g) in its methanol extract, whereas its ethyl acetate extract contained the highest content of total condensed tannins (8.09 ± 0.12 mg CE/g). Fucus sp. demonstrated relatively strong antioxidant activity, with methanolic extracts exhibiting a scavenging ability against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (54.41 ± 0.24 mg TE/g) and water extracts showing ferric-reducing antioxidant power of 36.24 ± 0.06 mg TE/g. Likewise, liquid chromatography-mass spectrometry identified 61 individual PCs, including 17 phenolic acids, 32 flavonoids, and 12 other polyphenols. Ecklonia sp., particularly in the ethanol extract, exhibited the most diverse composition. These findings underscore the importance of selecting appropriate solvents based on the specific seaweed species and desired compounds, further providing valuable guidance in the pharmaceutical, nutraceutical, and cosmetic industries. PRACTICAL APPLICATION: The PCs, which are secondary metabolites present in terrestrial plants and marine organisms, have garnered considerable attention due to their potential health advantages and diverse biological effects. Using various organic/inorganic solvents during the extraction process makes it possible to selectively isolate different types of PCs from seaweed species. The distinct polarity and solubility properties of each solvent enable the extraction of specific compounds, facilitating a comprehensive assessment of the phenolic composition found in the seaweed samples and guiding industrial production.
Collapse
Affiliation(s)
- Xinyu Duan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Vigasini Subbiah
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorkshire, UK
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
14
|
Obluchinskaya ED, Pozharitskaya ON, Gorshenina EV, Zakharov DV, Flisyuk EV, Terninko II, Generalova YE, Shikov AN. Arctic Edible Brown Alga Fucus distichus L.: Biochemical Composition, Antiradical Potential and Human Health Risk. PLANTS (BASEL, SWITZERLAND) 2023; 12:2380. [PMID: 37376005 DOI: 10.3390/plants12122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Fucus distichus L. is the dominant canopy-forming macroalga in the rocky intertidal areas of the Arctic and Subarctic. In the present study, the impact of the geographic location of F. distichus collected in the Baffin Sea (BfS), Norwegian Sea (NS), White Sea (WS), and Barents Sea (BS) on the variations in biochemical composition, antiradical properties, and health risk was evaluated. The accumulation of main carbohydrates (fucoidan, mannitol, and alginic acid) varied from 335 mg/g dry weight (DW) in NS to 445 mg/g DW in BS. The highest level of the sum of polyphenols and flavonoids was found in samples of F. distichus from WS and was located in the following ranking order: BS < BfS < NS < WS. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of seaweed is correlated with its phenolic content. It is notable that in most Arctic F. distichus samples, Cd, Cr, Pb, and Ni were not detected or their concentrations were below the limit of quantification. According to calculated targeted hazard quotient and hazard index values, all studied samples of Arctic F. distichus are safe for daily consumption as they do not pose a carcinogenic risk to the health of adults or children. The results of this study support the rationale for using Arctic F. distichus as a rich source of polysaccharides, polyphenols, and flavonoids with important antiradical activity. We believe that our data will help to effectively use the potential of F. distichus and expand the use of this algae as a promising and safe raw material for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ekaterina D Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Elena V Gorshenina
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Denis V Zakharov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
- Zoological Institute RAS (ZIN RAS), 1 Universitetskaya Embankment, 199034 Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Inna I Terninko
- Core Shared Research Facilities "Analytical Center", St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Yuliya E Generalova
- Core Shared Research Facilities "Analytical Center", St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Alexander N Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| |
Collapse
|
15
|
Pasumpon N, Varma R, Vasudevan S. Bioaccumulation level of metals and health risk assessment of selected red and green seaweeds validated by ICP-MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66781-66799. [PMID: 37186189 DOI: 10.1007/s11356-023-27192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
The bioaccumulation of trace metals in 10 selected edible seaweeds was studied using inductively coupled plasma mass spectroscopy (ICP-MS). Bioaccumulation of higher levels of manganese (4.94 ± 0.15 μg/g) and aluminium (4.21 ± 0.18 μg/g) and lower levels of arsenic (0.18 ± 0.02 μg/g) and vanadium (0.09 ± 0.02 μg/g) were observed in Chlorophyta. In Rhodophyta, bioaccumulation of iron (8.51 ± 0.19 μg/g) was high, while lower levels of magnesium (0.13 ± 0.02 μg/g) and strontium (0.21 ± 0.01 μg/g) were observed among the seaweeds studied. Health assessment studies were also conducted on seaweeds to understand their effects on human consumption. The findings imply that consuming macroalgae has no health risk due to these elements in the general population. Furthermore, the confirmative toxicity of specific metals, such as Cd, Pb, and Zn metals in macroalgae, should be monitored constantly.
Collapse
Affiliation(s)
- Nigariga Pasumpon
- Department of Oceanography and Coastal Area Studies, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Rahul Varma
- Department of Oceanography and Coastal Area Studies, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Sugumar Vasudevan
- Department of Oceanography and Coastal Area Studies, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India.
| |
Collapse
|
16
|
Lafeuille B, Tamigneaux É, Berger K, Provencher V, Beaulieu L. Variation of the Nutritional Composition and Bioactive Potential in Edible Macroalga Saccharina latissima Cultivated from Atlantic Canada Subjected to Different Growth and Processing Conditions. Foods 2023; 12:1736. [PMID: 37107531 PMCID: PMC10137355 DOI: 10.3390/foods12081736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Macroalgae are a new food source in the Western world. The purpose of this study was to evaluate the impact of harvest months and food processing on cultivated Saccharina latissima (S. latissima) from Quebec. Seaweeds were harvested in May and June 2019 and processed by blanching, steaming, and drying with a frozen control condition. The chemical (lipids, proteins, ash, carbohydrates, fibers) and mineral (I, K, Na, Ca, Mg, Fe) compositions, the potential bioactive compounds (alginates, fucoidans, laminarans, carotenoids, polyphenols) and in vitro antioxidant potential were investigated. The results showed that May specimens were significantly the richest in proteins, ash, I, Fe, and carotenoids, while June macroalgae contained more carbohydrates. The antioxidant potential of water-soluble extracts (Oxygen Radical Absorbance Capacity [ORAC] analysis-625 µg/mL) showed the highest potential in June samples. Interactions between harvested months and processing were demonstrated. The drying process applied in May specimens appeared to preserve more S. latissima quality, whereas blanching and steaming resulted in a leaching of minerals. Losses of carotenoids and polyphenols were observed with heating treatments. Water-soluble extracts of dried May samples showed the highest antioxidant potential (ORAC analysis) compared to other methods. Thus, the drying process used to treat S. latissima harvested in May seems to be the best that should be selected.
