1
|
Moran-Garrido M, Taha AY, Gaudioso Á, Ledesma MD, Barbas C. Development of an Oxylipin Library Using Liquid Chromatography-Ion Mobility Quadrupole Time-of-Flight: Application to Mouse Brain Tissue. Anal Chem 2025; 97:3643-3650. [PMID: 39924946 DOI: 10.1021/acs.analchem.4c06265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Oxylipins are bioactive lipid mediators derived from polyunsaturated fatty acids (PUFAs) that play crucial roles in physiological and pathological processes. The analysis and identification of oxylipins are challenging due to the numerous isomeric forms. Ion mobility (IM), which separates ions based on their spatial configuration, combined with liquid chromatography (LC) and mass spectrometry (MS), has been proven effective for separating isomeric compounds. In this study, we developed an extensive oxylipin library containing information on retention time (RT), m/z, and CCS values for 74 oxylipin standards using LC-IM-QTOF-MS in positive and negative ionization modes. The oxylipins in the library were grouped into 15 isomer categories to evaluate the efficacy of IM in isomeric separation. Various adducts were investigated, including protonated, deprotonated, and sodiated forms. The ΔCCS% for more than 1000 isomeric pairs was calculated, revealing that 30% of these exhibited a ΔCCS% greater than 2%. Positive ionization mode demonstrated superior separation capabilities, with 274 isomer pairs achieving baseline separation (ΔCCS% > 4%). Sodium adducts significantly improved isomer separation. With the inclusion of LC separation, only nine oxylipins coeluted, forming six different isomeric pairs. CCS values for the adducts [M+Na]+ and [M+2Na-H]+ separated three of these isomeric pairs. The CCS values were compared to experimental libraries, confirming the high reproducibility of CCS measurements, with average errors below 2%. Applying this library to mouse brain samples, 19 different oxylipins were identified by matching RT, m/z, and CCS values. Coeluting isomers, 9- and 13-HODE, 8- and 12-HETE, and 15-oxo-ETE and 14(15)-EpETrE, were successfully separated and identified using drift time separation.
Collapse
Affiliation(s)
- Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616 Davis, California United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California 95616, United States
- Center for Neuroscience, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ángel Gaudioso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
2
|
Shahzad B, Holt RR, Gupta S, Zaman M, Shahzad M, Lowe NM, Hall AG. Effects of Zinc-Biofortified Wheat Intake on Plasma Markers of Fatty Acid Metabolism and Oxidative Stress Among Adolescents. Nutrients 2024; 16:4265. [PMID: 39770887 PMCID: PMC11677776 DOI: 10.3390/nu16244265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVE Zinc deficiency is common worldwide and has been linked to reduced growth and immune function, increased risk of and slower recovery from infections, and increased risk of non-communicable diseases. To address the issue, zinc biofortification of wheat has been proposed as a sustainable approach to increase dietary zinc intake in countries like Pakistan, where zinc deficiency rates are high and wheat is the primary staple crop. Since plasma zinc concentration (PZC) does not reliably respond to small changes in zinc intake, biomarkers sensitive to small changes in zinc intake achievable though biofortification are needed. Activity indices for zinc-dependent metabolic steps of desaturation and elongation of omega-6 fatty acids (FAs) have been proposed as sensitive zinc biomarkers. Oxylipin metabolites of polyunsaturated FAs may also respond to changes in zinc intake and further mediate metabolic response to oxidative stress. The objective of the current study was to assess the effects of consuming zinc-biofortified wheat flour on plasma markers of fatty acid (FA) metabolism in females aged 10-16 years. METHODS A nested secondary analysis was conducted in samples from a double-blind, cluster-randomized controlled trial conducted in rural Pakistan, whereparticipants (n = 517) consumed either zinc-biofortified wheat flour or control flour for 25 weeks. Total plasma FAs and oxylipins were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS). Activity indices were estimated from the ratios of product to precursor FAs. RESULTS Except for docosahexaenoic acid (DHA, p < 0.05), no significant intervention effect was observed on plasma FAs and FA activity index endpoints. Zinc-biofortified wheat intake reduced pro-inflammatory oxylipins and biomarkers of oxidative stress, 5-HETE (p < 0.05), 9-HETE (p < 0.05), 11-HETE (p < 0.05), and 15-HETE (p < 0.05), compared with the control. However, after adjustment for multiple comparisons, none of the intervention effects remained significant. CONCLUSIONS Further study of the responsiveness and specificity of plasma oxylipins to changes in zinc intake is warranted.
Collapse
Affiliation(s)
- Babar Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; (B.S.); (M.S.)
| | - Roberta R. Holt
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| | - Swarnim Gupta
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, UK; (S.G.); (N.M.L.)
| | - Mukhtiar Zaman
- Department of Pulmonology, Rehman Medical Institute, Peshawar 25000, Pakistan;
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; (B.S.); (M.S.)
| | - Nicola M. Lowe
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, UK; (S.G.); (N.M.L.)
| | - Andrew G. Hall
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
3
|
Ertunc ME, Konduri S, Ma Z, Pinto AFM, Donaldson CJ, Momper J, Siegel D, Saghatelian A. Acute inflammation upregulates FAHFAs in adipose tissue and in co-cultured adipocytes. J Biol Chem 2024:107972. [PMID: 39510180 DOI: 10.1016/j.jbc.2024.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Since the discovery of fatty acid hydroxy fatty acids (FAHFAs), significant progress has been made in understanding their regulation, biochemistry, and physiological activities. Here, we contribute to this understanding by revealing that inflammation induces the production of fatty acid hydroxy stearic acids (FAHSAs) and fatty acid hydroxyoctadecadienoic acids (FAHODEs) in white adipose tissue depots and in adipocytes co-cultured with macrophages. In LPS-induced co-culture systems, we confirm that adipose triglyceride lipase (ATGL) is required for inflammation-induced FAHFA generation and demonstrate that inflammation is necessary for producing hydroxy fatty acids. Chemically synthesized FAHODEs show anti-inflammatory activities in vivo, but only at supraphysiological concentrations. While endogenous FAHFAs are unlikely to be anti-inflammatory due to their low concentrations, conversion of pro-inflammatory hydroxy fatty acids into FAHFAs may modulate inflammation. We test this concept by showing the pro-inflammatory lipids-hydroxyeicosatetraenoic acids (HETEs) and leukotriene B4 (LTB4)-are converted into FAHFAs in cell culture, and that two LTB4-derived FAHFAs have are modestly anti- not pro-inflammatory. Further research is needed to establish whether these increased FAFHA levels have a role in inflammation or are simply markers of inflammation, but the discovery of significant increases in FAHFA upon acute inflammation advances our knowledge of FAHFAs.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA.
| | - Srihari Konduri
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Zhichen Ma
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Cynthia J Donaldson
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Jeremiah Momper
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Dionicio Siegel
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA.
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
4
|
Bortel P, Hagn G, Skos L, Bileck A, Paulitschke V, Paulitschke P, Gleiter L, Mohr T, Gerner C, Meier-Menches SM. Memory effects of prior subculture may impact the quality of multiomic perturbation profiles. Proc Natl Acad Sci U S A 2024; 121:e2313851121. [PMID: 38976734 PMCID: PMC11260104 DOI: 10.1073/pnas.2313851121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Mass spectrometry-based omics technologies are increasingly used in perturbation studies to map drug effects to biological pathways by identifying significant molecular events. Significance is influenced by fold change and variation of each molecular parameter, but also by multiple testing corrections. While the fold change is largely determined by the biological system, the variation is determined by experimental workflows. Here, it is shown that memory effects of prior subculture can influence the variation of perturbation profiles using the two colon carcinoma cell lines SW480 and HCT116. These memory effects are largely driven by differences in growth states that persist into the perturbation experiment. In SW480 cells, memory effects combined with moderate treatment effects amplify the variation in multiple omics levels, including eicosadomics, proteomics, and phosphoproteomics. With stronger treatment effects, the memory effect was less pronounced, as demonstrated in HCT116 cells. Subculture homogeneity was controlled by real-time monitoring of cell growth. Controlled homogeneous subculture resulted in a perturbation network of 321 causal conjectures based on combined proteomic and phosphoproteomic data, compared to only 58 causal conjectures without controlling subculture homogeneity in SW480 cells. Some cellular responses and regulatory events were identified that extend the mode of action of arsenic trioxide (ATO) only when accounting for these memory effects. Controlled prior subculture led to the finding of a synergistic combination treatment of ATO with the thioredoxin reductase 1 inhibitor auranofin, which may prove useful in the management of NRF2-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Lukas Skos
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
| | - Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| | - Philipp Paulitschke
- PHIO scientific GmbH, Munich81371, Germany
- Faculty of Physics, Ludwig-Maximilians University of Munich, Munich80539, Germany
| | | | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Center of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna1090, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
| | - Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
| |
Collapse
|
5
|
Mazi TA, Shibata NM, Sarode GV, Medici V. Hepatic oxylipin profiles in mouse models of Wilson disease: New insights into early hepatic manifestations. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159446. [PMID: 38072238 PMCID: PMC11224028 DOI: 10.1016/j.bbalip.2023.159446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hepatic inflammation is commonly identified in Wilson disease (WD), a genetic disease of hepatic and brain copper accumulation. Copper accumulation is associated with increased oxidative stress and reactive oxygen species generation which may result in non-enzymatic oxidation of membrane-bound polyunsaturated fatty acids (PUFA). PUFA can be oxidized enzymatically via lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450 monooxygenases (CYP). Products of PUFA oxidation are collectively known as oxylipins (OXL) and are bioactive lipids that modulate hepatic inflammation. We examined hepatic OXL profiles at early stages of WD in two mouse models, the toxic milk mouse from The Jackson Laboratory (tx-j) and the Atp7b knockout on a C57Bl/6 background (Atp7b-/-B6). Targeted lipidomic analysis performed by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry showed that in both tx-j and Atp7b-/-B6 mice, hepatic OXL profiles were altered with higher thromboxane and prostaglandins levels. The levels of oxidative stress marker, 9-HETE were increased more markedly in tx-j mice. However, both genotypes showed upregulated transcript levels of many genes related to oxidative stress and inflammation. Both genotypes showed higher prostaglandins, thromboxin along with higher PUFA-derived alcohols, diols, and ketones with altered epoxides; the expression of Alox5 was upregulated and many CYP-related genes were dysregulated. Pathway analyses show dysregulation in arachidonic acid and linoleic acid metabolism characterizes mice with WD. Our findings indicate alterations in hepatic PUFA metabolism in early-stage WD and suggest the upregulation of both, non-enzymatic ROS-dependent and enzymatic PUFA oxidation, which could have implications for hepatic manifestations in WD and represent potential targets for future therapies.
