1
|
Kim JY, Kim A, Kim JH, Gil YC, Kim YD, Shin DI, Seo JH. Ferroptosis in the Substantia Nigra Pars Compacta of Mice: Triggering Role of Ultrafine Diesel Exhaust Particles and Mitigation by α-Lipoic Acid. Neurochem Res 2024; 50:37. [PMID: 39601947 DOI: 10.1007/s11064-024-04278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Recent epidemiological and experimental studies have increasingly highlighted the association between environmental pollution, especially ultrafine particulate matter (PM), and the risk of neurodegenerative diseases, such as Parkinson's disease (PD). These previous studies suggest a potential mechanism by which ultrafine PM contributes to neuronal damage through processes, such as iron accumulation and oxidative stress. In this study, we aimed to elucidate the effects of ultrafine PM on ferroptosis, an iron-dependent form of cell death, in the mouse substantia nigra pars compacta (SNc) and to evaluate the protective role of α-lipoic acid (ALA). Mice were exposed to ultrafine diesel exhaust particles (ufDEP), a type of ultrafine PM, intranasally and injected ALA intraperitoneally for seven consecutive days. Iron accumulation and lipid peroxidation were significantly increased, and antioxidant capacity was significantly decreased in the SNc after ufDEP exposure, highlighting the deleterious effects of ufDEP on tyrosine hydroxylase (TH)-positive neurons. In contrast, ALA treatment effectively mitigated these effects by reducing iron accumulation, decreasing lipid peroxidation, and restoring antioxidant levels, resulting in the protection of TH-positive neurons from ferroptotic damage. Our results provide evidence that ufDEP can induce ferroptosis in dopaminergic neurons in the SNc, potentially contributing to PD pathogenesis. Furthermore, ALA showed protective effects against ufDEP-induced ferroptotic damage, suggesting its potential as a therapeutic intervention for PD.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, Chungbuk, 28503, Republic of Korea
| | - Young-Chun Gil
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yong-Dae Kim
- Department of Preventive Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
- Chungbuk Environmental Health Center, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Je Hoon Seo
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
2
|
Stankiewicz B, Mieszkowski J, Kochanowicz A, Brzezińska P, Niespodziński B, Kowalik T, Waldziński T, Kowalski K, Borkowska A, Reczkowicz J, Daniłowicz-Szymanowicz L, Antosiewicz J. Effect of Single High-Dose Vitamin D 3 Supplementation on Post-Ultra Mountain Running Heart Damage and Iron Metabolism Changes: A Double-Blind Randomized Controlled Trial. Nutrients 2024; 16:2479. [PMID: 39125358 PMCID: PMC11313756 DOI: 10.3390/nu16152479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Exercise-induced inflammation can influence iron metabolism. Conversely, the effects of vitamin D3, which possesses anti-inflammatory properties, on ultramarathon-induced heart damage and changes in iron metabolism have not been investigated. Thirty-five healthy long-distance semi-amateur runners were divided into two groups: one group received 150,000 IU of vitamin D3 24 h prior to a race (n = 16), while the other group received a placebo (n = 19). Serum iron, hepcidin (HPC), ferritin (FER), erythroferrone (ERFE), erythropoietin (EPO), neopterin (NPT), and cardiac troponin T (cTnT) levels were assessed. A considerable effect of ultramarathon running on all examined biochemical markers was observed, with a significant rise in serum levels of ERFE, EPO, HPC, NPT, and cTnT detected immediately post-race, irrespective of the group factor. Vitamin D3 supplementation showed a notable interaction with the UM, specifically in EPO and cTnT, with no other additional changes in the other analysed markers. In addition to the correlation between baseline FER and post-run ERFE, HPC was modified by vitamin D. The ultramarathon significantly influenced the EPO/ERFE/HPC axis; however, a single substantial dose of vitamin D3 had an effect only on EPO, which was associated with the lower heart damage marker cTnT after the run.
Collapse
Affiliation(s)
- Błażej Stankiewicz
- Department of Theory and Methodology of Physical Education and Sport, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (B.S.); (T.K.)
| | - Jan Mieszkowski
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland; (A.K.); (P.B.)
- Faculty of Physical Education and Sport, Charles University, 16-252 Prague, Czech Republic
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland; (A.K.); (P.B.)
| | - Paulina Brzezińska
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland; (A.K.); (P.B.)
| | - Bartłomiej Niespodziński
- Department of Biological Foundations of Physical Education, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland;
| | - Tomasz Kowalik
- Department of Theory and Methodology of Physical Education and Sport, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (B.S.); (T.K.)
| | - Tomasz Waldziński
- Faculty of Health Sciences, University of Lomza, 18-400 Łomża, Poland;
| | - Konrad Kowalski
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (K.K.); (A.B.); (J.R.)
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (K.K.); (A.B.); (J.R.)
| | - Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (K.K.); (A.B.); (J.R.)
| | | | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (K.K.); (A.B.); (J.R.)
| |
Collapse
|
3
|
Kochanowicz A, Waldziński T, Niespodziński B, Brzezińska P, Kochanowicz M, Antosiewicz J, Mieszkowski J. Acute inflammatory response following lower-and upper-body Wingate anaerobic test in elite gymnasts in relation to iron status. Front Physiol 2024; 15:1383141. [PMID: 39077758 PMCID: PMC11284944 DOI: 10.3389/fphys.2024.1383141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction: Artistic gymnastics is one of the most demanding sports disciplines, with the athletes demonstrating extremely high levels of explosive power and strength. Currently, knowledge of the effect of gymnastic training adaptation on exercise-induced inflammatory response is limited. The study aimed to evaluate inflammatory response following lower- and upper-body high-intensity exercise in relation to the iron status in gymnasts and non-athletes. Methods: Fourteen elite male artistic gymnasts (EAG, 20.6 ± 3.3 years old) and 14 physically active men (PAM, 19.9 ± 1.0 years old) participated in the study. Venous blood samples were taken before and 5 min and 60 min after two variants of Wingate anaerobic test (WAnT), upper-body and lower-body WAnT. Basal iron metabolism (serum iron and ferritin) and acute responses of selected inflammatory response markers [interleukin (IL) 6, IL-10, and tumour necrosis factor α] were analysed. Results: EAG performed significantly better during upper-body WAnT than PAM regarding relative mean and peak power. The increase in IL-6 levels after upper-body WAnT was higher in EAG than in PAM; the opposite was observed after lower-body WAnT. IL-10 levels were higher in EAG than in PAM, and tumour necrosis factor α levels were higher in PAM than those in EAG only after lower-body WAnT. The changes in IL-10 correlated with baseline serum iron and ferritin in PAM. Discussion: Overall, gymnastic training is associated with the attenuation of iron-dependent post-exercise anti-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Andrzej Kochanowicz
- Department of Gymnastics, Dance and Musical and Movement Exercises, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | | | - Bartłomiej Niespodziński
- Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Paulina Brzezińska
- Department of Gymnastics, Dance and Musical and Movement Exercises, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | | | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdańsk, Poland
| | - Jan Mieszkowski
- Department of Gymnastics, Dance and Musical and Movement Exercises, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
4
|
Wei D, Qu C, Zhao N, Li S, Pu N, Song Z, Tao Y. The significance of precisely regulating heme oxygenase-1 expression: Another avenue for treating age-related ocular disease? Ageing Res Rev 2024; 97:102308. [PMID: 38615894 DOI: 10.1016/j.arr.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Aging entails the deterioration of the body's organs, including overall damages at both the genetic and cellular levels. The prevalence of age-related ocular disease such as macular degeneration, dry eye diseases, glaucoma and cataracts is increasing as the world's population ages, imposing a considerable economic burden on individuals and society. The development of age-related ocular disease is predominantly triggered by oxidative stress and chronic inflammatory reaction. Heme oxygenase-1 (HO-1) is a crucial antioxidant that mediates the degradative process of endogenous iron protoporphyrin heme. It catalyzes the rate-limiting step of the heme degradation reaction, and releases the metabolites such as carbon monoxide (CO), ferrous, and biliverdin (BV). The potent scavenging activity of these metabolites can help to defend against peroxides, peroxynitrite, hydroxyl, and superoxide radicals. Other than directly decomposing endogenous oxidizing substances (hemoglobin), HO-1 is also a critical regulator of inflammatory cells and tissue damage, exerting its anti-inflammation activity through regulating complex inflammatory networks. Therefore, promoting HO-1 expression may act as a promising therapeutic strategy for the age-related ocular disease. However, emerging evidences suggest that the overexpression of HO-1 significantly contributes to ferroptosis due to its dual nature. Surplus HO-1 leads to excessive Fe2+ and reactive oxygen species, thereby causing lipid peroxidation and ferroptosis. In this review, we elucidate the role of HO-1 in countering age-related disease, and summarize recent pharmacological trials that targeting HO-1 for disease management. Further refinements of the knowledge would position HO-1 as a novel therapeutic target for age-related ocular disease.
