1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
2
|
Sharma D, Vaishnav BS, Pandya N, Pataniya P, Sumesh CK, Mandal P. A Relative Measurement of Oxidative Stress in NAFLD Through Cyclic Voltammetry Method for Clinical Translation. Gastroenterol Res Pract 2025; 2025:9948444. [PMID: 40270767 PMCID: PMC12017943 DOI: 10.1155/grp/9948444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 03/29/2025] [Indexed: 04/25/2025] Open
Abstract
A potential contributing factor in the development of various metabolic diseases such as nonalcoholic fatty liver disease (NAFLD) could be oxidative stress and the production of reactive oxygen radicals. A high level of lipid peroxidation, including oxidative stress, can cause irreversible effects. We investigated the consequences of NAFLD on the reducing power of the liver in patients through plasma antioxidant capacity using screen-printed electrodes (SPEs). The study includes a total of 67 patient's population with steatosis (n = 29) and steatohepatitis (n = 38). Anodic current intensity (la), anodic wave area (S), and the biological sample oxidation potentials can be determined via cyclic voltammetry (CV) analysis. The enzyme glutathione peroxidase (GPx) and products of oxidative damage such as malondialdehyde (MDA), advanced glycation-end product (AGE), total status of oxidants (TOS), nitric oxide (NO), and cytokines analysis (qRT-PCR) of key mediators such as PNPLA3 in lipid metabolism, TIMP1 in fibrosis, and proinflammatory cytokines like NF-κB, TNF-α, and IL-6, which are crucial for understanding NAFLD progression were recorded to further validate the CV obtained results along with and morphological changes through scanning electron microscope (SEM). The developed method measured oxidative stress with an error of less than 1.3% in human plasma samples, wherein the steatohepatitis caused a spike modification in the anodic current AC520 and AC972 (p < 0.01) compared to healthy humans. The presented electroanalytical methodology could be widely used for easy and rapid subjects' disease status detection. In addition to monitoring the response of subjects to treatment and providing nutritional supplements, these results may also be used for screening specific populations.
Collapse
Affiliation(s)
- Dixa Sharma
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Bhalendu S. Vaishnav
- H M Patel Centre for Medical Care and Education, Charutar Arogya Mandal, Karamsad, India
| | - Nupur Pandya
- H M Patel Centre for Medical Care and Education, Charutar Arogya Mandal, Karamsad, India
| | - Pratik Pataniya
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - C. K. Sumesh
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
3
|
Zhu F, Liu Y, Sun Z, Ni J, Jiang Y. Aptamer-Based Galvanic Potentiometric Sensor for Real-Time Monitoring of Serotonin Signaling Under Psychosocial Stress. Angew Chem Int Ed Engl 2025:e202501701. [PMID: 40181707 DOI: 10.1002/anie.202501701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/05/2025]
Abstract
Psychosocial stress, a pervasive factor in mental health disorders, is tightly linked to serotonin (5-HT) dysregulation. Real-time electrochemical monitoring of 5-HT in vivo is challenged by interference from vitamin C (Vc) and biofouling, requiring invasive pretreatments. We present a self-powered aptamer-engineered galvanic sensor (aptGRP5-HT) that integrates phosphorothioate aptamers with a redox potentiometric mechanism, achieving 21.5-fold higher selectivity and 98.3-fold enhanced sensitivity against Vc over conventional sensors while resisting electrochemical biofouling. The aptGRP5-HT operates in complex biological environments without pretreatment, enabling direct monitoring in a rodent psychosocial stress model. Using this tool, we uncover a neurochemical signature of social hierarchy: high-ranking mice exhibit elevated 5-HT release in the medial prefrontal cortex (mPFC) and dorsal raphe nucleus (DRN), with region-specific correlations to neuronal activity-reduced spontaneous firing in the mPFC and increased activity in the DRN. This work resolves long-standing challenges in neurochemical sensing and establishes aptGRP5-HT as a transformative platform for probing brain function and stress-related disorders.
Collapse
Affiliation(s)
- Fenghui Zhu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yinghuan Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhining Sun
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiping Ni
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Sim M, Hong S, Jung MH, Choi EY, Hwang GS, Shin DM, Kim CS. Gut microbiota links vitamin C supplementation to enhanced mental vitality in healthy young adults with suboptimal vitamin C status: A randomized, double-blind, placebo-controlled trial. Brain Behav Immun 2025; 128:179-191. [PMID: 40187667 DOI: 10.1016/j.bbi.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
The intricate relationship between nutrition, gut microbiome, and mental health has gained increasing attention. We aimed to determine how vitamin C supplementation improves mental vitality through the gut microbiome and associated neurological and immunological changes. We used 16S rRNA sequencing to analyze gut microbiota profiles of participants from our previous trial, in which healthy young adults (20-39 years) with inadequate serum vitamin C levels (< 50 μM) received 500 mg vitamin C or a placebo twice daily for 4 weeks (vitamin C, n = 21; placebo, n = 19). We examined whether changes in gut microbiota correlated with previously determined mental vitality indices, including Stroop test performance, work engagement, and serum brain-derived neurotrophic factor (BDNF) levels. Serum concentrations of microbial-derived molecules, cytokines, and neurotransmitters were analyzed using enzyme-linked immunosorbent assay, electrochemiluminescence-based immunoassay, or ultra-high-performance liquid chromatography-mass spectrometry. Monocyte subpopulations in peripheral blood were quantified using fluorescence-activated cell sorting analysis. Vitamin C supplementation increased the relative abundance of Bacillaceae and Anaerotruncus, while decreasing Desulfovibrio, with the Desulfovibrio reduction correlating with Stroop test performance. Moreover, participants showing a substantial Desulfovibrio reduction ("responders") demonstrated greater BDNF increases and stronger correlations between serum L-DOPA levels and work engagement scores than did non-responders. In addition, vitamin C supplementation suppressed inflammatory responses with concurrent reduction in serum lipopolysaccharide levels, and responders showed greater decreases in IL-10 levels and classical monocyte frequencies than non-responders. In conclusion, vitamin C supplementation modulates gut microbiota composition, particularly by reducing Desulfovibrio abundance, with the extent of reduction correlating with mental vitality improvements and decreased inflammation. This study provides insights into vitamin C supplementation as a critical dietary intervention, as it may modulate mental health through its influence on the gut-brain-immune axis.
Collapse
Affiliation(s)
- Minju Sim
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Republic of Korea
| | - Sehwa Hong
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Ho Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Republic of Korea
| | - Chong-Su Kim
- Department of Food and Nutrition, Seowon University, Cheongju 28674, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Zhou L, Wang N, Qiu B, Yao D, Yu J, He M, Li T, Xie Y, Yu X, Bi Z, Sun X, Ji X, Li Z, Mo D, Ge WP. Comprehensive characterization of metabolic consumption and production by the human brain. Neuron 2025:S0896-6273(25)00175-8. [PMID: 40147438 DOI: 10.1016/j.neuron.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 12/06/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Metabolism is vital for brain function. However, a systematic investigation to understand the metabolic exchange between the human brain and circulatory system has been lacking. Here, we compared metabolomes and lipidomes of blood samples from the cerebral venous sinus and femoral artery to profile the brain's uptake and release of metabolites and lipids (1,365 metabolites and 140 lipids). We observed a high net uptake of glucose, taurine, and hypoxanthine and identified glutamine and pyruvate as significantly released metabolites by the brain. Triacylglycerols are the most prominent class of lipid consumed by the brain. The brain with cerebral venous sinus stenosis (CVSS) consumed more glucose and lactate and released more glucose metabolism byproducts than the brain with cerebral venous sinus thrombosis (CVST). Our data also showed age-related alterations in the uptake and release of metabolites. These results provide a comprehensive view of metabolic consumption and production processes within the human brain.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; China National Clinical Research Center for Neurological Diseases, National Center for Neurological Disorders, Beijing 100070, China.
| | - Lebo Zhou
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Nan Wang
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Baoshan Qiu
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Yao
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Jie Yu
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Miaoqing He
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Tong Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Yufeng Xie
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100730, China; Changping Laboratory, Beijing 102206, China
| | - Xiaoqian Yu
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangli Sun
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Dapeng Mo
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Changping Laboratory, Beijing 102206, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
6
|
Fang X, Wu Y, Dai Y, Xiao H, Li S, Chen X, Yuan M, Guo Y, Ma L, Lin D, Liu W, Lu C, Yang H. In Situ Recovery of Serotonin Synthesis by a Tryptophan Hydroxylase-Like Nanozyme for the Treatment of Depression. J Am Chem Soc 2025; 147:9111-9121. [PMID: 40050227 DOI: 10.1021/jacs.4c10733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Depression is one of the most common mental disorders. The inactivation of tryptophan hydroxylase and the resulting serotonin decrease are the key factors in depression pathology. Herein, we report for the first time that Fe3O4 nanoparticles exhibit tryptophan hydroxylase-like activity and successfully verify their ability to restore serotonin synthesis in the brain for the treatment of depression. To achieve better biocompatibility and brain delivery, the Fe3O4 nanoparticles were functionalized with chitosan (CS) (Fe3O4@CS), enabling their delivery from the nose to the brain. Fe3O4@CS catalyzes the transformation of tryptophan into 5-hydroxytryptophan with the participation of high levels of endogenous ascorbic acid and hydrogen peroxide in stressed neurons, thus compensating for the deactivated tryptophan hydroxylase in the brain. In vivo Fe3O4@CS treatment results in the recovery of 5-hydroxytryptophan and serotonin levels and improvement of neuronal signal transduction ability in a depression mouse model, thus ameliorating depressive-like behaviors. The presented strategy of restoring serotonin synthesis in situ based on a tryptophan hydroxylase-like nanozyme provides a more accurate and efficient approach for the treatment of depression.