Collapse
Affiliation(s)
- Tagreed A Mazi
- Department of Community Health Sciences-Clinical Nutrition, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Gaurav V Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA.
| |
Collapse
|
6
|
Padrón‐Monedero A. A pathological convergence theory for non-communicable diseases. Aging Med (Milton) 2023; 6:328-337. [PMID: 38239708 PMCID: PMC10792334 DOI: 10.1002/agm2.12273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024] Open
Abstract
The current paradigm considers the study of non-communicable diseases (NCDs), which are the main causes of mortality, as individual disorders. Nevertheless, this conception is being solidly challenged by numerous remarkable studies. The clear fact that the mortality, by virtually all NCDs, tends to cluster at old ages (with the exception of congenital malformations and certain types of cancer, among a few others); makes us intuitive to assume that the common convergence mechanism that exponentially increases mortality by almost all NCDs in older ages is cell aging. Moreover, when we study NCDs, we are not analyzing which disorders cause the mortality of the populations, rather that which disorders kill us before others do, because the aging of the individuals causes inevitably their death by one cause or another. This is not a defeatist perspective, but a challenging and efficient one. These intuitive assumptions have been supported by studies from the pathophysiologic, epidemiologic, and genetic fields, leading to the affirmation that, as NCDs share genetic and pathophysiological mechanisms (derived from mostly the same risk factors), they should no longer be considered independently. Those studies should make us reconsider our current conceptions of studying NCDs as individual disorders, and to hypothesize about a paradigm that would consider most NCDs (cancer, neurological pathologies, cardiovascular diseases, type II diabetes mellitus, chronic respiratory diseases, osteoarthritis, and osteoporosis, among others) different manifestations of the same process: the cell aging.
Collapse
|
7
|
de Marco Castro E, Kampschulte N, Murphy CH, Schebb NH, Roche HM. Oxylipin status, before and after LC n-3 PUFA supplementation, has little relationship with skeletal muscle biology in older adults at risk of sarcopenia. Prostaglandins Leukot Essent Fatty Acids 2023; 189:102531. [PMID: 36645979 DOI: 10.1016/j.plefa.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Oxylipins form endogenously via the oxygenation of long-chain polyunsaturated fatty acids (LC PUFA). Several oxylipins are highly bioactive molecules and are believed to be key mediators of LC PUFA metabolism in the body. However, little is known in relation to whether oxylipins mediate alterations in skeletal muscle mass and function. The objective of this study was to determine if a relationship exists between the oxylipin profile and skeletal muscle biology in healthy older adults at risk of sarcopenia and determine if this changes in response to LC n-3 PUFA supplementation. MATERIALS AND METHODS This exploratory study investigated the baseline correlations between LC n-3, n-6 and n-9 PUFA-derived oxylipins and markers of muscle biology. For this, the concentration of 79 free (i.e., non-esterified) oxylipins was quantified in human plasma by liquid chromatography-mass spectrometry (LC-MS) and retrospectively correlated to phenotypic outcomes obtained pre-intervention from the NUTRIMAL study (n = 49). After examining the baseline relationship, the potential effect of supplementation (LC n-3 PUFA or an isoenergetic control made of high-oleic sunflower and corn oil) was evaluated by correlating the change in oxylipins concentration and the change in markers of skeletal muscle biology. The relationship between oxylipins pre- and post-intervention and their parent PUFA were also examined. RESULTS At baseline, the hydroxy product of mead acid (n-9 PUFA), 5-HETrE, was negatively correlated to the phenotypic parameters appendicular lean mass index (ALMI) (p = 0.003, r=-0.41), skeletal muscle mass index (SMMI) (p = 0.001, r=-0.46), handgrip strength (HGS) (p<0.001, r = 0.48) and isometric knee extension (p<0.001, r=-0.48). Likewise, LC n-6 PUFA hydroxy‑PUFA were negatively correlated to HGS (i.e., 12-HETrE, p = 0.002, r=-0.42, and 5- and 11-HETE, p = 0.006, r=-0.47 and p<0.001, r=-0.50 respectively), single leg stand time (i.e., 12-HETrE, p = 0.006, r=-0.39 and 16-HETE, p = 0.002, r=-0.43), and five-time-sit-to-stand test (FTST) performance (16-HETE, p = 0.006, r = 0.39), and positively correlated to gait speed (i.e., 12-HETrE, p = 0.007, r = 0.38 and 16-HETE, p = 0.006, r = 0.39). LC n-3 PUFA supplementation increased eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived oxylipins and reduced n-6 PUFA derived oxylipins. Parameters of skeletal muscle mass and strength were not significantly altered in either LC n-3 PUFA or placebo groups. Changes in plasma oxylipins concentrations were closely related to changes in their parent PUFA, assessed in the erythrocyte membrane, but were not associated with any changes in skeletal muscle parameters. DISCUSSION AND CONCLUSION At baseline, the status n-9 (5-HETrE) and n-6 PUFA derivates [12-HETrE, and 5-, 11- and 16-HETE], but not n-3 PUFA derived oxylipins, were associated with poor skeletal muscle health parameters (i.e., mass and strength). However, these correlations were no longer present when correlating relative changes from pre to post timepoints. An independent cohort validation is needed to explore baseline correlations further. Further research is warranted to assess other biological mechanisms by which LC n-3 PUFA might affect muscle biology.
Collapse
Affiliation(s)
- E de Marco Castro
- UCD Conway Institute & UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - N Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - C H Murphy
- Agrifood Business and Spatial Analysis, Teagasc Food Research Centre, Ashtown, Dublin, 15, Ireland
| | - N H Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - H M Roche
- UCD Conway Institute & UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Belfast, UK.
| |
Collapse
|
8
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
9
|
Hardaway AL, Goudarzi M, Berk M, Chung YM, Zhang R, Li J, Klein E, Sharifi N. 5-Hydroxyeicosatetraenoic Acid Controls Androgen Reduction in Diverse Types of Human Epithelial Cells. Endocrinology 2022; 164:bqac191. [PMID: 36412122 PMCID: PMC9923800 DOI: 10.1210/endocr/bqac191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Androgens regulate broad physiologic and pathologic processes, including external genitalia development, prostate cancer progression, and anti-inflammatory effects in both cancer and asthma. In prostate cancer, several lines of evidence have implicated dietary and endogenous fatty acids in cell invasion, angiogenesis, and treatment resistance. However, the role of fatty acids in steroidogenesis and the mechanisms by which alterations in this pathway occur are not well understood. Here, we show that, of a panel of fatty acids tested, arachidonic acid and its specific metabolite 5-hydroxyeicosatetraenoic acid (5-HETE) regulate androgen metabolism. Arachidonic acid is metabolized to 5-HETE and reduces androgens by inducing aldo-keto reductase (AKR) family members AKR1C2 and AKR1C3 expression in human prostate, breast, and lung epithelial cells. Finally, we provide evidence that these effects require the expression of the antioxidant response sensor, nuclear factor erythroid 2-related factor 2 (Nrf2). Our findings identify an interconnection between conventional fatty acid metabolism and steroid metabolism that has broad relevance to androgen physiology and inflammatory regulation.
Collapse
Affiliation(s)
- Aimalie L Hardaway
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maryam Goudarzi
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael Berk
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yoon-Mi Chung
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jianneng Li
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eric Klein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Iguidbashian KG, Robison J, Khailova L, Jaggers J, Ing R, Lawson S, Osorio Lujan SM, Klawitter J, Davidson JA. Changes in infant porcine pulmonary tissue oxylipins induced by cardiopulmonary bypass. Pediatr Res 2022; 92:1274-1281. [PMID: 35681098 PMCID: PMC11962999 DOI: 10.1038/s41390-022-02125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Oxylipins are metabolites derived from fatty acids such as arachidonic acid (AA) and are key mediators in inflammation, host defense, and tissue injury. Serum oxylipins increase in adults after cardiopulmonary bypass (CPB) but tissue-level changes are poorly defined. The objective of this study was to characterize pulmonary tissue oxylipins in an infant porcine model of CPB with deep hypothermic circulatory arrest (DHCA). METHODS Infant pigs underwent CPB with DHCA. Controls received anesthesia only. Right upper and lower lobes of the lung underwent oxylipin analysis via liquid chromatography-tandem mass spectrometry. One-way ANOVA was utilized to assess differences in oxylipin concentrations across groups, followed by pairwise comparisons. RESULTS AA and multiple AA metabolites via cytochrome P450 (CYP450), lipoxygenase (LOX), and cyclooxygenase (COX) pathways were significantly increased in the upper and lower lobe of pigs exposed to CPB/DHCA as compared to controls. Multiple prostaglandin metabolites produced via COX were also significantly elevated in the lower lobes of control animals. CONCLUSIONS CPB/DHCA induces a significant increase in pulmonary tissue AA, with subsequent metabolism via COX, LOX, and CYP450 pathways. Interestingly, prostaglandins were also elevated in the lower lobes of the controls, suggesting a mechanism separate from CPB/DHCA. Future oxylipin studies are needed to better understand CPB-induced acute lung injury. IMPACT CPB/DHCA and, to a lesser extent, lung region influence pulmonary tissue-level AA metabolite production. Inflammatory mediator AA metabolites have been noted in previous studies to increase following CPB; however, this is the first study to look at pulmonary tissue-level differences following CPB/DHCA. Increases in many AA metabolites, including LOX- and CYP450-derived products, were seen in both upper and lower lobe of piglets following CPB/DHCA. COX-derived prostaglandin metabolites were increased not only in CPB upper and lower lobe but also in mechanically ventilated control lower lobe, suggesting an additional, separate mechanism from CPB/DCHA.