Collapse
Affiliation(s)
- Dong Wei
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Chengkang Qu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, China
| | - Ning Pu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Zongming Song
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
5
|
Shagidov D, Guttmann-Raviv N, Cunat S, Frech L, Giansily-Blaizot M, Ghatpande N, Abelya G, Frank GA, Aguilar Martinez P, Meyron-Holtz EG. A newly identified ferritin L-subunit variant results in increased proteasomal subunit degradation, impaired complex assembly, and severe hypoferritinemia. Am J Hematol 2024; 99:12-20. [PMID: 37867341 DOI: 10.1002/ajh.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Ferritin is a hetero-oligomeric nanocage, composed of 24 subunits of two types, FTH1 and FTL. It protects the cell from excess reactive iron, by storing iron in its cavity. FTH1 is essential for the recruitment of iron into the ferritin nanocage and for cellular ferritin trafficking, whereas FTL contributes to nanocage stability and iron nucleation inside the cavity. Here we describe a female patient with a medical history of severe hypoferritinemia without anemia. Following inadequate heavy IV iron supplementation, the patient developed severe iron overload and musculoskeletal manifestations. However, her serum ferritin levels rose only to normal range. Genetic analyses revealed an undescribed homozygous variant of FTL (c.92A > G), which resulted in a Tyr31Cys substitution (FTLY31C ). Analysis of the FTL structure predicted that the Y31C mutation will reduce the variant's stability. Expression of the FTLY31C variant resulted in significantly lower cellular ferritin levels compared with the expression of wild-type FTL (FTLWT ). Proteasomal inhibition significantly increased the initial levels of FTLY31C , but could not protect FTLY31C subunits from successive degradation. Further, variant subunits successfully incorporated into hetero-polymeric nanocages in the presence of sufficient levels of FTH1. However, FTLY31C subunits poorly assembled into nanocages when FTH1 subunit levels were low. These results indicate an increased susceptibility of unassembled monomeric FTLY31C subunits to proteasomal degradation. The decreased cellular assembly of FTLY31C -rich nanocages may explain the low serum ferritin levels in this patient and emphasize the importance of a broader diagnostic approach of hypoferritinemia without anemia, before IV iron supplementation.
Collapse
Affiliation(s)
- Dayana Shagidov
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| | - Noga Guttmann-Raviv
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| | - Séverine Cunat
- Department of Hematology Biology, CHU and University of Montpellier, Hôpital Saint Eloi, Montpellier Cedex 5, France
| | - Liora Frech
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| | - Muriel Giansily-Blaizot
- Department of Hematology Biology, CHU and University of Montpellier, Hôpital Saint Eloi, Montpellier Cedex 5, France
| | - Niraj Ghatpande
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| | - Gili Abelya
- Department of Life Sciences, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gabriel A Frank
- Department of Life Sciences, Marcus Family Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev - NIBN, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Patricia Aguilar Martinez
- Department of Hematology Biology, CHU and University of Montpellier, Hôpital Saint Eloi, Montpellier Cedex 5, France
| | - Esther G Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Israel Institute of Technology-Technion, Haifa, Israel
| |
Collapse
|
6
|
Świątek M, Antosik A, Kochanowska D, Jeżowski P, Smarzyński K, Tomczak A, Kowalczewski PŁ. The potential for the use of leghemoglobin and plant ferritin as sources of iron. Open Life Sci 2023; 18:20220805. [PMID: 38152583 PMCID: PMC10751998 DOI: 10.1515/biol-2022-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Iron is an essential component for the body, but it is also a major cause for the development of many diseases such as cancer, cardiovascular diseases, and autoimmune diseases. It has been suggested that a diet rich in meat products, especially red meat and highly processed products, constitute a nutritional model that increases the risk of developing. In this context, it is indicated that people on an elimination diet (vegetarians and vegans) may be at risk of deficiencies in iron, because this micronutrient is found mainly in foods of animal origin and has lower bioavailability in plant foods. This article reviews the knowledge on the use of leghemoglobin and plant ferritin as sources of iron and discusses their potential for use in vegetarian and vegan diets.
Collapse
Affiliation(s)
- Michał Świątek
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Adrianna Antosik
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Dominika Kochanowska
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965Poznań, Poland
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| |
Collapse
|
7
|
Planned Physical Workload in Young Tennis Players Induces Changes in Iron Indicator Levels but Does Not Cause Overreaching. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063486. [PMID: 35329172 PMCID: PMC8953378 DOI: 10.3390/ijerph19063486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023]
Abstract
The current study aimed to examine the impact of the training load of two different training camps on the immunological response in tennis players, including their iron metabolism. Highly ranked Polish tennis players, between the ages of 12 and 14 years, participated in two training camps that were aimed at physical conditioning and at improving technical skills. At baseline and after each camp, blood samples were analyzed, and the fatigue was assessed. The levels of pro- and anti-inflammatory indicators, iron, and hepcidin were determined. The levels of the heat shock proteins, (Hsp) 27 and 70, were also measured. All the effects were evaluated using magnitude-based inference. Although the training camps had different objectives, the physiological responses of the participants were similar. The applied programs induced a significant drop in the iron and hepcidin levels (a small-to-very-large effect) and enhanced the anti-inflammatory response. The tumor necrosis factor α levels were elevated at the beginning of each camp but were decreased towards the end, despite the training intensity being medium/high. The changes were more pronounced in the female players compared to the male players. Altogether, the results suggest that low-grade inflammation in young tennis athletes may be attenuated in response to adequately designed training. To this end, the applied physical workload with a controlled diet and rest-controlled serum iron levels could be the marker of well-designed training.
Collapse
|
8
|
He S, Xue J, Cao P, Hou J, Cui Y, Chang J, Huang L, Han Y, Duan X, Tan K, Fan Y. JNK/Itch Axis Mediates the Lipopolysaccharide-Induced Ubiquitin-Proteasome-Dependent Degradation of Ferritin Light Chain in Murine Macrophage Cells. Inflammation 2021; 45:1089-1100. [PMID: 34837126 DOI: 10.1007/s10753-021-01603-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Ferritin, which is composed of a heavy chain and a light chain, plays a critical role in maintaining iron homeostasis by sequestering iron. The ferritin light chain (FTL) is responsible for the stability of the ferritin complex. We have previously shown that overexpression of FTL decreases the levels of the labile iron pool (LIP) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-treated murine macrophage cells. The protein level of FTL was downregulated by LPS within a short treatment period. However, the mechanism underlying the LPS-induced changes in the FTL levels is not known. In the present study, we report that LPS induces the ubiquitin-proteasome-dependent degradation of FTL and that the mechanism of LPS-induced FTL degradation involves the JNK/Itch axis. We found that LPS downregulates the protein and mRNA levels of FTL in a time-dependent manner. The proteasome inhibitor MG-132 significantly reverses the LPS-induced decrease in FTL. Furthermore, we observed that LPS treatment cannot cause ubiquitination of the lysine site (K105 and K144) mutant of FTL. Interestingly, LPS-mediated ubiquitin-dependent degradation of FTL is significantly inhibited by the JNK-specific inhibitor SP600125. Moreover, LPS could upregulate the protein level of E3 ubiquitin ligase Itch, a substrate of JNK kinases. Immunoprecipitation analyses revealed an increase in the association of FTL with Itch, a substrate of JNK kinases, in response to LPS stimulation. SP600125 decreased LPS-induced Itch upregulation. Taken together, these results suggest that LPS stimulation leads to the degradation of FTL through the ubiquitin-proteasome proteolytic pathway, and this FTL degradation is mediated by the JNK/Itch axis in murine macrophage cells.
Collapse
Affiliation(s)
- Shufen He
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jianqi Xue
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Pengxiu Cao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jianyuan Hou
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Yan Cui
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jing Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Liying Huang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Yu Han
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Ke Tan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China.
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Yumei Fan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China.
