1
|
Ouyang X, Wang J, Qiu X, Hu D, Cui J. Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). Int J Oncol 2025; 66:26. [PMID: 39981901 DOI: 10.3892/ijo.2025.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant tumors are non-communicable diseases that impact human health and quality of life. Identifying and targeting the underlying genetic drivers is a challenge. Heme oxygenase-1 (HO-1), a stress-inducible enzyme also known as heat shock protein 32, plays a crucial role in maintaining cellular homeostasis. It mitigates oxidative stress-induced damage and exhibits anti-apoptotic properties. HO-1 is expressed in a wide range of malignancies and is associated with tumor growth. However, the precise role of HO-1 in tumor development remains controversial. Drugs, both naturally occurring and chemically synthesized, can inhibit tumor growth by modulating HO-1 expression in cancer cells. The present review aimed to discuss biological functions of HO-1 pharmacological therapies targeting HO-1.
Collapse
Affiliation(s)
- Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cui
- Health Management Center, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
2
|
Mohamud Yusuf A, Borbor M, Hussner T, Weghs C, Kaltwasser B, Pillath-Eilers M, Walkenfort B, Kolesnick R, Gulbins E, Hermann DM, Brockmeier U. Acid sphingomyelinase inhibition induces cerebral angiogenesis post-ischemia/reperfusion in an oxidative stress-dependent way and promotes endothelial survival by regulating mitochondrial metabolism. Cell Death Dis 2024; 15:650. [PMID: 39231943 PMCID: PMC11374893 DOI: 10.1038/s41419-024-06935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Acid sphingomyelinase (ASM) inhibitors are widely used for the treatment of post-stroke depression. They promote neurological recovery in animal stroke models via neurorestorative effects. In a previous study, we found that antidepressants including amitriptyline, fluoxetine, and desipramine increase cerebral angiogenesis post-ischemia/reperfusion (I/R) in an ASM-dependent way. To elucidate the underlying mechanisms, we investigated the effects of the functional ASM inhibitor amitriptyline in two models of I/R injury, that is, in human cerebral microvascular endothelial hCMEC/D3 cells exposed to oxygen-glucose deprivation and in mice exposed to middle cerebral artery occlusion (MCAO). In addition to our earlier studies, we now show that amitriptyline increased mitochondrial reactive oxygen species (ROS) formation in hCMEC/D3 cells and increased ROS formation in the vascular compartment of MCAO mice. ROS formation was instrumental for amitriptyline's angiogenic effects. ROS formation did not result in excessive endothelial injury. Instead, amitriptyline induced a profound metabolic reprogramming of endothelial cells that comprised reduced endothelial proliferation, reduced mitochondrial energy metabolism, reduced endoplasmic reticulum stress, increased autophagy/mitophagy, stimulation of antioxidant responses and inhibition of apoptotic cell death. Specifically, the antioxidant heme oxygenase-1, which was upregulated by amitriptyline, mediated amitriptyline's angiogenic effects. Thus, heme oxygenase-1 knockdown severely compromised angiogenesis and abolished amitriptyline's angiogenic responses. Our data demonstrate that ASM inhibition reregulates a complex network of metabolic and mitochondrial responses post-I/R that contribute to cerebral angiogenesis without compromising endothelial survival.
Collapse
Affiliation(s)
- Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mina Borbor
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Hussner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carolin Weghs
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Pillath-Eilers
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (Electron Microscopy), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ulf Brockmeier
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Bu Y, Liu Y, Liu M, Yan C, Wang J, Wu H, Song H, Zhang D, Xu K, Liu D, Han Y. TRIM55 Aggravates Cardiomyocyte Apoptosis After Myocardial Infarction via Modulation of the Nrf2/HO-1 Pathway. JACC Basic Transl Sci 2024; 9:1104-1122. [PMID: 39444927 PMCID: PMC11494394 DOI: 10.1016/j.jacbts.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 10/25/2024]
Abstract
Tripartite motif-containing 55 (Trim55) is mainly expressed in myocardium and skeletal muscle, which plays an important role in promoting the embryonic development of the mouse heart. We investigated the role of Trim55 in myocardial infarction and the associated molecular mechanisms. We studied both gain and loss of function in vivo and in vitro. The results showed that Trim55 knockout improved cardiac function and apoptosis after myocardial infarction, and overexpression aggravated cardiac function damage. The mechanism is that Trim55 interacts with nuclear factor, erythroid derived 2 (Nrf2) to accelerate its degradation and inhibit the expression of heme oxygenase 1, thereby promoting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
| | | | - Meili Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hanlin Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dali Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
4
|
Togawa S, Usui N, Doi M, Kobayashi Y, Koyama Y, Nakamura Y, Shinoda K, Kobayashi H, Shimada S. Neuroprotective effects of Si-based hydrogen-producing agent on 6-hydroxydopamine-induced neurotoxicity in juvenile mouse model. Behav Brain Res 2024; 468:115040. [PMID: 38723675 DOI: 10.1016/j.bbr.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.
Collapse
Affiliation(s)
- Shogo Togawa
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan.
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yuki Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, 567-0047, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yukiko Nakamura
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
5
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
6
|
Zhou B, Wang L, Yang S, Liang Y, Zhang Y, Liu X, Pan X, Li J. Pyrogallol protects against influenza A virus-triggered lethal lung injury by activating the Nrf2-PPAR-γ-HO-1 signaling axis. MedComm (Beijing) 2024; 5:e531. [PMID: 38617435 PMCID: PMC11014464 DOI: 10.1002/mco2.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Pyrogallol, a natural polyphenol compound (1,2,3-trihydroxybenzene), has shown efficacy in the therapeutic treatment of disorders associated with inflammation. Nevertheless, the mechanisms underlying the protective properties of pyrogallol against influenza A virus infection are not yet established. We established in this study that pyrogallol effectively alleviated H1N1 influenza A virus-induced lung injury and reduced mortality. Treatment with pyrogallol was found to promote the expression and nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Notably, the activation of Nrf2 by pyrogallol was involved in elevating the expression of PPAR-γ, both of which act synergistically to enhance heme oxygenase-1 (HO-1) synthesis. Blocking HO-1 by zinc protoporphyrin (ZnPP) reduced the suppressive impact of pyrogallol on H1N1 virus-mediated aberrant retinoic acid-inducible gene-I-nuclear factor kappa B (RIG-I-NF-κB) signaling, which thus abolished the dampening effects of pyrogallol on excessive proinflammatory mediators and cell death (including apoptosis, necrosis, and ferroptosis). Furthermore, the HO-1-independent inactivation of janus kinase 1/signal transducers and activators of transcription (JAK1/STATs) and the HO-1-dependent RIG-I-augmented STAT1/2 activation were both abrogated by pyrogallol, resulting in suppression of the enhanced transcriptional activity of interferon-stimulated gene factor 3 (ISGF3) complexes, thus prominently inhibiting the amplification of the H1N1 virus-induced proinflammatory reaction and apoptosis in interferon-beta (IFN-β)-sensitized cells. The study provides evidence that pyrogallol alleviates excessive proinflammatory responses and abnormal cell death via HO-1 induction, suggesting it could be a potential agent for treating influenza.
Collapse
Affiliation(s)
- Beixian Zhou
- The People's Hospital of GaozhouGaozhouChina
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | | | - Sushan Yang
- The People's Hospital of GaozhouGaozhouChina
| | | | | | - Xuanyu Liu
- The People's Hospital of GaozhouGaozhouChina
| | | | - Jing Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center of Respiratory DiseaseGuangzhou Institute of Respiratory HealthInstitute of Chinese Integrative MedicineGuangdong‐Hongkong‐Macao Joint Laboratory of Infectious Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Cuadra B, Silva V, Huang YL, Diaz Y, Rivas C, Molina C, Simon V, Bono MR, Morales B, Rosemblatt M, Silva S, Acuña R, Ezquer F, Ezquer M. The Immunoregulatory and Regenerative Potential of Activated Human Stem Cell Secretome Mitigates Acute-on-Chronic Liver Failure in a Rat Model. Int J Mol Sci 2024; 25:2073. [PMID: 38396750 PMCID: PMC10889754 DOI: 10.3390/ijms25042073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome marked by sudden liver function decline and multiorgan failure, predominantly acute kidney injury (AKY), in patients with chronic liver disease. Unregulated inflammation is a hallmark of ACLF; however, the key drivers of ACLF are not fully understood. This study explores the therapeutic properties of human mesenchymal stem cell (MSC) secretome, particularly focusing on its enhanced anti-inflammatory and pro-regenerative properties after the in vitro preconditioning of the cells. We evaluated the efficacy of the systemic administration of MSC secretome in preventing liver failure and AKI in a rat ACLF model where chronic liver disease was induced using by the administration of porcine serum, followed by D-galN/LPS administration to induce acute failure. After ACLF induction, animals were treated with saline (ACLF group) or MSC-derived secretome (ACLF-secretome group). The study revealed that MSC-secretome administration strongly reduced liver histological damage in the ACLF group, which was correlated with higher hepatocyte proliferation, increased hepatic and systemic anti-inflammatory molecule levels, and reduced neutrophil and macrophage infiltration. Additionally, renal examination revealed that MSC-secretome treatment mitigated tubular injuries, reduced apoptosis, and downregulated injury markers. These improvements were linked to increased survival rates in the ACLF-secretome group, endorsing MSC secretomes as a promising therapy for multiorgan failure in ACLF.
Collapse
Affiliation(s)
- Barbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Veronica Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Yael Diaz
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Claudio Rivas
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Cristobal Molina
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Valeska Simon
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Maria Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Bernardo Morales
- Facultad de Ciencias de la Salud, Universidad del Alba, Atrys Chile, Guardia Vieja 339, Providencia, Santiago 7510249, Chile;
| | - Mario Rosemblatt
- Centro de Ciencia & Vida, Av. Del Valle Norte 725, Huechuraba, Santiago 8580702, Chile;
| | - Sebastian Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Rodrigo Acuña
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| |
Collapse
|
8
|
Alipanah-Moghadam R, Khodaei M, Aghamohammadi V, Malekzadeh V, Afrouz M, Nemati A, Zahedian H. Andrographolide induced heme oxygenase-1 expression in MSC-like cells isolated from rat bone marrow exposed to environmental stress. Biochem Biophys Res Commun 2023; 687:149212. [PMID: 37944470 DOI: 10.1016/j.bbrc.2023.149212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Mesenchymal stem cells (MSC-like cells) are the most important stem cells that are used in transplantation clinically in various applications. The survival rate of MSC-like cells is strongly reduced due to adverse conditions in the microenvironment of transplantation, including environmental stress. Heme oxygenase-1 (HO-1) is a member of the heat shock protein, as well as a stress-induced enzyme, present throughout the body. The present study was conducted to investigate the effect of andrographolide, an active derivative from andrographolide paniculate, on HO-1 expression in mesenchymal stem cells derived from rat bone marrow. MATERIALS AND METHODS The rat bone marrow-derived mesenchymal stem cells (BMSC-like cells) were extracted and proliferated in several passages. The identity of MSC-like cells was confirmed by morphological observations and differential tests. The flow cytometry method was used to verify the MSC-specific markers. Isolated MSC-like cells were treated with different concentrations of andrographolide and then exposed to environmental stress. Cell viability was assessed using the MTT colorimetric assay. A real-time PCR technique was employed to evaluate the expression level of HO-1 in the treated MSC-like cells. RESULTS Isolated MSC-like cells demonstrated fibroblast-like morphology. These cells in different culture mediums differentiated into osteocytes and adipocytes and were identified using alizarin red and oil red staining, respectively. As well, MSC-like cells were verified by the detection of CD105 surface antigen and the absence of CD14 and CD45 antigens. The results of the MTT assay showed that the pre-treatment of MSC-like cells with andrographolide concentration independently increased the viability and resistance of these cells to environmental stress caused by hydrogen peroxide and serum deprivation (SD). Real-time PCR findings indicated a significant increase in HO-1 gene expression in the andrographolide-receiving groups (p < 0.01). CONCLUSION Our results suggest that andrographolide creates a promising strategy for enhancing the quality of cell therapy by increasing the resistance of MSC-like cells to environmental stress and inducing the expression of HO-1.