Collapse
Affiliation(s)
- Kelsey G Iguidbashian
- Department of Pediatrics, University of Colorado/Children's Hospital of Colorado, Aurora, CO, USA
| | - Justin Robison
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Ludmila Khailova
- Department of Pediatrics, University of Colorado/Children's Hospital of Colorado, Aurora, CO, USA
| | - James Jaggers
- Department of Surgery, University of Colorado, Aurora, CO, USA
| | - Richard Ing
- Department of Anesthesiology, University of Colorado, Aurora, CO, USA
| | - Scott Lawson
- Heart Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Suzanne M Osorio Lujan
- Department of Pediatrics, University of Colorado/Children's Hospital of Colorado, Aurora, CO, USA
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado, Aurora, CO, USA
| | - Jesse A Davidson
- Department of Pediatrics, University of Colorado/Children's Hospital of Colorado, Aurora, CO, USA.
| |
Collapse
|
11
|
A New Biomarker in The Distinction Between Stable Coronary Artery Disease and Acute Coronary Syndrome:Thiols. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.981853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Backraund; Thiols are important elements for oxidation reactions and under oxidative stress. The aim of this study was to determine thiole levels, an antioxidative marker in CAD patients with stable and acute coronary syndrome.
Methods; 210 of the patients included in the study were diagnosed with acute coronary syndrome (ACS), 205 consisted of patients with stable angina pectoris (SAP). Thiol groups levels and thiol/disulphide homeostasis was measured by spectrophotometrically.
Results: Native thiol and total thiol levels, disulfide/natural thiol and disulfide/total thiol ratios were decreased in the ACS groups compared to the SAP groups
Conclusions: Thiol levels and thiol / disulfide ratios can be used as markers to evaluate acute coronary syndrome.
Collapse
|
12
|
Alkayed NJ, Cao Z, Qian ZY, Nagarajan S, Liu X, Nelson JW, Xie F, Li B, Fan W, Liu L, Grafe MR, Davis CM, Xiao X, Barnes AP, Kaul S. Control of Coronary Vascular Resistance by Eicosanoids via a Novel GPCR. Am J Physiol Cell Physiol 2022; 322:C1011-C1021. [PMID: 35385329 PMCID: PMC9255704 DOI: 10.1152/ajpcell.00454.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid metabolites epoxyeicosatrienoates (EETs) and hydroxyeicosatetraenoates (HETEs) are important regulators of myocardial blood flow and coronary vascular resistance (CVR), but their mechanisms of action are not fully understood. We applied a chemoproteomics strategy using a clickable photoaffinity probe to identify G protein coupled receptor 39 (GPR39) as a microvascular smooth muscle cell (mVSMC) receptor selective for two endogenous eicosanoids, 15-HETE and 14,15-EET, which act on the receptor to oppose each other's activity. The former increases mVSMC intracellular calcium via GPR39 and augments coronary microvascular resistance, and the latter inhibits these actions. Furthermore, we find that the efficacy of both ligands is potentiated by zinc acting as an allosteric modulator. Measurements of coronary perfusion pressure (CPP) in GPR39-null hearts using the Langendorff preparation indicate the receptor senses these eicosanoids to regulate microvascular tone. These results implicate GPR39 as an eicosanoid receptor and key regulator of myocardial tissue perfusion. Our findings will have a major impact on understanding the roles of eicosanoids in cardiovascular physiology and disease and provide an opportunity for the development of novel GPR39-targeting therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States.,The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Zhiping Cao
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States.,The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Zu Yuan Qian
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States.,The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Shanthi Nagarajan
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States.,Medicinal Chemistry Core, Oregon Health & Science University, Portland, Oregon, United States
| | - Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Jonathan W Nelson
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Fuchun Xie
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, United States
| | - Bingbing Li
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, United States
| | - Wei Fan
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States.,The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Lijuan Liu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States.,The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Marjorie R Grafe
- DDepartment of Pathology, Oregon Health & Science University, Portland, Oregon, United States
| | - Catherine M Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States.,The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Xiangshu Xiao
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, United States.,The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Anthony P Barnes
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
13
|
Putta P, Smith AH, Chaudhuri P, Guardia-Wolff R, Rosenbaum MA, Graham LM. Activation of the cytosolic calcium-independent phospholipase A 2 β isoform contributes to TRPC6 externalization via release of arachidonic acid. J Biol Chem 2021; 297:101180. [PMID: 34509476 PMCID: PMC8498464 DOI: 10.1016/j.jbc.2021.101180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 10/25/2022] Open
Abstract
During vascular interventions, oxidized low-density lipoprotein and lysophosphatidylcholine (lysoPC) accumulate at the site of arterial injury, inhibiting endothelial cell (EC) migration and arterial healing. LysoPC activates canonical transient receptor potential 6 (TRPC6) channels, leading to a prolonged increase in intracellular calcium ion concentration that inhibits EC migration. However, an initial increase in intracellular calcium ion concentration is required to activate TRPC6, and this mechanism remains elusive. We hypothesized that lysoPC activates the lipid-cleaving enzyme phospholipase A2 (PLA2), which releases arachidonic acid (AA) from the cellular membrane to open arachidonate-regulated calcium channels, allowing calcium influx that promotes externalization and activation of TRPC6 channels. The focus of this study was to identify the roles of calcium-dependent and/or calcium-independent PLA2 in lysoPC-induced TRPC6 externalization. We show that lysoPC induced PLA2 enzymatic activity and caused AA release in bovine aortic ECs. To identify the specific subgroup and the isoform(s) of PLA2 involved in lysoPC-induced TRPC6 activation, transient knockdown studies were performed in the human endothelial cell line EA.hy926 using siRNA to inhibit the expression of genes encoding cPLA2α, cPLA2γ, iPLA2β, or iPLA2γ. Downregulation of the β isoform of iPLA2 blocked lysoPC-induced release of AA from EC membranes and TRPC6 externalization, as well as preserved EC migration in the presence of lysoPC. We propose that blocking TRPC6 activation and promoting endothelial healing could improve the outcomes for patients undergoing cardiovascular interventions.
Collapse
Affiliation(s)
- Priya Putta
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.
| | - Andrew H Smith
- Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pinaki Chaudhuri
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rocio Guardia-Wolff
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Rosenbaum
- Surgical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Linda M Graham
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Kpewou DE, Mensah FO, Appiah CA, Alidu HW, Badii VS. Serum vitamin E deficiency among people living with HIV and undergoing antiretroviral therapy at Ho Teaching Hospital, Ghana. Heliyon 2021; 7:e07339. [PMID: 34222691 PMCID: PMC8243377 DOI: 10.1016/j.heliyon.2021.e07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Vitamin E is a potent antioxidant that helps to counteract oxidative stress in the body. Oxidative stress is known to greatly affect people living with HIV (PLWH) through the stimulation of HIV replication and apoptosis of CD4+ T cells. There is however, a paucity of scientific data on the serum levels of vitamin E among PLWH in Ghana, and hence, there is a need to assess its level because of the pivotal role it plays in cell longevity determination and the immune system enhancement of such persons. This study aims to assess the serum levels of vitamin E among PLWH undergoing highly active antiretroviral therapy at Ho Teaching Hospital, Ghana. In a cross-sectional study, serum vitamin E levels of 103 randomly selected PLWH aged 24-88 years who attended an antiretroviral therapy clinic at the Ho Teaching Hospital, Ghana, were measured by following standard protocols. A 24-hour dietary recall and food frequency questionnaire were employed to assess dietary intake. The results show that a high level of serum vitamin E deficiency (82.5%) was observed among the participants. Majority (91.3%) of the participants had normal serum zinc status. Participants' serum vitamin E levels did not show significant correlation with their dietary intakes (correlation coefficient (ρ) = -0.094, p-value = 0.35). The prevalence of vitamin E deficiency among underweight, normal weight, overweight, and obese participants was 91.7%, 75.4%, 86.5%, and 91.7% respectively with no significant difference among these groups. There was no significant correlation between serum vitamin E levels and HIV infection duration (ρ = 0.010, p-value = 0.405) and HAART duration (ρ = 0.001, p-value = 0.313). The low serum vitamin E levels found in this study suggests that the participants could potentially be at an increased risk of developing oxidative stress and its effects.
Collapse
Affiliation(s)
- Daniel Edem Kpewou
- Department of Nutritional Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Faustina O. Mensah
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Collins A. Appiah
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Huseini Wiisibie Alidu
- Department of Medical Laboratory Science, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Vitus Sambo Badii
- Department of Pharmacology, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
15
|
Le DE, García-Jaramillo M, Bobe G, Alcazar Magana A, Vaswani A, Minnier J, Jump DB, Rinkevich D, Alkayed NJ, Maier CS, Kaul S. Plasma Oxylipins: A Potential Risk Assessment Tool in Atherosclerotic Coronary Artery Disease. Front Cardiovasc Med 2021; 8:645786. [PMID: 33969011 PMCID: PMC8097092 DOI: 10.3389/fcvm.2021.645786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Background: While oxylipins have been linked to coronary artery disease (CAD), little is known about their diagnostic and prognostic potential. Objective: We tested whether plasma concentration of specific oxylipins may discriminate among number of diseased coronary arteries and predict median 5-year outcomes in symptomatic adults. Methods: Using a combination of high-performance liquid chromatography (HPLC) and quantitative tandem mass spectrometry, we conducted a targeted analysis of 39 oxylipins in plasma samples of 23 asymptomatic adults with low CAD risk and 74 symptomatic adults (≥70% stenosis), aged 38–87 from the Greater Portland, Oregon area. Concentrations of 22 oxylipins were above the lower limit of quantification in >98% of adults and were compared, individually and in groups based on precursors and biosynthetic pathways, in symptomatic adults to number of diseased coronary arteries [(1) n = 31; (2) n = 23; (3) n = 20], and outcomes during a median 5-year follow-up (no surgery: n = 7; coronary stent placement: n = 24; coronary artery bypass graft surgery: n = 26; death: n = 7). Results: Plasma levels of six quantified oxylipins decreased with the number of diseased arteries; a panel of five oxylipins diagnosed three diseased arteries with 100% sensitivity and 70% specificity. Concentrations of five oxylipins were lower and one oxylipin was higher with survival; a panel of two oxylipins predicted survival during follow-up with 86% sensitivity and 91% specificity. Conclusions: Quantification of plasma oxylipins may assist in CAD diagnosis and prognosis in combination with standard risk assessment tools.