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|
9
|
Zhao Y, Mei G, Zhou F, Kong B, Chen L, Chen H, Wang L, Tang Y, Yao P. Vitamin D decreases pancreatic iron overload in type 2 diabetes through the NF-κB-DMT1 pathway. J Nutr Biochem 2021; 99:108870. [PMID: 34563663 DOI: 10.1016/j.jnutbio.2021.108870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/30/2021] [Accepted: 09/12/2021] [Indexed: 01/04/2023]
Abstract
Emerging evidence has deemed vitamin D as a potential candidate for the intervention of type 2 diabetes (T2D). Herein, we explored the underlying mechanisms of T2D prevention by vitamin D, concentrating on pancreatic iron deposition reported recently. Zucker diabetic fatty (ZDF) rats were treated by vitamin D, with age-matched Zucker lean rats as control. As expected, vitamin D treatment for ZDF rats normalized islet morphology and β-cell function. Moreover, vitamin D alleviated iron accumulation and apoptosis in pancreatic cells of ZDF rats, accompanied by lowered divalent metal transporter 1 (DMT1) expression. Consistently, similar results were observed in high glucose-stimulated INS-1 cells treated with or without vitamin D. Nuclear factor-κB (NF-κB), a transcription factor involving DMT1 regulation, was activated in pancreases of ZDF rats and INS-1 cells exposed to high glucose, but inactivated by vitamin D or BAY 11-7082, a NF-κB inhibitor. Futhermore, IL-1β functioning as NF-κB activator abolished the suppression of NF-κB activation, DMT1 induction and the attenuation of apoptosis as a consequence of vitamin D incubation. Our study showed that iron overload in pancreas may contribute to T2D pathogenesis and uncovered a potentially protective role for vitamin D on iron deposition of diabetic pancreas through NF-κB- DMT1 signaling.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guibin Mei
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxuan Kong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Zhang H, Jiao W, Cui H, Sun Q, Fan H. Combined exposure of alumina nanoparticles and chronic stress exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway in rats. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125179. [PMID: 33858114 DOI: 10.1016/j.jhazmat.2021.125179] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (AlNPs) exposure causes hippocampal-dependent cognitive dysfunction. However, whether chronic stress exacerbates AlNPs-induced hippocampal lesion and its mechanism remains unclear. This study was aimed to investigate the combined effects and mechanisms of AlNPs and chronic stress on the hippocampal lesion. The behavioral tests demonstrated that combined exposure to AlNPs and chronic restraint stress (CRS) worsened both cognition and depression-like behavior than exposed to AlNPs and CRS alone. Microstructural and ultrastructural observations showed that combined exposure to AlNPs and CRS exacerbated hippocampal damage. Both AlNPs and CRS induced hippocampal neuronal ferroptosis, presenting as iron and glutamate metabolism disorder, GPX4 fluorescence of neurons decrease, LPO and ROS levels increase, and FJB-positive neurons increase. Meanwhile, combined exposure to AlNPs and CRS exacerbated hippocampal neuronal ferroptosis. Mechanism investigation revealed that combined exposure to AlNPs and CRS activated IFN-γ/ASK1/JNK signaling pathway. Furthermore, IFN-γ neutralizing antibody R4-6A2 effectively inhibited the activation of IFN-γ/ASK1/JNK signaling pathway, alleviated hippocampal neuronal ferroptosis and improved cognition ability. ASK1 inhibitor GS-4997 also improved hippocampal neuronal ferroptosis and cognitive dysfunction by inhibiting ASK1/JNK signaling pathway. Together, these results demonstrate that combined exposure to AlNPs and CRS exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hailin Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qinghong Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Khodayar MJ, Kalantari H, Khorsandi L, Ahangar N, Samimi A, Alidadi H. Taurine attenuates valproic acid-induced hepatotoxicity via modulation of RIPK1/RIPK3/MLKL-mediated necroptosis signaling in mice. Mol Biol Rep 2021; 48:4153-4162. [PMID: 34032977 DOI: 10.1007/s11033-021-06428-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
Valproic acid (VPA) is known as a common drug in seizure and bipolar disorders treatment. Hepatotoxicity is the most important complication of VPA. Taurine (Tau), an amino acid, has antioxidant effects. The present research was conducted to evaluate the protective mechanisms of Tau on VPA-induced liver injury, especially focusing on the necroptosis signaling pathway. The sixty-four male NMRI mice were divided into eight groups with eight animals per each. The experiment groups pretreated with Tau (250, 500, 1000 mg/kg) and necrostatine-1 (Nec-1, 1.8 mg/kg) and then VPA (500 mg/kg) was administered for 14 consecutive days. The extent of VPA-induced hepatotoxicity was confirmed by elevated ALP (alkaline phosphatase), AST (aspartate aminotransferase), ALT (alanine aminotransferase) levels, and histological changes as steatosis, accumulation of erythrocytes, and inflammation. Additionally, VPA significantly induced oxidative stress in the hepatic tissue by increasing ROS (reactive oxygen species) production and lipid peroxidation level along with decreasing GSH (glutathione). Hepatic TNF-α (tumor necrosis factor) level, mRNA and protein expression of RIPK1 (receptor-interacting protein kinase 1), RIPK3, and MLKL (mixed lineage kinase domain-like pseudokinase) were upregulated. Also, the phosphorylation of MLKL and RIPK3 increased in the VPA group. Tau could effectively reverse these events. Our data suggest which necroptosis has a key role in the toxicity of VPA through TNF-α-mediated RIPK1/RIPK3/MLKL signaling and oxidative stress. Our findings suggest that Tau protects the liver tissue against VPA toxicity via inhibiting necroptosis signaling pathway mediated by RIPK1/RIPK3/MLKL and suppressing oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Samimi
- Legal Medicine Research Center, Legal Medicine Organization, Legal Medicine Office of Khuzestan, Ahvaz, Iran
| | - Hadis Alidadi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Liang W, Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol 2021; 11:626812. [PMID: 33679721 PMCID: PMC7928394 DOI: 10.3389/fimmu.2020.626812] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cells of the innate immune system are a major component of the tumor microenvironment. They play complex and multifaceted roles in the regulation of cancer initiation, growth, metastasis and responses to therapeutics. Innate immune cells like neutrophils and macrophages are recruited to cancerous tissues by chemotactic molecules released by cancer cells and cancer-associated stromal cells. Once they reach the tumor, they can be instructed by a network of proteins, nucleic acids and metabolites to exert protumoral or antitumoral functions. Altered iron metabolism is a feature of cancer. Epidemiological studies suggest that increased presence of iron and/or iron binding proteins is associated with increased risks of cancer development. It has been shown that iron metabolism is involved in shaping the immune landscapes in inflammatory/infectious diseases and cancer-associated inflammation. In this article, we will dissect the contribution of macrophages and neutrophils to dysregulated iron metabolism in malignant cells and its impact on cancer growth and metastasis. The mechanisms involved in regulating the actions of macrophages and neutrophils will also be discussed. Moreover, we will examine the effects of iron metabolism on the phenotypes of innate immune cells. Both iron chelating and overloading agents are being explored in cancer treatment. This review highlights alternative strategies for management of iron content in cancer cells by targeting the iron donation and modulation properties of macrophages and neutrophils in the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Liang
- Oncology, BioDuro LLC, San Diego, CA, United States
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Zhang N, Yu X, Xie J, Xu H. New Insights into the Role of Ferritin in Iron Homeostasis and Neurodegenerative Diseases. Mol Neurobiol 2021; 58:2812-2823. [PMID: 33507490 DOI: 10.1007/s12035-020-02277-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence has indicated that iron deposition is one of the key factors leading to neuronal death in the neurodegenerative diseases. Ferritin is a hollow iron storage protein composed of 24 subunits of two types, ferritin heavy chain (FTH) and ferritin light chain (FTL), which plays an important role in maintaining iron homeostasis. Recently, the discovery of extracellular ferritin and ferritin in exosomes indicates that ferritin might be not only an iron storage protein within the cell, but might also be an important factor in the regulation of tissue and body iron homeostasis. In this review, we first described the structural characteristics, regulation and the physiological functions of ferritin. Secondly, we reviewed the current evidence concerning the mechanisms underlying the secretion of ferritin and the possible role of secreted ferritin in the brain. Then, we summarized the relationship between ferritin and the neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD) and neuroferritinopathy (NF). Given the importance and relationship between iron and neurodegenerative diseases, understanding the role of ferritin in the brain can be expected to contribute to our knowledge of iron dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Xiaoqi Yu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. .,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. .,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
14
|
Liu Z, Fu Q, Tang S, Xie Y, Meng Q, Tang X, Zhang S, Zhang H, Schroyen M. Proteomics analysis of lung reveals inflammation and cell death induced by atmospheric H 2S exposure in pig. ENVIRONMENTAL RESEARCH 2020; 191:110204. [PMID: 32937176 DOI: 10.1016/j.envres.2020.110204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) is a popular toxic environmental gas and industrial pollutant, which can be harmful to multiple organ systems of both human and livestock, especially to the respiratory system. However, the injury mechanism of H2S exposure to lung remains poorly understood. In this study, pig lung was selected as a H2S exposure model for the first time. We first examined the histological damage and the mRNA expression of pro-inflammatory genes of lung in pigs exposed to H2S. Histopathology change and increased mRNA level of pro-inflammatory cytokines demonstrated that H2S exposure indeed induced inflammatory injury in the porcine lung. We then performed TMT-based quantitative proteomics analysis to probe the injury molecular mechanism. The proteomics results showed that 526 proteins have significant changes in abundance between control and H2S treated swine. Further validation analysis of some H2S responsive proteins using both Real-time quantitative PCR and western blotting demonstrated that proteomics data are reliable. KEGG pathway analysis revealed that these proteins were involved in antigen processing and presentation, complement and coagulation cascade, IL-17 signaling pathway, ferroptosis and necroptosis. Our data suggest that H2S exposure induced immune suppression, inflammatory response and cell death. These findings provide a new insight into the complexity mechanisms of H2S induced lung injury, and offer therapeutic potential as drug targets with a view towards curing the intoxication caused by H2S.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanjiao Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
15
|
Mieszkowski J, Stankiewicz B, Kochanowicz A, Niespodziński B, Borkowska A, Antosiewicz J. Effect of Ischemic Preconditioning on Marathon-Induced Changes in Serum Exerkine Levels and Inflammation. Front Physiol 2020; 11:571220. [PMID: 33192567 PMCID: PMC7609818 DOI: 10.3389/fphys.2020.571220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Participation in a long-distance run, e.g., marathon or ultramarathon, continues to increase. One side effect of long-distance running is excessive inflammation manifested by the rise in inflammatory cytokine levels. We here aimed to elucidate the effects of 10-day ischemic preconditioning (IPC) training on marathon-induced inflammation and to evaluate the role of serum-stored iron in this process. The study involved 19 recreational runners taking part in a marathon. IPC training was performed in the course of four cycles, by inflating and deflating a blood pressure cuff at 5-min intervals (IPC group, n = 10); the control group underwent sham training (n = 9). The levels of inflammatory and others markers (FSTL-1, IL-6, IL-15, leptin, resistin, TIMP-1, OSM, and LIF) were measured before and 24 h after training; and before, immediately after, and 24 h and 7 day after the marathon. The 10-day IPC training increased serum leptin levels. IL-6, IL-10, FLST-1, and resistin levels were increased, while TIMP-1 levels were decreased in all runners after the marathon. The changes were significantly blunted in runners from the IPC group compared with the control group. Baseline serum iron levels correlated with IL-6 and FSTL-1 levels; serum ferritin correlated with IL-6, FSTL-1, and resistin levels after the marathon. Conversely, serum TIMP-1 levels inversely correlated with serum iron levels. Although not evident at baseline, IPC training significantly reduced marathon-induced inflammation. In addition, the reduced responsiveness and attenuation of running-induced inflammation were inversely related to baseline serum iron and ferritin levels.