Collapse
Affiliation(s)
- Reza Alipanah-Moghadam
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Khodaei
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Vadoud Malekzadeh
- Department of Anatomical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Afrouz
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Iran.
| | - Ali Nemati
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hoda Zahedian
- Department of Deutsch-Sprachen, Volkshochschule, Gütersloh, Germany
| |
Collapse
|
9
|
Ahmad IM, Dafferner AJ, Salloom RJ, Abdalla MY. Heme Oxygenase-1 Inhibition Modulates Autophagy and Augments Arsenic Trioxide Cytotoxicity in Pancreatic Cancer Cells. Biomedicines 2023; 11:2580. [PMID: 37761021 PMCID: PMC10526552 DOI: 10.3390/biomedicines11092580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent form, accounting for more than 90% of all pancreatic malignancies. In a previous study, we found that hypoxia and chemotherapy induced expression of Heme Oxygenase-1 (HO-1) in PDAC cells and tissues. Arsenic trioxide (ATO) is the first-line chemotherapeutic drug for acute promyelocytic leukemia (APL). ATO increases the generation of reactive oxidative species (ROS) and induces apoptosis in treated cells. The clinical use of ATO for solid tumors is limited due to severe systemic toxicity. In order to reduce cytotoxic side effects and resistance and improve efficacy, it has become increasingly common to use combination therapies to treat cancers. In this study, we used ATO-sensitive and less sensitive PDAC cell lines to test the effect of combining HO-1 inhibitors (SnPP and ZnPP) with ATO on HO-1 expression, cell survival, and other parameters. Our results show that ATO significantly induced the expression of HO-1 in different PDAC cells through the p38 MAPK signaling pathway. ROS production was confirmed using the oxygen-sensitive probes DCFH and DHE, N-acetyl cysteine (NAC), an ROS scavenger, and oxidized glutathione levels (GSSG). Both ATO and HO-1 inhibitors reduced PDAC cell survival. In combined treatment, inhibiting HO-1 significantly increased ATO cytotoxicity, disrupted the GSH cycle, and induced apoptosis as measured using flow cytometry. ATO and HO-1 inhibition modulated autophagy as shown by increased expression of autophagy markers ATG5, p62, and LC3B in PDAC cells. This increase was attenuated by NAC treatment, indicating that autophagy modulation was through an ROS-dependent mechanism. In conclusion, our work explored new strategies that could lead to the development of less toxic and more effective therapies against PDAC by combining increased cellular stress and targeting autophagy.
Collapse
Affiliation(s)
- Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alicia J. Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.D.); (R.J.S.)
| | - Ramia J. Salloom
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.D.); (R.J.S.)
| | - Maher Y. Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.D.); (R.J.S.)
| |
Collapse
|
10
|
Jain S, Nandi G, Choubey P, Rana M. Determination and analysis of sex ratios in heme oxygenase 1 gene targeted mouse embryos. Birth Defects Res 2023; 115:179-187. [PMID: 36086893 DOI: 10.1002/bdr2.2087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023]
Abstract
Heme oxygenase 1 or Hmox1 enzyme is involved in catalyzing the first and rate-limiting step in heme breakdown reactions. Many studies have reported a partial lethality of Hmox1 knockout mice obtained from heterozygous breeding pairs. Similar results were obtained in our transgenic mice colony and a sex specific bias was observed in the favor of males in the adult mice. Hmox1 independent factors which could have caused this bias were initially analyzed and it was found that those factors were not a reason behind this anomaly. Certain studies involving gene knockout hinted toward a prenatal or neonatal lethality of female knockout mice embryos or pups, respectively. In order to check if this bias was occurring in embryonic stages, that is, either if mutant female embryos were dying or if heterozygous mothers were not carrying embryos to term, we analyzed the sex-ratios in mid- and late-gestational ages (9.5-13.5 dpc and 14.5-18.5 dpc, respectively). Our results did not indicate any significant difference in the sex ratios in embryonic stages; hence, it was concluded that females are not dying in embryonic stages. It can be speculated that these deaths were probably occurring at neonatal age. More studies are required to confirm that the lack of Hmox1 gene products is the sole reason for this female lethality.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, North Campus, Delhi, India.,Institute for Globally Distributed Open Research and Education (IGDORE), Gothenburg, Sweden
| | - Gouri Nandi
- Department of Zoology, University of Delhi, North Campus, Delhi, India.,Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Pooja Choubey
- Department of Zoology, University of Delhi, North Campus, Delhi, India
| | - Meenakshi Rana
- Department of Zoology, University of Delhi, North Campus, Delhi, India.,Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Ghajar-Rahimi G, Traylor AM, Mathew B, Bostwick JR, Nebane NM, Zmijewska AA, Esman SK, Thukral S, Zhai L, Sambandam V, Cowell RM, Suto MJ, George JF, Augelli-Szafran CE, Agarwal A. Identification of Cytoprotective Small-Molecule Inducers of Heme-Oxygenase-1. Antioxidants (Basel) 2022; 11:1888. [PMID: 36290611 PMCID: PMC9598442 DOI: 10.3390/antiox11101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major public health concern with significant morbidity and mortality and no current treatments beyond supportive care and dialysis. Preclinical studies have suggested that heme-oxygenase-1 (HO-1), an enzyme that catalyzes the breakdown of heme, has promise as a potential therapeutic target for AKI. Clinical trials involving HO-1 products (biliverdin, carbon monoxide, and iron), however, have not progressed beyond the Phase ½ level. We identified small-molecule inducers of HO-1 that enable us to exploit the full therapeutic potential of HO-1, the combination of its products, and yet-undefined effects of the enzyme system. Through cell-based, high-throughput screens for induction of HO-1 driven by the human HO-1 promoter/enhancer, we identified two novel small molecules and broxaldine (an FDA-approved drug) for further consideration as candidate compounds exhibiting an Emax ≥70% of 5 µM hemin and EC50 <10 µM. RNA sequencing identified shared binding motifs to NRF2, a transcription factor known to regulate antioxidant genes, including HMOX1. In vitro, the cytoprotective function of the candidates was assessed against cisplatin-induced cytotoxicity and apoptosis. In vivo, delivery of a candidate compound induced HO-1 expression in the kidneys of mice. This study serves as the basis for further development of small-molecule HO-1 inducers as preventative or therapeutic interventions for a variety of pathologies, including AKI.
Collapse
Affiliation(s)
- Gelare Ghajar-Rahimi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amie M. Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bini Mathew
- Southern Research, Birmingham, AL 35205, USA
| | | | | | - Anna A. Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Stephanie K. Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Saakshi Thukral
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ling Zhai
- Southern Research, Birmingham, AL 35205, USA
| | | | - Rita M. Cowell
- Southern Research, Birmingham, AL 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - James F. George
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Veterans Affairs, Birmingham, AL 35233, USA
| |
Collapse
|
12
|
Evazi Bakhshi S, Mohammadi Roushandeh A, Habibi Roudkenar M, Shekarchi S, Bahadori MH. CRISPR/Cas9-mediated knockout of HO-1 decreased the proliferation and migration of T47D cells and increased cisplatin-induced apoptosis: an in vitro study. Med Oncol 2022; 39:175. [PMID: 35972707 DOI: 10.1007/s12032-022-01773-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer is the most common type of neoplasm and the second cause of cancer-related death in women. Despite the development of novel therapeutic strategies and improved the clinical outcomes, the mortality rate for breast cancer is still high. Therefore, development of a new modality, particularly based on knocking out key genes, is under focus of investigation. Heme oxygenase-1 (HO-1) deregulation has been associated with various neoplasms-related behaviors of many types of tumor cells including breast cancer. In the current study, in order to evaluate the role of the HO-1 gene in breast cancer, we utilized the CRISPR/Cas9 technology to knock out HO-1 gene in T47D breast cancer cell line and studied its potential therapeutic effects in vitro. The cell proliferation and their sensitivity to Cisplatin were determined by CCK-8 kit. In addition, the apoptosis and the migratory potential of the cells were evaluated using Hoechst staining, and Transwell/Scratch methods, respectively. Our findings revealed that HO-1 suppression significantly reduced the proliferation ability of T47D cells (P < 0.001). Moreover, sensitivity to Cisplatin-induced toxicity increased significantly in KO-T47D cells compared to the control T47D cells. Furthermore, our findings indicated that Cisplatin-induced apoptosis increased in the KO-T47D cells. Moreover, the migratory capability of KO-T47D cells was abolished significantly (P < 0.001) as determined by Transwell migration assay. In a nutshell, our findings strongly suggest that HO-1 involved in breast cancer progression and metastasis and chemotherapy resistance. However, further comprehensive studies are required to clarify the precise role of the HO-1 gene on breast cancer cells.
Collapse
Affiliation(s)
- Sahar Evazi Bakhshi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hadi Bahadori
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
13
|
Cui Q, Liang XL, Wang JQ, Zhang JY, Chen ZS. Therapeutic implication of carbon monoxide in drug resistant cancers. Biochem Pharmacol 2022; 201:115061. [PMID: 35489394 DOI: 10.1016/j.bcp.2022.115061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Drug resistance is the major obstacle that undermines effective cancer treatment. Recently, the application of gas signaling molecules, e.g., carbon monoxide (CO), in overcoming drug resistance has gained significant attention. Growing evidence showed that CO could inhibit mitochondria respiratory effect and glycolysis, two major ATP production pathways in cancer cells, and suppress angiogenesis and inhibit the activity of cystathionine β-synthase that is important in regulating cancer cells homeostasis, leading to synergistic effects when combined with cisplatin, doxorubicin, or phototherapy, etc. in certain resistant cancer cells. In the current review, we attempted to have a summary of these research conducted in the past decade using CO in treating drug resistant cancers, and have a detailed interpretation of the underlying mechanisms. The critical challenges will be discussed and potential solutions will also be provided. The information collected in this work will hopefully evoke more effects in using CO for the treatment of drug resistant cancers.