Collapse
Affiliation(s)
- D Elizabeth Le
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| | - Manuel García-Jaramillo
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States.,Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Helfgott Research Institute, National University of Natural Medicine, Portland, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Armando Alcazar Magana
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Ashish Vaswani
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Department of Biostatistics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States.,Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Diana Rinkevich
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| | - Nabil J Alkayed
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Claudia S Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
16
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
17
|
Seyedsadjadi N, Grant R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants (Basel) 2020; 10:E15. [PMID: 33375428 PMCID: PMC7824370 DOI: 10.3390/antiox10010015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The significant increase in worldwide morbidity and mortality from non-communicable diseases (NCDs) indicates that the efficacy of existing strategies addressing this crisis may need improvement. Early identification of the metabolic irregularities associated with the disease process may be a key to developing early intervention strategies. Unhealthy lifestyle behaviours are well established drivers of the development of several NCDs, but the impact of such behaviours on health can vary considerably between individuals. How can it be determined if an individual's unique set of lifestyle behaviours is producing disease? Accumulating evidence suggests that lifestyle-associated activation of oxidative and inflammatory processes is primary driver of the cell and tissue damage which underpins the development of NCDs. However, the benefit of monitoring subclinical inflammation and oxidative activity has not yet been established. After reviewing relevant studies in this context, we suggest that quantification of oxidative stress and inflammatory biomarkers during the disease-free prodromal stage of NCD development may have clinical relevance as a timely indicator of the presence of subclinical metabolic changes, in the individual, portending the development of disease. Monitoring markers of oxidative and inflammatory activity may therefore enable earlier and more efficient strategies to both prevent NCD development and/or monitor the effectiveness of treatment.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW 2076, Australia
| |
Collapse
|
18
|
Suppression of inflammatory arthritis in human serum paraoxonase 1 transgenic mice. Sci Rep 2020; 10:16848. [PMID: 33033318 PMCID: PMC7546628 DOI: 10.1038/s41598-020-74016-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Paraoxonase 1(PON1) is an HDL-associated protein, which metabolizes inflammatory, oxidized lipids associated with atherosclerotic plaque development. Because oxidized lipid mediators have also been implicated in the pathogenesis of rheumatoid arthritis (RA), we evaluated the role of PON1 in murine inflammatory arthritis. K/BxN serum transfer (STIA) or collagen antibody transfer (CAIA) was used for arthritis induction in B6 mice homozygous for the PON1 human transgene [PON1Tg], PON1 knock-out mice [PON1KO], and wild type littermate control mice [WT]. Experiments were also performed in K/BxN mice with chronic arthritis, and in RA patients and healthy controls. Arthritis activity in K/BxN mice was associated with a marked dyslipidemia, lower PON1 activity and higher bioactive lipid mediators (BLM), as well as a dysregulated hepatic lipid gene expression profile. Higher serum PON1 activity correlated with lower BLM and lower arthritis activity in both K/BxN mice and RA patients. Overexpression of the human PON1 transgene was associated with reduced inflammatory arthritis, which correlated strongly with higher circulating PON1 activity, upregulation of the hepatic glutathione pathway, and reduction of circulating BLM. These results implicate PON1 as a potential novel therapeutic target for joint disease in RA with potential for vascular benefit, which warrants further investigation.
Collapse
|
19
|
Azbukina NV, Lopachev AV, Chistyakov DV, Goriainov SV, Astakhova AA, Poleshuk VV, Kazanskaya RB, Fedorova TN, Sergeeva MG. Oxylipin Profiles in Plasma of Patients with Wilson's Disease. Metabolites 2020; 10:metabo10060222. [PMID: 32485807 PMCID: PMC7345781 DOI: 10.3390/metabo10060222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Wilson’s disease (WD) is a rare autosomal recessive metabolic disorder resulting from mutations in the copper-transporting, P-type ATPase gene ATP7B gene, but influences of epigenetics, environment, age, and sex-related factors on the WD phenotype complicate diagnosis and clinical manifestations. Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs) are signaling mediators that are deeply involved in innate immunity responses; the regulation of inflammatory responses, including acute and chronic inflammation; and other disturbances related to any system diseases. Therefore, oxylipin profile tests are attractive for the diagnosis of WD. With UPLC-MS/MS lipidomics analysis, we detected 43 oxylipins in the plasma profiles of 39 patients with various clinical manifestations of WD compared with 16 healthy controls (HCs). Analyzing the similarity matrix of oxylipin profiles allowed us to cluster patients into three groups. Analysis of the data by VolcanoPlot and partial least square discriminant analysis (PLS-DA) showed that eight oxylipins and lipids stand for the variance between WD and HCs: eicosapentaenoic acid EPA, oleoylethanolamide OEA, octadecadienoic acids 9-HODE, 9-KODE, 12-hydroxyheptadecatrenoic acid 12-HHT, prostaglandins PGD2, PGE2, and 14,15-dihydroxyeicosatrienoic acids 14,15-DHET. The compounds indicate the involvement of oxidative stress damage, inflammatory processes, and peroxisome proliferator-activated receptor (PPAR) signaling pathways in this disease. The data reveal novel possible therapeutic targets and intervention strategies for treating WD.
Collapse
Affiliation(s)
- Nadezhda V. Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow 119234, Russia;
| | - Alexander V. Lopachev
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, Moscow 125367, Russia;
| | - Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| | - Sergei V. Goriainov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
| | | | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, Moscow 125367, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| |
Collapse
|
20
|
Dalle C, Ostermann AI, Konrad T, Coudy-Gandilhon C, Decourt A, Barthélémy JC, Roche F, Féasson L, Mazur A, Béchet D, Schebb NH, Gladine C. Muscle Loss Associated Changes of Oxylipin Signatures During Biological Aging: An Exploratory Study From the PROOF Cohort. J Gerontol A Biol Sci Med Sci 2020; 74:608-615. [PMID: 30137216 DOI: 10.1093/gerona/gly187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Characterizations of the multiple mechanisms determining biological aging are required to better understand the etiology and identify early biomarkers of sarcopenia. Oxylipins refer to a large family of signaling lipids involved in the regulation of various biological processes that become dysregulated during aging. To investigate whether comprehensive oxylipin profiling could provide an integrated and fine characterization of the early phases of sarcopenia, we performed a quantitative targeted metabolomics of oxylipins in plasma of 81-year-old subjects from the PROOF cohort with decreased (n = 12), stable (n = 16), or increased appendicular muscle mass (n = 14). Multivariate and univariate analyses identified significant and concordant changes of oxylipin profiles according to the muscle status. Of note, 90% of the most discriminant oxylipins were derived from EPA and DHA and were increased in the sarcopenic subjects. The oxylipins signatures of sarcopenic subjects revealed subtle activation of inflammatory resolution pathways, coagulation processes, and oxidative stress as well as the inhibition of angiogenesis. Heat maps highlighted relationships between oxylipins and the cardiometabolic health parameters which were mainly lost in sarcopenic subjects. This exploratory study supports that targeted metabolomics of oxylipins could provide relevant and subtle characterization of early disturbances associated with muscle loss during aging.
Collapse
Affiliation(s)
- Céline Dalle
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Annika Irmgard Ostermann
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany.,Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Thade Konrad
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Alice Decourt
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.,Laboratoire Interuniversitaire de Biologie de la Motricité-EA 7424, Univ Lyon, UJM-Saint-Etienne, France
| | - Jean-Claude Barthélémy
- Service de Physiologie Clinique et de l'Exercice, CHU de St Etienne, Saint-Etienne, France.,Laboratoire SNA-EPIS-EA 4607, Univ Lyon, UJM-Saint-Etienne, France
| | - Frédéric Roche
- Service de Physiologie Clinique et de l'Exercice, CHU de St Etienne, Saint-Etienne, France.,Laboratoire SNA-EPIS-EA 4607, Univ Lyon, UJM-Saint-Etienne, France
| | - Léonard Féasson
- Laboratoire Interuniversitaire de Biologie de la Motricité-EA 7424, Univ Lyon, UJM-Saint-Etienne, France.,Service de Physiologie Clinique et de l'Exercice, CHU de St Etienne, Saint-Etienne, France.,Centre Référent Maladies Neuromusculaires Rares - Euro-NmD, CHU Saint-Etienne, Saint-Etienne, France
| | - André Mazur
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Daniel Béchet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Nils Helge Schebb
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany.,Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
21
|
Napylov A, Reyes‐Garces N, Gomez‐Rios G, Olkowicz M, Lendor S, Monnin C, Bojko B, Hamani C, Pawliszyn J, Vuckovic D. In Vivo Solid‐Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angew Chem Int Ed Engl 2020; 59:2392-2398. [DOI: 10.1002/anie.201909430] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alexander Napylov
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Nathaly Reyes‐Garces
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - German Gomez‐Rios
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - Mariola Olkowicz
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Sofia Lendor
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Cian Monnin
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Barbara Bojko
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Department of Pharmacodynamics and Molecular PharmacologyFaculty of PharmacyCollegium Medicum in BydgoszczNicolaus Copernicus University in Toruń Bydgoszcz Poland
| | - Clement Hamani
- Neuroimaging Research SectionCentre for Addiction and Mental Health 250 College Street Toronto ON M5T 1R8 Canada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteSunnybrook Health Sciences Centre 2075, Bayview Avenue Toronto ON M4N 3M5 Canada
| | - Janusz Pawliszyn
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| |
Collapse
|
22
|
Napylov A, Reyes‐Garces N, Gomez‐Rios G, Olkowicz M, Lendor S, Monnin C, Bojko B, Hamani C, Pawliszyn J, Vuckovic D. In Vivo Solid‐Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alexander Napylov
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Nathaly Reyes‐Garces
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - German Gomez‐Rios
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - Mariola Olkowicz
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Sofia Lendor
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Cian Monnin
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Barbara Bojko
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Department of Pharmacodynamics and Molecular PharmacologyFaculty of PharmacyCollegium Medicum in BydgoszczNicolaus Copernicus University in Toruń Bydgoszcz Poland
| | - Clement Hamani
- Neuroimaging Research SectionCentre for Addiction and Mental Health 250 College Street Toronto ON M5T 1R8 Canada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteSunnybrook Health Sciences Centre 2075, Bayview Avenue Toronto ON M4N 3M5 Canada
| | - Janusz Pawliszyn