Collapse
Affiliation(s)
- Xiao Fang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yue Wu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yaling Dai
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, People's Republic of China
| | - Han Xiao
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xiaoning Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Meng Yuan
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yanbei Guo
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Liying Ma
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dingyue Lin
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
7
|
Lei K, Zhou L, Dan M, Yang F, Jian T, Xin J, Yu Z, Wang Y. Trojan Horse Delivery Strategies of Natural Medicine Monomers: Challenges and Limitations in Improving Brain Targeting. Pharmaceutics 2025; 17:280. [PMID: 40142943 PMCID: PMC11945504 DOI: 10.3390/pharmaceutics17030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Central nervous system (CNS) diseases, such as brain tumors, Alzheimer's disease, and Parkinson's disease, significantly impact patients' quality of life and impose substantial economic burdens on society. The blood-brain barrier (BBB) limits the effective delivery of most therapeutic drugs, especially natural products, despite their potential therapeutic effects. The Trojan Horse strategy, using nanotechnology to disguise drugs as "cargo", enables them to bypass the BBB, enhancing targeting and therapeutic efficacy. This review explores the applications of natural products in the treatment of CNS diseases, discusses the challenges posed by the BBB, and analyzes the advantages and limitations of the Trojan Horse strategy. Despite the existing technical challenges, future research is expected to enhance the application of natural drugs in CNS treatment by integrating nanotechnology, improving delivery mechanisms, and optimizing targeting characteristics.
Collapse
Affiliation(s)
- Kelu Lei
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Dan
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Fei Yang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Tiantian Jian
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Juan Xin
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Zhigang Yu
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Yue Wang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| |
Collapse
|
8
|
Grădinaru AC, Popa S. Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications. Life (Basel) 2025; 15:238. [PMID: 40003647 PMCID: PMC11856994 DOI: 10.3390/life15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin C plays an important role in collagen synthesis and subsequent scurvy prevention. It is also required in vivo as a cofactor for enzymes involved in carnitine and catecholamine norepinephrine biosynthesis, peptide amidation, and tyrosine catabolism. Moreover, as an enzymatic cofactor, vitamin C is involved in processes of gene transcription and epigenetic regulation. The absence of the synthesis of L-gulono-1,4-lactone oxidase, a key enzyme in the pathway of vitamin C synthesis, is an inborn metabolism error in some fishes and several bird and mammalian species, including humans and non-human primates; it is caused by various changes in the structure of the original GULO gene, making these affected species dependent on external sources of vitamin C. The evolutionary cause of GULO gene pseudogenization remains controversial, as either dietary supplementation or neutral selection is evoked. An evolutionary improvement in the control of redox homeostasis was also considered, as potentially toxic H2O2 is generated as a byproduct in the vitamin C biosynthesis pathway. The inactivation of the GULO gene and the subsequent reliance on dietary vitamin C may have broader implications for aging and age-related diseases, as one of the most important actions of vitamin C is as an anti-oxidant. Therefore, an important aim for medical professionals regarding human and animal health should be establishing vitamin C homeostasis in species that are unable to synthesize it themselves, preventing pathologies such as cardiovascular diseases, cognitive decline, and even cancer.
Collapse
Affiliation(s)
- Andrei Cristian Grădinaru
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania
| | - Setalia Popa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
9
|
Orywal K, Socha K, Iwaniuk P, Kaczyński P, Farhan JA, Zoń W, Łozowicka B, Perkowski M, Mroczko B. Vitamins in the Prevention and Support Therapy of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1333. [PMID: 39941101 PMCID: PMC11818229 DOI: 10.3390/ijms26031333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), which are a consequence of the progressive loss of neuronal function and structure, cause significant cognitive impairment. The incidence of these diseases in the world's population is constantly increasing as a result of an aging population. Although genetic and environmental factors are most often mentioned as the pathogenetic factors of these diseases, increasing evidence points to the important role of proper nutrition in the prevention and support of the treatment of these disorders. A healthy, balanced diet can mitigate the risks associated with the risk factors mentioned above and slow the progression of the disease by reducing oxidative stress and inflammation. Vitamins B, D, E, C, K, and A have been shown to support cognitive functions and protect the nervous system. This review demonstrates the importance of vitamins in preventing and supporting the therapy of neurodegenerative diseases. Information regarding the health-promoting properties of these vitamins must be effectively communicated to consumers seeking to protect their health, particularly in the context of neurodegenerative diseases. Consequently, this review also examines the authorized health claims under EU food law related to these vitamins, assessing their role in promoting awareness of the vitamins' potential benefits for neuroprotection and the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Orywal
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Piotr Iwaniuk
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Piotr Kaczyński
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Wojciech Zoń
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Maciej Perkowski
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
10
|
Jia Y, Guo D, Liu Y, Sun L, Chang X, He Y, Shi M, Chen GC, Zhang Y, Hui L, Zhu Z. Associations between human blood metabolome and vascular dementia. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111150. [PMID: 39306224 DOI: 10.1016/j.pnpbp.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Effective and specific biomarkers are warranted for the management of vascular dementia. We aimed to systematically screen the human blood metabolome to identify potential mediators of vascular dementia via a two-sample Mendelian randomization (MR) design. METHODS We selected 93 unique blood metabolites from 3 metabolome genome-wide association studies (GWASs) with a total of 147,827 participants of European ancestry. Summary statistics for vascular dementia originated from a European-descent GWAS dataset released by the FinnGen Study, involving 859 cases and 211,300 controls. We applied the inverse-variance weighted MR method in the main analysis to examine the causal roles of blood metabolites in vascular dementia, followed by several sensitivity analyses for robustness validation. RESULTS Genetically determined glycoproteins (OR per 1-SD increase, 0.75; 95 % CI, 0.68-0.83, P = 1.08 × 10-8) and O-methylascorbate (OR per 1-SD increase, 0.08; 95 % CI, 0.02-0.32; P = 3.74 × 10-4) levels had negative associations with the risk of vascular dementia, whereas genetically determined total cholesterol (OR per 1-SD increase, 1.77; 95 % CI, 1.32-2.38; P = 1.39 × 10-4) and low-density lipoprotein (LDL) cholesterol (OR per 1-SD increase, 1.94; 95 % CI, 1.48-2.55; P = 1.61 × 10-6) levels had positive associations with the risk of vascular dementia. MR-Egger regression suggested no directional pleiotropy for the identified associations, and sensitivity analyses with different MR models further confirmed these findings. CONCLUSION Glycoproteins, O-methylascorbate, total cholesterol, and LDL cholesterol might be promising blood markers of vascular dementia, which may provide novel insights into the prevention of vascular dementia. Further studies are warranted to replicate our findings and elucidate the potential mechanistic pathways.
Collapse
Affiliation(s)
- Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Daoxia Guo
- School of Nursing, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lulu Sun
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yu He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Li Hui
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
11
|
Qi Z, Chen X, Zhu Y, Yue Q, Ji W. Electrochemical sensing of transient ascorbate fluctuation under hypoxic stress in live rat brain. Talanta 2025; 282:126996. [PMID: 39383720 DOI: 10.1016/j.talanta.2024.126996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Hypoxia, a common cause of programmed cell death or apoptosis, represents a neuropathological process. Although certain response proteins to hypoxic stress and their effects on cell status and fate have been identified, the real-time quantification of smaller neurochemicals to understand pathogenic mechanism in live rat brain during such stress remains unexplored. In this study, by employing a cutting-edge electrochemical tool developed with carbon nanotube-sheathed carbon fiber microelectrode that offers remarkable selectivity and temporal/spatial resolution for monitoring ascorbate, we observed a substantial efflux of ascorbate in response to hypoxic stress in live rat brain. Furthermore, using a small molecule compound as channel inhibitor to investigate the behavior of ascorbate efflux, we found that this efflux is closely correlated with N-methyl-D-aspartic acid receptor-induced neuronal excitability. Notably, antagonistic actions on volume-sensitive anion channel can suppress ascorbate efflux evoked by hypoxic stress, further revealing that ascorbate fluctuation is volume-sensitive anion channel-dependent. This research not only facilitates a greater understanding of the neurochemical mechanism in hypoxia but also uncovers a potential biomarker for future closed-loop therapies.
Collapse
Affiliation(s)
- Ziyang Qi
- School of Education and Psychology, University of Jinan, Jinan, 250022, China
| | - Xingshuai Chen
- School of Physical Education, University of Jinan, Jinan, 250022, China
| | - Ye Zhu
- Shenzhen Research Institute of Shandong University, Shenzhen, 518000, China
| | - Qingwei Yue
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Wenliang Ji
- School of Physical Education, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
12
|
Parker J, Moris JM, Goodman LC, Paidisetty VK, Vanegas V, Turner HA, Melgar D, Koh Y. A multifactorial lens on risk factors promoting the progression of Alzheimer's disease. Brain Res 2025; 1846:149262. [PMID: 39374837 DOI: 10.1016/j.brainres.2024.149262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The prevalence of Alzheimer's disease (AD) among adults has continued to increase over the last two decades, which has sparked a significant increase in research that focuses on the topic of "brain health." While AD is partially determined by a genetic predisposition, there are still numerous pathophysiological factors that require further research. This research requirement stems from the acknowledgment that AD is a multifactorial disease that to date, cannot be prevented. Therefore, addressing and understanding the potential AD risk factors is necessary to increase the quality of life of an aging population. To raise awareness of critical pathways that impact AD progression, this review manuscript describes AD etiologies, structural impairments, and biomolecular changes that can significantly increase the risk of AD. Among them, a special highlight is given to inflammasomes, which have been shown to bolster neuroinflammation. Alike, the role of brain-derived neurotrophic factor, an essential neuropeptide that promotes the preservation of cognition is presented. In addition, the functional role of neurovascular units to regulate brain health is highlighted and contrasted to inflammatory conditions, such as cellular senescence, vascular damage, and increased visceral adiposity, who all increase the risk of neuroinflammation. Altogether, a multifactorial interventional approach is warranted to reduce the risk of AD.