Collapse
Affiliation(s)
- Bétina Lafeuille
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Éric Tamigneaux
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- École des Pêches et de L’aquaculture du Québec, Cégep de la Gaspésie et des Îles, Québec, QC G0C 1V0, Canada
- Merinov, Grande-Rivière, QC G0C 1V0, Canada;
| | | | - Véronique Provencher
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
- École de Nutrition, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Dujardin B, Ferreira de Sousa R, Gómez Ruiz JÁ. Dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population. EFSA J 2023; 21:e07798. [PMID: 36742462 PMCID: PMC9887633 DOI: 10.2903/j.efsa.2023.7798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
EFSA assessed the relevance of seaweed and halophyte consumption to the dietary exposure to heavy metals (arsenic, cadmium, lead and mercury) and the iodine intake in the European population. Based on sampling years 2011-2021, there were 2,093 analytical data available on cadmium, 1,988 on lead, 1,934 on total arsenic, 920 on inorganic arsenic (iAs), 1,499 on total mercury and 1,002 on iodine. A total of 697 eating occasions on halophytes, seaweeds and seaweed-related products were identified in the EFSA Comprehensive European Food Consumption Database (468 subjects, 19 European countries). From seaweed consumption, exposure estimates for cadmium in adult 'consumers only' are within the range of previous exposure estimates considering the whole diet, while for iAs and lead the exposure estimates represent between 10% and 30% of previous exposures from the whole diet for the adult population. Seaweeds were also identified as important sources of total arsenic that mainly refers, with some exceptions, to organic arsenic. As regards iodine, from seaweed consumption, mean intakes above 20 μg/kg body weight per day were identified among 'consumers only' of Kombu and Laver algae. The impact of a future increase in seaweed consumption ('per capita') on the dietary exposure to heavy metals and on iodine intake will strongly depend on the seaweeds consumed. The exposure estimates of heavy metals and iodine intakes in 'consumers only' of seaweeds were similar to those estimated in a replacement scenario with selected seaweed-based foods in the whole population. These results underline the relevance of the current consumption of seaweeds in the overall exposure to different heavy metals and in the intake of iodine. Recommendations are provided for further work needed on different areas to better understand the relationship between seaweed consumption and exposure to heavy metals and iodine intake.
Collapse
|
18
|
Long J, Ye Z, Li X, Tian Y, Bai Y, Chen L, Qiu C, Xie Z, Jin Z, Svensson B. Enzymatic preparation and potential applications of agar oligosaccharides: a review. Crit Rev Food Sci Nutr 2022; 64:5818-5834. [PMID: 36547517 DOI: 10.1080/10408398.2022.2158452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oligosaccharides derived from agar, that is, agarooligosaccharides and neoagarooligosaccharides, have demonstrated various kinds of bioactivities which have been utilized in a variety of fields. Enzymatic hydrolysis is a feasible approach that principally allows for obtaining specific agar oligosaccharides in a sustainable way at an industrial scale. This review summarizes recent technologies employed to improve the properties of agarase. Additionally, the relationship between the degree of polymerization, bioactivities, and potential applications of agar-derived oligosaccharides for pharmaceutical, food, cosmetic, and agricultural industries are discussed. Engineered agarase exhibited general improvement of enzymatic performance, which is mostly achieved by truncation. Rational and semi-rational design assisted by computational methods present the latest strategy for agarase improvement with greatest potential to satisfy future industrial needs. Agarase immobilized on magnetic Fe3O4 nanoparticles via covalent bond formation showed characteristics well suited for industry. Additionally, albeit with the relationship between the degree of polymerization and versatile bioactivities like anti-oxidants, anti-inflammatory, anti-microbial agents, prebiotics and in skin care of agar-derived oligosaccharides are discussed here, further researches are still needed to unravel the complicated relationship between bioactivity and structure of the different oligosaccharides.
Collapse
Affiliation(s)
- Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ziying Ye
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Huang Z, Bi R, Musil S, Pétursdóttir ÁH, Luo B, Zhao P, Tan X, Jia Y. Arsenic species and their health risks in edible seaweeds collected along the Chinese coastline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157429. [PMID: 35863575 DOI: 10.1016/j.scitotenv.2022.157429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Edible seaweeds with a relatively high total arsenic concentration have been a global concern. As the largest seaweed producer, China contributes about 60 % of the global seaweed production. The present study investigated 20 seaweed species collected from representative seaweed farming sites in the six provinces along the Chinese coastline, of which Saccharina japonica, Undaria pinnatifida, Neopyropia spp., Gracilaria spp., Sargassum fusiforme were listed as the most consumed seaweeds in Food and Agriculture Organization of the United Nations (FAO). The inorganic arsenic (iAs) concentration in most of the seaweeds was below maximum limits (0.3 mg iAs/kg) as seaweed additives for infant food in the National Food Safety Standard of Pollutants in China (GB2762-2017, 2017), except for the species Sargassum, in which the iAs concentration significantly exceeded the limit and ranged from 15.1 to 83.7 mg/kg. Arsenic speciation in 4 cultivated seaweeds grown in both temperate and subtropical zones is reported for the first time. No significant differences in total As and iAs concentration were identified, except slightly higher total As concentration were found in Saccharina japonica growing in the temperate zone. The estimated daily intake (EDI) of toxic iAs via seaweed consumption was generally below the EFSA CONTAM Panel benchmark dose lower confidence limit (0.3 μg/kg bw/day) except for all Sargassum species where the EDI was significantly higher than 0.3 μg/kg bw/day. Moreover, the first-ever reported data on As speciation indicated very high iAs concentrations in Sargassum hemiphyllum and Sargassum henslowianum. To minimize the food chain iAs exposure, reducing both human intake of Sargassum spp. and the used of Sargassum spp. for animal feed is highly recommended. CAPSULE: This study showed that edible seaweed Sargassum spp. consumption may pose a health risk related to inorganic arsenic (iAs) exposure. The risk of iAs exposure via seaweed consumption or livestock is a concern that needs to be monitored. The arsenic accumulation and speciation may be predominantly species-dependent rather than environmental-dependent.