Collapse
Affiliation(s)
- Jan Mieszkowski
- Department of Gymnastics and Dance, Gdańsk, University of Physical Education and Sport, Gdańsk, Poland
| | - Błażej Stankiewicz
- Department of Biomedical Basis of Physical Culture, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdańsk, University of Physical Education and Sport, Gdańsk, Poland
| | - Bartłomiej Niespodziński
- Department of Anatomy and Biomechanics, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
16
|
Homocysteine-induced decrease in HUVEC cells' resistance to oxidative stress is mediated by Akt-dependent changes in iron metabolism. Eur J Nutr 2020; 60:1619-1631. [PMID: 32794021 PMCID: PMC7987610 DOI: 10.1007/s00394-020-02360-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases and also promotes neuronal death in various neurodegenerative diseases. There is evidence that iron can mediate homocysteine (Hcy) toxicity. Thus, the aim of this study was to investigate the effect of Hcy on iron metabolism in HUVEC and SH-SY5Y cells. METHODS HUVEC and SH-SY5Y cells were treated with 3 mM Hcy for a defined time. RESULTS We demonstrate that Hcy induced the upregulation of ferritins type L and H in HUVEC cells in a time-dependent manner and had no effect on the ferritins in SH-SY5Y cells. The change in ferritin expression was preceded by a significant decrease in the cellular level of the active form of Akt kinase in HUVEC but not in SH-SY5Y cells. An increase in ferritin L and H protein levels was observed in the Akt1, Akt2, Akt3 siRNA transfected cells, while in the cells transfected with FOXO3a siRNA, a decrease in both ferritins levels was noticed. Moreover, in the HUVEC cells treated with Hcy for 6 days, the active form of kinase Akt returned to the control level and it was accompanied by a drop in ferritin L and H protein levels. Cytotoxicity of hydrogen peroxide significantly increased in HUVEC cells pre-treated with Hcy for 24 h. CONCLUSIONS These data indicate that Hcy induces an increase in cellular ferritin level, and the process is mediated by alterations in Akt-FOXO3a signaling pathway.
Collapse
|
17
|
Moreira AC, Mesquita G, Gomes MS. Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions. Microorganisms 2020; 8:microorganisms8040589. [PMID: 32325688 PMCID: PMC7232436 DOI: 10.3390/microorganisms8040589] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential element for virtually all cell types due to its role in energy metabolism, nucleic acid synthesis and cell proliferation. Nevertheless, if free, iron induces cellular and organ damage through the formation of free radicals. Thus, iron levels must be firmly controlled. During infection, both host and microbe need to access iron and avoid its toxicity. Alterations in serum and cellular iron have been reported as important markers of pathology. In this regard, ferritin, first discovered as an iron storage protein, has emerged as a biomarker not only in iron-related disorders but also in inflammatory diseases, or diseases in which inflammation has a central role such as cancer, neurodegeneration or infection. The basic research on ferritin identification and functions, as well as its role in diseases with an inflammatory component and its potential as a target in host-directed therapies, are the main considerations of this review.
Collapse
Affiliation(s)
- Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Gonçalo Mesquita
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Marathon Run-induced Changes in the Erythropoietin-Erythroferrone-Hepcidin Axis are Iron Dependent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082781. [PMID: 32316587 PMCID: PMC7216253 DOI: 10.3390/ijerph17082781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Alterations in iron metabolism after physical activity are manifested through the rise of blood hepcidin (Hpc) levels. However, in many athletes, no changes in Hpc levels are observed after exercise despite the presence of inflammation. The missing links could be erythropoietin (EPO) and erythroferrone (ERFE), which down-regulate Hpc biosynthesis. EPO, ERFE and Hpc biosynthesis is modified by serum iron through transferrin receptor 2. Consequently, we investigated whether marathon-induced changes in EPO, ERFE and Hpc levels are blood iron-dependent. Twenty-nine healthy male marathon runners were analyzed. Serum iron, ferritin, transferrin, EPO, ERFE and Hpc levels were assessed before, immediately after, and 9 ± 2 days after the marathon. The runners whose serum Hpc decreased after the marathon (n = 15), showed a significant increase in ERFE levels. In athletes whose serum iron levels were below 105 µg/day (n = 15), serum EPO (p = 0.00) and ERFE levels (p = 0.00) increased with no changes in Hpc concentration. However, in athletes with low serum iron, no changes in EPO levels were observed when serum ferritin exceeded 70 ng/mL (n = 7). Conversely, an increase in ERFE levels was observed in marathoners with low serum iron, independently of serum ferritin (n = 7). This indicates modulation of blood iron may affect exercise-induced changes in the EPO/ERFE/Hpc axis. Further study is needed to fully understand the physiological meaning of the interdependence between iron and the EPO/ERFE/Hpc axis.
Collapse
|
19
|
Borkowska A, Popowska U, Spodnik J, Herman-Antosiewicz A, Woźniak M, Antosiewicz J. JNK/p66Shc/ITCH Signaling Pathway Mediates Angiotensin II-induced Ferritin Degradation and Labile Iron Pool Increase. Nutrients 2020; 12:nu12030668. [PMID: 32121405 PMCID: PMC7146217 DOI: 10.3390/nu12030668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (Ang II) induces deleterious changes in cellular iron metabolism and increases the generation of reactive oxygen species. This leads to an impairment of neuronal and vascular function. However, the mechanism underpinning Ang II-induced changes in iron metabolism is not known. We hypothesized that Ang II-induced ferritin degradation and an increase in the labile iron pool are mediated by the c-Jun N-terminal kinase (JNK)/p66Shc/ITCH signaling pathway. We show that Ang II treatment induced ferritin degradation in an endothelial cell lines derived from the bovine stem pulmonary artery (CPAE), human umbilical vein endothelial cells (HUVEC), and HT22 neuronal cells. Ferritin degradation was accompanied by an increase in the labile iron pool, as determined by changes in calcein fluorescence. The JNK inhibitor SP600125 abolished Ang II-induced ferritin degradation. Furthermore, the effect of Ang II on ferritin levels was completely abolished in cells transfected with vectors encoding catalytically inactive variants of JNK1 or JNK2. CPAE cells expressing inactive ITCHor p66Shc (substrates of JNK kinases) were completely resistant to Ang II-induced ferritin degradation. These observations suggest that Ang II-induced ferritin degradation and, hence, elevation of the levels of highly reactive iron, are mediated by the JNK/p66Shc/ITCH signaling pathway.
Collapse
Affiliation(s)
- Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; (A.B.); (J.A.); Tel.: +48-58-349-14-50 (A.B.)
| | - Urszula Popowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (U.P.); (M.W.)
| | - Jan Spodnik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Michał Woźniak
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (U.P.); (M.W.)
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; (A.B.); (J.A.); Tel.: +48-58-349-14-50 (A.B.)
| |
Collapse
|
20
|
Thakur B, Kumar Y, Bhatia A. Programmed necrosis and its role in management of breast cancer. Pathol Res Pract 2019; 215:152652. [PMID: 31570277 DOI: 10.1016/j.prp.2019.152652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the major causes of cancer related deaths in women worldwide. A major factor responsible for treatment failure in breast cancer is the development of resistance to commonly used chemotherapeutic drugs leading to disease relapse. Several studies have shown dysregulation of molecular machinery of apoptosis, the major programmed cell death pathway in breast malignancies. Thus, there is an unmet need to search for an alternative cell death pathway which can work when apoptosis is compromised. Necroptosis or programmed necrosis is a relatively recently described entity which has attracted attention in this context. Classically, even in physiological conditions necroptosis is found to act if apoptosis is not functional due to some reason. Recently, more and more studies are being conducted in different malignancies to explore the possibility and utility of inducing cell death by necroptosis. The present review describes the key molecular players involved in necroptotic pathway and their status in breast cancer. In addition, the research done to utilize this pathway for treatment of breast cancer has also been highlighted.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
21
|
Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj 2019; 1863:1398-1409. [DOI: 10.1016/j.bbagen.2019.06.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023]
|
22
|
Activation of PSGR with β-ionone suppresses prostate cancer progression by blocking androgen receptor nuclear translocation. Cancer Lett 2019; 453:193-205. [DOI: 10.1016/j.canlet.2019.03.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
|
23
|
Effect of intense physical exercise on hepcidin levels and selected parameters of iron metabolism in two different trial of training. Sci Sports 2019. [DOI: 10.1016/j.scispo.2018.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Ferritin Genes Overexpression in PBMC and a Rise in Exercise Performance as an Adaptive Response to Ischaemic Preconditioning in Young Men. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9576876. [PMID: 31111074 PMCID: PMC6487173 DOI: 10.1155/2019/9576876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Objectives The proposal of this study was to evaluate the effect of acute and ten-day ischaemic preconditioning (IPC) training procedure on the Wingate Anaerobic Test (WAnT), the ferritin H (FTH), ferritin L (FTL), and transferrin receptor 1 (TFRC) mRNA expression in peripheral blood mononuclear cells (PBMC), and anaerobic performance. Method 34 healthy men volunteers (aged 20.7 ± 1.22 years) participated in the study. The effects of bilateral upper limb IPC and sham controlled condition were assessed in two experimental protocols: (a) the influence of acute (one time) IPC based on an experimental crossover study design and (b) the influence of ten-day IPC training treatment based on a random group assignment. At the beginning and at the end of each experiment upper body WAnT was performed and blood samples were collected to assess gene expression via quantitative PCR (qPCR). Results No significant effect of one-time ischaemic preconditioning procedure was observed on upper body WAnT performance. Ten-day IPC training significantly increased upper limbs relative mean power (from 5.29 ± 0.50 to 5.79 ± 0.70 (W/kg), p < 0.05). One-time IPC caused significant decrease in FTH, FTL, and TFRC mRNA levels while 10 days of IPC resulted in significant increase of FTH and FTL mRNA (from 2 ∧254.2 to 2 ∧1678.6 (p = 0.01) for FTH and 2 ∧81.5 to 2 ∧923 (p = 0.01) for FTL) and decrease in TFRC mRNA. Conclusions Our findings suggest that ten-day IPC training intervention significantly affects upper limb relative peak power. The observed overexpression of FTH and FTL genes could be associated with adaptation response induced by prolonged IPC.