Collapse
Affiliation(s)
- Qingbin Cui
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiao-Lan Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute for Biotechnology, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
14
|
Usui N, Togawa S, Sumi T, Kobayashi Y, Koyama Y, Nakamura Y, Kondo M, Shinoda K, Kobayashi H, Shimada S. Si-Based Hydrogen-Producing Nanoagent Protects Fetuses From Miscarriage Caused by Mother-to-Child Transmission. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:665506. [PMID: 35047922 PMCID: PMC8757766 DOI: 10.3389/fmedt.2021.665506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Mother-to-child transmission of viruses and bacteria increases the risk of miscarriage and various diseases in children. Such transmissions can result in infections and diseases in infants or the induction of an inflammatory immune response through the placenta. Recently, we developed a silicon (Si)-based hydrogen-producing nanoagent (Si-based agent) that continuously and effectively produces hydrogen in the body. Since medical hydrogen has antioxidative, anti-inflammatory, antiallergic, and antiapoptotic effects, we investigated the effects of our Si-based agent on mother-to-child transmission, with a focus on the rate of miscarriage. In pregnant mice fed a diet containing the Si-based agent, lipopolysaccharide (LPS)-induced miscarriage due to mother-to-child transmission was reduced and inflammation and neutrophil infiltration in the placenta were suppressed. We also found that the Si-based agent suppressed IL-6 expression in the placenta and induced the expression of antioxidant and antiapoptotic genes, such as Hmox1 and Ptgs2. The observed anti-inflammatory effects of the Si-based agent suggest that it may be an effective preventative or therapeutic drug for miscarriage or threatened miscarriage during pregnancy by suppressing maternal inflammation caused by bacterial and viral infections.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,United Graduate School of Child Development, Osaka University, Suita, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Shogo Togawa
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takuya Sumi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuki Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Yukiko Nakamura
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hikaru Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,United Graduate School of Child Development, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
15
|
Xu L, Zhao Q, Li D, Luo J, Ma W, Jin Y, Li C, Chen J, Zhao K, Zheng Y, Yu D. MicroRNA-760 resists ambient PM 2.5-induced apoptosis in human bronchial epithelial cells through elevating heme-oxygenase 1 expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117213. [PMID: 33933780 DOI: 10.1016/j.envpol.2021.117213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 (particles matter smaller aerodynamic diameter of 2.5 μm) exposure, a major environmental risk factor for the global burden of diseases, is associated with high risks of respiratory diseases. Heme-oxygenase 1 (HMOX1) is one of the major molecular antioxidant defenses to mediate cytoprotective effects against diverse stressors, including PM2.5-induced toxicity; however, the regulatory mechanism of HMOX1 expression still needs to be elucidated. In this study, using PM2.5 as a typical stressor, we explored whether microRNAs (miRNAs) might modulate HMOX1 expression in lung cells. Systematic bioinformatics analysis showed that seven miRNAs have the potentials to target HMOX1 gene. Among these, hsa-miR-760 was identified as the most responsive miRNA to PM2.5 exposure. More importantly, we revealed a "non-conventional" miRNA function in hsa-miR-760 upregulating HMOX1 expression, by targeting the coding region and interacting with YBX1 protein. In addition, we observed that exogenous hsa-miR-760 effectively elevated HMOX1 expression, reduced the reactive oxygen agents (ROS) levels, and rescued the lung cells from PM2.5-induced apoptosis. Our results revealed that hsa-miR-760 might play an important role in protecting lung cells against PM2.5-induced toxicity, by elevating HMOX1 expression, and offered new clues to elucidate the diverse functions of miRNAs.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Qianwen Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Chen J, Li C, Liang Z, Li C, Li Y, Zhao Z, Qiu T, Hao H, Niu R, Chen L. Human mesenchymal stromal cells small extracellular vesicles attenuate sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway. Cytotherapy 2021; 23:918-930. [PMID: 34272174 DOI: 10.1016/j.jcyt.2021.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS Acute lung injury (ALI) secondary to sepsis is a complex disease associated with high morbidity and mortality. Mesenchymal stem cells (MSCs) and their conditioned medium have been demonstrated to reduce alveolar inflammation, improve lung endothelial barrier permeability and modulate oxidative stress in vivo and in vitro. Recently, MSCs have been found to release small extracellular vesicles (sEVs) that can deliver functionally active biomolecules into recipient cells. The authors' study was designed to determine whether sEVs released by MSCs would be effective in sepsis-induced ALI mice and to identify the potential mechanisms. METHODS A total of 6 h after cercal ligation and puncture, the mice received saline, sEV-depleted conditioned medium (sEVD-CM) or MSC sEVs via the tail vein. RESULTS The administration of MSC sEVs improved pulmonary microvascular permeability and inhibited both histopathological changes and the infiltration of polymorphonuclear neutrophils into lung tissues. In addition, the activities of antioxidant enzymes were significantly increased in the group treated with sEVs compared with the saline and sEVD-CM groups, whereas lipid peroxidation was significantly decreased. Furthermore, sEVs were found to possibly inhibit phosphorylation of the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) pathway and degradation of IκB but increase the activities of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1. CONCLUSIONS These findings suggest that one of the effective therapeutic mechanisms of sEVs against sepsis-induced ALI may be associated with upregulation of anti-oxidative enzymes and inhibition of MAPK/NF-κB activation.
Collapse
Affiliation(s)
- Jie Chen
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chonghui Li
- Department of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China; Institute of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Zhixin Liang
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Chunsun Li
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Yanqin Li
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Zhigang Zhao
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Tian Qiu
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Haojie Hao
- Institute of Basic Medicine Science, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Ruichao Niu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.
| | - Liangan Chen
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China.
| |
Collapse
|
17
|
Abstract
Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and iron) has similar effects as well. CO has been suggested as the molecule that is responsible for many of the above mentioned cytoprotective and therapeutic pathways as CO is a signaling molecule in the control of physiological functions. This is counterintuitive as toxic effects are related to its binding to hemoglobin. However, CO is normally produced in the body. Experimental evidence indicates that this toxic gas, CO, exerts cytoprotective properties related to cellular stress including the heart and is being assessed for its cytoprotective and cytotherapeutic properties. While survival of adult cardiomyocytes depends on oxidative phosphorylation (survival and resulting cardiac function is impaired by mitochondrial damage), mitochondrial biogenesis is modified by the heme oxygenase-1/CO system and can result in promotion of mitochondrial biogenesis by associating mitochondrial redox status to the redox-active transcription factors. It has been suggested that the heme oxygenase-1/CO system is important in differentiation of embryonic stem cells and maturation of cardiomyocytes which is thought to mitigate progression of degenerative cardiovascular diseases. Effects on other cardiac cells are being studied. Acute exposure to air pollution (and, therefore, CO) is associated with cardiovascular mortality, myocardial infarction, and heart failure, but changes in the endogenous heme oxygenase-1 system (and, thereby, CO) positively affect cardiovascular health. We will review the effect of CO on heart health and function in this article.
Collapse
Affiliation(s)
- Vicki L Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
Ebrahimpour A, Wang M, Li L, Jegga AG, Bonnen MD, Eissa NT, Raghu G, Jyothula S, Kheradmand F, Hanania NA, Rosas IO, Ghebre YT. Esomeprazole attenuates inflammatory and fibrotic response in lung cells through the MAPK/Nrf2/HO1 pathway. JOURNAL OF INFLAMMATION-LONDON 2021; 18:17. [PMID: 34011367 PMCID: PMC8136131 DOI: 10.1186/s12950-021-00284-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is an orphan disease characterized by progressive loss of lung function resulting in shortness of breath and often death within 3–4 years of diagnosis. Repetitive lung injury in susceptible individuals is believed to promote chronic oxidative stress, inflammation, and uncontrolled collagen deposition. Several preclinical and retrospective clinical studies in IPF have reported beneficial outcomes associated with the use of proton pump inhibitors (PPIs) such as esomeprazole. Accordingly, we sought to investigate molecular mechanism(s) by which PPIs favorably regulate the disease process. Methods We stimulated oxidative stress, pro-inflammatory and profibrotic phenotypes in primary human lung epithelial cells and fibroblasts upon treatment with bleomycin or transforming growth factor β (TGFβ) and assessed the effect of a prototype PPI, esomeprazole, in regulating these processes. Results Our study shows that esomeprazole controls pro-inflammatory and profibrotic molecules through nuclear translocation of the transcription factor nuclear factor-like 2 (Nrf2) and induction of the cytoprotective molecule heme oxygenase 1 (HO1). Genetic deletion of Nrf2 or pharmacological inhibition of HO1 impaired esomeprazole-mediated regulation of proinflammatory and profibrotic molecules. Additional studies indicate that activation of Mitogen Activated Protein Kinase (MAPK) pathway is involved in the process. Our experimental data was corroborated by bioinformatics studies of an NIH chemical library which hosts gene expression profiles of IPF lung fibroblasts treated with over 20,000 compounds including esomeprazole. Intriguingly, we found 45 genes that are upregulated in IPF but downregulated by esomeprazole. Pathway analysis showed that these genes are enriched for profibrotic processes. Unbiased high throughput RNA-seq study supported antifibrotic effect of esomeprazole and revealed several novel targets. Conclusions Taken together, PPIs may play antifibrotic role in IPF through direct regulation of the MAPK/Nrf2/HO1 pathway to favorably influence the disease process in IPF. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-021-00284-6.
Collapse
Affiliation(s)
- Afshin Ebrahimpour
- Department of Radiation Oncology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Min Wang
- Department of Radiation Oncology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Li Li
- Department of Radiation Oncology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Mark D Bonnen
- Department of Radiation Oncology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - N Tony Eissa
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ganesh Raghu
- Division of Pulmonary and Critical Care Medicine, Center for Interstitial Lung Disease, University of Washington, Seattle, Washington, 98195, USA
| | - Soma Jyothula
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicola A Hanania
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ivan O Rosas
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yohannes T Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Ahmad IM, Dafferner AJ, O’Connell KA, Mehla K, Britigan BE, Hollingsworth MA, Abdalla MY. Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:2264. [PMID: 34066839 PMCID: PMC8125955 DOI: 10.3390/cancers13092264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Tumor hypoxia plays an active role in promoting tumor progression, malignancy, and resistance to therapy in PDAC. We present evidence that nab-paclitaxel-gemcitabine (NPG) and/or a hypoxic tumor microenvironment (TME) up-regulate heme oxygenase-1 (HO-1), providing a survival advantage for tumors. Using PDAC cells in vitro and a PDAC mouse model, we found that NPG chemotherapy up-regulated expression of HO-1 in PDAC cells and increased its nuclear translocation. Inhibition of HO-1 with ZnPP and SnPP sensitized PDAC cells to NPG-induced cytotoxicity (p < 0.05) and increased apoptosis (p < 0.05). Additionally, HO-1 expression was increased in gemcitabine-resistant PDAC cells (p < 0.05), and HO-1 inhibition increased GEM-resistant PDAC sensitivity to NPG (p < 0.05). NPG combined with HO-1 inhibitor inhibited tumor size in an orthotopic model. In parallel, HO-1 inhibition abrogated the influx of macrophages and FoxP3+ cells, while increasing the proportion of CD8+ infiltration in the pancreatic tumors. These effects were mediated primarily by reducing expression of the immunosuppressive cytokine IL-10.