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| |
Collapse
|
23
|
Dasilva G, Medina I. Lipidomic methodologies for biomarkers of chronic inflammation in nutritional research: ω-3 and ω-6 lipid mediators. Free Radic Biol Med 2019; 144:90-109. [PMID: 30902758 DOI: 10.1016/j.freeradbiomed.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
The evolutionary history of hominins has been characterized by significant dietary changes, which include the introduction of meat eating, cooking, and the changes associated with plant and animal domestication. The Western pattern diet has been linked with the onset of chronic inflammation, and serious health problems including obesity, metabolic syndrome, and cardiovascular diseases. Diets enriched with ω-3 marine PUFAs have revealed additional improvements in health status associated to a reduction of proinflammatory ω-3 and ω-6 lipid mediators. Lipid mediators are produced from enzymatic and non-enzymatic oxidation of PUFAs. Interest in better understanding the occurrence of these metabolites has increased exponentially as a result of the growing evidence of their role on inflammatory processes, control of the immune system, cell signaling, onset of metabolic diseases, or even cancer. The scope of this review has been to highlight the recent findings on: a) the formation of lipid mediators and their role in different inflammatory and metabolic conditions, b) the direct use of lipid mediators as antiinflammatory drugs or the potential of new drugs as a new therapeutic option for the synthesis of antiinflammatory or resolving lipid mediators and c) the impact of nutritional interventions to modulate lipid mediators synthesis towards antiinflammatory conditions. In a second part, we have summarized methodological approaches (Lipidomics) for the accurate analysis of lipid mediators. Although several techniques have been used, most authors preferred the combination of SPE with LC-MS. Advantages and disadvantages of each method are herein addressed, as well as the main LC-MS difficulties and challenges for the establishment of new biomarkers and standardization of experimental designs, and finally to deepen the study of mechanisms involved on the inflammatory response.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), c/Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), c/Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
24
|
Surendran A, Zhang H, Winter T, Edel A, Aukema H, Ravandi A. Oxylipin profile of human low-density lipoprotein is dependent on its extent of oxidation. Atherosclerosis 2019; 288:101-111. [DOI: 10.1016/j.atherosclerosis.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022]
|
25
|
Darwesh AM, Sosnowski DK, Lee TYT, Keshavarz-Bahaghighat H, Seubert JM. Insights into the cardioprotective properties of n-3 PUFAs against ischemic heart disease via modulation of the innate immune system. Chem Biol Interact 2019; 308:20-44. [DOI: 10.1016/j.cbi.2019.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
|
26
|
Leung HH, Yau YF, Leung KS, Lee YY, Oger C, Durand T, Galano J, Loke WM, Lee JC. Garlic Supplementation Modified Enzymatic Omega‐6 Polyunsaturated Fatty Acid Oxidation in Mild Hypercholesterolemia. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ho Hang Leung
- School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Yu Fung Yau
- School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Kin Sum Leung
- School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Yiu Yiu Lee
- School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Camille Oger
- Institut des Biomolécules Max MousseronUniversité de MontpellierUMR 5247 CNRS, ENSCMFrance
| | - Thierry Durand
- Institut des Biomolécules Max MousseronUniversité de MontpellierUMR 5247 CNRS, ENSCMFrance
| | - Jean‐Marie Galano
- Institut des Biomolécules Max MousseronUniversité de MontpellierUMR 5247 CNRS, ENSCMFrance
| | - Wai Mun Loke
- School of Chemical and Life SciencesCentre for Functional Food & Human NutritionNanyang PolytechnicSingapore 569830Singapore
| | | |
Collapse
|
27
|
Nelson JR, Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad Med 2019; 131:268-277. [PMID: 31063407 DOI: 10.1080/00325481.2019.1607414] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Eicosapentaenoic acid (EPA) is a key anti-inflammatory/anti-aggregatory long-chain polyunsaturated omega-3 fatty acid. Conversely, the omega-6 fatty acid, arachidonic acid (AA) is a precursor to a number of pro-inflammatory/pro-aggregatory mediators. EPA acts competitively with AA for the key cyclooxygenase and lipoxygenase enzymes to form less inflammatory products. As a result, the EPA:AA ratio may be a marker of chronic inflammation, with a lower ratio corresponding to higher levels of inflammation. It is now well established that inflammation plays an important role in cardiovascular disease. This review examines the role of the EPA:AA ratio as a marker of cardiovascular disease and the relationship between changes in the ratio (mediated by EPA intake) and changes in cardiovascular risk. Epidemiological studies have shown that a lower EPA:AA ratio is associated with an increased risk of coronary artery disease, acute coronary syndrome, myocardial infarction, stroke, chronic heart failure, peripheral artery disease, and vascular disease. Increasing the EPA:AA ratio through treatment with purified EPA has been shown in clinical studies to be effective in primary and secondary prevention of coronary artery disease and reduces the risk of cardiovascular events following percutaneous coronary intervention. The EPA:AA ratio is a valuable predictor of cardiovascular risk. Results from ongoing clinical trials will help to define thresholds for EPA treatment associated with better clinical outcomes.
Collapse
Affiliation(s)
- J R Nelson
- a California Cardiovascular Institute , Fresno , CA , USA
| | - S Raskin
- b Lipid Clinic , Sutter East Bay Medical Foundation , Oakland , CA , USA
| |
Collapse
|
28
|
Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. Molecules 2019; 24:molecules24081639. [PMID: 31027298 PMCID: PMC6515351 DOI: 10.3390/molecules24081639] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Oxylipins are potent lipid mediators derived from polyunsaturated fatty acids, which play important roles in various biological processes. Being important regulators and/or markers of a wide range of normal and pathological processes, oxylipins are becoming a popular subject of research; however, the low stability and often very low concentration of oxylipins in samples are a significant challenge for authors and continuous improvement is required in both the extraction and analysis techniques. In recent years, the study of oxylipins has been directly related to the development of new technological platforms based on mass spectrometry (LC–MS/MS and gas chromatography–mass spectrometry (GC–MS)/MS), as well as the improvement in methods for the extraction of oxylipins from biological samples. In this review, we systematize and compare information on sample preparation procedures, including solid-phase extraction, liquid–liquid extraction from different biological tissues.
Collapse
|
29
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
30
|
Blum M, Dogan I, Karber M, Rothe M, Schunck WH. Chiral lipidomics of monoepoxy and monohydroxy metabolites derived from long-chain polyunsaturated fatty acids. J Lipid Res 2019; 60:135-148. [PMID: 30409844 PMCID: PMC6314268 DOI: 10.1194/jlr.m089755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
A chiral lipidomics approach was established for comprehensive profiling of regio- and stereoisomeric monoepoxy and monohydroxy metabolites of long-chain PUFAs as generated enzymatically by cytochromes P450 (CYPs), lipoxygenases (LOXs), and cyclooxygenases (COXs) and, in part, also unspecific oxidations. The method relies on reversed-phase chiral-LC coupled with ESI/MS/MS. Applications revealed partially opposing enantioselectivities of soluble and microsomal epoxide hydrolases (mEHs). Ablation of the soluble epoxide hydrolase (sEH) gene resulted in specific alterations in the enantiomeric composition of endogenous monoepoxy metabolites. For example, the (R,S)/(S,R)-ratio of circulating 14,15-EET changed from 2.1:1 in WT to 9.7:1 in the sEH-KO mice. Studies with liver microsomes suggested that CYP/mEH interactions play a primary role in determining the enantiomeric composition of monoepoxy metabolites during their generation and release from the ER. Analysis of human plasma showed significant enantiomeric excess with several monoepoxy metabolites. Monohydroxy metabolites were generally present as racemates; however, Ca2+-ionophore stimulation of whole blood samples resulted in enantioselective increases of LOX-derived metabolites (12S-HETE and 17S-hydroxydocosahexaenoic acid) and COX-derived metabolites (11R-HETE). Our chiral approach may provide novel opportunities for investigating the role of bioactive lipid mediators that generally exert their physiological functions in a highly regio- and stereospecific manner.
Collapse
Affiliation(s)
- Maximilian Blum
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
31
|
Quantification of eicosanoids and their metabolites in biological matrices: a review. Bioanalysis 2018; 10:2027-2046. [PMID: 30412686 DOI: 10.4155/bio-2018-0173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The quantification of eicosanoids and their metabolites in biological samples remain an analytical challenge, even though a number of methodologies/techniques have been developed. The major difficulties encountered are related to the oxidation of eicosanoids and their low quantities in biological matrices. Among the known methodologies, liquid chromatography-mass spectrometry (LC-MS/MS) is the standard method for eicosanoid quantification in biological samples. Recently advances have improved the ability to identify and simultaneous quantitate eicosanoids in biological matrices. The present article reviews the quantitative analysis of eicosanoids in different biological matrices by LC and ultra performance liquid chromatography (UPLC)-MS/MS and discusses important aspects to be considered during the collection, sample preparation and the generation of calibration curves required for eicosanoid analysis.
Collapse
|
32
|
La Frano MR, Fahrmann JF, Grapov D, Pedersen TL, Newman JW, Fiehn O, Underwood MA, Mestan K, Steinhorn RH, Wedgwood S. Umbilical cord blood metabolomics reveal distinct signatures of dyslipidemia prior to bronchopulmonary dysplasia and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2018; 315:L870-L881. [PMID: 30113229 PMCID: PMC6295510 DOI: 10.1152/ajplung.00283.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
Pulmonary hypertension (PH) is a common consequence of bronchopulmonary dysplasia (BPD) and remains a primary contributor to increased morbidity and mortality among preterm infants. Unfortunately, at the present time, there are no reliable early predictive markers for BPD-associated PH. Considering its health consequences, understanding in utero perturbations that lead to the development of BPD and BPD-associated PH and identifying early predictive markers is of utmost importance. As part of the discovery phase, we applied a multiplatform metabolomics approach consisting of untargeted and targeted methodologies to screen for metabolic perturbations in umbilical cord blood (UCB) plasma from preterm infants that did ( n = 21; cases) or did not ( n = 21; controls) develop subsequent PH. A total of 1,656 features were detected, of which 407 were annotated by metabolite structures. PH-associated metabolic perturbations were characterized by reductions in major choline-containing phospholipids, such as phosphatidylcholines and sphingomyelins, indicating altered lipid metabolism. The reduction in UCB abundances of major choline-containing phospholipids was confirmed in an independent validation cohort consisting of UCB plasmas from 10 cases and 10 controls matched for gestational age and BPD status. Subanalyses in the discovery cohort indicated that elevations in the oxylipins PGE1, PGE2, PGF2a, 9- and 13-HOTE, 9- and 13-HODE, and 9- and 13-KODE were positively associated with BPD presence and severity. This expansive evaluation of cord blood plasma identifies compounds reflecting dyslipidemia and suggests altered metabolite provision associated with metabolic immaturity that differentiate subjects, both by BPD severity and PH development.