Collapse
|
25
|
Florean C, Song S, Dicato M, Diederich M. Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis. Free Radic Biol Med 2019; 134:177-189. [PMID: 30639617 DOI: 10.1016/j.freeradbiomed.2019.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
Redox changes and generation of reactive oxygen species (ROS) are part of normal cell metabolism. While low ROS levels are implicated in cellular signaling pathways necessary for survival, higher levels play major roles in cancer development as well as cell death signaling and execution. A role for redox changes in apoptosis has been long established; however, several new modalities of regulated cell death have been brought to light, for which the importance of ROS production as well as ROS source and targets are being actively investigated. In this review, we summarize recent findings on the role of ROS and redox changes in the activation and execution of two major forms of regulated cell death, necroptosis and ferroptosis. We also discuss the potential of using modulators of these two forms of cell death to exacerbate ROS as a promising anticancer therapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Sungmi Song
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
26
|
Halon-Golabek M, Borkowska A, Herman-Antosiewicz A, Antosiewicz J. Iron Metabolism of the Skeletal Muscle and Neurodegeneration. Front Neurosci 2019; 13:165. [PMID: 30949015 PMCID: PMC6436082 DOI: 10.3389/fnins.2019.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies clearly indicate that the endocrine function of the skeletal muscle is essential for a long and healthy life. Regular exercise, which has been shown to stimulate the release of myokines, lowers the risk of many diseases, including Alzheimer’s and Parkinson’s disease, emphasizing the role of skeletal muscle in proper functioning of other tissues. In addition, exercise increases insulin sensitivity, which may also impact iron metabolism. Even though the role of iron in neurodegeneration is well established, the exact mechanisms of iron toxicity are not known. Interestingly, exercise has been shown to modulate iron metabolism, mainly by reducing body iron stores. Insulin signaling and iron metabolism are interconnected, as high tissue iron stores are associated with insulin resistance, and conversely, impaired insulin signaling may lead to iron accumulation in an affected tissue. Excess iron accumulation in tissue triggers iron-dependent oxidative stress. Further, iron overload in the skeletal muscle not only negatively affects muscle contractility but also might impact its endocrine function, thus possibly affecting the clinical outcome of diseases, including neurodegenerative diseases. In this review, we discuss possible mechanisms of iron dependent oxidative stress in skeletal muscle, its impact on muscle mass and endocrine function, as well as on neurodegeneration processes.
Collapse
Affiliation(s)
- Malgorzata Halon-Golabek
- Department of Physiotherapy, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jedrzej Antosiewicz
- Department of Biochemistry, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
27
|
Toor A, Culibrk L, Singhera GK, Moon KM, Prudova A, Foster LJ, Moore MM, Dorscheid DR, Tebbutt SJ. Transcriptomic and proteomic host response to Aspergillus fumigatus conidia in an air-liquid interface model of human bronchial epithelium. PLoS One 2018; 13:e0209652. [PMID: 30589860 PMCID: PMC6307744 DOI: 10.1371/journal.pone.0209652] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is a wide-spread fungus that is a potent allergen in hypersensitive individuals but also an opportunistic pathogen in immunocompromised patients. It reproduces asexually by releasing airborne conidiospores (conidia). Upon inhalation, fungal conidia are capable of reaching the airway epithelial cells (AECs) in bronchial and alveolar tissues. Previous studies have predominantly used submerged monolayer cultures for studying this host-pathogen interaction; however, these cultures do not recapitulate the mucocililary differentiation phenotype of the in vivo epithelium in the respiratory tract. Thus, the aim of this study was to use well-differentiated primary human bronchial epithelial cells (HBECs) grown at the air-liquid interface (ALI) to determine their transcriptomic and proteomic responses following interaction with A. fumigatus conidia. We visualized conidial interaction with HBECs using confocal laser scanning microscopy (CLSM), and applied NanoString nCounter and shotgun proteomics to assess gene expression changes in the human cells upon interaction with A. fumigatus conidia. Western blot analysis was used to assess the expression of top three differentially expressed proteins, CALR, SET and NUCB2. CLSM showed that, unlike submerged monolayer cultures, well-differentiated ALI cultures of primary HBECs were estimated to internalize less than 1% of bound conidia. Nevertheless, transcriptomic and proteomic analyses revealed numerous differentially expressed host genes; these were enriched for pathways including apoptosis/autophagy, translation, unfolded protein response and cell cycle (up-regulated); complement and coagulation pathways, iron homeostasis, nonsense mediated decay and rRNA binding (down-regulated). CALR and SET were confirmed to be up-regulated in ALI cultures of primary HBECs upon exposure to A. fumigatus via western blot analysis. Therefore, using transcriptomics and proteomics approaches, ALI models recapitulating the bronchial epithelial barrier in the conductive zone of the respiratory tract can provide novel insights to the molecular response of bronchial epithelial cells upon exposure to A. fumigatus conidia.
Collapse
Affiliation(s)
- Amreen Toor
- Experimental Medicine, University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Luka Culibrk
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Anna Prudova
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Scott J. Tebbutt
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
| |
Collapse
|
28
|
Halon-Golabek M, Borkowska A, Kaczor JJ, Ziolkowski W, Flis DJ, Knap N, Kasperuk K, Antosiewicz J. hmSOD1 gene mutation-induced disturbance in iron metabolism is mediated by impairment of Akt signalling pathway. J Cachexia Sarcopenia Muscle 2018; 9:557-569. [PMID: 29380557 PMCID: PMC5989766 DOI: 10.1002/jcsm.12283] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recently, skeletal muscle atrophy, impairment of iron metabolism, and insulin signalling have been reported in rats suffering from amyotrophic lateral sclerosis (ALS). However, the interrelationship between these changes has not been studied. We hypothesize that an impaired Akt-FOXO3a signalling pathway triggers changes in the iron metabolism in the muscles of transgenic animals. METHODS In the present study, we used transgenic rats bearing the G93A hmSOD1 gene and their non-transgenic littermates. The study was performed on the muscles taken from animals at three different stages of the disease: asymptomatic (ALS I), the onset of the disease (ALS II), and the terminal stage of the disease (ALS III). In order to study the molecular mechanism of changes in iron metabolism, we used SH-SY5Y and C2C12 cell lines stably transfected with pcDNA3.1, SOD1 WT and SOD1 G93A, or FOXO3a TM-ER. RESULTS A significant decrease in P-Akt level and changes in iron metabolism were observed even in the group of ALS I animals. This was accompanied by an increase in the active form of FOXO3a, up-regulation of atrogin-1, and catalase. However, significant muscle atrophy was observed in ALS II animals. An increase in ferritin L and H was accompanied by a rise in PCBP1 and APP protein levels. In SH-SY5Y cells stably expressing SOD1 or SOD1 G93A, we observed elevated levels of ferritin L and H and non-haem iron. Interestingly, insulin treatment significantly down-regulated ferritin L and H proteins in the cell. Conversely, cells transfected with small interfering RNA against Akt 1, 2, 3, respectively, showed a significant increase in the ferritin and FOXO3a levels. In order to assess the role of FOXO3a in the ferritin expression, we constructed a line of SH-SY5Y cells that expressed a fusion protein made of FOXO3a fused at the C-terminus with the ligand-binding domain of the oestrogen receptor (TM-ER) being activated by 4-hydroxytamoxifen. Treatment of the cells with 4-hydroxytamoxifen significantly up-regulated ferritin L and H proteins level. CONCLUSIONS Our data suggest that impairment of insulin signalling and iron metabolism in the skeletal muscle precedes muscle atrophy and is mediated by changes in Akt/FOXO3a signalling pathways.
Collapse
Affiliation(s)
| | - Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jan J Kaczor
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland.,Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| | - Wieslaw Ziolkowski
- Department of Bioenergetics and Nutrition, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| | - Damian J Flis
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland.,Department of Bioenergetics and Nutrition, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Kajetan Kasperuk
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, 80-211, Poland.,Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, 80-336, Poland
| |
Collapse
|
29
|
Basu T, Panja S, Shendge AK, Das A, Mandal N. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation. ENVIRONMENTAL TOXICOLOGY 2018; 33:603-618. [PMID: 29446234 DOI: 10.1002/tox.22549] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Tannic acid (TA), a water soluble natural polyphenol with 8 gallic acids groups, is abundantly present in various medicinal plants. Previously TA has been investigated for its antimicrobial and antifungal properties. Being a large polyphenol, TA chelates more than 1 metal. Hence TA has been explored for potent antioxidant activities against reactive oxygen species (ROS), reactive nitrogen species (RNS) and as iron chelator in vitro thereby mitigating iron-overload induced hepatotoxicity in vivo. Iron dextran was injected intraperitoneally in Swiss albino mice to induce iron-overload triggered hepatotoxicity, followed by oral administration of TA for remediation. After treatment, liver, spleen, and blood samples were processed from sacrificed animals. The liver iron, serum ferritin, serum markers, ROS, liver antioxidant status, and liver damage parameters were assessed, followed by histopathology and protein expression studies. Our results show that TA is a prominent ROS and RNS scavenger as well as iron chelator in vitro. It also reversed the ROS levels in vivo and restricted the liver damage parameters as compared to the standard drug, desirox. Moreover, this natural polyphenol exclusively ameliorates the histopathological and fibrotic changes in liver sections reducing the iron-overload, along with chelation of liver iron and normalization of serum ferritin. The protective role of TA against iron-overload induced apoptosis in liver was further supported by changed levels of caspase 3, PARP as well as Bax/BCl-2 ratio. Thus, TA can be envisaged as a better orally administrable iron chelator to reduce iron-overload induced hepatotoxicity through ROS regulation.