Collapse
Affiliation(s)
- Zhangxun Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Ran Bi
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 60200 Brno, Czech Republic
| | | | - Bicheng Luo
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Puhui Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Xi Tan
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
20
|
Imane B, Laila B, Fouzia H, Ismail G, Ahmed E, Kaoutar B, Mohamed EM, Samira E, Jamila B. Chemical characterization, antiproliferative activity and molecular docking of bioactive compounds from brown algae Fucus spiralis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Sequential ultrasound-assisted digestion procedure for determination of cadmium and lead contaminants in sea grapes and some seaweed products. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Wekre ME, Hellesen Brunvoll S, Jordheim M. Advancing quantification methods for polyphenols in brown seaweeds-applying a selective qNMR method compared with the TPC assay. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1099-1110. [PMID: 35796295 PMCID: PMC9796469 DOI: 10.1002/pca.3162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Brown seaweeds are a sustainable biomass with a potential for various industrial applications. Polyphenols are an important contributor to this potential. OBJECTIVE The aim was total quantification of polyphenols in brown seaweeds from different tidal zones, using a selective 1 H quantitative NMR (qNMR) method, comparing the results with the colorimetric Folin-Ciocalteu total phenolic content (TPC) assay. METHOD qNMR was performed with integration of selected peaks in the aromatic region (7-5.5 ppm). Deselection of non-polyphenolic 1 H signals was based on information from 2D (1 H-13 C, 1 H-15 N) NMR spectra. 13 C NMR phlorotannin characterisation facilitated the average number of protons expected to be found per aromatic ring used for the 1 H quantification. RESULTS Selective qNMR and the TPC assay showed similar results for the three sublittoral growing species from the Laminariaceae; lower amounts for Laminaria hyperborea and Laminaria digitata (qNMR: 0.4%-0.6%; TPC: 0.6%-0.8%, phloroglucinol equivalents (PGE), dry weight (DW)) and higher amounts for Saccharina latissima (qNMR: 1.2%; TPC: 1.5%, PGE, DW). For the eulittoral Fucaceae, Fucus vesiculosus (qNMR: 1.1%; TPC: 4.1%; PGE, DW) and Ascophyllum nodosum (qNMR: 0.9%; TPC: 2.0%; PGE, DW), the TPC results were found to be up to three times higher than the qNMR results. The 13 C NMR characterisation showed the highest phlorotannin polymerisation degree for F. vesiculosus. CONCLUSION The TPC assay provided similar polyphenolic amounts to the selective qNMR method for sublittoral species. For eulittoral growing species, the TPC method showed amounts up to three times higher than the qNMR method-most likely illustrating the lack of selectivity in the TPC assay.
Collapse
Affiliation(s)
- Marie Emilie Wekre
- Department of ChemistryUniversity of BergenBergenNorway
- Alginor ASAHaugesundNorway
| | | | | |
Collapse
|
23
|
Feng S, Zhang P, Hu Y, Jin F, Liu Y, Cai S, Song Z, Zhang X, Nadezhda T, Guo Z, Lynch I, Dang X. Combined application of biochar and nano-zeolite enhanced cadmium immobilization and promote the growth of Pak Choi in cadmium contaminated soil. NANOIMPACT 2022; 28:100421. [PMID: 36031145 DOI: 10.1016/j.impact.2022.100421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Biochar and zeolite have been demonstrated effective to remove heavy metals in soil; however, the effect of combined application of the both materials on the fraction of Cd and soil-plant system are largely unknown. Cd fractions in soil, growth and Cd uptake of Pak Choi were measured after the combined application of biochar (0, 5, 10 and 20 g·kg-1) and nano-zeolite (0, 5, 10, 20 g·kg-1) by pot experiment. Results showed that both single and combined application reduced the exchangeable Cd in soil and improved the plant growth. However, combined application of 20 g·kg-1 biochar with 10 g·kg-1 nano-zeolite showed the strongest effect, with the residual Cd in soil increased by 214% as compared with control. 20 g·kg-1 biochar with 10 g·kg-1 nano-zeolite Mechanic studies showed that this combination enhanced the antioxidant system, with the SOD, CAT and POD activities enhanced by 56.1%, 133.3% and 235.3%, respectively. The oxidative stress was reduced correspondingly, as shown by the reduced MDA contents (by 46.7%). This combination also showed the best efficiency in regulating soil pH, organic matter and soil enzymes thus improving the plant growth. This study suggests that combined application various materials such as biochar and nano-zeolite may provide new strategies for reducing the bioavailability of Cd in soil and thus the accumulation in edible plants.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Yanmei Hu
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feng Jin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuqing Liu
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shixin Cai
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zijie Song
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xing Zhang
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Tcyganova Nadezhda
- Farming and Grassland Science Department, Saint-Petersburg State Agrarian University, Saint-Petersburg 196601, Russia
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Xiuli Dang
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
24
|
Rokonuzzaman MD, Li WC, Wu C, Ye ZH. Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119712. [PMID: 35798190 DOI: 10.1016/j.envpol.2022.119712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Rice and vegetables cultivated in naturally arsenic (As) endemic areas are the substantial source of As body loading for persons using safe drinking water. However, tracing As intake, particularly from rice and vegetables by biomarker analysis, has been poorly addressed. This field investigation was conducted to trace the As transfer pathway and measure health risk associated with consuming As enriched rice and vegetables. Purposively selected 100 farmers from five sub-districts of Chandpur, Bangladesh fulfilling specific requirements constituted the subjects of this study. A total of 100 Irrigation water, soils, rice, and vegetable samples were collected from those farmers' who donated scalp hair. Socio-demographic and food consumption data were collected face to face through questionnaire administration. The mean As level in irrigation water, soils, rice, vegetables, and scalp hairs exceeded the acceptable limit, while As content was significant at 0.1%, 5%, 0.1%, 1%, and 0.1% probability levels, respectively, in all five locations. Arsenic in scalp hair is significantly (p ≤ 0.01) correlated with that in rice and vegetables. The bioconcentration factor (BCF) for rice and vegetables is less than one and significant at a 1% probability level. The average daily intake (ADI) is higher than the RfD limit for As. Both grains and vegetables have an HQ (hazard quotient) > 1. Maximum incremental lifetime cancer risk (ILCR) showed 2.8 per 100 people and 1.6 per 1000 people are at considerable and threshold risk, respectively. However, proteinaceous and nutritious food consumption might have kept the participants asymptomatic. The PCA analysis showed that the first principle component (PC1) explains 91.1% of the total variance dominated by As in irrigation water, grain, and vegetables. The dendrogram shows greater variations in similarity in rice and vegetables As, while the latter has been found to contribute more to human body loading compared to grain As.