Collapse
Affiliation(s)
- Jenna Parker
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Jose M Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Lily C Goodman
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Vineet K Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Vicente Vanegas
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Haley A Turner
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel Melgar
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA.
| |
Collapse
|
13
|
Ali A, Chaudhary A, Sharma A, Siddiqui N, Anurag, Parihar VK. Exploring role of citrus fruits in comorbid neurodegenerative disorders associated with psoriasis. Metab Brain Dis 2024; 40:62. [PMID: 39671136 DOI: 10.1007/s11011-024-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/09/2024] [Indexed: 12/14/2024]
Abstract
A neurodegenerative illness is a disorder in which the brain and/or spinal cord's neurons, or nerve cells, gradually deteriorate and disappear. These illnesses often get worse with time and can seriously affect movement, cognition, and other neurological functions. Psoriasis is a long-term autoimmune skin condition marked by fast skin cell growth that results in red, elevated areas coated in silvery-white scales. It can affect several body parts, such as the elbows, knees, scalp, and lower back, and it is not communicable. The build-up of amyloid beta [Aβ] protein is linked to elevated levels of reactive oxygen species (ROS) (Kim et al. 2020). These ROS can trigger multiple pathways, including MAPK, NFkB, JAK/STAT, and interleukin 1 beta (IL-1β), ultimately playing a role in the development of neurodegenerative illnesses like Alzheimer's disease (AD) and psoriasis. People who have psoriasis are more likely to acquire AD, as psoriasis is a chronic inflammatory skin condition that is genetically connected. Because of the antioxidants and anti-inflammatory properties of citrus fruits neurodegenerative and psoriasis disease may be prevented. The neuroprotective action of bioactives in citrus fruits involves the inhibition of inflammation through the control of p38 mitogen-activated protein kinase (MAPK) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Due to their immunomodulatory and anti-inflammatory qualities, polyphenols may be able to control the immune response in psoriasis. We performed a thorough review in order to investigate for the first time to understand the role of citrus fruits in comorbid neurodegenerative disorders associated with psoriasis. For better understanding into the possible applications of citrus fruits in treating psoriasis and neurodegenerative disease would require additional studies focusing directly on the relationship between citrus fruits consumption in managing neurodegenerative and psoriasis disease.
Collapse
Affiliation(s)
- Adil Ali
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India.
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Anurag
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| |
Collapse
|
14
|
Woubshete M, Chan LI, Diallinas G, Byrne B. The dimer of human SVCT1 is key for transport function. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184390. [PMID: 39369805 DOI: 10.1016/j.bbamem.2024.184390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Humans and other primates lack the ability to synthesize the essential nutrient, Vitamin C, which is derived exclusively from the diet. Crucial for effective vitamin C uptake are the Na+ dependent Vitamin C transporters, SVCT1 and SVCT2, members of the nucleobase ascorbate transporter (NAT) family. SVCT1 and 2 actively transport the reduced form of Vitamin C, ascorbic acid, into key tissues. The recent structure of the mouse SVCT1 revealed the molecular basis of substrate binding and that, like the other structurally characterised members of the NAT family, it exists as a closely associated dimer. SVCT1 is likely to function via the elevator mechanism with the core domain of each protomer able to bind substrate and move through the membrane carrying the substrate across the membrane. Here we explored the function of a range of variants of the human SVCT1, revealing a range of residues involved in substrate selection and binding, and confirming the importance of the C-terminus in membrane localisation. Furthermore, using a dominant negative mutant we show that the dimer is essential for transport function, as previously seen in the fungal homologue, UapA. In addition, we show that a localisation deficient C-terminal truncation of SVCT1 blocks correct localisation of co-expressed, associated wildtype SVCT1. These results clearly show the importance of the dimer in both correct SVCT1 trafficking and transport activity.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Lok I Chan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
15
|
Shin S, Jo H, Agura T, Jeong S, Ahn H, Pang S, Lee J, Park JH, Kim Y, Kang JS. Anti-Inflammatory Effects of Aptamin C in Pulmonary Fibrosis Induced by Bleomycin. Pharmaceuticals (Basel) 2024; 17:1577. [PMID: 39770419 PMCID: PMC11676684 DOI: 10.3390/ph17121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Vitamin C is a well-known antioxidant with antiviral, anticancer, and anti-inflammatory properties. However, its therapeutic applications are limited by rapid oxidation due to heat and light sensitivity. Aptamin C, which employs aptamers to bind vitamin C, has demonstrated enhanced stability and efficacy. This study investigates the potential of Aptamin C to inhibit the progression of pulmonary fibrosis, a prominent inflammatory lung disease with no effective treatment. Methods: Mice bearing bleomycin-induced pulmonary fibrosis were administered vitamin C or Aptamin C, and their weight changes and survival rates were monitored. Inflammatory cell infiltration was assessed in the bronchoalveolar lavage fluid (BALF), and the degree of alveolar fibrosis was measured by H&E and Masson's trichrome staining. To elucidate the mechanism of action of Aptamin C, Western blot analysis was performed in HaCaT and lung tissues from bleomycin-induced pulmonary fibrosis mice. Results: The Aptamin C-treated group showed a notably higher survival rate at 50%, whereas all subjects in the vitamin C-treated group died. Histological examination of lung tissue showed that inflammation was significantly suppressed in the Aptamin C-supplemented group compared to the vitamin C-supplemented group, with a 10% greater reduction in cell infiltrations, along with noticeably less tissue damage. Additionally, it was observed that Aptamin C increased SVCT-1 expression in the HaCaT cells and the lung tissues. Conclusions: Taken together, Aptamin C not only increases the stability of vitamin C but also induces an increase in SVCT-1 expression, facilitating greater vitamin C absorption into cells and tissues, thereby inhibiting the progression of symptoms and associated inflammatory responses in pulmonary fibrosis.
Collapse
Affiliation(s)
- Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
- Department of Research and Development, N Therapeutics Co., Ltd., Seoul 08813, Republic of Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Soyoung Pang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
| | - June Lee
- Nexmos, Inc., Yongin-si 168267, Republic of Korea; (J.L.); (J.-H.P.)
| | - Jeong-Ho Park
- Nexmos, Inc., Yongin-si 168267, Republic of Korea; (J.L.); (J.-H.P.)
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Malik MY, Guo F, Asif-Malik A, Eftychidis V, Barkas N, Eliseeva E, Timm KN, Wolska A, Bergin D, Zonta B, Ratz-Wirsching V, von Hörsten S, Walton ME, Magill PJ, Nerlov C, Minichiello L. Impaired striatal glutathione-ascorbate metabolism induces transient dopamine increase and motor dysfunction. Nat Metab 2024; 6:2100-2117. [PMID: 39468205 PMCID: PMC11599059 DOI: 10.1038/s42255-024-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Identifying initial triggering events in neurodegenerative disorders is critical to developing preventive therapies. In Huntington's disease (HD), hyperdopaminergia-probably triggered by the dysfunction of the most affected neurons, indirect pathway spiny projection neurons (iSPNs)-is believed to induce hyperkinesia, an early stage HD symptom. However, how this change arises and contributes to HD pathogenesis is unclear. Here, we demonstrate that genetic disruption of iSPNs function by Ntrk2/Trkb deletion in mice results in increased striatal dopamine and midbrain dopaminergic neurons, preceding hyperkinetic dysfunction. Transcriptomic analysis of iSPNs at the pre-symptomatic stage showed de-regulation of metabolic pathways, including upregulation of Gsto2, encoding glutathione S-transferase omega-2 (GSTO2). Selectively reducing Gsto2 in iSPNs in vivo effectively prevented dopaminergic dysfunction and halted the onset and progression of hyperkinetic symptoms. This study uncovers a functional link between altered iSPN BDNF-TrkB signalling, glutathione-ascorbate metabolism and hyperdopaminergic state, underscoring the vital role of GSTO2 in maintaining dopamine balance.
Collapse
Affiliation(s)
| | - Fei Guo
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Aman Asif-Malik
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Nikolaos Barkas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford and John Radcliffe Hospital, Oxford, UK
| | - Elena Eliseeva
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Kerstin N Timm
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - David Bergin
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Barbara Zonta
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Veronika Ratz-Wirsching
- Department of Experimental Therapy and Preclinical Centre, University Hospital and Friedrich-Alexander-University (FAU), Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy and Preclinical Centre, University Hospital and Friedrich-Alexander-University (FAU), Erlangen, Germany
| | - Mark E Walton
- Department of Experimental Psychology, Oxford University, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK
| | - Peter J Magill
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford and John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
17
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Zeng H, Ren G, Gao N, Xu T, Jin P, Yin Y, Liu R, Zhang S, Zhang M, Mao L. General In Situ Engineering of Carbon-Based Materials on Carbon Fiber for In Vivo Neurochemical Sensing. Angew Chem Int Ed Engl 2024; 63:e202407063. [PMID: 38898543 DOI: 10.1002/anie.202407063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Developing real-time, dynamic, and in situ analytical methods with high spatial and temporal resolutions is crucial for exploring biochemical processes in the brain. Although in vivo electrochemical methods based on carbon fiber (CF) microelectrodes are effective in monitoring neurochemical dynamics during physiological and pathological processes, complex post modification hinders large-scale productions and widespread neuroscience applications. Herein, we develop a general strategy for the in situ engineering of carbon-based materials to mass-produce functional CFs by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors, followed by one-step pyrolysis. This strategy demonstrates exceptional universality and design flexibility, overcoming complex post-modification procedures and avoiding the delamination of the modification layer. This simplifies the fabrication and integration of functional CF-based microelectrodes. Moreover, we design highly stable and selective H+, O2, and ascorbate microsensors and monitor the influence of CO2 exposure on the O2 content of the cerebral tissue during physiological and ischemia-reperfusion pathological processes.
Collapse
Affiliation(s)
- Hui Zeng
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Guoyuan Ren
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Nan Gao
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Tianci Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Peng Jin
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Yongyue Yin
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Rantong Liu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Shuai Zhang
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Meining Zhang
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, P.R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
19
|
Buchanan RA, Wang Y, May JM, Harrison FE. Ascorbate insufficiency disrupts glutamatergic signaling and alters electroencephalogram phenotypes in a mouse model of Alzheimer's disease. Neurobiol Dis 2024; 199:106602. [PMID: 39004234 DOI: 10.1016/j.nbd.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Clinical studies have reported that increased epileptiform and subclinical epileptiform activity can be detected in many patients with an Alzheimer's disease (AD) diagnosis using electroencephalogram (EEG) and this may correlate with poorer cognition. Ascorbate may have a specific role as a neuromodulator in AD as it is released concomitantly with glutamate reuptake following excitatory neurotransmission. Insufficiency may therefore result in an exacerbated excitatory/inhibitory imbalance in neuronal signaling. Using a mouse model of AD that requires dietary ascorbate (Gulo-/-APPswe/PSEN1dE9), EEG was recorded at baseline and during 4 weeks of ascorbate depletion in young (5-month-old) and aged (20-month-old) animals. Data were scored for changes in quantity of spike trains, individual spikes, sleep-wake rhythms, sleep fragmentation, and brainwave power bands during light periods each week. We found an early increase in neuronal spike discharges with age and following ascorbate depletion in AD model mice and not controls, which did not correlate with brain amyloid load. Our data also show more sleep fragmentation with age and with ascorbate depletion. Additionally, changes in brain wave activity were observed within different vigilance states in both young and aged mice, where Gulo-/-APPswe/PSEN1dE9 mice had shifts towards higher frequency bands (alpha, beta, and gamma) and ascorbate depletion resulted in shifts towards lower frequency bands (delta and theta). Microarray data supported ascorbate insufficiency altering glutamatergic transmission through the decreased expression of glutamate related genes, however no changes in protein expression of glutamate reuptake transporters were observed. These data suggest that maintaining optimal brain ascorbate levels may support normal brain electrical activity and sleep patterns, particularly in AD patient populations where disruptions are observed.