Collapse
Affiliation(s)
- Tapasree Basu
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| | - Anil Khushalrao Shendge
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| |
Collapse
|
30
|
Effects of an Acute Exercise Bout on Serum Hepcidin Levels. Nutrients 2018; 10:nu10020209. [PMID: 29443922 PMCID: PMC5852785 DOI: 10.3390/nu10020209] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023] Open
Abstract
Iron deficiency is a frequent and multifactorial disorder in the career of athletes, particularly in females. Exercise-induced disturbances in iron homeostasis produce deleterious effects on performance and adaptation to training; thus, the identification of strategies that restore or maintain iron homeostasis in athletes is required. Hepcidin is a liver-derived hormone that degrades the ferroportin transport channel, thus reducing the ability of macrophages to recycle damaged iron, and decreasing iron availability. Although it has been suggested that the circulating fraction of hepcidin increases during early post-exercise recovery (~3 h), it remains unknown how an acute exercise bout may modify the circulating expression of hepcidin. Therefore, the current review aims to determine the post-exercise expression of serum hepcidin in response to a single session of exercise. The review was carried out in the Dialnet, Elsevier, Medline, Pubmed, Scielo and SPORTDiscus databases, using hepcidin (and “exercise” or “sport” or “physical activity”) as a strategy of search. A total of 19 articles were included in the review after the application of the inclusion/exclusion criteria. This search found that a single session of endurance exercise (intervallic or continuous) at moderate or vigorous intensity (60–90% VO2peak) stimulates an increase in the circulating levels of hepcidin between 0 h and 6 h after the end of the exercise bout, peaking at ~3 h post-exercise. The magnitude of the response of hepcidin to exercise seems to be dependent on the pre-exercise status of iron (ferritin) and inflammation (IL-6). Moreover, oxygen disturbances and the activation of a hypoxia-induced factor during or after exercise may stimulate a reduction of hepcidin expression. Meanwhile, cranberry flavonoids supplementation promotes an anti-oxidant effect that may facilitate the post-exercise expression of hepcidin. Further studies are required to explore the effect of resistance exercise on hepcidin expression.
Collapse
|
31
|
Reduction of Skeletal Muscle Power in Adolescent Males Carrying H63D Mutation in the HFE Gene. BIOMED RESEARCH INTERNATIONAL 2018; 2017:5313914. [PMID: 29362711 PMCID: PMC5736923 DOI: 10.1155/2017/5313914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022]
Abstract
Iron overload resulting from the mutation of genes involved in iron metabolism or excess dietary intake has been reported to negatively influence human physical performance. The aim of this study was to test the hypothesis that adolescents bearing a hemochromatosis gene (HFE) mutation in contrast to adults with the same mutation will not experience iron accumulation and their aerobic capacity will be similar to that of age-matched controls. Thirteen boys participated in the study. Seven of them are carriers of H63D mutation in the HFE gene and six were wild type. Fitness levels were assessed using the cardiopulmonary exercise test. In addition, iron status and inflammatory markers were determined. We observed that cardiovascular fitness was significantly lower in the group bearing the HFE mutation compared to the control group. Moreover, the HFE mutation group achieved lower maximal power output compared to the control group. There were no differences in blood ferritin concentrations between the two groups which indicates similar amounts of stored iron. Obtained data do not confirm our hypothesis. On the contrary, it was demonstrated that HFE mutation is associated with a lower level of aerobic capacity, even in the absence of iron accumulation.
Collapse
|
32
|
Tomczyk M, Kortas J, Flis D, Skrobot W, Camilleri R, Antosiewicz J. Simple sugar supplementation abrogates exercise-induced increase in hepcidin in young men. J Int Soc Sports Nutr 2017; 14:10. [PMID: 28428736 PMCID: PMC5397733 DOI: 10.1186/s12970-017-0169-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Abstract
Background At present many young people experience too much body iron accumulation. The reason of this phenomenon is not clear. There is accumulating evidences that not proper diet and lack of exercise could be a main contributing factors. This investigation assessed the effects of a diet rich in simple sugars (glucose or fructose) on exercise-induced hepcidin which is hormone regulating iron metabolism. Methods A group of physically active young men completed an incremental exercise test before and after a 3-day diet supplemented with fructose (4 g/kg BM) or glucose (4 g/kg BM). After a 1-week break, they crossed over to the alternate mode for the subsequent 3-days period. Venous blood samples were collected before and after 1 h exercise and were analysed for serum hepcidin, IL-6, CRP, iron, and ferritin. The physiological response to exercise was also determined. Results The concentration of hepcidin increased 1 h after exercise for the baseline test (p < 0.05), whereas no changes in hepcidin were observed in men whose diet was supplemented with fructose or glucose. Blood IL-6 increased significantly after exercise only in subjects supplemented with fructose. Changes in hepcidin did not correlate with shifts in serum IL-6. Conclusions These data suggest that protective effects of exercise on excess iron accumulation in human body which is mediated by hepcidin can be abrogated by high sugar consumption which is typical for contemporary people.
Collapse
Affiliation(s)
- Maja Tomczyk
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336 Gdansk, Poland
| | - Jakub Kortas
- Department of Recreation and Qualify Tourism, Gdansk University of PhysicalEducation and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland
| | - Damian Flis
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Skrobot
- Department of Physiotherapy, University of Physical Education and Sport, Kazimierza Gorskiego, Gdańsk, Poland
| | - Rafal Camilleri
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336 Gdansk, Poland
| | - Jedrzej Antosiewicz
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336 Gdansk, Poland
| |
Collapse
|
33
|
Hua Y, Wang C, Jiang H, Wang Y, Liu C, Li L, Liu H, Shao Z, Fu R. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes. Int J Hematol 2017; 106:248-257. [DOI: 10.1007/s12185-017-2237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
|
34
|
Kortas J, Kuchta A, Prusik K, Prusik K, Ziemann E, Labudda S, Ćwiklińska A, Wieczorek E, Jankowski M, Antosiewicz J. Nordic walking training attenuation of oxidative stress in association with a drop in body iron stores in elderly women. Biogerontology 2017; 18:517-524. [PMID: 28229255 PMCID: PMC5514214 DOI: 10.1007/s10522-017-9681-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
Abstract
Excess body iron accumulation and oxidative stress has been associated with ageing. Regular exercise has been shown to reduce oxidative stress and induce some changes in iron metabolism. However, the effects of exercise on both of these parameters have been poorly investigated. In our study, 35 elderly women participated in 12 weeks of Nordic walking (NW) training (three times a week). We demonstrated that the training caused a significant reduction in malondialdehyde advanced oxidation protein products—markers of oxidative stress but had no effects on paraoxonase 1 activity. These changes were associated with the decrease of blood ferritin (99.4 ± 62.7 vs. 81.4 ± 61.7 ng/ml p < 0.05). Measurement of physical fitness revealed that the training caused a significant improvement in performance and a negative correlation between the blood ferritin and endurance test was recorded (r = −0.34, p = 0.03). In addition, a significant correlation between blood ferritin and fasting glucose level was noted. The training induced a rise of HDL cholesterol from 70.8 ± 19.3–75.3 ± 21.1, p < 0.05, whereas other lipid parameters remained unchanged. In conclusion, NW training reduced body iron stores and it was associated with lower oxidative stress and better endurance.
Collapse
Affiliation(s)
- Jakub Kortas
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdansk, Poland.
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Prusik
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdansk, Poland
| | - Katarzyna Prusik
- Department of Biomedical Basis of Health, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Sandra Labudda
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Ewa Wieczorek
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jedrzej Antosiewicz
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, Poland
| |
Collapse
|
35
|
Rudolf K, Rudolf E. Antiproliferative effects of α-tomatine are associated with different cell death modalities in human colon cancer cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
36
|
Air pollution particles and iron homeostasis. Biochim Biophys Acta Gen Subj 2016; 1860:2816-25. [PMID: 27217087 DOI: 10.1016/j.bbagen.2016.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND The mechanism underlying biological effects, including pro-inflammatory outcomes, of particles deposited in the lung has not been defined. MAJOR CONCLUSIONS A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects. GENERAL SIGNIFICANCE Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation following exposure to disparate particles. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
|
37
|
Dzedzej A, Ignatiuk W, Jaworska J, Grzywacz T, Lipińska P, Antosiewicz J, Korek A, Ziemann E. The effect of the competitive season in professional basketball on inflammation and iron metabolism. Biol Sport 2016; 33:223-9. [PMID: 27601776 PMCID: PMC4993137 DOI: 10.5604/20831862.1201811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Following acute physical activity, blood hepcidin concentration appears to increase in response to exercise-induced inflammation, but the long-term impact of exercise on hepcidin remains unclear. Here we investigated changes in hepcidin and the inflammation marker interleukin-6 to evaluate professional basketball players' response to a season of training and games. The analysis also included vitamin D (25(OH)D3) assessment, owing to its anti-inflammatory effects. Blood samples were collected for 14 players and 10 control non-athletes prior to and after the 8-month competitive season. Athletes' performance was assessed with the NBA efficiency score. At the baseline hepcidin correlated with blood ferritin (r = 0.61; 90% CL ±0.31), but at the end of the season this correlation was absent. Compared with the control subjects, athletes experienced clear large increases in hepcidin (50%; 90% CI 15-96%) and interleukin-6 (77%; 90% CI 35-131%) and a clear small decrease in vitamin D (-12%; 90% CI -20 to -3%) at the season completion. Correlations between change scores of these variables were unclear (r = -0.21 to 0.24, 90% CL ±0.5), but their uncertainty generally excluded strong relationships. Athletes were hence concluded to have experienced acute inflammation at the beginning but chronic inflammation at the end of the competitive season. At the same time, the moderate correlation between changes in vitamin D and players' performance (r = 0.43) was suggestive of its beneficial influence. Maintaining the appropriative concentration of vitamin D is thus necessary for basketball players' performance and efficiency. The assessment of hepcidin has proven to be useful in diagnosing inflammation in response to chronic exercise.