Collapse
Affiliation(s)
- M D Rokonuzzaman
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China
| | - W C Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China.
| | - C Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China; School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Z H Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| |
Collapse
|
25
|
Zhou T, Li X, Zhang Q, Dong S, Liu H, Liu Y, Chaves AV, Ralph PJ, Ruan R, Wang Q. Ecotoxicological response of Spirulina platensis to coexisted copper and zinc in anaerobic digestion effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155874. [PMID: 35568173 DOI: 10.1016/j.scitotenv.2022.155874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Copper ion (Cu2+) and zinc ion (Zn2+) are widely co-existent in anaerobic digestion effluent as typical contaminants. This work aims to explore how Cu2+-Zn2+ association affects physiological properties of S. platensis using Schlösser medium (SM) and sterilized anaerobic digestion effluent (SADE). Microalgae cells viability, biochemical properties, uptake of Cu2+ and Zn2+, and risk assessment associated with the biomass reuse as additives to pigs were comprehensively assessed. Biomass production ranged from 0.03 to 0.28 g/L in SM and 0.63 to 0.79 g/L in SADE due to the presence of Cu2+ and Zn2+. Peak value of chlorophyll-a and carotenoid content during the experiment decreased by 70-100% and 40-100% in SM, and by 70-77% and 30-55% in SADE. Crude protein level reduced by 4-41% in SM and by 65-75% in SADE. The reduction ratio of these compounds was positively related to the Cu2+ and Zn2+ concentrations. Maximum value of saturated and unsaturated fatty acids was both obtained at 0.3 Cu + 2.0 Zn (50.8% and 22.8%, respectively) and 25% SADE reactors (33.8% and 27.7%, respectively). Uptake of Cu in biomass was facilitated by Zn2+ concentration (> 4.0 mg/L). Risk of S. platensis biomass associated with Cu2+ was higher than Zn2+. S. platensis from SM (Cu2+ ≤ 0.3 mg/L and Zn2+ ≤ 4.0 mg/L) and diluted SADE (25% and 50% SADE) reactors could be used as feed additives without any risk (hazard index <1), which provides sufficient protein and fatty acids for pig consumption. These results revealed the promising application of using S. platensis for bioremediation of Cu2+ and Zn2+ in anaerobic digestion effluent and harvesting biomass for animal feed additives.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shiman Dong
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
26
|
Hossain MS, Liyana E, Sifat SAD, Ameen F, Ullah MA, Jolly YN, Quraishi SB, Hossain M, Salleh S, Akter S, Hossain MA, Bin Mukhlish MZ, Elliott M. Trace element bioaccumulation in edible red seaweeds (Rhodophyta): A risk assessment for consumers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119560. [PMID: 35654256 DOI: 10.1016/j.envpol.2022.119560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
As a precursor to risk assessment and risk management through consuming contaminated seafood, food safety needs to be quantified and assured. Seaweed is an increasing dietary component, especially in developing countries, but there are few studies assessing uptake rates of contaminants from this route. As such, the present study determined likely human uptake due to the trace elemental (Fe, Mn, Ni, Cu, Zn, Se, Hg, and As) concentrations in the edible red seaweeds (Rhodophyta) Gelidium pusillum and Hypnea musciformis, growing in the industrialised Cox's Bazar coastal area of Bangladesh. Metal and metalloid concentrations in G. pusillum were in the order (mg/kg): Fe (797 ± 67) > Mn (69 ± 4) > Ni (12 ± 5) > Zn (9 ± 4) > Cu (9 ± 4) >Se (0.1 ± 0.1) > Hg (0.1 ± 0.01), and in H. musciformis: Fe (668 ± 58) > Mn (28 ± 5) > Ni (14 ± 2) > Zn (11 ± 5) > Cu (6 ± 4) >Se (0.2 ± 0.03) > Hg (0.04 ± 0.01). Despite the industrial activities in the area, and based on 10 g. day-1 seaweed consumption, it is concluded that these concentrations pose no risk to human health as part of a normal diet according to the targeted hazard quotient and hazard index (THQ and HI) (values < 1). In addition, and as a novel aspect for seaweeds, Selenium Health Benefit Values (Se-HBV) were determined and found to have positive values. Seaweed can be used as an absorber of inorganic metals for removing contamination in coastal waters. The results are a precursor to further research regarding the efficiency and rate at which seaweeds can sequester metal contamination in water. In addition, management techniques need to be developed thereby to control the contaminant inputs.
Collapse
Affiliation(s)
- Md Solaiman Hossain
- Dept. of Oceanography, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Eurida Liyana
- Dept. of Oceanography, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Saad Al-Din Sifat
- Dept. of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Fuad Ameen
- Dept. of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Akram Ullah
- Dept. of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Yeasmin Nahar Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Center, Dhaka, 1000, Bangladesh
| | - Shamshad Begum Quraishi
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Center, Dhaka, 1000, Bangladesh
| | - Mofazzal Hossain
- Dhaka Central International Medical College and Hospital, Dhaka, 1207, Bangladesh
| | - Sazlina Salleh
- Centre for Policy Research and International Studies, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sharmin Akter
- Dept. of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Afzal Hossain
- Dept. of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Muhammad Zobayer Bin Mukhlish
- Dept. of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Michael Elliott
- Dept. of Biological & Marine Sciences, University of Hull, Hull, HU6 7RX, United Kingdom; International Estuarine & Coastal Specialists Ltd., Leven, HU17 5LQ, United Kingdom
| |
Collapse
|
27
|
Véliz K, Toledo P, Araya M, Fernanda Gómez M, Villalobos V, Tala F. Chemical composition and heavy metal content of Chilean seaweeds: potential applications of seaweed meal as food and feed ingredients. Food Chem 2022; 398:133866. [DOI: 10.1016/j.foodchem.2022.133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022]
|
28
|
Siddique MAM, Hossain MS, Islam MM, Rahman M, Kibria G. Heavy metals and metalloids in edible seaweeds of Saint Martin's Island, Bay of Bengal, and their potential health risks. MARINE POLLUTION BULLETIN 2022; 181:113866. [PMID: 35759901 DOI: 10.1016/j.marpolbul.2022.113866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to assess the levels of heavy metals and metalloids present in six seaweeds and their potential impact on consumption. The highest concentration of 11 metals, i.e., Be (0.47 mg/kg), Co (4.34 mg/kg), Cr (23.46 mg/kg), Cu (11.96 mg/kg), Fe (2290.26 mg/kg), Li (11.55 mg/kg), Ni (13.75 mg/kg), Pb (6.67 mg/kg), Ti (736.62 mg/kg), Tl (0.14 mg/kg), and V (33.09 mg/kg) were observed in Enteromorpha intestinalis (green seaweeds). Besides, the highest concentration of Ca (1071.09 mg/kg), Cd (5.81 mg/kg), Mn (1003.41 mg/kg), Sr (2838.86 mg/kg), and Zn (41.95 mg/kg) were found in Padina tetrastromatica (brown seaweeds). Eight metals (Pb, Cd, Zn, Cu, Ni, Mn, Cr, Fe) have been used to assess the potential health risk for adults, but no potential health risk was detected (HQ value > 1). The HI value of E. intestinalis and P. tetrastromatica were >1, implying that these two seaweeds are not safe for human consumption as there is a carcinogenic health risk for adults.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Md Shakhawate Hossain
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Md Mohidul Islam
- Marine Fisheries & Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Mahfuzur Rahman
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | | |
Collapse
|
29
|
Threshold values on environmental chemical contaminants in seafood in the European Economic Area. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Peng Z, Guo Z, Wang Z, Zhang R, Wu Q, Gao H, Wang Y, Shen Z, Lek S, Xiao J. Species-specific bioaccumulation and health risk assessment of heavy metal in seaweeds in tropic coasts of South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155031. [PMID: 35398427 DOI: 10.1016/j.scitotenv.2022.155031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Seaweeds are widely known superfood in coasts where most anthropogenic heavy metal discharges are inputted and stored. The present study analyzed 11 seaweed species and 13 heavy metals to test the hypothesis that the species-specific capacity of heavy metal bioaccumulation had great significance to health risk of human. The seaweeds were collected from tropic coasts of Hainan Island. We comparatively determined the bioaccumulation level of metals in different species. The results revealed that the red algae mainly concentrated V, Se, Mn, Ni, and Ag. The brown algae mainly concentrated Cr, Co, Cu, Cd, As and Fe, while the green algae mainly concentrated Zn and Pb. The cluster analysis, principal component analysis and metal pollution index indicated that Padina crassa, Sargassum thunbergii, Caulerpa racemosa and Asparagopsis taxiformis showed similar metal bioaccumulation behavior. The health risk assessment revealed that the overall hazard index (HI) of seaweeds consumption to adults was less than 1, while the HI of Sargassum oligocystum, Turbinaria ornate, Sargassum polycystum and Sargassum thunbergii consumption to children was greater than 1, suggesting a moderate or high risk to children. Moreover, the exposure amount and the carcinogenic risk parameter indicated that As and Cr were the limiting factor for seaweeds consumption. Overall, our findings here largely supported our hypothesis that the heavy metal bioaccumulation behavior and health risk was highly variable and complex among different species. We thus suggested that the species-specific health risk of heavy metals in seaweeds should be cautiously evaluated in natural environments.