Collapse
Affiliation(s)
- Rebecca A Buchanan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Yuhan Wang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James M May
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
20
|
Kapogiannis D, Manolopoulos A, Mullins R, Avgerinos K, Delgado-Peraza F, Mustapic M, Nogueras-Ortiz C, Yao PJ, Pucha KA, Brooks J, Chen Q, Haas SS, Ge R, Hartnell LM, Cookson MR, Egan JM, Frangou S, Mattson MP. Brain responses to intermittent fasting and the healthy living diet in older adults. Cell Metab 2024; 36:1668-1678.e5. [PMID: 38901423 PMCID: PMC11305918 DOI: 10.1016/j.cmet.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Diet may promote brain health in metabolically impaired older individuals. In an 8-week randomized clinical trial involving 40 cognitively intact older adults with insulin resistance, we examined the effects of 5:2 intermittent fasting and the healthy living diet on brain health. Although intermittent fasting induced greater weight loss, the two diets had comparable effects in improving insulin signaling biomarkers in neuron-derived extracellular vesicles, decreasing the brain-age-gap estimate (reflecting the pace of biological aging of the brain) on magnetic resonance imaging, reducing brain glucose on magnetic resonance spectroscopy, and improving blood biomarkers of carbohydrate and lipid metabolism, with minimal changes in cerebrospinal fluid biomarkers for Alzheimer's disease. Intermittent fasting and healthy living improved executive function and memory, with intermittent fasting benefiting more certain cognitive measures. In exploratory analyses, sex, body mass index, and apolipoprotein E and SLC16A7 genotypes modulated diet effects. The study provides a blueprint for assessing brain effects of dietary interventions and motivates further research on intermittent fasting and continuous diets for brain health optimization. For further information, please see ClinicalTrials.gov registration: NCT02460783.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Roger Mullins
- Morgan State University, Core Lab, Baltimore, MD, USA
| | | | - Francheska Delgado-Peraza
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Maja Mustapic
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Carlos Nogueras-Ortiz
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Krishna A Pucha
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Janet Brooks
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Qinghua Chen
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Shalaila S Haas
- Mt. Sinai School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Ruiyang Ge
- Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lisa M Hartnell
- Intramural Research Program, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mark R Cookson
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Josephine M Egan
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Sophia Frangou
- Mt. Sinai School of Medicine, Department of Psychiatry, New York, NY, USA; Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Marino AL, Rex TS, Harrison FE. Modulation of microglia activation by the ascorbic acid transporter SVCT2. Brain Behav Immun 2024; 120:557-570. [PMID: 38972487 PMCID: PMC11458066 DOI: 10.1016/j.bbi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024] Open
Abstract
Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.
Collapse
Affiliation(s)
- Amanda L Marino
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Tonia S Rex
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
22
|
Liu J, Jiang Y, Liu R, Jin J, Wei S, Ji W, He X, Wu F, Yu P, Mao L. Vitamin C Drives Reentrant Actin Phase Transition: Biphasic Exocytosis Regulation Revealed by Single-Vesicle Electrochemistry. J Am Chem Soc 2024; 146:17747-17756. [PMID: 38889317 DOI: 10.1021/jacs.4c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Unveiling molecular mechanisms that dominate protein phase dynamics has been a pressing need for deciphering the intricate intracellular modulation machinery. While ions and biomacromolecules have been widely recognized for modulating protein phase separations, effects of small molecules that essentially constitute the cytosolic chemical atmosphere on the protein phase behaviors are rarely understood. Herein, we report that vitamin C (VC), a key small molecule for maintaining a reductive intracellular atmosphere, drives reentrant phase transitions of myosin II/F-actin (actomyosin) cytoskeletons. The actomyosin bundle condensates dissemble in the low-VC regime and assemble in the high-VC regime in vitro or inside neuronal cells, through a concurrent myosin II protein aggregation-dissociation process with monotonic VC concentration increase. Based on this finding, we employ in situ single-cell and single-vesicle electrochemistry to demonstrate the quantitative modulation of catecholamine transmitter vesicle exocytosis by intracellular VC atmosphere, i.e., exocytotic release amount increases in the low-VC regime and decreases in the high-VC regime. Furthermore, we show how VC regulates cytomembrane-vesicle fusion pore dynamics through counteractive or synergistic effects of actomyosin phase transitions and the intracellular free calcium level on membrane tensions. Our work uncovers the small molecule-based reversive protein phase regulatory mechanism, paving a new way to chemical neuromodulation and therapeutic repertoire expansion.
Collapse
Affiliation(s)
- Jing Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ran Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing Jin
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shiyi Wei
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiulan He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
23
|
Delgado-Velandia M, Ortolá R, García-Esquinas E, Carballo-Casla A, Sotos-Prieto M, Rodríguez-Artalejo F. Dietary Vitamin C Intake and Changes in Frequency, Severity, and Location of Pain in Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae093. [PMID: 38644802 DOI: 10.1093/gerona/glae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Oral vitamin C supplementation has been associated with lower risk of chronic postsurgical pain. However, the effect of dietary vitamin C on pain in a nonsurgical setting is unknown. We aimed to investigate the association between dietary vitamin C intake and changes over time in chronic pain and its characteristics in community-dwelling adults aged 60 + years. METHODS We pooled data from participants of the Seniors-ENRICA-1 (n = 864) and Seniors-ENRICA-2 (n = 862) cohorts who reported pain at baseline or at follow up. Habitual diet was assessed with a face-to-face diet history and dietary vitamin C intake was estimated using standard food composition tables. Pain changes over time were the difference between scores at baseline and follow up obtained from a pain scale that considered the frequency, severity, and number of pain locations. Multivariable-adjusted relative risk ratios were obtained using multinomial logistic regression. RESULTS After a median follow-up of 2.6 years, pain worsened for 696 (40.3%) participants, improved for 734 (42.5%), and did not change for 296 (17.2%). Compared with the lowest tertile of energy-adjusted vitamin C intake, those in the highest tertile had a higher likelihood of overall pain improvement (RRR 1.61 [95% confidence interval 1.07-2.41], p-trend .02). Higher vitamin C intake was also associated with lower pain frequency (1.57 [1.00-2.47], p-trend = .05) and number of pain locations (1.75 [1.13-2.70], p-trend = .01). CONCLUSIONS Higher dietary vitamin C intake was associated with improvement of pain and with lower pain frequency and number of pain locations in older adults. Nutritional interventions to increase dietary vitamin C intake with the aim of improving pain management require clinical testing.
Collapse
Affiliation(s)
- Mario Delgado-Velandia
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red of Epidemiology and Public Health, Madrid, Spain
| | - Rosario Ortolá
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red of Epidemiology and Public Health, Madrid, Spain
| | - Esther García-Esquinas
- Centro de Investigación Biomédica en Red of Epidemiology and Public Health, Madrid, Spain
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Adrián Carballo-Casla
- Centro de Investigación Biomédica en Red of Epidemiology and Public Health, Madrid, Spain
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet & Stockholm University, Stockholm, Sweden
| | - Mercedes Sotos-Prieto
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red of Epidemiology and Public Health, Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red of Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
24
|
Jahan-Mihan A, Stevens P, Medero-Alfonso S, Brace G, Overby LK, Berg K, Labyak C. The Role of Water-Soluble Vitamins and Vitamin D in Prevention and Treatment of Depression and Seasonal Affective Disorder in Adults. Nutrients 2024; 16:1902. [PMID: 38931257 PMCID: PMC11206829 DOI: 10.3390/nu16121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Depression is a major global health concern expected to worsen by 2030. In 2019, 28 million individuals were affected by depressive disorders. Dietary and supplemental vitamins show overall favorable preventative and therapeutic effects on depression. B vitamins are crucial for neurological function and mood regulation. Deficiencies in these vitamins are linked to depression. Studies on individual B vitamins show promise in improving depressive symptoms, particularly thiamin, riboflavin, niacin, and folate. Vitamin C deficiency may heighten depressive symptoms, but its exact role is not fully understood. Seasonal Affective Disorder (SAD) is associated with insufficient sunlight exposure and vitamin D deficiency. Vitamin D supplementation for SAD shows inconsistent results due to methodological variations. Further investigation is needed to understand the mechanisms of vitamins in depression treatment. Moreover, more research on SAD and light therapy's efficacy and underlying mechanisms involving photoreceptors, enzymes, and immune markers is needed. Although dietary and supplemental vitamins show overall favorable preventative and therapeutic effects on depression, dietitians treating psychiatric disorders face challenges due to diverse study designs, making direct comparisons difficult. Therefore, this article reviews the current literature to assess the role of dietary and supplemental vitamins in the prevention and treatment of depression. This review found that, although evidence supports the role of B vitamins and vitamins C and D in preventing and treating depression, further research is needed to clarify their mechanisms of action and determine the most effective intervention strategies.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (P.S.); (S.M.-A.); (G.B.); (L.K.O.); (K.B.); (C.L.)