Collapse
Affiliation(s)
- Iman M. Ahmad
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alicia J. Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Kelly A. O’Connell
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Kamiya Mehla
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Bradley E. Britigan
- Veterans Affairs Medical Center-Nebraska Western Iowa, Department of Internal Medicine and Research Service, Omaha, NE 68105, USA;
| | - Michael A. Hollingsworth
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Maher Y. Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
20
|
Okuma Y, Becker LB, Hayashida K, Aoki T, Saeki K, Nishikimi M, Shoaib M, Miyara SJ, Yin T, Shinozaki K. Effects of Post-Resuscitation Normoxic Therapy on Oxygen-Sensitive Oxidative Stress in a Rat Model of Cardiac Arrest. J Am Heart Assoc 2021; 10:e018773. [PMID: 33775109 PMCID: PMC8174361 DOI: 10.1161/jaha.120.018773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac arrest (CA) can induce oxidative stress after resuscitation, which causes cellular and organ damage. We hypothesized that post‐resuscitation normoxic therapy would protect organs against oxidative stress and improve oxygen metabolism and survival. We tested the oxygen‐sensitive reactive oxygen species from mitochondria to determine the association with hyperoxia‐induced oxidative stress. Methods and Results Sprague–Dawley rats were subjected to 10‐minute asphyxia‐induced CA with a fraction of inspired O2 of 0.3 or 1.0 (normoxia versus hyperoxia, respectively) after resuscitation. The survival rate at 48 hours was higher in the normoxia group than in the hyperoxia group (77% versus 28%, P<0.01), and normoxia gave a lower neurological deficit score (359±140 versus 452±85, P<0.05) and wet to dry weight ratio (4.6±0.4 versus 5.6±0.5, P<0.01). Oxidative stress was correlated with increased oxygen levels: normoxia resulted in a significant decrease in oxidative stress across multiple organs and lower oxygen consumption resulting in normalized respiratory quotient (0.81±0.05 versus 0.58±0.03, P<0.01). After CA, mitochondrial reactive oxygen species increased by ≈2‐fold under hyperoxia. Heme oxygenase expression was also oxygen‐sensitive, but it was paradoxically low in the lung after CA. In contrast, the HMGB‐1 (high mobility group box‐1) protein was not oxygen‐sensitive and was induced by CA. Conclusions Post‐resuscitation normoxic therapy attenuated the oxidative stress in multiple organs and improved post‐CA organ injury, oxygen metabolism, and survival. Additionally, post‐CA hyperoxia increased the mitochondrial reactive oxygen species and activated the antioxidation system.
Collapse
Affiliation(s)
- Yu Okuma
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Lance B Becker
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY.,Department of Emergency Medicine Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY
| | - Kei Hayashida
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Tomoaki Aoki
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Kota Saeki
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY.,Nihon Kohden Innovation Center Cambridge MA
| | | | - Muhammad Shoaib
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Santiago J Miyara
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY.,Elmezzi Graduate School of Molecular Medicine Manhasset NY
| | - Tai Yin
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Koichiro Shinozaki
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY.,Department of Emergency Medicine Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY
| |
Collapse
|
21
|
Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells 2021; 10:cells10030515. [PMID: 33671004 PMCID: PMC7997353 DOI: 10.3390/cells10030515] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Heme oxygenase catalyzes the rate-limiting step in heme degradation in order to generate biliverdin, carbon monoxide (CO), and iron. The inducible form of the enzyme, heme oxygenase-1 (HO-1), exerts a central role in cellular protection. The substrate, heme, is a potent pro-oxidant that can accelerate inflammatory injury and promote cell death. HO-1 has been implicated as a key mediator of inflammatory cell and tissue injury, as validated in preclinical models of acute lung injury and sepsis. A large body of work has also implicated HO-1 as a cytoprotective molecule against various forms of cell death, including necrosis, apoptosis and newly recognized regulated cell death (RCD) programs such as necroptosis, pyroptosis, and ferroptosis. While the antiapoptotic potential of HO-1 and its reaction product CO in apoptosis regulation has been extensively characterized, relatively fewer studies have explored the regulatory role of HO-1 in other forms of necrotic and inflammatory RCD (i.e., pyroptosis, necroptosis and ferroptosis). HO-1 may provide anti-inflammatory protection in necroptosis or pyroptosis. In contrast, in ferroptosis, HO-1 may play a pro-death role via enhancing iron release. HO-1 has also been implicated in co-regulation of autophagy, a cellular homeostatic program for catabolic recycling of proteins and organelles. While autophagy is primarily associated with cell survival, its occurrence can coincide with RCD programs. This review will summarize the roles of HO-1 and its reaction products in co-regulating RCD and autophagy programs, with its implication for both protective and detrimental tissue responses, with emphasis on how these impact HO-1 as a candidate therapeutic target in disease.
Collapse
|
22
|
Haines DD, Tosaki A. Heme Degradation in Pathophysiology of and Countermeasures to Inflammation-Associated Disease. Int J Mol Sci 2020; 21:ijms21249698. [PMID: 33353225 PMCID: PMC7766613 DOI: 10.3390/ijms21249698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The class of tetrapyrrol "coordination complexes" called hemes are prosthetic group components of metalloproteins including hemoglobin, which provide functionality to these physiologically essential macromolecules by reversibly binding diatomic gasses, notably O2, which complexes to ferrous (reduced/Fe(II)) iron within the heme porphyrin ring of hemoglobin in a pH- and PCO2-dependent manner-thus allowing their transport and delivery to anatomic sites of their function. Here, pathologies associated with aberrant heme degradation are explored in the context of their underlying mechanisms and emerging medical countermeasures developed using heme oxygenase (HO), its major degradative enzyme and bioactive metabolites produced by HO activity. Tissue deposits of heme accumulate as a result of the removal of senescent or damaged erythrocytes from circulation by splenic macrophages, which destroy the cells and internal proteins, including hemoglobin, leaving free heme to accumulate, posing a significant toxicogenic challenge. In humans, HO uses NADPH as a reducing agent, along with molecular oxygen, to degrade heme into carbon monoxide (CO), free ferrous iron (FeII), which is sequestered by ferritin protein, and biliverdin, subsequently metabolized to bilirubin, a potent inhibitor of oxidative stress-mediated tissue damage. CO acts as a cellular messenger and augments vasodilation. Nevertheless, disease- or trauma-associated oxidative stressors sufficiently intense to overwhelm HO may trigger or exacerbate a wide range of diseases, including cardiovascular and neurologic syndromes. Here, strategies are described for counteracting the effects of aberrant heme degradation, with a particular focus on "bioflavonoids" as HO inducers, shown to cause amelioration of severe inflammatory diseases.
Collapse
Affiliation(s)
- Donald David Haines
- Advanced Biotherapeutics, London W2 1EB, UK;
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-255586
| |
Collapse
|
23
|
Liu Z, Fu Q, Tang S, Xie Y, Meng Q, Tang X, Zhang S, Zhang H, Schroyen M. Proteomics analysis of lung reveals inflammation and cell death induced by atmospheric H 2S exposure in pig. ENVIRONMENTAL RESEARCH 2020; 191:110204. [PMID: 32937176 DOI: 10.1016/j.envres.2020.110204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) is a popular toxic environmental gas and industrial pollutant, which can be harmful to multiple organ systems of both human and livestock, especially to the respiratory system. However, the injury mechanism of H2S exposure to lung remains poorly understood. In this study, pig lung was selected as a H2S exposure model for the first time. We first examined the histological damage and the mRNA expression of pro-inflammatory genes of lung in pigs exposed to H2S. Histopathology change and increased mRNA level of pro-inflammatory cytokines demonstrated that H2S exposure indeed induced inflammatory injury in the porcine lung. We then performed TMT-based quantitative proteomics analysis to probe the injury molecular mechanism. The proteomics results showed that 526 proteins have significant changes in abundance between control and H2S treated swine. Further validation analysis of some H2S responsive proteins using both Real-time quantitative PCR and western blotting demonstrated that proteomics data are reliable. KEGG pathway analysis revealed that these proteins were involved in antigen processing and presentation, complement and coagulation cascade, IL-17 signaling pathway, ferroptosis and necroptosis. Our data suggest that H2S exposure induced immune suppression, inflammatory response and cell death. These findings provide a new insight into the complexity mechanisms of H2S induced lung injury, and offer therapeutic potential as drug targets with a view towards curing the intoxication caused by H2S.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanjiao Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
24
|
Jardim NS, Müller SG, Pase FM, Nogueira CW. Nuclear Factor [Erythroid-derived 2]-like 2 and Mitochondrial Transcription Factor A Contribute to Moderate-intensity Swimming Effectiveness against Memory Impairment in Young Mice Induced by Concomitant Exposure to a High-calorie Diet during the Early Life Period. Neuroscience 2020; 452:311-325. [PMID: 33246070 DOI: 10.1016/j.neuroscience.2020.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Increased energy food consumption during early-life has been associated with memory impairment. Swimming training has been reported to improve memory processes in rodent models. This study aimed to evaluate whether moderate-intensity swimming training counteracts learning and memory impairment in young mice fed a high-calorie diet during the early-life period. The contribution of hippocampal oxidative stress, as well as nuclear factor [erythroid-derived 2]-like 2/Kelch-like ECH-associated protein (NRF2/Keap-1/HO-1) and peroxisome proliferator-activated receptor gamma co-activator 1-alpha/mitochondrial transcription factor A (PCG-1α/mtTFA) signaling, in memory effects was also investigated. Three-week-old male Swiss mice received a high-calorie diet (20% fat; 20% carbohydrate enriched) or a standard diet from 21 to 49 postnatal days. Mice performed a moderate-intensity swimming protocol (5 days/week) and behavioral tests predictive of memory function. Mice fed a high-calorie diet and subjected to the swimming protocol performed better on short- and long-term spatial and object recognition memory tests than those fed a high-calorie diet. The swimming protocol modulated the hippocampal NRF2/Keap-1/HO-1 and mtTFA pathways in mice fed a high-calorie diet. Swimming training positively affected location and long-term memory, fat mass content, as well as NRF2/Keap-1/HO-1 and mtTFA proteins of control-diet-fed mice. In conclusion, a moderate-intensity swimming training evoked an adaptive response in mice fed a high-calorie diet by restoring different types of memory-impaired and hippocampal oxidative stress as well as upregulated the NRF2/Keap-1/HO-1 and mtTFA pathways.