Collapse
Affiliation(s)
- Ziting Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Zhe Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Qian Wu
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, China
| | - Heqi Gao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Yuxi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Zhixin Shen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Sovan Lek
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; University of Toulouse III - Paul Sabatier, 31062 Toulouse cedex 4, France
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China.
| |
Collapse
|
31
|
Seaweed Phenolics as Natural Antioxidants, Aquafeed Additives, Veterinary Treatments and Cross-Linkers for Microencapsulation. Mar Drugs 2022; 20:md20070445. [PMID: 35877738 PMCID: PMC9319038 DOI: 10.3390/md20070445] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Driven by consumer demand and government policies, synthetic additives in aquafeed require substitution with sustainable and natural alternatives. Seaweeds have been shown to be a sustainable marine source of novel bioactive phenolic compounds that can be used in food, animal and aqua feeds, or microencapsulation applications. For example, phlorotannins are a structurally unique polymeric phenolic group exclusively found in brown seaweed that act through multiple antioxidant mechanisms. Seaweed phenolics show high affinities for binding proteins via covalent and non-covalent bonds and can have specific bioactivities due to their structures and associated physicochemical properties. Their ability to act as protein cross-linkers means they can be used to enhance the rheological and mechanical properties of food-grade delivery systems, such as microencapsulation, which is a new area of investigation illustrating the versatility of seaweed phenolics. Here we review how seaweed phenolics can be used in a range of applications, with reference to their bioactivity and structural properties.
Collapse
|
32
|
Mendes MC, Navalho S, Ferreira A, Paulino C, Figueiredo D, Silva D, Gao F, Gama F, Bombo G, Jacinto R, Aveiro SS, Schulze PSC, Gonçalves AT, Pereira H, Gouveia L, Patarra RF, Abreu MH, Silva JL, Navalho J, Varela JCS, Speranza LG. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022; 11:foods11131871. [PMID: 35804686 PMCID: PMC9265617 DOI: 10.3390/foods11131871] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Algae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation. The current algae species that are consumed and commercialized in Europe were investigated, according to their status under the European Union (EU) Novel Food legislation, along with the market perspectives in terms of the current research and development initiatives, while evaluating the interest and potential in the European market. The regular consumption of more than 150 algae species was identified, of which only 20% are approved under the EU Novel Food legislation, which demonstrates that the current legislation is not broad enough and requires an urgent update. Finally, the potential of the European algae market growth was indicated by the analysis of the trends in research, technological advances, and market initiatives to promote algae commercialization and consumption.
Collapse
Affiliation(s)
- Madalena Caria Mendes
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Alice Ferreira
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy Unit, 1649-038 Lisbon, Portugal;
| | - Cristina Paulino
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Daniel Figueiredo
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Daniel Silva
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Fengzheng Gao
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Florinda Gama
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Rita Jacinto
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Susana S. Aveiro
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Peter S. C. Schulze
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Ana Teresa Gonçalves
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Luisa Gouveia
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy Unit, 1649-038 Lisbon, Portugal;
| | - Rita F. Patarra
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, Faculty of Sciences and Technology, University of the Azores, 500-321 Ponta Delgada, Portugal;
- Expolab—Ciência Viva Science Centre, Avenida da Ciência—Beta, 9560-421 Lagoa, Portugal
| | - Maria Helena Abreu
- ALGAplus, Produção e Comercialização de Algas e Seus Derivados, Lda., 3830-196 Ílhavo, Portugal;
| | - Joana L. Silva
- Allmicroalgae—Natural Products, 2445-413 Pataias, Portugal;
| | - João Navalho
- Necton S.A., Belamandil s/n, 8700-152 Olhão, Portugal;
| | - João C. S. Varela
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Lais Galileu Speranza
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Correspondence:
| |
Collapse
|
33
|
Carne G, Makowski D, Carrillo S, Guérin T, Jitaru P, Reninger JC, Rivière G, Bemrah N. Probabilistic determination of a maximum acceptable level of contaminant to reduce the risk of overexposure for a novel or emerging food: the case of cadmium in edible seaweed in the French population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1439-1452. [PMID: 35724341 DOI: 10.1080/19440049.2022.2087921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
European and French populations are overexposed to cadmium (Cd) through their foods. The risk of increased cadmium exposure for consumers needs to be limited by reduced maximum limits (ML) for novel foodstuffs such as edible seaweed in France. The objective was to derive a low and protective cadmium concentration in edible seaweeds to limit cadmium overexposure in consumers. To do so, we applied a probabilistic approach to the data collected on French seaweed consumers, taking into account other sources of exposure for cadmium. This approach led to the identification of a cadmium concentration which should ensure that the seaweed-consuming population does not exceed the tolerable daily intake (TDI) of cadmium according to a probability of cases, when simultaneously exposed to other cadmium dietary sources. Considering the 5% of the population exceeding TDI, the estimated ML is equal to 0.35 mg Cd kg-1 dry matter of seaweed as an unprocessed food with a 95% confidence interval of [0.18,1.09]. The proposed approach is generic and could be applied to other relevant food/substance pairs when considering the setting of MLs in the regulatory system. It ensures better protection of consumer health.