Collapse
Affiliation(s)
- Michael R La Frano
- West Coast Metabolomics Center, University of California, Davis Genome Center, University of California , Davis, California
- Department of Nutrition, University of California , Davis, California
- Department of Food Science and Nutrition, California Polytechnic State University , San Luis Obispo, California
| | - Johannes F Fahrmann
- West Coast Metabolomics Center, University of California, Davis Genome Center, University of California , Davis, California
- Department of Clinical Cancer Prevention, University of Texas M. D. Anderson Cancer Center , Houston, Texas
| | | | - Theresa L Pedersen
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center , Davis, California
| | - John W Newman
- West Coast Metabolomics Center, University of California, Davis Genome Center, University of California , Davis, California
- Department of Nutrition, University of California , Davis, California
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center , Davis, California
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis Genome Center, University of California , Davis, California
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi-Arabia
| | - Mark A Underwood
- Department of Pediatrics, University of California, Davis Medical Center , Sacramento, California
| | - Karen Mestan
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Robin H Steinhorn
- Department of Pediatrics, Children's National Medical Center, George Washington University , Washington, District of Columbia
| | - Stephen Wedgwood
- Department of Pediatrics, University of California, Davis Medical Center , Sacramento, California
| |
Collapse
|
33
|
Asymptomatic HIV People Present Different Profiles of sCD14, sRAGE, DNA Damage, and Vitamins, according to the Use of cART and CD4 + T Cell Restoration. J Immunol Res 2018; 2018:7531718. [PMID: 29992171 PMCID: PMC5914107 DOI: 10.1155/2018/7531718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/30/2018] [Accepted: 02/08/2018] [Indexed: 01/14/2023] Open
Abstract
We aimed to analyze markers of immune activation, inflammation, and oxidative stress in 92 asymptomatic HIV-infected patients according to the adequate (AR, >500 cells/mm3) or inadequate (IR, <500 cells/mm3) CD4+ T recovery and the presence or absence of antiretroviral treatment (cART). In relation to those newly diagnosed, they were divided into two groups, cART-naïve IR (nIR) and cART-naïve AR (nAR). Among those diagnosed more than five years ago, the following division was made: the cART-naïve long-term nonprogressors (LTNP); patient under cART and AR (tAR); and patients under cART and IR (tIR). We investigated the expression of soluble receptor for advanced glycation end products (sRAGE), high-mobility group-box protein −1 (HMGB1), soluble CD14 (sCD14), IL-8, IL-10, 8-isoprostane, vitamins, and DNA damage. We observed higher levels of sRAGE in tAR as compared to nIR, nAR, LTNP, and more sCD14 than in nIR and nAR. As for IL-10 levels, we found nIR > nAR > LTNP > tAR > tIR. Higher levels of 8-isoprostane were observed in nIR. LTNP presented a higher retinol dosage than tAR and less genotoxic damage induced by oxidative stress than the other groups. We suggest that the therapy, despite being related to lesser immune activation and inflammation, alters the vitamin profile and consequently increases the oxidative stress of patients. In addition, the lowest genotoxic index for LTNP indicates that both VL and cART could be responsible for the increased DNA damage. More studies are needed to understand the influence of cART on persistent immune activation and inflammation.
Collapse
|
34
|
Distinct oxylipin alterations in diverse models of cystic kidney diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1562-1574. [DOI: 10.1016/j.bbalip.2017.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022]
|
35
|
Peritoneal pre-conditioning reduces macrophage marker expression in collagen-containing engineered vascular grafts. Acta Biomater 2017; 64:80-93. [PMID: 28987784 DOI: 10.1016/j.actbio.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
Engineered vascular grafts have shown promise as arteriovenous shunts, but they have not yet progressed to clinical trials for coronary arteries <4 mm in diameter such as the coronary arteries. Control over initial biomaterial properties and remodeling are necessary to generate viable grafts. In this study, we blended collagen with a synthetic material, poly(ε-caprolactone), to modulate the post-grafting inflammatory response while avoiding aneurysmal-like dilation and failure that can occur with pure collagen grafts. We also used pre-implantation in an "in vivo bioreactor" to recruit autologous cells and improve patency after grafting. Electrospun conduits were pre-implanted within rat peritoneal cavities and then grafted autologously into abdominal aortae. Conduit collagen percentages and pre-implantation were tested for their impact on graft remodeling and patency. Burst pressures >2000 mmHg, reproducible expansion with systole/diastole, and maintenance of mechanical integrity were observed. More importantly, peritoneal pre-implantation reduced overall lipid oxidation, intimal layer thickness, and expression of an M1 macrophage marker. The condition with the most collagen, 25%, exhibited the lowest expression of macrophage markers but also resulted in a thicker intimal layer. Overall, the 10% collagen/PCL with peritoneal pre-implantation condition appeared to exhibit the best combination of responses, and may result in improved clinical graft viability. STATEMENT OF SIGNIFICANCE This manuscript describes a rodent study to systematically determine the benefits of both pre-implantation in the peritoneal cavity and specific ratios of collagen on engineered vascular graft viability. We show that pre-implantation had a significant benefit, including decreasing the expression of macrophage markers and reducing lipid oxidation after grafting. This study is the first time that the benefits of peritoneal pre-implantation have been compared to an "off the shelf," directly grafted control condition. We also demonstrated the importance of specific collagen ratio on the response after grafting. Overall, we feel that this article will be of interest to the field and it has the potential to address a significant clinical need: a graft for coronary arteries <4 mm in diameter.
Collapse
|
36
|
Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid Redox Signal 2017; 27:1083-1124. [PMID: 28816059 DOI: 10.1089/ars.2016.6963] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The incidence of cardiovascular events (CVEs) increases with age, representing the main cause of death in an elderly population. Aging is associated with overproduction of reactive oxygen species (ROS), which may affect clotting and platelet activation, and impair endothelial function, thus predisposing elderly patients to thrombotic complications. Recent Advances: There is increasing evidence to suggest that aging is associated with an imbalance between oxidative stress and antioxidant status. Thus, upregulation of ROS-producing enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase, along with downregulation of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase, occurs during aging. This imbalance may predispose to thrombosis by enhancing platelet and clotting activation and eliciting endothelial dysfunction. Recently, gut-derived products, such as trimethylamine N-oxide (TMAO) and lipopolysaccharide, are emerging as novel atherosclerotic risk factors, and gut microbiota composition has been shown to change by aging, and may concur with the increased cardiovascular risk in the elderly. CRITICAL ISSUES Antioxidant treatment is ineffective in patients at risk or with cardiovascular disease. Further, anti-thrombotic treatment seems to work less in the elderly population. FUTURE DIRECTIONS Interventional trials with antioxidants targeting enzymes implicated in aging-related atherothrombosis are warranted to explore whether modulation of redox status is effective in lowering CVEs in the elderly. Antioxid. Redox Signal. 27, 1083-1124.
Collapse
Affiliation(s)
- Francesco Violi
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Lorenzo Loffredo
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Roberto Carnevale
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy .,2 Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome , Latina, Italy
| | - Pasquale Pignatelli
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Daniele Pastori
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| |
Collapse
|
37
|
Seyedsadjadi N, Berg J, Bilgin AA, Tung C, Grant R. Significant relationships between a simple marker of redox balance and lifestyle behaviours; Relevance to the Framingham risk score. PLoS One 2017; 12:e0187713. [PMID: 29107974 PMCID: PMC5673171 DOI: 10.1371/journal.pone.0187713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress has been closely linked to the progressive cell damage associated with emerging non-communicable disease (NCDs). Early detection of these biochemical abnormalities before irreversible cell damage occurs may therefore be useful in identifying disease risk at an individual level. In order to test this hypothesis, this study assessed the relationship between a simple measure of redox status and lifestyle risk factors for NCDs, and the population-based risk score of Framingham. In a cross-sectional study design, 100 apparently healthy middle-aged males (n = 48) and females (n = 52) were asked to complete a comprehensive lifestyle assessment questionnaire, followed by body fat percentage and blood pressure measurements, and blood collection. The ratio of plasma total antioxidant capacity to hydroperoxide (TAC/HPX) was used as an index of redox balance. One-way ANOVA and multiple linear regression analysis were performed to analyse the association between TAC/HPX, lifestyle components and other plasma biomarkers. The TAC/HPX ratio was higher in males compared to females (t96 = 2.34, P = 0.021). TAC/HPX was also lower in participants with poor sleep quality (t93 = 2.39, P = 0.019), with high sleep apnoea risk (t62.2 = 3.32, P = 0.002), with high caffeine (F(2, 93) = 3.97, P = 0.022) and red meat intake (F(2, 93) = 5.55, P = 0.005). These associations were independent of gender. Furthermore, the TAC/HPX ratio decreased with increasing body fat percentage (F(2, 95) = 4.74, P = 0.011) and depression score (t94 = 2.38, P = 0.019), though these associations were dependent on gender. Importantly, a negative association was observed between TAC/HPX levels and the Framingham risk score in both males (r(45) = -0.39, P = 0.008) and females (r(50) = -0.33, P = 0.019) that was independent of other Framingham risk score components. Findings from this study suggests that a relatively simple measure of redox balance such as the TAC/HPX ratio may be a sensitive indicator of redox stress, and may therefore serve as a useful biomarker for assessing an individual's specific NCD risk linked to unhealthy lifestyle practices.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, New South Wales, Australia
| | - Ayse A. Bilgin
- Department of Statistics, Macquarie University, Sydney, New South Wales, Australia
| | - Chin Tung
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, New South Wales, Australia
| | - Ross Grant
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, New South Wales, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
38
|
Kuhn MJ, Mavangira V, Gandy JC, Zhang C, Jones AD, Sordillo LM. Differences in the Oxylipid Profiles of Bovine Milk and Plasma at Different Stages of Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4980-4988. [PMID: 28570057 DOI: 10.1021/acs.jafc.7b01602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mastitis is caused by a bacterial infection of the mammary gland, which reduces both milk quality and quantity produced for human consumption. The incidence and severity of bovine mastitis are greatest during the periparturient period that results from dysfunctional inflammatory responses and causes damage to milk synthesizing tissues. Oxylipids are potent fatty acid-derived mediators that control the onset and resolution of the inflammatory response. The purpose of this study was to investigate how oxylipid profiles change in bovine milk at different stages of the lactation cycle. Results showed significantly lower concentrations of both milk polyunsaturated fatty acid content and total oxylipid biosynthesis during early lactation when compared to mid- or late-lactation. The only oxylipid that was higher during early lactation was 20-hydroxyeicosatetraenoic acid (HETE), which is often associated with inflammatory-based diseases. Milk oxylipid profiles during the different stages of lactation differed from plasma profiles. As such, plasma fatty acid and oxylipid concentrations are not a proxy for local changes in the mammary gland during the lactation cycle.