Collapse
Affiliation(s)
- Natália Silva Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Sabrina Grendene Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Flávia Matos Pase
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil.
| |
Collapse
|
25
|
Therapeutic Potential of Heme Oxygenase-1 and Carbon Monoxide in Acute Organ Injury, Critical Illness, and Inflammatory Disorders. Antioxidants (Basel) 2020; 9:antiox9111153. [PMID: 33228260 PMCID: PMC7699570 DOI: 10.3390/antiox9111153] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible stress protein that catalyzes the oxidative conversion of heme to carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is converted to bilirubin (BR) by biliverdin reductase. HO-1 has been implicated as a cytoprotectant in various models of acute organ injury and disease (i.e., lung, kidney, heart, liver). Thus, HO-1 may serve as a general therapeutic target in inflammatory diseases. HO-1 may function as a pleiotropic modulator of inflammatory signaling, via the removal of heme, and generation of its enzymatic degradation-products. Iron release from HO activity may exert pro-inflammatory effects unless sequestered, whereas BV/BR have well-established antioxidant properties. CO, derived from HO activity, has been identified as an endogenous mediator that can influence mitochondrial function and/or cellular signal transduction programs which culminate in the regulation of apoptosis, cellular proliferation, and inflammation. Much research has focused on the application of low concentration CO, whether administered in gaseous form by inhalation, or via the use of CO-releasing molecules (CORMs), for therapeutic benefit in disease. The development of novel CORMs for their translational potential remains an active area of investigation. Evidence has accumulated for therapeutic effects of both CO and CORMs in diseases associated with critical care, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS), mechanical ventilation-induced lung injury, pneumonias, and sepsis. The therapeutic benefits of CO may extend to other diseases involving aberrant inflammatory processes such as transplant-associated ischemia/reperfusion injury and chronic graft rejection, and metabolic diseases. Current and planned clinical trials explore the therapeutic benefit of CO in ARDS and other lung diseases.
Collapse
|
26
|
Loreto C, Caltabiano R, Graziano ACE, Castorina S, Lombardo C, Filetti V, Vitale E, Rapisarda G, Cardile V, Ledda C, Rapisarda V. Defense and protection mechanisms in lung exposed to asbestiform fiber: the role of macrophage migration inhibitory factor and heme oxygenase-1. Eur J Histochem 2020; 64:3073. [PMID: 32312030 PMCID: PMC7171426 DOI: 10.4081/ejh.2020.3073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fluoro-edenite (FE), an asbestiform fiber, is responsible for many respiratory pathologies: chronic obstructive diseases, pleural plaques, fibrosis, and malignant mesothelioma. Macrophage migration inhibitory factor (MIF) is one of the first cytokines produced in response to lung tissue damage. Heme oxygenase-1 (HO-1) is a protein with protective effects against oxidative stress. It is up regulated by several stimuli including pro-inflammatory cytokines and factors that promote oxidative stress. In this research, the in vivo model of sheep lungs naturally exposed to FE was studied in order to shed light on the pathophysiological events sustaining exposure to fibers, by determining immunohistochemical lung expression of MIF and HO-1. Protein levels expression of HO-1 and MIF were also evaluated in human primary lung fibroblasts after exposure to FE fibers in vitro. In exposed sheep lungs, MIF and HO-1 immunoexpression were spread involving the intraparenchymal stroma around bronchioles, interstitium between alveoli, alveolar epithelium and macrophages. High MIF immunoexpression prevails in macrophages. Similar results were obtained in vitro, but significantly higher values were only detected for HO-1 at concentrations of 50 and 100 μg/mL of FE fibers. MIF and HO-1 expressions seem to play a role in lung self-protection against uncontrolled chronic inflammation, thus counteracting the strong link with cancer development, induced by exposure to FE. Further studies will be conducted in order to add more information about the role of MIF and HO-1 in the toxicity FE-induced.
Collapse
Affiliation(s)
- Carla Loreto
- Anatomy and Histology, Department of Biomedical and Biotechnologies Sciences, University of Catania.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sheng W, Yang H, Niu Z, Yin H. Anti-apoptosis effect of heme oxygenase-1 on lung injury after cardiopulmonary bypass. J Thorac Dis 2020; 12:1393-1403. [PMID: 32395277 PMCID: PMC7212168 DOI: 10.21037/jtd.2020.03.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background This study aimed to investigate the anti-apoptosis effects of heme oxygenase-1 (HO-1) on lung injury (LI) after cardiopulmonary bypass (CPB) and its probable mechanisms. Methods One hundred and forty-four male Wistar rats were divided into 3 groups randomly: group A (control group), group B (cobalt protoporphyrin, CoPP), and group C [CoPP plus zinc protoporphyrin (ZnPP)]. Lung tissues were harvested at different time: before CPB (T0), 0 min after CPB (T1), 2 h after CPB (T2), 6 h (T3), 12 h (T4), and 24 h (T5). Results The HO-1 protein expressions in lung tissue in group B were higher than those in group A and group C in any given time, and the same as HO-1 activity (P<0.05). The expressions of Bcl-2 protein in group B at all time point after bypass were higher than those in group A and group C, and the difference was statistically significant (P<0.05). Apoptosis index (AI) in group B at any time point after bypass were lower than those in group A and group C (P<0.05). Conclusions CoPP can significantly increase the expression of HO-1 protein in lung tissue. HO-1 is still highly expressed after CPB, so as to play an important part in anti-apoptosis, and reduce LI.
Collapse
Affiliation(s)
- Wei Sheng
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| | - Haiqin Yang
- Department of Mental Intervention, Qingdao Preferential Hospital, Qingdao 266071, China
| | - Zhaozhuo Niu
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| | - Hong Yin
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| |
Collapse
|
28
|
Chu X, Zhang X, Gong X, Zhou H, Cai C. Effects of hyperoxia exposure on the expression of Nrf2 and heme oxygenase-1 in lung tissues of premature rats. Mol Cell Probes 2020; 51:101529. [PMID: 32036037 DOI: 10.1016/j.mcp.2020.101529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease with long-term sequelae including neurodevelopmental delay. Although the precise mechanism of BPD is not well defined, oxidative stress is thought to be involved in the pathogenesis process of BPD. Nrf2 (Nuclear factor erythroid 2-related factor 2)-Keap1 (Kelch-like ECH associated protein 1)-ARE (Antioxidant Reaction Elements) signaling pathway is one of the main protective mechanisms of BPD, which can induce cytoprotective gene expression, such as heme oxygenase-1 (HO-1), nicotinamide quinone oxidoreductase 1 (NQO1) and so on. We exposed premature rats to hyperoxia and identified lung developmental retardation in preterm rats, with similar pathological changes as BPD. The expression of Nrf2 and HO-1 in premature rats was significantly higher after hyperoxia exposure. To explore the changes of Nrf2 and HO-1 in premature rats and enhance their beneficial functions may provide new treatment strategies for infants at risk of BPD.
Collapse
Affiliation(s)
- Xiaoyun Chu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Xiaoyue Zhang
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Huilin Zhou
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
29
|
Yang F, Zhang Y, Tang Z, Shan Y, Wu X, Liu H. Hemin treatment protects neonatal rats from sevoflurane-induced neurotoxicity via the phosphoinositide 3-kinase/Akt pathway. Life Sci 2019; 242:117151. [PMID: 31843526 DOI: 10.1016/j.lfs.2019.117151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/30/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022]
Abstract
AIMS Anaesthesia-related neurotoxicity in the developing brain is a controversial issue that has recently attracted much attention. Hemin plays a protective role in hypoxic and ischemic brain damage; however, its effects on sevoflurane-induced neurotoxicity remain unclear. Our aim was to investigate the mechanisms of sevoflurane neurotoxicity and potential neuroprotective roles of hemin upon sevoflurane exposure. MAIN METHODS Hippocampi were harvested 18 h after sevoflurane exposure. Haem oxygenase 1 (HMOX1), superoxide dismutase 2 (SOD2), discs large MAGUK scaffold protein 4 (DLG4), phosphorylated Akt, Akt, cleaved caspase 3, and neuroglobin were detected by western blotting. A water maze test was used to assess learning and memory ability in P30 rats. KEY FINDINGS Sevoflurane inhalation increased cleaved caspase 3 levels. Hemin treatment enhanced the antioxidant defence response, protecting rats from oxidative stress injury. Hemin plays its neuroprotective role via phosphoinositide 3-kinase (PI3K)/Akt signalling. A single inhalation of sevoflurane did not affect DLG4 expression, while hemin treatment did. Platform crossing increased in rats treated with hemin as well, which may be related to increased DLG4. Neuroglobin expression was not affected, suggesting that it may act upstream of PI3K/Akt signalling. SIGNIFICANCE Our study demonstrates that hemin plays a protective role in anaesthesia-induced neurotoxicity by both inhibiting apoptosis via the PI3K/Akt pathway and increasing the expression of antioxidant enzymes, reducing oxidative damage. The results provide mechanistic insight into the effects of sevoflurane anaesthesia on the developing brain and suggest that hemin could help avoid these effects.
Collapse
Affiliation(s)
- Fan Yang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongfang Zhang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyin Tang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Yangyang Shan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiuying Wu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongtao Liu
- Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Abdel-Gaber SA, Geddawy A, Moussa RA. The hepatoprotective effect of sitagliptin against hepatic ischemia reperfusion-induced injury in rats involves Nrf-2/HO-1 pathway. Pharmacol Rep 2019; 71:1044-1049. [PMID: 31600635 DOI: 10.1016/j.pharep.2019.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidative stress and inflammation play a key role in the development of hepatic ischemia reperfusion (HIR)-induced injury. Nuclear factor-erythroid 2-related factor-2 (Nrf-2) is a main regulator of numerous genes, encoding cytoprotective molecules including heme oxygenase-1 (HO-1). Sitagliptin (Sit) is an incretin enhancer acting via inhibition of dipeptidyl peptidase-4 (DPP-4) enzyme. This study was undertaken to investigate the ability of Sit to prevent the hepatic pathological changes of HIR induced injury and to modify Nrf-2 and its target HO-1. METHODS Pringle's maneuver was used to induce total HIR in adult male rats that were randomly assigned into 4 groups. Group1 (sham-operated control), Group 2 (sham-operated + Sit-control group), Group 3 (HIR non-treated), and Group 4 (HIR + Sit). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities together with hepatic contents of malondialdhyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) and superoxide dismutase (SOD) activity were evaluated. Hepatic tissue mRNA of Nrf-2 and protein content of HO-1 along with histopathological examination and scoring of hepatic injury were performed. RESULTS Sit caused a significant reduction in ALT and AST activities together with attenuation of HIR-induced histopathological liver injury. Effect of Sit was associated with decreased hepatic level of MDA and NO with increased GSH level and SOD activity. Non-treated rats with HIR showed an increase in Nrf-2 mRNA expression and HO-1 content in hepatic tissue which was further increased by Sit treatment. CONCLUSIONS These results indicate that hepatoprotective activity of Sit against HIR is attributed at least in part to modulation of Nrf-2/ HO-1 signaling pathway.