Collapse
Affiliation(s)
- Géraldine Carne
- Risk Assessment Department, ANSES, Maisons-Alfort Cedex, France
| | - David Makowski
- INRAE AgroParisTech University Paris-Saclay, UMR MIA, Paris, France
| | | | - Thierry Guérin
- Strategy and Programmes Department, ANSES, Maisons-Alfort Cedex, France
| | - Petru Jitaru
- Laboratory for Food Safety, ANSES, Maisons-Alfort Cedex, France
| | | | - Gilles Rivière
- Risk Assessment Department, ANSES, Maisons-Alfort Cedex, France
| | - Nawel Bemrah
- Risk Assessment Department, ANSES, Maisons-Alfort Cedex, France
| |
Collapse
|
34
|
Aasen IM, Sandbakken IS, Toldnes B, Roleda MY, Slizyte R. Enrichment of the protein content of the macroalgae Saccharina latissima and Palmaria palmata. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Shahri E, Sayadi MH, Yousefi E, Savabieasfehani M. Metal Contamination of Oman Sea Seaweed and Its Associated Public Health Risks. Biol Trace Elem Res 2022; 200:2989-2998. [PMID: 34415496 DOI: 10.1007/s12011-021-02865-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Oman Sea region is a major gateway for international and local shipping. Metal pollution of aquatic environment is primarily caused by such shipping and industrial activities. Agricultural runoffs are also of concern. Seaweed contamination with heavy metals in this area is therefore a distinct possibility. We examined seaweed of Oman Sea for heavy metal content and potential risk of its consumption to the public. During winter of 2019, water, sediment, and seaweed were collected along twelve stations on the coast of Oman Sea. Triplicates of each sample were analyzed for metal content by atomic absorption spectroscopy. Biomarkers of metals in seaweed (metallothionein and phytochelatin) were also analyzed. A significant positive correlation exists among levels of Zn, Ni, Pb, Cr, Cu, and Fe in water, sediment, and seaweed (P < 0.05). Cadmium correlations were weak. The highest levels of metallothionein and phytochelatin were found in brown and red seaweed (118.6 µg/g wet weight, 16.4 amol/cell; 111.4 µg/g ww, 12.1 amol/cell), respectively. For nickel and lead, human consumption of red, brown, and green seaweed was associated with "some health hazard," with a target hazard quotient of > 1. We conclude that concerns over heavy metal contamination of some parts of Oman Sea are valid, and we invite policy makers to implement measures for protection of public and environment from metal toxic effects in the region.
Collapse
Affiliation(s)
- Elham Shahri
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Elham Yousefi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | | |
Collapse
|
36
|
Bam W, Swarzenski PW, Maiti K, Vassileva E, Orani AM, Blinova O, McGinnity P, Adhikari PL, Haughton M, Webber M. Scavenging of select radionuclides and trace elements by pelagic Sargassum in the Caribbean Sea. MARINE POLLUTION BULLETIN 2022; 179:113658. [PMID: 35453061 DOI: 10.1016/j.marpolbul.2022.113658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the North Atlantic and the Caribbean Sea have experienced unusual and unprecedented pelagic Sargassum blooms, which may adversely affect coastal ecosystems and productive ocean. Sargassum has the potential to scavenge trace elements and radionuclides from seawater, and when bioaccumulated and thus concentrated, can pose a potential threat to higher trophic organisms, including humans that consume impacted seafood. In this study, trace elements and naturally-occurring U/Th-series radionuclides were measured in Sargassum that were collected in the coastal waters of the Caribbean Sea (Antigua/Barbuda, Belize, and Barbados) to better define baseline concentrations and activities, and to assess the scavenging potential for these trace elements and radionuclides. The mean concentration of trace elements observed in Sargassum collected across these three Caribbean Sea are ranked accordingly to the following descending order: Sr > As>Fe > Mn > Zn > Ni > V > C > Cd > Se > Co > Cr > Pb > Ag > Hg. 210-Po and 210Pb activities in Sargassum were observed to be more elevated than previously reported values.
Collapse
Affiliation(s)
- Wokil Bam
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco; Department Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Peter W Swarzenski
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco.
| | - Kanchan Maiti
- Department Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Emiliya Vassileva
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Anna Maria Orani
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Oxana Blinova
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Paul McGinnity
- International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco
| | - Puspa L Adhikari
- Department of Marine and Earth Sciences, The Water School, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | | | - Mona Webber
- Center for Marine Sciences, The University of the West Indies, Mona, Jamaica
| |
Collapse
|
37
|
Biochemical and Anti-proliferative activities of seven abundant tropical red seaweeds confirm nutraceutical potential of Grateloupia indica. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
38
|
Badmus UO, Taggart MA, Elbourne P, Sterk HP, Boyd KG. Effect of long-term storage and harvest site on the fatty acid profiles, mineral and antioxidant properties of selected edible Scottish seaweeds. Food Chem 2022; 377:131955. [PMID: 34990953 DOI: 10.1016/j.foodchem.2021.131955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
The limited understanding of the effect of pre-and post-harvest techniques still hinders the full exploitation of seaweed. Here, the effect of harvest site, long term storage and species on the elemental composition, fatty acid profile, lipid content, and antioxidant properties were determined in eight intertidal seaweed species common to Scotland, harvested for potential food application and stored for up to 128 weeks. Result showed that the most significant variation was due to species, with no statistical link found for the combined interaction effect of both storage duration and harvest site in most cases, except for the antioxidant parameters and some selected elements, which was limited to some seaweed species. Overall, our result showed that the chemical profiles of the seaweed species studied were remarkably consistent and unaffected by long term storage. Thus, suggesting that seaweeds sampled from Scotland could be a valuable resource for the development of functional foods.