| | | | | | | | | | | | | |
Collapse
|
25
|
Manoharan N, Parasuraman R, Jayamurali D, Muthusamy P, Govindarajulu S. Role of Thymoquinone on sleep restriction and its mitigating effect on leptin-mediated signaling pathway in rat brain. Mol Biol Rep 2024; 51:769. [PMID: 38886257 DOI: 10.1007/s11033-024-09699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Sleep and stress interact bidirectionally by acting on brain circuits that affect metabolism. Sleep and its alterations have impact on blood leptin levels, metabolic hormone that regulates appetite. Brain expresses the receptors for the peptide hormone leptin produced from adipocytes. The hypothalamic orexin neurons are low during sleep and active when awake, influenced by a complex interaction with leptin. Thymoquinone was found to be the major bioactive component of Nigella sativa. The aim of this study was to study the role of thymoquinone on sleep restriction and its mitigating effect on leptin-mediated signaling pathway in rat brain. METHODS AND RESULTS 30 adult male Wistar rats were divided into 5 groups with 6 animals in each group: Control; Thymoquinone (TQ); Corn oil; Chronic Sleep restriction (CSR); and CSR + TQ. After 30 days, behavioral analysis, antioxidant, lipid profile, glucose level, liver and kidney function test, neurotransmitters, neuropeptides, and mRNA expression in in vivo studies were also assessed and pharmacokinetic and docking were done for thymoquinone. Thymoquinone has also shown good binding affinity to the target proteins. CSR has induced oxidative stress in the discrete brain regions and plasma. Current study has shown many evidences that sleep restriction has altered the neurobehavioral, antioxidant status, lipid profile, neurotransmitters, neuropeptide levels, and feeding behavior which damage the Orexin-leptin system which regulates the sleep and feeding that leads to metabolic dysfunction. CONCLUSION The potentiality of Thymoquinone was revealed in in silico studies, and its action in in vivo studies has proved its effectiveness. The study concludes that Thymoquinone has exhibited its effect by diminishing the metabolic dysfunction by its neuroprotective, antioxidant, and hypolipidemic properties.
Collapse
Affiliation(s)
- Nivedita Manoharan
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600 113, India
| | - Rajeshwari Parasuraman
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600 113, India
| | - Dheepthi Jayamurali
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600 113, India
| | - Pazhanisankar Muthusamy
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600 113, India
| | - Sathyanarayanan Govindarajulu
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600 113, India.
| |
Collapse
|
26
|
Goto S, Kojima N, Komori M, Kawade N, Oshima K, Nadano D, Sasaki N, Horio F, Matsuda T, Miyata S. Vitamin C deficiency alters the transcriptome of the rat brain in a glucocorticoid-dependent manner, leading to microglial activation and reduced neurogenesis. J Nutr Biochem 2024; 128:109608. [PMID: 38458474 DOI: 10.1016/j.jnutbio.2024.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Vitamin C (VitC) is maintained at high concentrations in the brain and is an essential micronutrient for brain function. VitC deficiency leads to neuropsychiatric scurvy, which is characterized by depression and cognitive impairment. However, the molecular mechanism by which mild VitC deficiency impairs brain function is currently unknown. In the present study, we conducted RNA sequencing analysis and found that a short-term VitC deficiency altered the brain transcriptome in ODS rats, which cannot synthesize VitC. Bioinformatic analysis indicated that VitC deficiency affected the expression of genes controlled by the glucocorticoid receptor in the brain. We confirmed an increased secretion of glucocorticoids from the adrenal gland during VitC deficiency. We found that non-neuronal cells, including microglia, which are resident immune cells in the brain, changed their transcriptional patterns in response to VitC deficiency. Immunohistochemical analysis revealed that the quiescent ramified microglia transform into the activated amoeboid microglia during three weeks of VitC deficiency. The morphological activation of microglia was accompanied by increased expression of proinflammatory cytokines such as interleukin-6 in the hippocampus. Furthermore, VitC deficiency decreased the number of newly born neurons in the dentate gyrus of the hippocampus, suggesting that VitC was required for adult neurogenesis that plays a crucial role in learning and memory. Our findings may provide insights into the molecular mechanisms underlying the maintenance of normal brain function by adequate levels of VitC.
Collapse
Affiliation(s)
- Shunta Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Natsuki Kojima
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Miyu Komori
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Noe Kawade
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kenzi Oshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daita Nadano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Fumihiko Horio
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan; Department of Life Studies and Environmental Science, Nagoya Women's University, Nagoya, Japan
| | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan; Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| |
Collapse
|
27
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
28
|
Li B, Xu L, Wang Z, Shi Q, Cui Y, Fan W, Wu Q, Tong X, Yan H. Neutrophil Extracellular Traps Regulate Surgical Brain Injury by Activating the cGAS-STING Pathway. Cell Mol Neurobiol 2024; 44:36. [PMID: 38637346 PMCID: PMC11026279 DOI: 10.1007/s10571-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Surgical brain injury (SBI), induced by neurosurgical procedures or instruments, has not attracted adequate attention. The pathophysiological process of SBI remains sparse compared to that of other central nervous system diseases thus far. Therefore, novel and effective therapies for SBI are urgently needed. In this study, we found that neutrophil extracellular traps (NETs) were present in the circulation and brain tissues of rats after SBI, which promoted neuroinflammation, cerebral edema, neuronal cell death, and aggravated neurological dysfunction. Inhibition of NETs formation by peptidylarginine deiminase (PAD) inhibitor or disruption of NETs with deoxyribonuclease I (DNase I) attenuated SBI-induced damages and improved the recovery of neurological function. We show that SBI triggered the activation of cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING), and that inhibition of the cGAS-STING pathway could be beneficial. It is worth noting that DNase I markedly suppressed the activation of cGAS-STING, which was reversed by the cGAS product cyclic guanosine monophosphate-adenosine monophosphate (cGMP-AMP, cGAMP). Furthermore, the neuroprotective effect of DNase I in SBI was also abolished by cGAMP. NETs may participate in the pathophysiological regulation of SBI by acting through the cGAS-STING pathway. We also found that high-dose vitamin C administration could effectively inhibit the formation of NETs post-SBI. Thus, targeting NETs may provide a novel therapeutic strategy for SBI treatment, and high-dose vitamin C intervention may be a promising translational therapy with an excellent safety profile and low cost.
Collapse
Affiliation(s)
- Bingbing Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Zhengang Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Qi Shi
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Cui
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| |
Collapse
|
29
|
Liu J, Lu X, Song J, Tong H, Xu C, Zhu X, Zheng X, Wang M. The association between the composite dietary antioxidant index and thyroid functionality among adults in the USA: NHANES 2007-2012. Heliyon 2024; 10:e29082. [PMID: 38617964 PMCID: PMC11015128 DOI: 10.1016/j.heliyon.2024.e29082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Objective Composite Dietary Antioxidant Index (CDAI) values serve as a summary of an individual's combined dietary antioxidant intake. Although specific antioxidants are known to reduce thyroid damage from oxidative stress, the relationship between the CDAI and thyroid function remains uncertain. The purpose of this study was thus to investigate this relationship in greater detail while focusing on a representative American adult population. Methods A total of 6,860 subjects from the 2007-2012 NHANES cohort were included in this study. Associations between CDAI values and thyroid function were evaluated with weighted linear regression models and smoothed curve fitting. Subgroup analyses were also performed. Results The weighted mean (SD) values for variables analyzed in this study included a CDAI of 0.13 (0.06), serum free T4 (FT4) levels of 0.80 (0.01) ng/dL, and serum total T4 (TT4) levels of 7.80 (0.03) ug/dL. Lower CDAI values were found to be associated with higher levels of FT4 and TT4 using both unadjusted and adjusted models that accounted for relevant confounders (adjusted model, FT4 β = -0.003, p = 0.005; TT4 β = -0.035, p < 0.001). This negative correlation persisted when CDAI was categorized into quartiles (FT4, p for trend = 0.014; TT4, p for trend = 0.003). Conclusion These findings suggest that a diet rich in antioxidants, as reflected by higher CDAI scores, is associated with significant decreases in levels of free and total T4. Further analyses will be necessary to better clarify the underlying mechanisms behind these observations.
Collapse
Affiliation(s)
- Junru Liu
- Department of Endocrinology and Metabolism, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xiaofeng Lu
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, Zhejiang, China
| | - Jialu Song
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, Zhejiang, China
| | - Huijing Tong
- Department of Emergency, Jinhua Central Hospital, Jinhua, Zhejiang, China
| | - Chaoyang Xu
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, Zhejiang, China
| | - Xiaotao Zhu
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, Zhejiang, China
| | - Xiaogang Zheng
- Department of Breast and Thyroid, Jinhua Maternal and Child Health Hospital, Jinhua, Zhejiang, China
| | - Mingzheng Wang
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
30
|
Kanon AP, Giezenaar C, Roy NC, Jayawardana IA, Lomiwes D, Montoya CA, McNabb WC, Henare SJ. Effects of Green and Gold Kiwifruit Varieties on Antioxidant Neuroprotective Potential in Pigs as a Model for Human Adults. Nutrients 2024; 16:1097. [PMID: 38674790 PMCID: PMC11055029 DOI: 10.3390/nu16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Kiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.
Collapse
Affiliation(s)
- Alexander P. Kanon
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Caroline Giezenaar
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Food Experience and Sensory Testing Laboratory, School of Food and Advanced Technology, Palmerston North 4410, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Isuri A. Jayawardana
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
| | - Dominic Lomiwes
- Immune Health and Physical Performance, Nutrition and Health Group, The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Smart Foods and Bioproducts, AgResearch Ltd., Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Sharon J. Henare
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
| |
Collapse
|
31
|
Saldivia N, Salazar K, Cifuentes M, Espinoza F, Harrison FE, Nualart F. Ascorbic acid and its transporter SVCT2, affect radial glia cells differentiation in postnatal stages. Glia 2024; 72:708-727. [PMID: 38180226 DOI: 10.1002/glia.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-β through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.