Collapse
Affiliation(s)
- Matthew J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing 48824, United States
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing 48824, United States
| | - Jeffery C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing 48824, United States
| | | | | | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing 48824, United States
| |
Collapse
|
39
|
Antiretroviral Therapy Initiation Alters the Redox System of Asymptomatic HIV-Infected Individuals: A Longitudinal Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9834803. [PMID: 28421130 PMCID: PMC5379093 DOI: 10.1155/2017/9834803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/11/2023]
Abstract
Background. The combination antiretroviral therapy (cART) increases the oxidative stress in HIV-infected people, which in turn favors the onset and aggravation of non-AIDS comorbidities, a common situation affecting these individuals. We aimed to evaluate the influence of cART initiation on oxidative stress parameters. This is a longitudinal study including 30 asymptomatic patients divided according to their CD4+ T cell count (G1: <500 cell/mL; G2: >500 cell/mL) before (M0) and after (M1) cART initiation. We analyzed total antioxidant capacity (TAC), fat-soluble vitamins, malondialdehyde, 8-isoprostane, and DNA damage. Results. Results showed a decrease in TAC, retinol, α-tocopherol, and some carotenoids, in addition to a significant increase in DNA damage at M1. These changes were more evident in G2 subjects. Moreover, there was a significant 8-isoprostane increase at M1 in individuals belonging to G1. Conclusion. The results indicate that cART interfered in the redox system, mainly by reducing the antioxidant defenses. In addition, patients who had CD4+ T counts higher than 500 cells/mm3 showed more susceptibility to genotoxicity, while patients with less CD4+ T counts displayed more damage triggered by lipoperoxidation. Considering the early beginning of cART, its chronic use, and its capacity to alter the redox status, further long-term studies on larger cohorts are needed to define the best time to initiate therapy and to investigate new strategies to delay the development of non-AIDS diseases.
Collapse
|
40
|
He M, van Wijk E, van Wietmarschen H, Wang M, Sun M, Koval S, van Wijk R, Hankemeier T, van der Greef J. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:98-106. [PMID: 28199905 DOI: 10.1016/j.jphotobiol.2016.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022]
Abstract
The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective.
Collapse
Affiliation(s)
- Min He
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Eduard van Wijk
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Meluna Research, Geldermalsen, The Netherlands; Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun 130117, China.
| | - Herman van Wietmarschen
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; TNO, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | - Mei Wang
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; SU Biomedicine, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands; Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun 130117, China
| | - Mengmeng Sun
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun 130117, China
| | - Slavik Koval
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Roeland van Wijk
- Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Meluna Research, Geldermalsen, The Netherlands
| | - Thomas Hankemeier
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jan van der Greef
- Analytical BioSciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; Sino-Dutch Center for Preventive and Personalized Medicine, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands; TNO, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| |
Collapse
|
41
|
Mika A, Sledzinski T. Alterations of specific lipid groups in serum of obese humans: a review. Obes Rev 2017; 18:247-272. [PMID: 27899022 DOI: 10.1111/obr.12475] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a major contributor to the dysfunction of liver, cardiac, pulmonary, endocrine and reproductive system, as well as a component of metabolic syndrome. Although development of obesity-related disorders is associated with lipid abnormalities, most previous studies dealing with the problem in question were limited to routinely determined parameters, such as serum concentrations of triacylglycerols, total cholesterol, low-density and high-density lipoprotein cholesterol. Many authors postulated to extend the scope of analysed lipid compounds and to study obesity-related alterations in other, previously non-examined groups of lipids. Comprehensive quantitative, structural and functional analysis of specific lipid groups may result in identification of new obesity-related alterations. The review summarizes available evidence of obesity-related alterations in various groups of lipids and their impact on health status of obese subjects. Further, the role of diet and endogenous lipid synthesis in the development of serum lipid alterations is discussed, along with potential application of various lipid compounds as risk markers for obesity-related comorbidities.
Collapse
Affiliation(s)
- A Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - T Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
42
|
Basu S. The enigma ofin vivooxidative stress assessment: isoprostanes as an emerging target. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [PMCID: PMC2607004 DOI: 10.1080/17482970701411642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Oxidative stress is believed to be one of the major factors behind several acute and chronic diseases, and may also be associated with ageing. Excess formation of free radicals in miscellaneous body environment may originate from endogenous response to cell injury, but also from exposure to a number of exogenous toxins. When the antioxidant defence system is overwhelmed, this leads to cell damage. However, the measurement of free radicals or their endproducts is tricky, since these compounds are reactive and short lived, and have diverse characteristics. Specific evidence for the involvement of free radicals in pathological situations has been difficult to obtain, partly owing to shortcomings in earlier described methods for the measurement of oxidative stress. Isoprostanes, which are prostaglandin-like bioactive compounds synthesized in vivo from oxidation of arachidonic acid, independently of cyclooxygenases, are involved in many human diseases, and their measurement therefore offers a way to assess oxidative stress. Elevated levels of F2-isoprostanes have also been seen in the normal human pregnancy, but their physiological role has not yet been defined. Large amounts of bioactive F2-isoprostanes are excreted in the urine in normal basal situations, with a wide interindividual variation. Their exact role in the regulation of normal physiological functions, however, needs to be explored further. Current understanding suggests that measurement of F2-isoprostanes in body fluids provides a reliable analytical tool to study oxidative stress-related diseases and experimental inflammatory conditions, and also in the evaluation of various dietary antioxidants, as well as drugs with radical-scavenging properties. However, assessment of isoprostanes in plasma or urine does not necessarily reflect any specific tissue damage, nor does it provide information on the oxidation of lipids other than arachidonic acid.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of MedicineUppsala UniversityUppsalaSweden
| |
Collapse
|
43
|
Specific enrichment of 2-arachidonoyl-lysophosphatidylcholine in carotid atheroma plaque from type 2 diabetic patients. Atherosclerosis 2016; 251:339-347. [DOI: 10.1016/j.atherosclerosis.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022]
|
44
|
Sun Y, Koh HWL, Choi H, Koh WP, Yuan JM, Newman JW, Su J, Fang J, Ong CN, van Dam RM. Plasma fatty acids, oxylipins, and risk of myocardial infarction: the Singapore Chinese Health Study. J Lipid Res 2016; 57:1300-7. [PMID: 27371261 DOI: 10.1194/jlr.p066423] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 11/20/2022] Open
Abstract
We aimed to examine the prospective association between plasma FAs, oxylipins, and risk of acute myocardial infarction (AMI) in a Singapore Chinese population. A nested case-control study with 744 incident AMI cases and 744 matched controls aged 47-83 years was conducted within the Singapore Chinese Health Study. Nineteen plasma FAs and 12 oxylipins were quantified using MS. These were grouped into 12 FA clusters and 5 oxylipin clusters using hierarchical clustering, and their associations with AMI risk were assessed. Long-chain n-3 FAs [odds ratio (OR) = 0.67 per SD increase, 95% confidence interval (CI): 0.53-0.84, P < 0.001] and stearic acid (OR = 0.65, 95% CI: 0.44-0.97, P = 0.03) were inversely associated with AMI risk, whereas arachidonic acid (AA) was positively associated with AMI risk (OR = 1.25, 95% CI: 1.03-1.52, P = 0.02) in the multivariable model with adjustment for other FAs. Further adjustment for oxylipins did not substantially change these associations. An inverse association was observed between AA-derived oxylipin, thromboxane (TX)B2, and AMI risk (OR = 0.81, 95% CI: 0.71-0.93, P = 0.003). Circulating long-chain n-3 FAs and stearic acid were associated with a lower and AA was associated with a higher AMI risk in this Chinese population. The association between the oxylipin TXB2 and AMI requires further research.
Collapse
Affiliation(s)
- Ye Sun
- Saw Swee Hock School of Public Health National University of Singapore and National University Health System, Singapore NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore Departments of Psychological Medicine National University of Singapore and National University Health System, Singapore
| | - Hiromi W L Koh
- Saw Swee Hock School of Public Health National University of Singapore and National University Health System, Singapore
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health National University of Singapore and National University Health System, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health National University of Singapore and National University Health System, Singapore Duke-NUS Graduate Medical School Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh PA
| | - John W Newman
- Department of Nutrition, University of California Davis and US Department of Agriculture, Agricultural Research Sservice, Western Human Nutrition Research Center, Davis CA
| | - Jin Su
- Saw Swee Hock School of Public Health National University of Singapore and National University Health System, Singapore
| | - Jinling Fang
- Saw Swee Hock School of Public Health National University of Singapore and National University Health System, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health National University of Singapore and National University Health System, Singapore National University of Singapore Environmental Research Institute, National University of Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health National University of Singapore and National University Health System, Singapore Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
45
|
Birthare K, Shojaee M, Jones CG, Brenner JR, Bashur CA. Collagen incorporation within electrospun conduits reduces lipid oxidation and impacts conduit mechanics. Biomed Mater 2016; 11:025019. [DOI: 10.1088/1748-6041/11/2/025019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Ankle-brachial index and eicosapentaenoic acid/arachidonic acid ratio in smokers with type 2 diabetes mellitus. Tob Induc Dis 2016; 14:2. [PMID: 26834530 PMCID: PMC4731969 DOI: 10.1186/s12971-016-0068-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background The ankle-brachial index (ABI) is an indicator of peripheral arterial damage and a low (ABI ≤ 1.0) or borderline (ABI = 1.00–1.09) value is associated with risk of cardiovascular disease events. A low ratio of serum eicosapentaenoic acid to arachidonic acid (EPA/AA) is also a risk factor for cardiovascular disease events. This study examined associations between the ABI and the EPA/AA ratio in smokers and non-smokers with type 2 diabetes mellitus (T2DM). Findings Blood data including EPA, AA, and ABI were measured in smokers and non-smokers with T2DM enrolled at Jichi Medical University (n = 116, male 86 %, mean age 59 yr). The patients were classified into two groups according to their ABI level: <1.1 (low to borderline) or ≥1.1 (high). The EPA/AA ratio in smoking patients with ABI < 1.1 (n = 26; EPA/AA = 0.25) was significantly lower than in those with ABI ≥ 1.1 (n = 32; EPA/AA = 0.34; p = 0.03), but was not significantly different in non-smoking patients. The EPA/AA ratio was independently, significantly, and positively correlated with the ABI level (β = 0.41; p < 0.01) after adjusting for multiple variables only in smoking patients with T2DM. Conclusions The EPA/AA ratio may be associated with subclinical peripheral arterial damage in smokers with T2DM. Further studies are warranted.