Collapse
Affiliation(s)
- Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ayman Geddawy
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.
| | - Rabab A Moussa
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
31
|
Dong J, Li W, Cheng LM, Wang GG. Lycopene attenuates LPS-induced liver injury by inactivation of NF-κB/COX-2 signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:817-825. [PMID: 31933889 PMCID: PMC6945183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/26/2018] [Indexed: 06/10/2023]
Abstract
AIM This study aimed to investigate the effect of lycopene on LPS-induced liver injury in mice and its mechanisms. METHODS Male C57bl/6 mice were randomly assigned to three groups: sham control group (S-C), LPS control group (L-C), lycopene treatment group (L-T). The mice from the L-T were treated with lycopene for 2 weeks, and the remaining mice with solvent. Afterwards, the mice from the L-C and the L-T received an intraperitoneal injection of LPS (20 mg/kg, dissolved in sterile saline), and the S-C mice were injected with sterile saline. Serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were determined for analysis of liver function. Levels of inflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-6, malondialdehyde (MDA) content, and the activity of superoxide dismutase (SOD), were detected in serum. Liver tissues were operated for morphologic analysis and determination of protein by western blot. RESULTS Pretreatment with lycopene significantly decreased levels of ALT, AST, and TNF-α and IL-6, reduced MDA content, and increased activity of SOD in serum compared with the L-C mice. Lycopene increased expression of nuclear factor-erythroid 2 related factor 2 (Nrf2), and reduced expression of cyclooxygenase (COX)-2, and phosphorylation of nuclear factor-kappa B (NF-κB) and extracellular regulated protein kinases 1/2 (ERK1/2). CONCLUSION The results showed that lycopene attenuates LPS-induced liver injury by reducing NF-κB/COX-2 signaling by upregulation of Nrf2/HO-1 activation.
Collapse
Affiliation(s)
- Juan Dong
- Experimental Center for Function Subjects, Wannan Medical CollegeWuhu 241002, Anhui, China
| | - Wei Li
- Department of Pathophysiology, Wannan Medical CollegeWuhu 241002, Anhui, China
| | - Li-Min Cheng
- Experimental Center of Morphology, Wannan Medical CollegeWuhu 241002, Anhui, China
| | - Guo-Guang Wang
- Department of Pathophysiology, Wannan Medical CollegeWuhu 241002, Anhui, China
| |
Collapse
|
32
|
Bai K, Jiang L, Zhu S, Feng C, Zhao Y, Zhang L, Wang T. Dimethylglycine sodium salt protects against oxidative damage and mitochondrial dysfunction in the small intestines of mice. Int J Mol Med 2019; 43:2199-2211. [PMID: 30816456 DOI: 10.3892/ijmm.2019.4093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
Few studies have investigated the use of dimethylglycine sodium salt (DMG‑Na) to protect against small intestinal damage, despite its prevalence in the treatment of human diseases. The present study aimed to evaluate the protective effects of DMG‑Na against oxidative damage and mitochondrial dysfunction in the small intestines of mice. A total of 100 male Kunming mice were randomly assigned to five groups (n=20 per group): i) Mice gastric intubation with 0.3 ml sterile saline solution (once), then subcutaneously injected with sterile saline solution (0.5 ml) after 1 h (CON); ii) mice gastric intubation with 12 mg DMG‑Na/0.3 ml of sterile saline solution once, then subcutaneously injected with sterile saline solution (0.5 ml) 1 h later (D); iii) mice gastric intubation with 0.3 ml sterile saline solution once, then subcutaneously injected with indomethacin (10 mg/kg BW) 1 h later (IN); iv) mice gastric intubation with 12 mg DMG‑Na/0.3 ml sterile saline solution once, then subcutaneously injected with indomethacin (10 mg/kg BW) 1 h later (DIN); and v) mice subcutaneously injected with indomethacin (10 mg/kg BW), then gastrically intubated with 12 mg DMG‑Na/0.3 ml sterile saline solution once after 1 h (IND). The present study was evaluated the effects of DMG‑Na on mice intestinal damage induced by indomethacin injection. The histological morphology of the small intestine improved (P<0.05) in the DIN and IND groups, compared with the IN group. The antioxidant system was enhanced, oxidative damage was reduced, and the expression of antioxidant‑associated genes was increased in the small intestine and its mitochondria in the DIN and IND groups, compared with the IN group. The above results suggested that pretreatment and treatment with DMG‑Na reduced oxidative damage by enhancing antioxidant capacity, increasing the expression of antioxidant‑associated genes, ameliorating mitochondrial dysfunction and suppressing apoptosis. Further study is required to determine the specific mechanism by which pretreatment and treatment with DMG‑Na reduced small intestinal damage.
Collapse
Affiliation(s)
- Kaiwen Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Luyi Jiang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Shanli Zhu
- College of Agriculture and Life Science, Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Chengcheng Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yongwei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
33
|
Luo B, Shi H, Zhang K, Wei Q, Niu J, Wang J, Hammond SK, Liu S. Cold stress provokes lung injury in rats co-exposed to fine particulate matter and lipopolysaccharide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:9-16. [PMID: 30384172 DOI: 10.1016/j.ecoenv.2018.10.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Cold exposure aggravates respiratory diseases, which are also influenced by the exposures to particulate matter and endotoxin in the air. The aim of this study was to investigate the potential interactions among cold stress, fine particulate matter (PM2.5, particles with aerodynamic diameter of 2.5 µm or less) and lipopolysaccharide (LPS, pure chemical form of endotoxin) on rat lung and to explore the related possible mechanisms of the interactions. Wistar rats were randomly grouped to be exposed to, 1) normal saline (0.9% NaCl), 2) PM2.5, 3) LPS, and 4) PM2.5 and LPS (PM2.5 + LPS) through intratracheal instillation under cold stress (0 °C) and normal temperature (20 °C). Lung function, lung tissue histology, inflammatory response and oxidative stress levels were measured to examine the lung injury and to investigate the potential mechanisms. Exposure to PM2.5 or LPS substantially changed pulmonary function [indicated by peak inspiratory flow (PIF) and peak expiratory flow (PEF)], inflammatory cytokine levels [indicated by interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] and lung histology, compared to the non-exposed groups. Exposure to PM2.5 + LPS under cold stress induced the most significant changes, including the increases of IL-6, TNF-α and thiobarbituric acid-reactive substances (TBARS), the decreases of PIF and PEF and more severe lung injury, among all exposure scenarios. Glutathione peroxidase activity and, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were found to be suppressed under cold stress, whereas Nrf2 and HO-1 levels were observed to be upregulated by exposure to PM2.5 or LPS under normal temperature. In conclusion, cold stress may aggravate the lung injury in rats induced by simultaneous exposure to PM2.5 and LPS. The progress may involve the suppressing of Nrf2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA.
| | - Hongxia Shi
- Health Management Center, Lanzhou University the Second Hospital, Lanzhou 730030, China
| | - Kai Zhang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaozhen Wei
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Junling Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sally Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA; Environmental & Occupational Health Sciences, School of Health Sciences, Purdue University, West Lafayette 47907, USA.
| |
Collapse
|
34
|
Heme detoxification by heme oxygenase-1 reinstates proliferative and immune balances upon genotoxic tissue injury. Cell Death Dis 2019; 10:72. [PMID: 30683864 PMCID: PMC6347604 DOI: 10.1038/s41419-019-1342-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Phenotypic changes of myeloid cells are critical to the regulation of premature aging, development of cancer, and responses to infection. Heme metabolism has a fundamental role in the regulation of myeloid cell function and activity. Here, we show that deletion of heme oxygenase-1 (HO-1), an enzyme that removes heme, results in an impaired DNA damage response (DDR), reduced cell proliferation, and increased cellular senescence. We detected increased levels of p16INK4a, H2AXγ, and senescence-associated-β-galactosidase (SA-β-Gal) in cells and tissues isolated from HO-1-deficient mice. Importantly, deficiency of HO-1 in residential macrophages in chimeric mice results in elevated DNA damage and senescence upon radiation-induced injury. Mechanistically, we found that mammalian target of rapamycin (mTOR)/S6 protein signaling is critical for heme and HO-1-regulated phenotype of macrophages. Collectively, our data indicate that HO-1, by detoxifying heme, blocks p16INK4a expression in macrophages, preventing DNA damage and cellular senescence.
Collapse
|
35
|
Upregulation of Heme Oxygenase-1 by Hemin Alleviates Sepsis-Induced Muscle Wasting in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8927104. [PMID: 30533176 PMCID: PMC6250022 DOI: 10.1155/2018/8927104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022]
Abstract
Hemin, an inducer of heme oxygenase-1 (HO-1), can enhance the activation of HO-1. HO-1 exhibits a variety of activities, such as anti-inflammatory, antioxidative, and antiapoptotic functions. The objective of this study was to investigate the effects of hemin on sepsis-induced skeletal muscle wasting and to explore the mechanisms by which hemin exerts its effects. Cecal ligation and perforation (CLP) was performed to create a sepsis mouse model. Mice were randomly divided into four groups: control, CLP, CLP plus group, and CLP-hemin-ZnPP (a HO-1 inhibitor). The weight of the solei from the mice was measured, and histopathology was examined. Cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the expression levels of HO-1 and atrogin-1. Furthermore, we investigated the antioxidative effects of HO-1 by detecting malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. CLP led to dramatic skeletal muscle weakness and atrophy, but pretreatment with hemin protected mice against CLP-mediated muscle atrophy. Hemin also induced high HO-1 expression, which resulted in suppressed proinflammatory cytokine and reactive oxygen species (ROS) production. The expression of MuRF1 and atrogin-1, two ubiquitin ligases of the ubiquitin-proteasome system- (UPS-) mediated proteolysis, was also inhibited by increased HO-1 levels. Hemin-mediated increases in HO-1 expression exert protective effects on sepsis-induced skeletal muscle atrophy at least partly by inhibiting the expression of proinflammatory cytokines, UPS-mediated proteolysis, and ROS activation. Therefore, hemin might be a new treatment target against sepsis-induced skeletal muscle atrophy.