Collapse
Affiliation(s)
- Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Francisca Espinoza
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
32
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
33
|
Rulmont C, Stigliani JL, Hureau C, Esmieu C. Rationally Designed Cu(I) Ligand to Prevent CuAβ-Generated ROS Production in the Alzheimer's Disease Context. Inorg Chem 2024; 63:2340-2351. [PMID: 38243896 DOI: 10.1021/acs.inorgchem.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
In the context of Alzheimer's disease, copper (Cu) can be loosely bound to the amyloid-β (Aβ) peptide, leading to the formation of CuAβ, which can catalytically generate reactive oxygen species that contribute to oxidative stress. To fight against this phenomenon, the chelation therapy approach has been developed and consists of using a ligand able to remove Cu from Aβ and to redox-silence it, thus stopping the reactive oxygen species (ROS) production. A large number of Cu(II) chelators has been studied, allowing us to define and refine the properties required to design a "good" ligand, but without strong therapeutic outcomes to date. Those chelators targeted the Cu(II) redox state. Herein, we explore a parallel and relevant alternative pathway by designing a chelator able to target the Cu(I) redox state. To that end, we designed LH2 ([1N3S] binding set) and demonstrated that (i) it is perfectly able to extract Cu(I) from Cu(I)Aβ even in the presence of an excess of Zn(II) and (ii) it redox-silences the Cu, preventing the formation of ROS. We showed that LH2 that is sensitive to oxidation can efficiently replace the [Zn(II)L] complex without losing its excellent ability to stop the ROS production while increasing its resistance to oxidation.
Collapse
Affiliation(s)
- Clément Rulmont
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| | | | | | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| |
Collapse
|
34
|
Privšek M, Strnad M, Markota A. Addition of Vitamin C Does Not Decrease Neuron-Specific Enolase Levels in Adult Survivors of Cardiac Arrest-Results of a Randomized Trial. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:103. [PMID: 38256364 PMCID: PMC10818462 DOI: 10.3390/medicina60010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Survival with favorable neurologic outcomes after out-of-hospital cardiac arrest (OHCA) remains elusive. Post-cardiac arrest syndrome (PCAS) involves myocardial and neurological injury, ischemia-reperfusion response, and underlying pathology. Neurologic injury is a crucial determinant of survival and functional outcomes, with damage caused by free radicals among the responsible mechanisms. This study explores the feasibility of adding intravenous vitamin C to the treatment of OHCA survivors, aiming to mitigate PCAS. Vitamin C, a nutrient with antioxidative and free radical-scavenging properties, is often depleted in critically ill patients. Materials and Methods: This randomized, double-blinded trial was conducted at a tertiary-level university hospital with adult OHCA survivors. Participants received either standard care or the addition of 1.5 g of intravenous vitamin C every 12 h for eight consecutive doses. Neurologic injury was assessed using neuron-specific enolase (NSE) levels, with additional clinical and laboratory outcomes, such as enhanced neuroprognostication factors, inflammatory markers, and cardiac parameters. Results: NSE levels were non-significantly higher in patients who received vitamin C compared to the placebo group (55.05 µg/L [95% confidence interval (CI) 26.7-124.0] vs. 39.4 µg/L [95% CI 22.6-61.9], p > 0.05). Similarly, a non-significantly greater proportion of patients in the vitamin C group developed myoclonus in the first 72 h. We also observed a non-significantly shorter duration of mechanical ventilation, fewer arrhythmias, and reduced length of stay in the intensive care unit in the group of patients who received vitamin C (p = 0.031). However, caution is warranted in interpretation of our results due to the small number of participants. Conclusions: Our findings suggest that intravenous vitamin C should not be used outside of clinical trials for OHCA survivors. Due to the small sample size and conflicting results, further research is needed to determine the potential role of vitamin C in post-cardiac arrest care.
Collapse
Affiliation(s)
- Matevž Privšek
- Emergency Medical Services, Healthcare Centre Dr. Adolf Drolc, Cesta Proletarskih Brigad 21, 2000 Maribor, Slovenia;
| | - Matej Strnad
- Emergency Medical Services, Healthcare Centre Dr. Adolf Drolc, Cesta Proletarskih Brigad 21, 2000 Maribor, Slovenia;
- Emergency Department, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
- Department of Emergency Medicine, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Andrej Markota
- Department of Medical Intensive Care, Clinic of Internal Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia;
| |
Collapse
|
35
|
Matrisciano F. Functional foods and neuroinflammation: Focus on autism spectrum disorder and schizophrenia. FUNCTIONAL FOODS AND CHRONIC DISEASE 2024:213-230. [DOI: 10.1016/b978-0-323-91747-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Islam M, Samal A, Davis DJ, Behura SK. Ablation of placental REST deregulates fetal brain metabolism and impacts gene expression of the offspring brain at the postnatal and adult stages. FASEB J 2024; 38:e23349. [PMID: 38069914 DOI: 10.1096/fj.202301344r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
In this study, the transcriptional repressor REST (Repressor Element 1 Silencing Transcription factor) was ablated in the mouse placenta to investigate molecular and cellular impacts on the offspring brain at different life stages. Ablation of placental REST deregulated several brain metabolites, including glucose and lactate that fuel brain energy, vitamin C (ascorbic acid) that functions in the epigenetic programming of the brain during postnatal development, and glutamate and creatine that help the brain to respond to stress conditions during adult life. Bulk RNA-seq analysis showed that a lack of placental REST persistently altered multiple transport genes, including those related to oxygen transportation in the offspring brain. While metabolic genes were impacted in the postnatal brain, different stress response genes were activated in the adult brain. DNA methylation was also impacted in the adult brain due to the loss of placental REST, but in a sex-biased manner. Single-nuclei RNA-seq analysis showed that specific cell types of the brain, particularly those of the choroid plexus and ependyma, which play critical roles in producing cerebrospinal fluid and maintaining metabolic homeostasis, were significantly impacted due to the loss of placental REST. These cells showed significant differential expression of genes associated with the metabotropic (G coupled protein) and ionotropic (ligand-gated ion channel) glutamate receptors, suggesting an impact of ablation of placental REST on the glutamatergic signaling of the offspring brain. The study expands our understanding of placental influences on the offspring brain.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Interdisciplnary Reproductive and Health Group, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
37
|
Lykkesfeldt J, Carr AC. Vitamin C - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10300. [PMID: 38187788 PMCID: PMC10770653 DOI: 10.29219/fnr.v67.10300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 01/09/2024] Open
Abstract
Vitamin C has multiple metabolic functions in the body, but the available information on the exact relationship between these functions and the intake necessary to maintain them is very limited. However, most attempts to objectively measure adequacy of vitamin C status, including, for example, replacement of metabolic turnover, chronic disease prevention, urinary excretion, and saturation of immune cells and body compartment, currently point toward 50 µmol/L as a reasonable target plasma concentration. As a strong correlation between body weight and vitamin C status exists, recommended intakes (RIs) for other age groups may be extrapolated from the adult RI based on weight. However, as body weights above 70 kg are becoming increasingly common - also in the Nordic region - an RI of 140 mg/day for individuals weighing 100 kg or more should be considered to compensate for the larger volume of distribution. Finally, smoking continues to be a common contributor to poor vitamin C status; therefore, it is proposed that people who smoke increase their daily vitamin C intake by 40 mg/day to compensate for the increased metabolic turnover induced by smoking.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anitra C. Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
38
|
Zheng Z, Liu L, Ouyang S, Chen Y, Lin P, Chen H, You Y, Zhao P, Huang K, Tao J. In Situ Ratiometric Determination of Cerebral Ascorbic Acid after Ischemia Reperfusion. ACS Sens 2023; 8:4587-4596. [PMID: 38038440 DOI: 10.1021/acssensors.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ascorbic acid (AA) is significant in protecting the brain from further damage and maintaining brain homeostasis after ischemia stroke (IS); however, the dynamic change of cerebral AA content after different degrees of ischemic stroke is still unclear. Herein, carboxylated single-walled carbon nanotube (CNT-COOH)- and polyethylenedioxythiophene (PEDOT)-modified carbon fiber microelectrodes (CFEs) were proposed to detect in situ cerebral AA with sensitivity, selectivity, and stability. Under differential pulse voltammetry scanning, the CFE/CNT-COOH/PEDOT gave a ratiometric, electrochemically responsive signal. The internal standard peak at -310 mV was from the reversible peak of O2 reduction and the deprotonation and protonation of quinone groups, while AA was oxidized at -70 mV. In vivo experimental results indicated that the cerebral AA level gradually increased with the ischemic time increasing in different middle cerebral artery occlusion (MCAO) model mice. This work implies that the increasing cerebral AA level may be highly related to the glutamate excitotoxicity and ROS-led cell apoptosis and paves a new way for further understanding the release and metabolic mechanisms of AA during ischemia reperfusion and IS.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Lina Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
39
|
Turner N, Farrow B, Betrie AH, Finnis ME, Lankadeva YR, Sharman J, Tan P, Abdelhamid YA, Deane AM, Plummer MP. Cerebrospinal fluid and plasma ascorbate concentrations following subarachnoid haemorrhage. CRIT CARE RESUSC 2023; 25:175-181. [PMID: 38234324 PMCID: PMC10790009 DOI: 10.1016/j.ccrj.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 01/19/2024]
Abstract
Background Ascorbate, the biologically active form of vitamin C, is the primary neural anti-oxidant. Ascorbate concentrations have never been quantified following aneurysmal subarachnoid haemorrhage (aSAH). Objective To quantify plasma and cerebrospinal fluid (CSF) ascorbate concentrations in patients following SAH. Design Setting Participants Main Outcome Measures Cohort study in which plasma and CSF ascorbate concentrations were measured longitudinally in 12 aSAH patients admitted to a quaternary referral intensive care unit and compared to one-off samples obtained from 20 pregnant women prior to delivery in a co-located obstetric hospital. Data are median [interquartile range] or median (95 % confidence intervals). Results Forty-eight plasma samples were obtained from the 12 aSAH patients (eight females, age 62 [53-68] years). Eight participants with extra-ventricular drains provided 31 paired CSF-plasma samples. Single plasma and CSF samples were obtained from 20 pregnant women (age 35 [31-37] years). Initial plasma and CSF ascorbate concentrations post aSAH were less than half those in pregnant controls (plasma: aSAH: 31 [25-39] μmol/L vs. comparator: 64 [59-77] μmol/L; P < 0.001 and CSF: 116 [80-142] μmol/L vs. 252 [240-288] μmol/L; P < 0.001). Post aSAH there was a gradual reduction in the CSF:plasma ascorbate ratio from ∼4:1 to ∼1:1. Six (50 %) patients developed vasospasm and CSF ascorbate concentrations were lower in these patients (vasospasm: 61 (25, 97) vs. no vasospasm: 110 (96, 125) μmol/L; P = 0.01). Conclusion Post aSAH there is a marked reduction in CSF ascorbate concentration that is most prominent in those who develop vasospasm.