Collapse
Affiliation(s)
- A Dzedzej
- Gdansk University of Physical Education and Sport, Department of Physiology and Pharmacology, Gdansk, Poland
| | - W Ignatiuk
- Gdansk University of Physical Education and Sport, Department of Physiology and Pharmacology, Gdansk, Poland
| | - J Jaworska
- Gdansk University of Physical Education and Sport, Department of Physiology and Pharmacology, Gdansk, Poland
| | - T Grzywacz
- Institute of Sport - National Research Institute, Department of Physiology, Warsaw, Poland
| | - P Lipińska
- Institute of Sport - National Research Institute, Department of Biomechanics, Warsaw, Poland
| | - J Antosiewicz
- Medical University of Gdansk, Department of Bioenergetics and Physiology of Exercise, Gdansk, Poland
| | - A Korek
- Basketball Team, Asseco Prokom, Gdynia, Poland
| | - E Ziemann
- Gdansk University of Physical Education and Sport, Department of Physiology and Pharmacology, Gdansk, Poland
| |
Collapse
|
38
|
Kortas J, Prusik K, Flis D, Prusik K, Ziemann E, Leaver N, Antosiewicz J. Effect of Nordic Walking training on iron metabolism in elderly women. Clin Interv Aging 2015; 10:1889-96. [PMID: 26664101 PMCID: PMC4669095 DOI: 10.2147/cia.s90413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Despite several, well-documented pro-healthy effects of regular physical training, its influence on body iron stores in elderly people remains unknown. At the same time, body iron accumulation is associated with high risk of different morbidities. PURPOSE We hypothesized that Nordic Walking training would result in pro-healthy changes in an elderly group of subjects by reducing body iron stores via shifts in iron metabolism-regulating proteins. METHODS Thirty-seven women aged 67.7±5.3 years participated in this study. They underwent 32 weeks of training, 1-hour sessions three times a week, between October 2012 and May 2013. Fitness level, blood morphology, CRP, vitamin D, ferritin, hepcidin, and soluble Hjv were assessed before and after the training. RESULTS The training program caused a significant decrease in ferritin, which serves as a good marker of body iron stores. Simultaneously, the physical cardiorespiratory fitness had improved. Furthermore, blood hepcidin was positively correlated with the ferritin concentration after the training. The concentration of blood CRP dropped, but the change was nonsignificant. The applied training resulted in a blood Hjv increase, which was inversely correlated with the vitamin D concentration. CONCLUSION Overall the Nordic Walking training applied in elderly people significantly reduced blood ferritin concentration, which explains the observed decrease in body iron stores.
Collapse
Affiliation(s)
- Jakub Kortas
- Department of Recreation and Tourism, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Katarzyna Prusik
- Department of Biomedical Basis of Health, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Damian Flis
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Prusik
- Department of Recreation and Tourism, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Neil Leaver
- The Immunosuppression monitoring service (IMS) Laboratory, Royal Brompton & Harefield NHS Foundation Trust, Heart Science Centre, Harefield Hospital, Harefield, UK
| | - Jedrzej Antosiewicz
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, Poland
| |
Collapse
|
39
|
Nkuipou-Kenfack E, Koeck T, Mischak H, Pich A, Schanstra JP, Zürbig P, Schumacher B. Proteome analysis in the assessment of ageing. Ageing Res Rev 2014; 18:74-85. [PMID: 25257180 DOI: 10.1016/j.arr.2014.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022]
Abstract
Based on demographic trends, the societies in many developed countries are facing an increasing number and proportion of people over the age of 65. The raise in elderly populations along with improved health-care will be concomitant with an increased prevalence of ageing-associated chronic conditions like cardiovascular, renal, and respiratory diseases, arthritis, dementia, and diabetes mellitus. This is expected to pose unprecedented challenges both for individuals and societies and their health care systems. An ultimate goal of ageing research is therefore the understanding of physiological ageing and the achievement of 'healthy' ageing by decreasing age-related pathologies. However, on a molecular level, ageing is a complex multi-mechanistic process whose contributing factors may vary individually, partly overlap with pathological alterations, and are often poorly understood. Proteome analysis potentially allows modelling of these multifactorial processes. This review summarises recent proteomic research on age-related changes identified in animal models and human studies. We combined this information with pathway analysis to identify molecular mechanisms associated with ageing. We identified some molecular pathways that are affected in most or even all organs and others that are organ-specific. However, appropriately powered studies are needed to confirm these findings based in in silico evaluation.
Collapse
Affiliation(s)
- Esther Nkuipou-Kenfack
- Mosaiques Diagnostics GmbH, Hannover, Germany; Hannover Medical School, Core Facility Proteomics, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany; BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Andreas Pich
- Hannover Medical School, Core Facility Proteomics, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | | | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
40
|
Reiniers MJ, van Golen RF, van Gulik TM, Heger M. Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver. Antioxid Redox Signal 2014; 21:1119-42. [PMID: 24294945 PMCID: PMC4123468 DOI: 10.1089/ars.2013.5486] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Hepatic ischemia-reperfusion (IR) injury results from the temporary deprivation of hepatic blood supply and is a common side effect of major liver surgery (i.e., transplantation or resection). IR injury, which in most severe cases culminates in acute liver failure, is particularly pronounced in livers that are affected by non-alcoholic fatty liver disease (NAFLD). In NAFLD, fat-laden hepatocytes are damaged by chronic oxidative/nitrosative stress (ONS), a state that is acutely exacerbated during IR, leading to extensive parenchymal damage. RECENT ADVANCES NAFLD triggers ONS via increased (extra)mitochondrial fatty acid oxidation and activation of the unfolded protein response. ONS is associated with widespread protein and lipid (per)oxidation, which reduces the hepatic antioxidative capacity and shifts the intracellular redox status toward an oxidized state. Moreover, activation of the transcription factor peroxisome proliferator-activated receptor α induces expression of mitochondrial uncoupling protein 2, resulting in depletion of cellular energy (ATP) reserves. The reduction in intracellular antioxidants and ATP in fatty livers consequently gives rise to severe ONS and necrotic cell death during IR. CRITICAL ISSUES Despite the fact that ONS mediates both NAFLD and IR injury, the interplay between the two conditions has never been described in detail. An integrative overview of the pathophysiology of NAFLD that renders steatotic hepatocytes more vulnerable to IR injury is therefore presented in the context of ONS. FUTURE DIRECTIONS Effective methods should be devised to alleviate ONS and the consequences thereof in NAFLD before surgery in order to improve resilience of fatty livers to IR injury.
Collapse
Affiliation(s)
- Megan J Reiniers
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
41
|
Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol 2014; 35:51-6. [PMID: 25065969 DOI: 10.1016/j.semcdb.2014.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 12/22/2022]
Abstract
Evasion of programmed cell death represents one of the hallmarks of cancers that contributes to tumor initiation, progression and treatment resistance. This calls for novel therapeutic concepts to reactivate cell death programs in human malignancies. Since necroptosis represents a regulated form of necrosis that is under the control of defined signal transduction pathways, it offers molecular targets for rational therapeutic intervention. Indeed, there is mounting evidence showing that many currently used anticancer agents can engage necroptotic signaling pathways and thereby elicit cell death in malignant cells. A better understanding of the signaling networks regulating necroptosis in cancer cells is expected to speed up the development of anticancer drugs for therapeutic exploitation of necroptosis for cancer therapy.
Collapse
|
42
|
Fan Y, Zhang J, Cai L, Wang S, Liu C, Zhang Y, You L, Fu Y, Shi Z, Yin Z, Luo L, Chang Y, Duan X. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2775-83. [PMID: 24983770 DOI: 10.1016/j.bbamcr.2014.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yumei Fan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Jie Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Linlin Cai
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Shengnan Wang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Caizhi Liu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yongze Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Linhao You
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yujian Fu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| |
Collapse
|
43
|
Wang D, Zhao M, Chen G, Cheng X, Han X, Lin S, Zhang X, Yu X. The histone deacetylase inhibitor vorinostat prevents TNFα-induced necroptosis by regulating multiple signaling pathways. Apoptosis 2014; 18:1348-1362. [PMID: 23708756 DOI: 10.1007/s10495-013-0866-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are novel anticancer reagents that have recently been reported to have anti-inflammatory and neuroprotective effects; however, the mechanisms underlying their activities are largely undefined. The data from this study show that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) can protect L929 cells from TNFα-induced necroptosis. This effect involves multiple mechanisms, including the upregulation of cFLIPL expression, the enhanced activation of NFκB and p38 MAPK, and the inactivation of JNK. In addition, SAHA could initiate cell autophagy by inhibiting Akt and mTOR, which also play important roles in protecting cells from necroptosis. Because cell necroptosis is important for inflammation-related deterioration and neurodegenerative disease, our results indicate that preventing cell necrosis may be an important mechanism through which HDAC inhibitor compounds exert their anti-inflammatory or neuroprotective effects.