Collapse
Affiliation(s)
- Uthman O Badmus
- Environmental Research Institute, North Highland College UHI, University of the Highlands and Islands, Castle Street, Thurso KW14 7JD, UK; School of Biological, Earth and Environmental Sciences & Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - Mark A Taggart
- Environmental Research Institute, North Highland College UHI, University of the Highlands and Islands, Castle Street, Thurso KW14 7JD, UK
| | - Peter Elbourne
- New Wave Foods Ltd., 1 Averon Way, Alness, Ross-shire IV17 0PF, UK
| | - Henk Pieter Sterk
- Environmental Research Institute, North Highland College UHI, University of the Highlands and Islands, Castle Street, Thurso KW14 7JD, UK
| | - Kenneth G Boyd
- Environmental Research Institute, North Highland College UHI, University of the Highlands and Islands, Castle Street, Thurso KW14 7JD, UK
| |
Collapse
|
39
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
40
|
Ma Q, Zhu YT, Li YD, Zhang ZL, Huang J, Zuo Y. Quantification of heavy metals and health risk assessment in Sichuan pickle. J Food Sci 2022; 87:2229-2244. [PMID: 35446445 DOI: 10.1111/1750-3841.16136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
Abstract
Sichuan pickle is one of popular traditional fermented foods in China. However, the contamination of heavy metals in Sichuan pickle, particularly home-made Sichuan pickle and aged pickle brine, is little known. Therefore, the content of trace (Cr, Cu, and Zn) and toxic elements (As, Pb, and Cd) in Sichuan industrial pickle (SIP), Sichuan home-made pickle (SHP), and aged pickle brine collected from local markets and families in Sichuan province, respectively, was detected by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) and the health risk was assessed by target hazard quotients including target hazard quotient (THQ) and total target hazard quotient (TTHQ). Consequently, the mean concentrations of Cr, Cu, Zn, As, Pb, and Cd were 0.122, 0.540, 2.516, 0.023, 0.015, and 0.106 mg/kg in SIP and 0.071, 0.364, 2.698, 0.014, 0.015, and 0.289 mg/kg in SHP, respectively, lower than the maximum allowable concentrations set by Chinese regulations, except for Cr and Cd in few samples. Principal component analysis of the heavy metal content could obviously distinguish between SIP and SHP. The content of As, Pb, and Cd in leaf pickles was significantly higher than that in pickles fermented with other types of vegetables. A significant enrichment of heavy metals in aged pickle brine over 10 years was observed, but pickle jars had no significant effect on heavy metal content in aged pickle brine. The intake of heavy metals through daily consumption of SIP and SHP was at a safe level, whereas the TTHQ of leaf pickle was 1.006, indicating a potential health risk. In conclusion, this study provided fundamental data for food safety assurance of Sichuan pickle. PRACTICAL APPLICATION: Sichuan pickle is one of popular traditional fermented foods in China. In the present study, we investigated the contamination of heavy metals in Sichuan pickles by detecting the content of Cr, Cu, Zn, As, Cd, and Pb in Sichuan industrial pickle, Sichuan home-made pickle, and aged pickle brine, and estimated the health risk to local residents. This study can provide a reference for the safety risk of Sichuan industrial and home-made pickle in terms of heavy metal contamination, and enhance the food safety in the processing, production, and consumption of Sichuan pickle in local families and pickle industry.
Collapse
Affiliation(s)
- Qian Ma
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yi-Dan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Zhou-Li Zhang
- Nanchong Institute for Food and Drug Control, Nanchong, China
| | - Jing Huang
- Qianhe Condiment and Food Co. Ltd., Meishan, Sichuan, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
41
|
Obluchinskaya ED, Pozharitskaya ON, Zakharov DV, Flisyuk EV, Terninko II, Generalova YE, Smekhova IE, Shikov AN. The Biochemical Composition and Antioxidant Properties of Fucus vesiculosus from the Arctic Region. Mar Drugs 2022; 20:193. [PMID: 35323492 PMCID: PMC8954510 DOI: 10.3390/md20030193] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
Fucus vesiculosus is one of the most prominent brown algae in the shallow waters of the seas of the Arctic region (Barents (BS), White (WS), Norwegian (NS), and Irminger (IS)). The aim of this study was to determine the biochemical composition of F. vesiculosus from the Arctic at different reproductive phases, and to evaluate the antioxidant properties of F. vesiculosus extracts. The amounts of monosaccharides, phlorotannins, flavonoids, and ash and the mineral composition significantly varied in the algae. A strong correlation was established between monosaccharide, phlorotannin, and flavonoid accumulation and water salinity (Pearson’s correlation coefficients r = −0.58, 0.83, and 0.44, respectively; p < 0.05). We noted a negative correlation between the antioxidant activity and the amount of the structural monosaccharides of fucoidan (r = −0.64). A positive correlation of phlorotannins and flavonoids with antioxidant power was confirmed for all samples. The ash accumulation was relatively lower in the sterile phase for the algae from the BS and WS. The correlation between the Metal Pollution Index (MPI) and the reproductive phases was medium with high fluctuation. Meanwhile, the MPI strongly correlated with the salinity and sampling site. The gradient of the MPI values across the sea was in the following ranking order: BS < WS < NS < IS. Taken together, and based on our data on the elemental contents of F. vesiculosus, we believe that this alga does not accumulate toxic doses of elements. Therefore, the Arctic F. vesiculosus could be safely used in food and drug development as a source of active biochemical compounds and as a source of dietary elements to cover the daily nutritional requirements of humans.
Collapse
Affiliation(s)
- Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); (O.N.P.); (D.V.Z.)
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); (O.N.P.); (D.V.Z.)
| | - Denis V. Zakharov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); (O.N.P.); (D.V.Z.)
| | - Elena V. Flisyuk
- Department of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| | - Inna I. Terninko
- Core Shared Research Facilities “Analytical Center”, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (I.I.T.); (Y.E.G.)
| | - Yulia E. Generalova
- Core Shared Research Facilities “Analytical Center”, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (I.I.T.); (Y.E.G.)
| | - Irina E. Smekhova
- Department of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| | - Alexander N. Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); (O.N.P.); (D.V.Z.)
- Department of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| |
Collapse
|
42
|
Lomartire S, Gonçalves AMM. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar Drugs 2022; 20:141. [PMID: 35200670 PMCID: PMC8875101 DOI: 10.3390/md20020141] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as whole food since ancient times and used to treat several diseases, even though the mechanisms of action were unknown. During the last decades, research has demonstrated that those unique compounds express beneficial properties for human health. Each compound has peculiar properties (e.g., antioxidant, antimicrobial, antiviral activities, etc.) that can be exploited to enhance human health. Seaweed's extracted polysaccharides are already involved in the pharmaceutical industry, with the aim of replacing synthetic compounds with components of natural origin. This review aims at a better understanding of the recent uses of algae in drug development, with the scope of replacing synthetic compounds and the multiple biotechnological applications that make up seaweed's potential in industrial companies. Further research is needed to better understand the mechanisms of action of seaweed's compounds and to embrace the use of seaweeds in pharmaceutical companies and other applications, with the final scope being to produce sustainable and healthier products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
43
|
Fernando IPS, Lee W, Ahn G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit Rev Biotechnol 2022; 42:23-45. [PMID: 34016003 DOI: 10.1080/07388551.2021.1922351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Algae are the oldest representatives of the plant world with reserves exceeding hundreds of millions of tons in the world's oceans. Currently, a growing interest is placed toward the use of algae as feedstocks for obtaining numerous natural products. Algae are a rich source of polyphenols that possess intriguing structural diversity. Among the algal polyphenols, phlorotannins, which are unique to brown seaweeds, and have immense value as potent modulators of biochemical processes linked to chronic diseases. In algae, flavonoids remain under-explored compared to other categories of polyphenols. Both phlorotannins and flavonoids are inclusive of compounds indicating a wide structural diversity. The present paper reviews the literature on the ecological significance, biosynthesis, structural diversity, and bioactivity of seaweed phlorotannins and flavonoids. The potential implementation of these chemical entities in functional foods, cosmeceuticals, medicaments, and as templates in drug design are described in detail, and perspectives are provided to tackle what are perceived to be the most momentous challenges related to the utilization of phlorotannins and flavonoids. Moving beyond: industrial biotechnology applications, metabolic engineering, total synthesis, biomimetic synthesis, and chemical derivatization of phlorotannins and flavonoids could broaden the research perspectives contributing to the health and economic up-gradation.