Collapse
Affiliation(s)
- Natasha Turner
- Intensive Care Unit, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Brodie Farrow
- Intensive Care Unit, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Ashenafi H. Betrie
- Pre-clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3052, Australia
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental Health, Health, Melbourne, Victoria 3052, Australia
| | - Mark E. Finnis
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3010, Australia
- Intensive Care Unit Research, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Yugeesh R. Lankadeva
- Pre-clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3052, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jeremy Sharman
- Intensive Care Unit, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Patrick Tan
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Anaesthesia, The Royal Women's Hospital, Grattan Street & Flemington Road, Melbourne, Victoria 3052, Australia
| | - Yasmine Ali Abdelhamid
- Intensive Care Unit, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Adam M. Deane
- Intensive Care Unit, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mark P. Plummer
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3010, Australia
- Intensive Care Unit Research, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| |
Collapse
|
40
|
Kumar R, Rizvi SI. Vitamin C Improves Inflammatory-related Redox Status in Hyperlipidemic Rats. Indian J Clin Biochem 2023; 38:512-518. [PMID: 37746546 PMCID: PMC10516823 DOI: 10.1007/s12291-022-01070-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Excessive dietary fat is mainly responsible for metabolic diseases including atherosclerosis and cardiovascular disease. We have evaluated the role of Vitamin C in an experimental hyperlipidemic model of rats (male Wistar rat 12-16 months). The hyperlipidemic model of the rat was created by treatment with an atherogenic suspension: cholesterol, cholic acid, and coconut oil, for 30 days once daily, and supplemented with Vitamin C (Ascorbic acid) doses of 0.5 g/kg body weight (orally) for the 30 days once daily. Bodyweight, fasting glucose, triglyceride, cholesterol, ROS (Reactive oxygen species), MDA (Malondialdehyde), FRAP (Ferric reducing the ability of plasma), GSH (Reduced glutathione), PCO (Protein carbonyl), PON-1(Paraoxonase-1), AGE (Advanced glycation end product), PMRS (Plasma membrane reduced system), and inflammatory cytokines (TNF-α and IL-6) were estimated in blood and plasma. Our result shows that oxidative stress, and inflammatory markers, were increased in the HFD-treated group of rats. Vitamin C supplementation protected against lipidemic and, oxidative stress. We conclude that Vitamin C may be useful in maintaining cellular redox balance and protecting against lipidemic stress.
Collapse
Affiliation(s)
- Raushan Kumar
- Department of Biochemistry, University of Allahabad, 211002 Allahabad, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, 211002 Allahabad, India
| |
Collapse
|
41
|
Dias-Carvalho A, Margarida-Araújo A, Reis-Mendes A, Sequeira CO, Pereira SA, Guedes de Pinho P, Carvalho F, Sá SI, Fernandes E, Costa VM. A Clinically Relevant Dosage of Mitoxantrone Disrupts the Glutathione and Lipid Metabolic Pathways of the CD-1 Mice Brain: A Metabolomics Study. Int J Mol Sci 2023; 24:13126. [PMID: 37685929 PMCID: PMC10488007 DOI: 10.3390/ijms241713126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
Long-term cognitive dysfunction, or "chemobrain", has been observed in cancer patients treated with chemotherapy. Mitoxantrone (MTX) is a topoisomerase II inhibitor that binds and intercalates with DNA, being used in the treatment of several cancers and multiple sclerosis. Although MTX can induce chemobrain, its neurotoxic mechanisms are poorly studied. This work aimed to identify the adverse outcome pathways (AOPs) activated in the brain upon the use of a clinically relevant cumulative dose of MTX. Three-month-old male CD-1 mice were given a biweekly intraperitoneal administration of MTX over the course of three weeks until reaching a total cumulative dose of 6 mg/kg. Controls were given sterile saline in the same schedule. Two weeks after the last administration, the mice were euthanized and their brains removed. The left brain hemisphere was used for targeted profiling of the metabolism of glutathione and the right hemisphere for an untargeted metabolomics approach. The obtained results revealed that MTX treatment reduced the availability of cysteine (Cys), cysteinylglycine (CysGly), and reduced glutathione (GSH) suggesting that MTX disrupts glutathione metabolism. The untargeted approach revealed metabolic circuits of phosphatidylethanolamine, catecholamines, unsaturated fatty acids biosynthesis, and glycerolipids as relevant players in AOPs of MTX in our in vivo model. As far as we know, our study was the first to perform such a broad profiling study on pathways that could put patients given MTX at risk of cognitive deficits.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Margarida-Araújo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Reis-Mendes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Catarina Oliveira Sequeira
- iNOVA4Health, LS4Future, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Sofia Azeredo Pereira
- iNOVA4Health, LS4Future, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
42
|
Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage. Life Sci Alliance 2023; 6:e202301976. [PMID: 37160307 PMCID: PMC10172762 DOI: 10.26508/lsa.202301976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Glaucoma is a common neurodegenerative disorder characterized by retinal ganglion cell death, astrocyte reactivity in the optic nerve, and vision loss. Currently, lowering the intraocular pressure (IOP) is the first-line treatment, but adjuvant neuroprotective approaches would be welcome. Vitamin C possesses neuroprotective activities that are thought to be related to its properties as a co-factor of enzymes and its antioxidant effects. Here, we show that vitamin C promotes a neuroprotective phenotype and increases gene expression related to neurotropic factors, phagocytosis, and mitochondrial ATP production. This effect is dependent on the up-regulation of secreted phosphoprotein 1 (SPP1) in reactive astrocytes via the transcription factor E2F1. SPP1+ astrocytes in turn promote retinal ganglion cell survival in a mouse model of glaucoma. In addition, oral administration of vitamin C lowers the IOP in mice. This study identifies an additional neuroprotective pathway for vitamin C and suggests a potential therapeutic role of vitamin C in neurodegenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
43
|
Iizuka Y, Yoshinaga K, Takahashi K, Oki S, Chiba Y, Sanui M, Kimura N, Yamaguchi A. Association between Plasma Ascorbic Acid Levels and Postoperative Delirium in Older Patients Undergoing Cardiovascular Surgery: A Prospective Observational Study. J Cardiovasc Dev Dis 2023; 10:293. [PMID: 37504549 PMCID: PMC10380566 DOI: 10.3390/jcdd10070293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The incidence of delirium is high in older patients undergoing cardiovascular surgery with cardiopulmonary bypass (CPB). Intraoperative tissue hypoperfusion and re-reperfusion injury, which generate reactive oxygen species (ROS), are suggested to induce delirium. Ascorbic acid is an excellent antioxidant and may reduce organ damage by inhibiting the production of ROS. This prospective observational study aimed to measure pre- and postoperative plasma ascorbic acid levels and examine their association with delirium. METHODS Patients older than 70 years of age scheduled for elective cardiovascular surgery using CPB were enrolled. From September 2020 to December 2021, we enrolled 100 patients, and the data of 98 patients were analyzed. RESULTS In total, 31 patients developed delirium, while 67 did not. Preoperative plasma ascorbic acid levels did not differ between the non-delirium and delirium groups (6.0 ± 2.2 vs. 5.5 ± 2.4 µg/mL, p = 0.3). Postoperative plasma ascorbic acid levels were significantly different between the groups (2.8 [2.3-3.5] vs. 2.3 [1.6-3.3] µg/mL, p = 0.037). CONCLUSIONS In patients who undergo cardiovascular surgery with CPB, lower postoperative plasma ascorbic acid levels may be associated with the development of delirium.
Collapse
Affiliation(s)
- Yusuke Iizuka
- Department of Anesthesiology and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Koichi Yoshinaga
- Department of Anesthesiology and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Kyosuke Takahashi
- Department of Anesthesiology and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Sayaka Oki
- Department of Anesthesiology and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Yoshihiko Chiba
- Department of Anesthesiology and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Masamitsu Sanui
- Department of Anesthesiology and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Naoyuki Kimura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| |
Collapse
|
44
|
Wang Z, Liu L, Liu L. Vitamin C as a treatment for organ failure in sepsis. Eur J Med Res 2023; 28:222. [PMID: 37408078 DOI: 10.1186/s40001-023-01183-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, with a high morbidity and mortality rate. Exogenous vitamin C supplementation is a potential therapeutic option for the treatment of multi-organ dysfunction in sepsis due to the significantly lower levels of vitamin C in the circulating blood of sepsis patients compared to healthy subjects and the importance of vitamin C in many of the physiological processes of sepsis. Vitamin C may influence the function of numerous organs and systems, including the heart, lungs, kidneys, brain, and immune defences, by reducing oxidative stress, inhibiting inflammatory factor surges, regulating the synthesis of various mediators and hormones, and enhancing immune cell function. With the development of multiple clinical randomized controlled trials, the outcomes of vitamin C treatment for critically ill patients have been discussed anew. This review's objectives are to provide an overview of how vitamin C affects various organ functions in sepsis and to illustrate how it affects each organ. Understanding the pharmacological mechanism of vitamin C and the organ damage caused by sepsis may help to clarify the conditions and clinical applications of vitamin C.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Liang Liu
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Institute of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lixia Liu
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
45
|
Farasati Far B, Behnoush AH, Ghondaghsaz E, Habibi MA, Khalaji A. The interplay between vitamin C and thyroid. Endocrinol Diabetes Metab 2023; 6:e432. [PMID: 37246589 PMCID: PMC10335618 DOI: 10.1002/edm2.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023] Open
Abstract
INTRODUCTION Vitamin C (ascorbic acid) is a water-soluble vitamin, that plays a key role in the prevention and treatment of scurvy. As vitamin C is an antioxidant and thyroid function may be affected and may affect vitamin C levels, for the first time, we aimed to provide a detailed review of all human studies evaluating the different roles of vitamin C in the thyroid gland. Thyroid cancers, goitre, Graves' disease and other causes of hyperthyroidism and hypothyroidism were the conditions discussed in this study. Furthermore, vitamin C addition to other medications such as levothyroxine was also reviewed. METHODS In this study, we reviewed the relevant literature regarding the association between vitamin C and thyroid diseases using original studies from PubMed, Scopus, Embase, and Web of Science. RESULTS In this review, we found anti-cancer effects for intravenous (IV) administration of vitamin C in addition to the beneficial effects of using it in combination with radiotherapy and chemotherapy. As autoimmune diseases affect some antioxidant markers, some studies reported a significant difference in blood vitamin C levels in patients with autoimmune thyroid diseases such as Graves' disease. Despite many studies evaluating the effects of IV administration of vitamin C in mentioned diseases, there is a lack of evidence for oral consumption of vitamin C. CONCLUSIONS To conclude, there is a lack of evidence, especially clinical trials, for the therapeutic effects of vitamin C on thyroid diseases; however, promising results were reported in some studies in the literature.