Collapse
|
36
|
Lee PJ, Park HJ, Cho N, Kim HP. 3,5-Diethoxy-3'-Hydroxyresveratrol (DEHR) Ameliorates Liver Fibrosis via Caveolin-1 Activation in Hepatic Stellate Cells and in a Mouse Model of Bile Duct Ligation Injury. Molecules 2018; 23:molecules23112833. [PMID: 30384491 PMCID: PMC6278252 DOI: 10.3390/molecules23112833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022] Open
Abstract
Hepatic stellate cells (HSCs) are involved in the pathogenesis of liver fibrosis. Resveratrol, 3,5,4′-trihydroxystilbene, is a dietary polyphenol found in natural food products. Here, we evaluated the anti-proliferative effects of a synthetic resveratrol derivative, 3,5-diethoxy-3′-hydroxyresveratrol (DEHR), on HSCs. Flow cytometry and Western blot analyses showed that DEHR induces apoptosis through the upregulation of cleaved caspase-3 and poly (ADP-ribose) polymerase expression and reduction in the level of an anti-apoptotic protein B-cell lymphoma 2 (Bcl2). As caveolin-1 (CAV1), a competitive inhibitor of heme oxygenase 1 (HO-1), is related to apoptotic proteins in hepatic cells, we focused on the role of CAV1 in DEHR-induced apoptosis in HSCs through Western blot analyses. Our results showed that the inhibitory effect of DEHR on cell viability was stronger in HO-1 siRNA-transfected cells but weakened in CAV1 siRNA-transfected cells. Collagen concentration was significantly reduced, whereas CAV1 expression increased after treatment of a bile duct ligation injury-induced liver fibrosis model with DEHR for four weeks. We confirmed that DEHR treatment significantly reduced fibrous hyperplasia around the central veins, using hematoxylin and eosin and Sirius red staining. DEHR ameliorates liver fibrosis in vitro and in vivo, possibly through a mechanism involving CAV1.
Collapse
Affiliation(s)
- Phil Jun Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea.
- Ilsong Institute of Life Science, Jung-gu, Gwan-yangdong 431-060, Korea.
| | - Hye-Jin Park
- College of Pharmacy, Ajou University, Suwon 16499, Korea.
| | - Namki Cho
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea.
| | - Hong Pyo Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
37
|
Zhang JF, Bai KW, Su WP, Wang AA, Zhang LL, Huang KH, Wang T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult Sci 2018; 97:1209-1219. [PMID: 29438543 DOI: 10.3382/ps/pex408] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
The object of this study was to investigate the effect of curcumin on modulating the glutathione (GSH)-related antioxidant enzymes and antioxidant responses via NF-E2-related factor 2 (Nrf2) signaling pathway in heat-stressed broiler chickens. A total of 400 one-day-old male Arbor Acres broiler chicks was reared in an environmentally controlled room. At 21 d, broiler chicks were divided into 5 treatment groups and were fed one of 4 diets under 2 temperature conditions: 22°C + a basal diet (CON treatment); 34°C for 8 h (0900-1700) + a basal diet supplemented with 0, 50, 100, or 200 mg/kg curcumin (HS, CMN1, CMN2, and CMN3 treatments, respectively). The heat treatment lasted for 20 consecutive days. The results showed that heat stress significantly increased (P < 0.05) the weekly rectal temperature and average head and feet temperature. Compared to the HS treatment, feed conversion was significantly decreased (P < 0.05) in CMN1 and CMN2 treatments. CMN1 administration significantly improved (P < 0.05) the pH24 of muscle. The abnormal changes of serum malonaldehyde and corticosterone concentrations were prevented (P < 0.05) by curcumin. Mitochondrial GSH concentration in the liver was significantly increased (P < 0.05) in CMN1 and CMN2 treatments compared with the HS treatment. The CMN1, CMN2, and CMN3 supplementations significantly increased (P < 0.05) γ-GCL, GSH-Px, and GST activities. Curcumin significantly increased (P < 0.05) the expression of Nrf2, HO-1, and γ-GCLc in the liver as compared to the CON diet. The expression of Cu/ZnSOD and CAT were increased (P < 0.05) by feeding CMN2, respectively, as compared to the HS treatment. It was concluded that curcumin supplementation enhanced the resistance of broilers to heat stress, as evidenced by reversing the FC, increasing the GSH content and GSH-related enzyme activities, and inducing the expression of Nrf2 and Nrf2-mediated phase II detoxifying enzyme genes.
Collapse
Affiliation(s)
- J F Zhang
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - K W Bai
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - W P Su
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - A A Wang
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - L L Zhang
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - K H Huang
- College of Veterinary Medicine, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - T Wang
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
38
|
Transduced PEP-1-Heme Oxygenase-1 Fusion Protein Attenuates Lung Injury in Septic Shock Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6403861. [PMID: 29682161 PMCID: PMC5848134 DOI: 10.1155/2018/6403861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/20/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022]
Abstract
Oxidative stress and inflammation have been identified to play a vital role in the pathogenesis of lung injury induced by septic shock. Heme oxygenase-1 (HO-1), an effective antioxidant and anti-inflammatory and antiapoptotic substance, has been used for the treatment of heart, lung, and liver diseases. Thus, we postulated that administration of exogenous HO-1 protein transduced by cell-penetrating peptide PEP-1 has a protective role against septic shock-induced lung injury. Septic shock produced by cecal ligation and puncture caused severe lung damage, manifested in the increase in the lung wet/dry ratio, oxidative stress, inflammation, and apoptosis. However, these changes were reversed by treatment with the PEP-1-HO-1 fusion protein, whereas lung injury in septic shock rats was alleviated. Furthermore, the septic shock upregulated the expression of Toll-like receptor 4 (TLR4) and transcription factor NF-κB, accompanied by the increase of lung injury. Administration of PEP-1-HO-1 fusion protein reversed septic shock-induced lung injury by downregulating the expression of TLR4 and NF-κB. Our study indicates that treatment with HO-1 protein transduced by PEP-1 confers protection against septic shock-induced lung injury by its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
|
39
|
Pabelick CM, Thompson MA, Britt RD. Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:179-194. [PMID: 29047087 DOI: 10.1007/978-3-319-63245-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although it is necessary and part of standard practice, supplemental oxygen (40-90% O2) or hyperoxia is a significant contributing factor to development of bronchopulmonary dysplasia, persistent pulmonary hypertension, recurrent wheezing, and asthma in preterm infants. This chapter discusses hyperoxia and the role of redox signaling in the context of neonatal lung growth and disease. Here, we discuss how hyperoxia promotes dysfunction in the airway and the known redox-mediated mechanisms that are important for postnatal vascular and alveolar development. Whether in the airway or alveoli, redox pathways are important and greatly influence the neonatal lung.
Collapse
Affiliation(s)
- Christina M Pabelick
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA. .,Departments Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA.
| | - Michael A Thompson
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA
| | - Rodney D Britt
- Departments Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
40
|
Heme oxygenase-1/carbon monoxide axis suppresses transforming growth factor-β1-induced growth inhibition by increasing ERK1/2-mediated phosphorylation of Smad3 at Thr-179 in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Heme oxygenase-1 deficiency exacerbates angiotensin II-induced aortic aneurysm in mice. Oncotarget 2018; 7:67760-67776. [PMID: 27626316 PMCID: PMC5356517 DOI: 10.18632/oncotarget.11917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/02/2016] [Indexed: 01/23/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic but often fatal disease in elderly population. Heme oxygenase-1 (HO-1) is a stress response protein with antioxidative and anti-inflammatory properties. HO-1 has been shown to protect against atherogenesis and arterial intimal thickening. Emerging evidences suggest that AAA and arterial occlusive disease have distinct pathogenic mechanisms. Thus, in this study we investigated the role of HO-1 in angiotensin II-induced AAA formation in HO-1+/+apoE−/− and HO-1−/−apoE−/− mice. We found that complete loss of HO-1 increased AAA incidence and rupture rate, and drastically increased aneurysmal area and severity, accompanied with severe elastin degradation and medial degeneration. Interestingly, we often observed not only AAA but also thoracic aortic aneurysm in HO-1−/−apoE−/− mice. Furthermore, reactive oxygen species levels, vascular smooth muscle cell (VSMC) loss, macrophage infiltration, matrix metalloproteinase (MMP) activity were markedly enhanced in the aneurysmal aortic wall in HO-1−/−apoE−/− mice. In addition, HO-1−/−apoE−/− VSMCs were more susceptible to oxidant-induced cell death and macrophages from HO-1−/−apoE−/− mice had aggravated responses to angiotensin II with substantial increases in inflammatory cytokine productions and MMP9 activity. Taken together, our results demonstrate the essential roles of HO-1 in suppressing the pathogenesis of AAA. Targeting HO-1 might be a promising therapeutic strategy for AAA.
Collapse
|
42
|
Bauckman KA, Mysorekar IU. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy 2018; 12:850-63. [PMID: 27002654 DOI: 10.1080/15548627.2016.1160176] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs.
Collapse
Affiliation(s)
- Kyle A Bauckman
- a Departments of Obstetrics & Gynecology, Washington University School of Medicine , St. Louis , MO , USA
| | - Indira U Mysorekar
- a Departments of Obstetrics & Gynecology, Washington University School of Medicine , St. Louis , MO , USA.,b Pathology & Immunology, Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
43
|
Chen X, Ying X, Sun W, Zhu H, Jiang X, Chen B. The therapeutic effect of fraxetin on ethanol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and modulating inflammatory mediators in rats. Int Immunopharmacol 2018; 56:98-104. [PMID: 29414667 DOI: 10.1016/j.intimp.2018.01.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/06/2018] [Accepted: 01/17/2018] [Indexed: 12/18/2022]
Abstract
The present study was designed to investigate the possible protective effects of fraxetin against ethanol induced liver fibrosis in rats. Rats were underwent intragastric administration of ethanol (5.0-9.5 g/kg) once a day for 24 weeks. Effect of fraxetin against ethanol induced liver fibrosis was investigated by giving 20 or 50 mg/kg fraxetin. At the end of experiment, the livers were collected for histopathological analyses, protein extraction, and enzymatic activities. Our results indicated that fraxetin significantly corrected ethanol-induced hepatic fibrosis, as evidenced by the decrease in serum ALT and AST, the attenuation of histopathological changes. Fraxetin also expedited ethanol metabolism by enhancing the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. Besides, fraxetin alleviated lipid peroxidation, enhanced hepatic antioxidant capabilities, inhibited CYP2E1 activity, and reduced the inflammatory mediators, including TNF-α and IL-1β via up-regulation of hemeoxygenase-1 (HO-1) protein. In summary, the hepatoprotection of fraxetin is mostly attributed to its antioxidant capability, alcohol metabolism, and anti-inflammation effect.