Collapse
|
47
|
Martinez JT, Rogers LK, Kellogg C, Iazbik MC, Couto CG, Pressler BM, Hoepf TM, Radin MJ. Plasma Vasoprotective Eicosanoid Concentrations in Healthy Greyhounds and Non-Greyhound Dogs. J Vet Intern Med 2016; 30:583-90. [PMID: 26806473 PMCID: PMC4913591 DOI: 10.1111/jvim.13833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/09/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypertension and albuminuria often coexist in Greyhounds, suggesting generalized vascular dysfunction that could contribute to the development of a variety of diseases in this breed. Eicosanoid metabolites of arachidonic acid (AA) mediate endothelial function, vascular reactivity, and proteinuria in humans and in rodent models. HYPOTHESIS The eicosanoid profile of Greyhounds is shifted toward metabolites that promote vascular dysfunction, hypertension, and proteinuria. ANIMALS Healthy Greyhounds (n = 20) and non-Greyhound (n = 20) dogs that were consecutively enrolled in a blood donor program. METHODS Prospective study. Plasma eicosanoid metabolites were assayed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) and compared to systolic blood pressure (SP) measurements and urine albumin concentration. RESULTS Isomers of hydroxyeicosatetraenoic acid (HETE) were higher in Greyhounds than non-Greyhounds (median, range in pmol/mL: 5(S)HETE 19.82, 8.55-32.95 versus 13.54, 4.33-26.27, P = .033; 8(S)HETE 9.39, 3.28-19.84 versus 5.80, 2.25-17.66, P = .002; 9(S)HETE 9.46, 2.43-13.79 versus 5.82, 1.50-17.16, P = .026; 12(S)HETE 10.17, 3.81-40.06 versus 7.24, 2.9-16.16, P = .022). Dihydroxyeicosatrienoic acid (DHET) isomers also were higher in Greyhounds compared to non-Greyhounds (mean ± SD in pmol/mL: 8,9DHET 5.78 ± 2.13 versus 4.03 ± 1.36, P = .004; 11,12DHET 11.98 ± 2.86 versus 8.90 ± 3.48, P = .004; 14,15DHET 7.23 ± 2.19 versus 5.76 ± 1.87, P = .028). Albuminuria correlated with total DHET (rs = 0.46, P = .003). SP was positively correlated with 11,12EET (rs = 0.42, P = .006) and 20(S)HETE (rs = 0.38, P = .017). SP and 8,9EET were inversely correlated (rs = -0.49, P = .001). CONCLUSIONS AND CLINICAL IMPORTANCE Plasma eicosanoid profile in Greyhounds was consistent with activation of metabolic pathways known to promote vascular dysfunction and might contribute to higher blood pressures and albuminuria. Inhibition of these eicosanoid pathways should be evaluated as therapeutic targets in Greyhounds.
Collapse
Affiliation(s)
- J T Martinez
- Department of Veterinary Biosciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | - L K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - C Kellogg
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | | | - C G Couto
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | - B M Pressler
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | - T M Hoepf
- Department of Veterinary Biosciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | - M J Radin
- Department of Veterinary Biosciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| |
Collapse
|
48
|
Collagen Induced Arthritis in DBA/1J Mice Associates with Oxylipin Changes in Plasma. Mediators Inflamm 2015; 2015:543541. [PMID: 26604432 PMCID: PMC4641941 DOI: 10.1155/2015/543541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022] Open
Abstract
Oxylipins play important roles in various biological processes and are considered as mediators of inflammation for a wide range of diseases such as rheumatoid arthritis (RA). The purpose of this research was to study differences in oxylipin levels between a widely used collagen induced arthritis (CIA) mice model and healthy control (Ctrl) mice. DBA/1J male mice (age: 6-7 weeks) were selected and randomly divided into two groups, namely, a CIA and a Ctrl group. The CIA mice were injected intraperitoneally (i.p.) with the joint cartilage component collagen type II (CII) and an adjuvant injection of lipopolysaccharide (LPS). Oxylipin metabolites were extracted from plasma for each individual sample using solid phase extraction (SPE) and were detected with high performance liquid chromatography/tandem mass spectrometry (HPLC-ESI-MS/MS), using dynamic multiple reaction monitoring (dMRM). Both univariate and multivariate statistical analyses were applied. The results in univariate Student's t-test revealed 10 significantly up- or downregulated oxylipins in CIA mice, which were supplemented by another 6 additional oxylipins, contributing to group clustering upon multivariate analysis. The dysregulation of these oxylipins revealed the presence of ROS-generated oxylipins and an increase of inflammation in CIA mice. The results also suggested that the collagen induced arthritis might associate with dysregulation of apoptosis, possibly inhibited by activated NF-κB because of insufficient PPAR-γ ligands.
Collapse
|
49
|
Violi F, Pignatelli P. Clinical Application of NOX Activity and Other Oxidative Biomarkers in Cardiovascular Disease: A Critical Review. Antioxid Redox Signal 2015; 23:514-32. [PMID: 24382131 DOI: 10.1089/ars.2013.5790] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE The oxidative stress theory of atherosclerosis is based on the assumption that the production of reactive oxidant species (ROS) by blood, as well as resident cells of the artery wall, elicits the formation of oxidized low-density lipoproteins (ox-LDL), which, in turn, promotes a series of inflammatory responses, ultimately leading to atherosclerotic plaque. This theory prompted the development of new laboratory methodologies that aimed at assessing the relationship between oxidative stress and clinical progression of human atherosclerosis. CRITICAL ISSUES Markers assessing the oxidation of phospholipid and protein components of LDL were among the first to be developed. Clinical trials included cross-sectional as well as retrospective and prospective studies that, however, provided equivocal results. Thus, clear evidence that oxidative biomarkers add more to the risk stratification by common atherosclerotic risk factors is still lacking. RECENT ADVANCES More recently, the analysis of oxidative stress focused on enzymatic pathways generating ROS, such as NADPH oxidase and myeloperoxidase (MPO). Experimental and clinical studies suggest that both enzymes may be implicated in promoting atherosclerotic disease. Novel laboratory methodologies have been, therefore, developed to study NADPH oxidase and MPO in patients with stable atherosclerosis as well as in patients with acute coronary and cerebro-vascular syndromes. FUTURE DIRECTIONS This review will analyze the strengths and weaknesses of the current methodology to study these enzymes in human atherosclerosis with particular regard to their clinical application in several settings of cardiovascular disease. Clinical methodology and results of previous studies with regard to markers of LDL oxidation have also been reviewed as a useful background for the future development of clinical trials.
Collapse
Affiliation(s)
- Francesco Violi
- I Clinica Medica , Department of Internal Medicine and Medical Specialties, Rome, Italy
| | - Pasquale Pignatelli
- I Clinica Medica , Department of Internal Medicine and Medical Specialties, Rome, Italy
| |
Collapse
|
50
|
Pickens CA, Sordillo LM, Comstock SS, Harris WS, Hortos K, Kovan B, Fenton JI. Plasma phospholipids, non-esterified plasma polyunsaturated fatty acids and oxylipids are associated with BMI. Prostaglandins Leukot Essent Fatty Acids 2015; 95:31-40. [PMID: 25559239 PMCID: PMC4361296 DOI: 10.1016/j.plefa.2014.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 02/06/2023]
Abstract
The obese lipid profile is associated with increased free fatty acids and triacylglycerides. Currently, little is known about the plasma lipid species associated with obesity. In this study, we compared plasma lipid fatty acid (FA) profiles as a function of BMI. Profiling phospholipid (PL) FAs and their respective oxylipids could predict which obese individuals are more likely to suffer from diseases associated with chronic inflammation or oxidative stress. We investigated the relationship between BMI and plasma PL (PPL) FA composition in 126 men using a quantitative gas chromatography analysis. BMI was inversely associated with both PPL nervonic and linoleic acid (LA) but was positively associated with both dihomo-γ-linolenic and palmitoleic acid. Compared to lean individuals, obese participants were more likely to have ω-6 FAs, except arachidonic acid and LA, incorporated into PPLs. Obese participants were less likely to have EPA and DHA incorporated into PPLs compared to lean participants. Non-esterified plasma PUFA and oxylipid analysis showed ω-6 oxylipids were more abundant in the obese plasma pool. These ω-6 oxylipids are associated with increased angiogenesis (i.e. epoxyeicosatrienoates), reactive oxygen species (i.e. 9-hydroxyeicosatetraenoate), and inflammation resolution (i.e. Lipoxin A4). In summary, BMI is directly associated with specific PPL FA and increased ω-6 oxylipids.
Collapse
Affiliation(s)
- C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Lorraine M Sordillo
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - William S Harris
- Sanford School of Medicine, The University of South Dakota, Sioux Falls, SD, USA
| | - Kari Hortos
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Bruce Kovan
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Tri-County Gastroenterology Professional Corporation, Clinton Tri-County Gastroenterology Professional Corporation, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|