Collapse
Affiliation(s)
| | | | - Elina Ghondaghsaz
- Undergraduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mohammad Amin Habibi
- Gene, Cell & Tissue Research InstituteTehran University of Medical ScienceTehranIran
- Clinical Research Development CenterQom University of Medical SciencesQomIran
| | | |
Collapse
|
46
|
Salazar K, Jara N, Ramírez E, de Lima I, Smith-Ghigliotto J, Muñoz V, Ferrada L, Nualart F. Role of vitamin C and SVCT2 in neurogenesis. Front Neurosci 2023; 17:1155758. [PMID: 37424994 PMCID: PMC10324519 DOI: 10.3389/fnins.2023.1155758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Different studies have established the fundamental role of vitamin C in proliferation, differentiation, and neurogenesis in embryonic and adult brains, as well as in in vitro cell models. To fulfill these functions, the cells of the nervous system regulate the expression and sorting of sodium-dependent vitamin C transporter 2 (SVCT2), as well as the recycling of vitamin C between ascorbic acid (AA) and dehydroascorbic acid (DHA) via a bystander effect. SVCT2 is a transporter preferentially expressed in neurons and in neural precursor cells. In developmental stages, it is concentrated in the apical region of the radial glia, and in adult life, it is expressed preferentially in motor neurons of the cerebral cortex, starting on postnatal day 1. In neurogenic niches, SVCT2 is preferentially expressed in precursors with intermediate proliferation, where a scorbutic condition reduces neuronal differentiation. Vitamin C is a potent epigenetic regulator in stem cells; thus, it can induce the demethylation of DNA and histone H3K27m3 in the promoter region of genes involved in neurogenesis and differentiation, an effect mediated by Tet1 and Jmjd3 demethylases, respectively. In parallel, it has been shown that vitamin C induces the expression of stem cell-specific microRNA, including the Dlk1-Dio3 imprinting region and miR-143, which promotes stem cell self-renewal and suppresses de novo expression of the methyltransferase gene Dnmt3a. The epigenetic action of vitamin C has also been evaluated during gene reprogramming of human fibroblasts to induced pluripotent cells, where it has been shown that vitamin C substantially improves the efficiency and quality of reprogrammed cells. Thus, for a proper effect of vitamin C on neurogenesis and differentiation, its function as an enzymatic cofactor, modulator of gene expression and antioxidant is essential, as is proper recycling from DHA to AA by various supporting cells in the CNS.
Collapse
Affiliation(s)
- Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| | - Nery Jara
- Department of Pharmacology, University of Concepcion, Concepcion, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Isabelle de Lima
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Javiera Smith-Ghigliotto
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Valentina Muñoz
- Department of Pharmacology, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
47
|
Fang X, Yuan M, Zhao F, Yu A, Lin Q, Li S, Li H, Wang X, Yu Y, Wang X, Lin Q, Lu C, Yang H. In situ continuous Dopa supply by responsive artificial enzyme for the treatment of Parkinson's disease. Nat Commun 2023; 14:2661. [PMID: 37160866 PMCID: PMC10169781 DOI: 10.1038/s41467-023-38323-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
Oral dihydroxyphenylalanine (Dopa) administration to replenish neuronal dopamine remains the most effective treatment for Parkinson's disease (PD). However, unlike the continuous and steady dopamine signaling in normal neurons, oral Dopa induces dramatic fluctuations in plasma Dopa levels, leading to Dopa-induced dyskinesia. Herein, we report a functional nucleic acid-based responsive artificial enzyme (FNA-Fe3O4) for in situ continuous Dopa production. FNA-Fe3O4 can cross the blood-brain barrier and target diseased neurons relying on transferrin receptor aptamer. Then, FNA-Fe3O4 responds to overexpressed α-synuclein mRNA in diseased neurons for antisense oligonucleotide treatment and fluorescence imaging, while converting to tyrosine aptamer-based artificial enzyme (Apt-Fe3O4) that mimics tyrosine hydroxylase for in situ continuous Dopa production. In vivo FNA-Fe3O4 treatment results in recovery of Dopa and dopamine levels and decrease of pathological overexpressed α-synuclein in PD mice model, thus ameliorating motor symptoms and memory deficits. The presented functional nucleic acid-based responsive artificial enzyme strategy provides a more neuron friendly approach for the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao Fang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Meng Yuan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Fang Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Aoling Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qianying Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Shiqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Huichen Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xinyang Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yanbin Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xin Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qitian Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
| |
Collapse
|
48
|
Denniss RJ, Barker LA. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behav Sci (Basel) 2023; 13:bs13050388. [PMID: 37232626 DOI: 10.3390/bs13050388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
An estimated sixty-nine million people sustain a traumatic brain injury each year. Trauma to the brain causes the primary insult and initiates a secondary biochemical cascade as part of the immune and reparative response to injury. The secondary cascade, although a normal physiological response, may also contribute to ongoing neuroinflammation, oxidative stress and axonal injury, continuing in some cases years after the initial insult. In this review, we explain some of the biochemical mechanisms of the secondary cascade and their potential deleterious effects on healthy neurons including secondary cell death. The second part of the review focuses on the role of micronutrients to neural mechanisms and their potential reparative effects with regards to the secondary cascade after brain injury. The biochemical response to injury, hypermetabolism and excessive renal clearance of nutrients after injury increases the demand for most vitamins. Currently, most research in the area has shown positive outcomes of vitamin supplementation after brain injury, although predominantly in animal (murine) models. There is a pressing need for more research in this area with human participants because vitamin supplementation post-trauma is a potential cost-effective adjunct to other clinical and therapeutic treatments. Importantly, traumatic brain injury should be considered a lifelong process and better evaluated across the lifespan of individuals who experience brain injury.
Collapse
Affiliation(s)
- Rebecca J Denniss
- Department of Psychology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
49
|
The effect of ghrelin on antioxidant status in the rat's model of Alzheimer's disease induced by amyloid-beta. Biomedicine (Taipei) 2023; 12:44-54. [PMID: 36816173 PMCID: PMC9910231 DOI: 10.37796/2211-8039.1341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with amyloid-beta (Aβ) plaque formation and oxidative stress in the brain. Ghrelin has been proven to exert antioxidant activity and neuroprotection in different neurological diseases. This study is going on to examine the effect of ghrelin on antioxidant status in the rat's model of AD induced by Aβ. Cognitive impairment was induced by intra-hippocampal administration of Aβ (10 μg) in Wistar rats and ghrelin (80 μg/kg) was administrated intraperitoneal for ten consecutive days. Behavior was assessed with Morris water maze and passive avoidance tests. Malondialdehyde (MDA) level as a marker of lipid peroxidation was assessed using the thiobarbituric acid. Catalase activity was assayed by the decomposition of H2O2. Antioxidant capacity was determined using the FRAP method. Treatment with ghrelin decreased the hippocampus and serum MDA levels in wild-type rodents and prevented an increase in hippocampal and serum MDA levels in animals receiving Aβ. There was no significant change in the serum catalase activity between the studied groups. Hippocampus catalase activity was reduced in the Aβ group and treatment with ghrelin increased it. The antioxidant capacity of the hippocampus and serum increased in the ghrelin-receiving control group. The hippocampus antioxidant capacity level decreased in the Aβ group, and treatment with ghrelin increased it, but there were no significant changes in the serum antioxidant capacity of animals receiving Aβ. These results provide evidence that the administration of ghrelin has antioxidant properties and protects against hippocampal lipid peroxidation in a rat model of AD.
Collapse
|
50
|
Oxidative Damages on the Alzheimer's Related-Aβ Peptide Alters Its Ability to Assemble. Antioxidants (Basel) 2023; 12:antiox12020472. [PMID: 36830030 PMCID: PMC9951946 DOI: 10.3390/antiox12020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Oxidative stress that can lead to oxidation of the amyloid-β (Aβ) peptide is considered a key feature in Alzheimer's disease (AD), influencing the ability of Aβ to assemble into β-sheet rich fibrils that are commonly found in senile plaques of AD patients. The present study aims at investigating the fallouts of Aβ oxidation on the assembly properties of the Aβ peptide. To accomplish this, we performed kinetics and analysis on an oxidized Aβ (oxAβ) peptide, resulting from the attack of reactive oxygen species (ROS) that are formed by the biologically relevant Cu/Aβ/dioxygen/ascorbate system. oxAβ was still able to assemble but displayed ill-defined and small oligomeric assemblies compared to the long and thick β-sheet rich fibrils from the non-oxidized counterpart. In addition, oxAβ does affect the assembly of the parent Aβ peptide. In a mixture of the two peptides, oxAβ has a mainly kinetic effect on the assembly of the Aβ peptide and was able to slow down the formation of Aβ fibril in a wide pH range [6.0-7.4]. However, oxAβ does not change the quantity and morphology of the Aβ fibrils formed to a significant extent. In the presence of copper or zinc di-cations, oxAβ assembled into weakly-structured aggregates rather than short, untangled Cu-Aβ fibrils and long untangled Zn-Aβ fibrils. The delaying effect of oxAβ on metal altered Aβ assembly was also observed. Hence, our results obtained here bring new insights regarding the tight interconnection between (i) ROS production leading to Aβ oxidation and (ii) Aβ assembly, in particular via the modulation of the Aβ assembly by oxAβ. It is the first time that co-assembly of oxAβ and Aβ under various environmental conditions (pH, metal ions …) are reported.
Collapse
|