Collapse
Affiliation(s)
- Xiaowei Chen
- Department of ultrasound imaging, the First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaozhou Ying
- Department of Orthopaedic Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weiming Sun
- Department of ultrasound imaging, the First Affiliated Hospital of Wenzhou Medical University, China
| | - Huijia Zhu
- Department of ultrasound imaging, the First Affiliated Hospital of Wenzhou Medical University, China
| | - Xin Jiang
- Department of ultrasound imaging, the First Affiliated Hospital of Wenzhou Medical University, China
| | - Bin Chen
- Department of ultrasound imaging, the First Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
44
|
Khakurel A, Park PH. Globular adiponectin protects hepatocytes from tunicamycin-induced cell death via modulation of the inflammasome and heme oxygenase-1 induction. Pharmacol Res 2018; 128:231-243. [DOI: 10.1016/j.phrs.2017.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
45
|
Antognelli C, Trapani E, Delle Monache S, Perrelli A, Daga M, Pizzimenti S, Barrera G, Cassoni P, Angelucci A, Trabalzini L, Talesa VN, Goitre L, Retta SF. KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease. Free Radic Biol Med 2018; 115:202-218. [PMID: 29170092 PMCID: PMC5806631 DOI: 10.1016/j.freeradbiomed.2017.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidative, pro-inflammatory and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease and raising the possibility that KRIT1 loss-of-function exerts pleiotropic effects on multiple redox-sensitive mechanisms. To address this possibility, we investigated major redox-sensitive pathways and enzymatic systems that play critical roles in fundamental cytoprotective mechanisms of adaptive responses to oxidative stress, including the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), a pivotal stress-responsive defense enzyme involved in cellular protection against glycative and oxidative stress through the metabolism of methylglyoxal (MG). This is a potent post-translational protein modifier that may either contribute to increased oxidative molecular damage and cellular susceptibility to apoptosis, or enhance the activity of major apoptosis-protective proteins, including heat shock proteins (Hsps), promoting cell survival. Experimental outcomes showed that KRIT1 loss-of-function induces a redox-sensitive sustained upregulation of Nrf2 and Glo1, and a drop in intracellular levels of MG-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that counteracts intrinsic oxidative stress but increases susceptibility to oxidative DNA damage and apoptosis, sensitizing cells to further oxidative challenges. While supporting and extending the pleiotropic functions of KRIT1, these findings shed new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell predisposition to oxidative damage, thus providing valuable new insights into CCM pathogenesis and novel options for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, Italy
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Torino, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | | | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy.
| |
Collapse
|
46
|
Guo S, Wang Y, Chou S, Cui H, Li D, Li B. In vitro antioxidant capacities of eight different kinds of apples and their effects on lipopolysaccharide-induced oxidative damage in mice. PLoS One 2018; 13:e0191762. [PMID: 29370253 PMCID: PMC5784986 DOI: 10.1371/journal.pone.0191762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
In the present study, the DPPH and ABTS+ radical scavenging activity of eight types of apples decreased (P < 0.05) during the 70-day storage at 4°C. The Fushi (F2) apples from Xin Jiang showed the highest radical scavenging activity. For in vivo study, 40 male Kunming mice (body weight 20–25 g) were selected and randomly assigned to four groups (10 mice per group). The F2 groups (F2S, F2 + sterile saline and F2L, F2 + lipopolysaccharide) were administered with 0.3 mL F2 filtrate via gastric intubation daily for 28 days. The control groups (CS, CON + sterile saline and CL, CON + lipopolysaccharide) were treated with sterile saline at the same volume. At day 29, mice of F2L and CL groups were injected with 100 μg/kg body weight of lipopolysaccharide (LPS) intraperitoneally, while those of F2S and CS groups were injected equal volume of sterile saline. In comparison to the CS group, the CL group showed a decrease (P < 0.05) in serum, liver, and hepatic mitochondrial antioxidant capacity, reduction (P < 0.05) in the expression of hepatic antioxidant-related genes, and an increase (P < 0.05) in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), protein carbonyl (PC), and reactive oxygen species (ROS). In comparison to the CL group, the F2L group showed lower (P < 0.05) levels of serum ALT, AST, and ROS, higher (P < 0.05) level of serum, liver, and hepatic mitochondrial antioxidant capacity, increased mitochondrial membrane potential (MMP), and enhanced (P < 0.05) expression of hepatic antioxidant-related genes. These results suggest that F2 may exert protective effect against LPS-induced oxidative damage by improving the antioxidant capacity.
Collapse
Affiliation(s)
- Shuang Guo
- College of Food Science, Shenyang Agricultural University, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Liaoning, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Liaoning, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Liaoning, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Liaoning, China
- * E-mail:
| |
Collapse
|
47
|
Chen M, Jiang L, Li Y, Bai G, Zhao J, Zhang M, Zhang J. Hydrogen protects against liver injury during CO 2 pneumoperitoneum in rats. Oncotarget 2017; 9:2631-2645. [PMID: 29416797 PMCID: PMC5788665 DOI: 10.18632/oncotarget.23498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the current study was to identify the protective effect of hydrogen gas against liver injury during CO2 pneumoperitoneum. Rats were randomly divided into three groups: control group (C group), pneumoperitoneum group (P15 group) and hydrogen group (H2 group). Rats in the C group were subjected to anesthesia for 90 min. Rats in the P15 group received an abdominal insufflation of CO2 for 90 min at an intra-abdominal pressure of 15 mmHg. Rats in the H2 group received a hypodermic injection of hydrogen gas (0.2 mL/kg) and after 10 min they received an abdominal insufflation of CO2 for 90 min at an intra-abdominal pressure of 15 mmHg. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured to evaluate liver function. Malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) content were measured to evaluate oxidative stress. Nuclear factor E2-related factor 2 (Nrf2) and Nrf2 downstream target genes, apoptosis-related genes and inflammatory cytokine mRNA and protein expression were detected. Liver injury was detected under the microscope. Our results revealed that liver function, antioxidants content, inflammation and liver injury were improved after hydrogen preconditioning in H2 group compared with P15 group. Overall, our results revealed that subcutaneous hydrogen injection could exert a protective effect against liver injury during CO2 pneumoperitoneum through reducing oxidative stress, cell apoptosis and inflammatory cytokines release.
Collapse
Affiliation(s)
- Mingzi Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Jiang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ge Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinghua Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ming Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiantao Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
48
|
Zhou W, Yuan X, Zhang L, Su B, Tian D, Li Y, Zhao J, Wang Y, Peng S. Overexpression of HO-1 assisted PM2.5-induced apoptosis failure and autophagy-related cell necrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:605-614. [PMID: 28802142 DOI: 10.1016/j.ecoenv.2017.07.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Severe smog/haze events accompanied by extremely high concentrations of airborne fine particulate matter (PM2.5) have emerged frequently in China and the potential health risks have attracted ever-growing attention. During these episodes, a surge in hospital visits for acute respiratory symptoms and respiratory diseases exacerbation has been reported to be associated with acute exposure to high-levels of particulate matters. To investigate cell fate determination and the underlying pathogenic mechanisms during severe haze episodes or smog events, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-400μg/mL) for 24h and found that high doses of PM2.5 caused cell necrosis and autophagy dysfunction, while co-treatment with the autophagy inhibitor 3-MA could partially reduce PM2.5-induced cell necrosis. Exposure to PM2.5 also increased the expression and mitochondrial transposition of heme oxygenase 1 (HO-1), which consequently reduced the release of cytochrome C from mitochondria to cytosol. Knockdown of HO-1 by siRNA attenuated the mitochondrial accumulation of HO-1, reversed HO-1-induced the reduction of cytochrome C release and promoted PM2.5-induced cell apoptosis. In contrast to necrosis, PM2.5-induced autophagy was independent of HO-1. In conclusion, our results demonstrate that acute exposure to high PM2.5 concentrations causes autophagy-related cell necrosis. The decrease in cytochrome C release and apoptosis by upregulation of HO-1 maybe assist PM2.5-induced autophagy-related cell necrosis. Further, this study reveals dual roles for HO-1 in PM2.5-induced cytotoxicity and presents a possible explanation for the onset of acute respiratory symptoms under extreme particulate air pollution.
Collapse
Affiliation(s)
- Wei Zhou
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Xiaoyan Yuan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Li Zhang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Baoting Su
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dongdong Tian
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Yang Li
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China.
| | - Shuangqing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China.
| |
Collapse
|
49
|
Zhang L, Bai K, Zhang J, Xu W, Huang Q, Wang T. Dietary effects of Bacillus subtilis fmbj on the antioxidant capacity of broilers at an early age. Poult Sci 2017; 96:3564-3573. [DOI: 10.3382/ps/pex172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
|
50
|
Gomperts E, Belcher JD, Otterbein LE, Coates TD, Wood J, Skolnick BE, Levy H, Vercellotti GM. The role of carbon monoxide and heme oxygenase in the prevention of sickle cell disease vaso-occlusive crises. Am J Hematol 2017; 92:569-582. [PMID: 28378932 PMCID: PMC5723421 DOI: 10.1002/ajh.24750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
Sickle Cell Disease (SCD) is a painful, lifelong hemoglobinopathy inherited as a missense point mutation in the hemoglobin (Hb) beta-globin gene. This disease has significant impact on quality of life and mortality, thus a substantial medical need exists to reduce the vaso-occlusive crises which underlie the pathophysiology of the disease. The concept that a gaseous molecule may exert biological function has been well known for over one hundred years. Carbon monoxide (CO), although studied in SCD for over 50 years, has recently emerged as a powerful cytoprotective biological response modifier capable of regulating a host of physiologic and therapeutic processes that, at low concentrations, exerts key physiological functions in various models of tissue inflammation and injury. CO is physiologically generated by the metabolism of heme by the heme oxygenase enzymes and is measurable in blood. A substantial amount of preclinical and clinical data with CO have been generated, which provide compelling support for CO as a potential therapeutic in a number of pathological conditions. Data underlying the therapeutic mechanisms of CO, including in SCD, have been generated by a plethora of in vitro and preclinical studies including multiple SCD mouse models. These data show CO to have key signaling impacts on a host of metallo-enzymes as well as key modulating genes that in sum, result in significant anti-inflammatory, anti-oxidant and anti-apoptotic effects as well as vasodilation and anti-adhesion of cells to the endothelium resulting in preservation of vascular flow. CO may also have a role as an anti-polymerization HbS agent. In addition, considerable scientific data in the non-SCD literature provide evidence for a beneficial impact of CO on cerebrovascular complications, suggesting that in SCD, CO could potentially limit these highly problematic neurologic outcomes. Research is needed and hopefully forthcoming, to carefully elucidate the safety and benefits of this potential therapy across the age spectrum of patients impacted by the host of pathophysiological complications of this devastating disease.
Collapse
Affiliation(s)
- Edward Gomperts
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - John D Belcher
- University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| | - Leo E Otterbein
- Harvard Medical School; Beth Israel Deaconess Medical Center, 3 Blackfan Circle Center for Life Sciences, #630, Boston, MA, 02115, USA
| | - Thomas D Coates
- Children's Hospital Los Angeles; University of Southern California, 4650 Sunset Boulevard MS #54 Los Angeles, CA, 90027, USA
| | - John Wood
- Children's Hospital Los Angeles; University of Southern California, 4650 Sunset Boulevard MS #54 Los Angeles, CA, 90027, USA
| | - Brett E Skolnick
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - Howard Levy
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - Gregory M Vercellotti
- University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| |
Collapse
|