Collapse
Affiliation(s)
| | - WonWoo Lee
- Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
44
|
A vision on the ‘foodture’ role of dietary exposure sciences in the interplay between food safety and nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Sun N, Sun B, Li C, Zhang J, Yang W. Effects of Different Pretreatment Methods and Dietary Factors on the Form and Bioavailability of Iodine in Laminaria japonica. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2021.2024313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nan Sun
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Bolun Sun
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
46
|
Bizzaro G, Vatland AK, Pampanin DM. The One-Health approach in seaweed food production. ENVIRONMENT INTERNATIONAL 2022; 158:106948. [PMID: 34695653 DOI: 10.1016/j.envint.2021.106948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Seaweeds are rich in macronutrients, micronutrients, and bioactive components and have great potential as sustainable resources in terms of both production and consumption of a desirable food. Still, the seaweed aquaculture industry's rapid growth points out challenges that need to be taken into consideration when assessing environmental integrity, animal, and human health. In this review, the seaweed aquaculture's potential impact on the wildlife and human welfare and the environmental integrity has been evaluated using the One Health approach, a principle in which human, animal, and environmental health outcomes are considered as strictly connected. This is the first effort to implement the One Health concept into the seaweed cultivation assessment, and it is meant to give new perspectives for the growth of this industry.
Collapse
Affiliation(s)
- Gianluca Bizzaro
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway; Kvitsøy Seaweed AS, Langøyveien 8, NO-4180 Kvitsøy, Norway.
| | - Ann Kristin Vatland
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway; Kvitsøy Seaweed AS, Langøyveien 8, NO-4180 Kvitsøy, Norway
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway
| |
Collapse
|
47
|
Blikra MJ, Altintzoglou T, Løvdal T, Rognså G, Skipnes D, Skåra T, Sivertsvik M, Noriega Fernández E. Seaweed products for the future: Using current tools to develop a sustainable food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Seaweed Blends as a Valuable Source of Polyunsaturated and Healthy Fats for Nutritional and Food Applications. Mar Drugs 2021; 19:md19120684. [PMID: 34940683 PMCID: PMC8704105 DOI: 10.3390/md19120684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
Seaweeds are considered healthy and sustainable food. Although their consumption is modest in Western countries, the demand for seaweed in food markets is increasing in Europe. Each seaweed species has unique nutritional and functional features. The preparation of blends, obtained by mixing several seaweeds species, allows the obtaining of maximum benefits and ingredients with single characteristics. In this work, five seaweed blends, commercially available and produced under organic conditions in Europe, were characterized. The proximal composition included contents of ash (20.28–28.68% DW), proteins (17.79–26.61% DW), lipids (0.55–1.50% DW), and total carbohydrates (39.47–47.37% DW). Fatty acid profiles were determined by gas chromatography–mass spectrometry (GC–MS), allowing quantification of healthy fatty acids, namely n-3 and n-6 polyunsaturated fatty acids (PUFA), and calculation of lipid quality indices. Each blend showed a characteristic PUFA content in the lipid pool (35.77–49.43% of total fatty acids) and the content in essential and healthy n-3 PUFA is highlighted. The atherogenicity (0.54–0.72) and thrombogenicity (0.23–0.45) indices evidenced a good nutritional value of lipid fractions. As nutritional and environmentally attractive products, the consumption of the studied seaweed blends can contribute to a healthy lifestyle.
Collapse
|
49
|
Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Pulsed Electric Fields-Assisted Extraction for Cosmetic Applications. Mar Drugs 2021; 19:md19120662. [PMID: 34940661 PMCID: PMC8704373 DOI: 10.3390/md19120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
A growing concern for overall health is driving a global market of natural ingredients not only in the food industry but also in the cosmetic field. In this study, a screening on potential cosmetic applications of aqueous extracts from three Icelandic seaweeds produced by pulsed electric fields (PEF) was performed. Produced extracts by PEF from Ulva lactuca, Alaria esculenta and Palmaria palmata were compared with the traditional hot water extraction in terms of polyphenol, flavonoid and carbohydrate content. Moreover, antioxidant properties and enzymatic inhibitory activities were evaluated by using in vitro assays. PEF exhibited similar results to the traditional method, showing several advantages such as its non-thermal nature and shorter extraction time. Amongst the three Icelandic species, Alaria esculenta showed the highest content of phenolic (mean value 8869.7 µg GAE/g dw) and flavonoid (mean value 12,098.7 µg QE/g dw) compounds, also exhibiting the highest antioxidant capacities. Moreover, Alaria esculenta extracts exhibited excellent anti-enzymatic activities (76.9, 72.8, 93.0 and 100% for collagenase, elastase, tyrosinase and hyaluronidase, respectively) for their use in skin whitening and anti-aging products. Thus, our preliminary study suggests that Icelandic Alaria esculenta-based extracts produced by PEF could be used as potential ingredients for natural cosmetic and cosmeceutical formulations.
Collapse
|
50
|
Tong T, Liu X, Yu C. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity. Mar Drugs 2021; 19:625. [PMID: 34822496 PMCID: PMC8622035 DOI: 10.3390/md19110625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
This review aims to provide an informative summary of studies on extraction and nanoencapsulation of phlorotannins to improve their bioavailability and bioactivity. The origin, structure, and different types of phlorotannins were briefly discussed, and the extraction/purification/characterization methods for phlorotannins were reviewed, with a focus on techniques to improve the bioactivities and bioavailability of phlorotannins via nano-sized delivery systems. Phlorotannins are promising natural polyphenol compounds that have displayed high bioactivities in several areas: anticancer, anti-inflammation, anti-HIV, antidiabetic, and antioxidant. This review aims to provide a useful reference for researchers working on developing better utilization strategies for phlorotannins as pharmaceuticals, therapeuticals, and functional food supplements.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Xiaoyang Liu
- National Engineering Research Center for Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|