Collapse
Affiliation(s)
- Di Wang
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Ming Zhao
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Guozhu Chen
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Xiang Cheng
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Xiaoxi Han
- Department of Biochemistry, China Medical University, Shenyang, China
| | - Song Lin
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Xuhui Zhang
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Xiaodan Yu
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
44
|
Sung MK, Bae YJ. Iron, Oxidative Stress, and Cancer. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Estrada JA, Contreras I, Pliego-Rivero FB, Otero GA. Molecular mechanisms of cognitive impairment in iron deficiency: alterations in brain-derived neurotrophic factor and insulin-like growth factor expression and function in the central nervous system. Nutr Neurosci 2013; 17:193-206. [PMID: 24074845 DOI: 10.1179/1476830513y.0000000084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The present review examines the relationship between iron deficiency and central nervous system (CNS) development and cognitive impairment, focusing on the cellular and molecular mechanisms related to the expression and function of growth factors, particularly the insulin-like growth factors I and II (IGF-I/II) and brain-derived neurotrophic factor (BDNF), in the CNS. METHODS Nutritional deficiencies are important determinants in human cognitive impairment. Among these, iron deficiency has the highest prevalence worldwide. Although this ailment is known to induce psychomotor deficits during development, the precise molecular and cellular mechanisms underlying these alterations have not been properly elucidated. This review summarizes the available information on the effect of iron deficiency on the expression and function of growth factors in the CNS, with an emphasis on IGF-I/II and BDNF. RESULTS AND DISCUSSION Recent studies have shown that specific growth factors, such as IGF-I/II and BDNF, have an essential role in cognition, particularly in processes involving learning and memory, by the activation of intracellular-signaling pathways involved in cell proliferation, differentiation, and survival. It is known that nutritional deficiencies promote reductions in systemic and CNS concentrations of growth factors, and that altered expression of these molecules and their receptors in the CNS leads to psychomotor and developmental deficits. Iron deficiency may induce these deficits by decreasing the expression and function of IGF-I/II and BDNF in specific areas of the brain.
Collapse
|
46
|
Ghio AJ, Tong H, Soukup JM, Dailey LA, Cheng WY, Samet JM, Kesic MJ, Bromberg PA, Turi JL, Upadhyay D, Scott Budinger GR, Mutlu GM. Sequestration of mitochondrial iron by silica particle initiates a biological effect. Am J Physiol Lung Cell Mol Physiol 2013; 305:L712-24. [DOI: 10.1152/ajplung.00099.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhalation of particulate matter has presented a challenge to human health for thousands of years. The underlying mechanism for biological effect following particle exposure is incompletely understood. We tested the postulate that particle sequestration of cell and mitochondrial iron is a pivotal event mediating oxidant generation and biological effect. In vitro exposure of human bronchial epithelial cells to silica reduced intracellular iron, which resulted in increases in both the importer divalent metal transporter 1 expression and metal uptake. Diminished mitochondrial 57Fe concentrations following silica exposure confirmed particle sequestration of cell iron. Preincubation of cells with excess ferric ammonium citrate increased cell, nuclear, and mitochondrial metal concentrations and prevented significant iron loss from mitochondria following silica exposure. Cell and mitochondrial oxidant generation increased after silica incubation, but pretreatment with iron diminished this generation of reactive oxygen species. Silica exposure activated MAP kinases (ERK and p38) and altered the expression of transcription factors (nF-κB and NF-E2-related factor 2), proinflammatory cytokines (interleukin-8 and -6), and apoptotic proteins. All of these changes in indexes of biological effect were either diminished or inhibited by cell pretreatment with iron. Finally, percentage of neutrophils and total protein concentrations in an animal model instilled with silica were decreased by concurrent exposure to iron. We conclude that an initiating event in the response to particulate matter is a sequestration of cell and mitochondrial iron by endocytosed particle. The resultant oxidative stress and biological response after particle exposure are either diminished or inhibited by increasing the cell iron concentration.
Collapse
Affiliation(s)
- Andrew J. Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Joleen M. Soukup
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Lisa A. Dailey
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Wan-Yun Cheng
- Department of Environmental Sciences and Engineering, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - James M. Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Matthew J. Kesic
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | | | - Jennifer L. Turi
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Daya Upadhyay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University Medical Center, Stanford, California; and
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gökhan M. Mutlu
- Division of Pulmonary and Critical Care Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
47
|
Shukla KK, Agnihotri S, Gupta A, Mahdi AA, Mohamed EA, Sankhwar SN, Sharma P. Significant association of TNFα and IL-6 gene with male infertility--an explorative study in Indian populations of Uttar Pradesh. Immunol Lett 2013; 156:30-37. [PMID: 24029665 DOI: 10.1016/j.imlet.2013.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 01/16/2023]
Abstract
In this study were aimed to identify the association of SNPs candidate genes of TNF-α and IL-6 with hormones levels and sperm cells death in infertile subjects of Uttar Pradesh population in North India. The study population comprised, fertile donor (control group) and infertile group patients i.e. normozoospermic (idiopathic unexplained), oligozoospermic and asthenozoospermic groups, with 260 subjects in each group. Subjects were selected from the Departments of Urology, K.G's Medical University and Urology, SGPGIMS, Lucknow, India. The allele-specific polymerase chain reaction (PCR) and PCR-RFLP were used to investigate the substitution of the guanine (G)-to-adenosine (A) at position-308 and guanine (G)-to-cytosine (C) at position-174 in the promoter regions of the TNF-α and IL-6 genes, respectively. Further their relation to male fertility and sperm function were also investigated. It was found that the substitution levels from G to A and from G to C in the TNF-α and IL-6 genes, respectively, were significantly higher in the infertile subjects as compared to that of control group. The apoptosis and necrosis levels were also higher in oligozoospermic and asthenozoospermic infertile subjects. Further it was found to be associated with increased level of reactive oxygen species as observed in oligozoospermic and asthenozoospermic subjects. However, a significant decrease in testosterone and luteinizing hormone with increased prolactin and follicle stimulating hormones was observed in infertile subjects. The study populations indicating a strong association between TNF-α G-308A and IL-6 G-174C substitution with infertile men which is further supported by allele and genotype meta-analysis and thus established it as a risk factor.
Collapse
Affiliation(s)
- Kamla Kant Shukla
- Department of Biochemistry, K.G's Medical University, Lucknow 226003, UP, India; Department of Biochemistry, All Indian Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | | | | | | | | | | | | |
Collapse
|
48
|
Cerulein-induced acute pancreatitis is associated with c-Jun NH(2)-terminal kinase 1-dependent ferritin degradation and iron-dependent free radicals formation. Pancreas 2013; 42:1070-7. [PMID: 23921964 DOI: 10.1097/mpa.0b013e318287d097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The main goal of this work was to get insight into the mechanism of cerulein-induced reactive oxygen species (ROS) formation and impact of c-Jun NH(2)-terminal kinase (JNK) on this process. METHODS The study was performed on Wistar rats and on a cellular model of acute pancreatitis (AP) using AR42J cell line. RESULTS First of all, we observed that during AP, the iron storage protein ferritin in the rat pancreas undergoes degradation accompanied by an increased formation of protein carbonyls. Pancreatic acinar AR42J cells stimulated by cerulein showed increased labile iron pool that was accompanied by a decrease in the cellular ferritin-L level and an increase in the ROS formation. The changes in the ferritin-L level were inversely correlated with the ROS formation. The cells expressing inactive JNK1 mutant were completely resistant to cerulein-induced ferritin degradation. CONCLUSIONS Our data showed that cerulein-induced AP in rats and on cellular model is accompanied by JNK1-dependent ferritin degradation, increases labile iron pool and ROS formation.
Collapse
|
49
|
Abstract
Programmed cell death is a basic cellular process that is critical to maintain tissue homeostasis. Besides apoptosis, necroptosis has more recently been discovered as another form of regulated cell death. Necroptosis plays a pivotal role during normal development and has also been implicated in the pathogenesis of a variety of human diseases. The control of necroptosis by defined signal transduction pathways offers the opportunity to target this cellular process for therapeutic purposes. For example, in cancer necroptosis is often impaired during tumorigenesis and can be engaged by targeted pharmacological approaches. Further insights into the signaling networks involved in the regulation of necroptosis will likely have important implications for the exploitation of this form of programmed cell death for the diagnosis or treatment of many diseases.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics; Goethe-University; Frankfurt, Germany
| |
Collapse
|
50
|
Ziemann E, Olek RA, Grzywacz T, Antosiewicz J, Kujach S, Łuszczyk M, Smaruj M, Sledziewska E, Laskowski R. Whole-body cryostimulation as an effective method of reducing low-grade inflammation in obese men. J Physiol Sci 2013; 63:333-43. [PMID: 23744123 PMCID: PMC3751373 DOI: 10.1007/s12576-013-0269-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/11/2013] [Indexed: 01/22/2023]
Abstract
This study was aimed to evaluate anti-inflammatory effect of the whole body cryostimulation in obese men. Fourteen subjects (BMI >30 kg m(-2)), divided into two subgroups according to cardiorespiratory fitness: higher (HCF) or lower (LCF), have been exposed to 10 sessions in a cryogenic chamber (-110 °C). Blood samples were collected before, 30 min and 24 h after the first, fifth and last cryostimulation. Coldness exposures affected blood cytokine profile; however, the response depended on subjects' fitness capacity. Concentrations of pro-inflammatory cytokines in the LCF decreased by 19, 6.8, and 7.4 % in IL-6, resistin, and visfatin, respectively. TNFα in the LCF dropped 4.3-fold compared to baseline, while in the HCF, changes were smaller, yet significant. Anti-inflammatory cytokine IL-10 increased in both groups. No changes in adiponectin and leptin were observed in either group. Obtained results suggest that whole body cryostimulation can be a supplementary method for obese in reducing systemic inflammation.
Collapse
Affiliation(s)
- Ewa Ziemann
- Department of Physiology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdansk, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|