1
|
Foliaki ST, Groveman BR, Dews EA, Williams K, El Soufi H, Schwarz B, Leung JM, Schneider CA, Schwartz CL, Bohrnsen E, Kimzey CD, Race B, Haigh CL. Limbic system synaptic dysfunctions associated with prion disease onset. Acta Neuropathol Commun 2024; 12:192. [PMID: 39707496 DOI: 10.1186/s40478-024-01905-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Misfolding of normal prion protein (PrPC) to pathological isoforms (prions) causes prion diseases (PrDs) with clinical manifestations including cognitive decline and mood-related behavioral changes. Cognition and mood are linked to the neurophysiology of the limbic system. Little is known about how the disease affects the synaptic activity in brain parts associated with this system. We hypothesize that the dysfunction of synaptic transmission in the limbic regions correlates with the onset of reduced cognition and behavioral deficits. Here, we studied how prion infection in mice disrupts the synaptic function in three limbic regions, the hippocampus, hypothalamus, and amygdala, at a pre-clinical stage (mid-incubation period) and early clinical onset. PrD caused calcium flux dysregulation associated with lesser spontaneous synchronous neuronal firing and slowing neural oscillation at the pre-clinical stage in the hippocampal CA1, ventral medial hypothalamus, and basolateral amygdala (BLA). At clinical onset, synaptic transmission and synaptic plasticity became significantly disrupted. This correlated with a substantial depletion of the soluble prion protein, loss of total synapses, abnormal neurotransmitter levels and synaptic release, decline in synaptic vesicle recycling, and cytoskeletal damage. Further, the amygdala exhibited distinct disease-related changes in synaptic morphology and physiology compared with the other regions, but generally to a lesser degree, demonstrating how different rates of damage in the limbic system influence the evolution of clinical disease. Overall, PrD causes synaptic damage in three essential limbic regions starting at a preclinical stage and resulting in synaptic plasticity dysfunction correlated with early disease signs. Therapeutic drugs that alleviate these early neuronal dysfunctions may significantly delay clinical onset.
Collapse
Affiliation(s)
- Simote T Foliaki
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA.
| | - Bradley R Groveman
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Emmett A Dews
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Katie Williams
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Hadil El Soufi
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Schwarz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Jacqueline M Leung
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Christine A Schneider
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Cindi L Schwartz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Eric Bohrnsen
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Cole D Kimzey
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Cathryn L Haigh
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
2
|
Foliaki ST, Wood A, Williams K, Smith A, Walters RO, Baune C, Groveman BR, Haigh CL. Temporary alteration of neuronal network communication is a protective response to redox imbalance that requires GPI-anchored prion protein. Redox Biol 2023; 63:102733. [PMID: 37172395 DOI: 10.1016/j.redox.2023.102733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cellular prion protein (PrPC) protects neurons against oxidative stress damage. This role is lost upon its misfolding into insoluble prions in prion diseases, and correlated with cytoskeletal breakdown and neurophysiological deficits. Here we used mouse neuronal models to assess how PrPC protects the neuronal cytoskeleton, and its role in network communication, from oxidative stress damage. Oxidative stress was induced extrinsically by potassium superoxide (KO2) or intrinsically by Mito-Paraquat (MtPQ), targeting the mitochondria. In mouse neural lineage cells, KO2 was damaging to the cytoskeleton, with cells lacking PrPC (PrP-/-) damaged more than wild-type (WT) cells. In hippocampal slices, KO2 acutely inhibited neuronal communication in WT controls without damaging the cytoskeleton. This inhibition was not observed in PrP-/- slices. Neuronal communication and the cytoskeleton of PrP-/- slices became progressively disrupted and degenerated post-recovery, whereas the dysfunction in WT slices recovered in 5 days. This suggests that the acute inhibition of neuronal activity in WT slices in response to KO2 was a neuroprotective role of PrPC, which PrP-/- slices lacked. Heterozygous expression of PrPC was sufficient for this neuroprotection. Further, hippocampal slices from mice expressing PrPC without its GPI anchor (PrPGPI-/-) displayed acute inhibition of neuronal activity by KO2. However, they failed to restore normal activity and cytoskeletal formation post-recovery. This suggests that PrPC facilitates the depressive response to KO2 and its GPI anchoring is required to restore KO2-induced damages. Immuno spin-trapping showed increased radicals formed on the filamentous actin of PrP-/- and PrPGPI-/- slices, but not WT and PrP+/- slices, post-recovery suggesting ongoing dysregulation of redox balance in the slices lacking GPI-anchored PrPC. The MtPQ treatment of hippocampal slices temporarily inhibited neuronal communication independent of PrPC expression. Overall, GPI-anchored PrPC alters synapses and neurotransmission to protect and repair the neuronal cytoskeleton, and neuronal communication, from extrinsically induced oxidative stress damages.
Collapse
Affiliation(s)
- Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Aleksandar Wood
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Anna Smith
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Ryan O Walters
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Chase Baune
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
3
|
Walters RO, Haigh CL. Organoids for modeling prion diseases. Cell Tissue Res 2023; 392:97-111. [PMID: 35088182 PMCID: PMC9329493 DOI: 10.1007/s00441-022-03589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Human cerebral organoids are an exciting and novel model system emerging in the field of neurobiology. Cerebral organoids are spheres of self-organizing, neuronal lineage tissue that can be differentiated from human pluripotent stem cells and that present the possibility of on-demand human neuronal cultures that can be used for non-invasively investigating diseases affecting the brain. Compared with existing humanized cell models, they provide a more comprehensive replication of the human cerebral environment. The potential of the human cerebral organoid model is only just beginning to be elucidated, but initial studies have indicated that they could prove to be a valuable model for neurodegenerative diseases such as prion disease. The application of the cerebral organoid model to prion disease, what has been learned so far and the future potential of this model are discussed in this review.
Collapse
Affiliation(s)
- Ryan O Walters
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
4
|
Rathore AS, Singh SS, Birla H, Zahra W, Keshri PK, Dilnashin H, Singh R, Singh S, Singh SP. Curcumin Modulates p62-Keap1-Nrf2-Mediated Autophagy in Rotenone-Induced Parkinson's Disease Mouse Models. ACS Chem Neurosci 2023. [PMID: 36989171 DOI: 10.1021/acschemneuro.2c00706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Autophagy mediates self-digestion of abnormally aggregated proteins and organelles present in the cytoplasm. This mechanism may prove to be neuroprotective against Parkinson's disease (PD) by clearing misfolded α-synuclein (α-syn) aggregates from dopaminergic neurons. p62, an adaptor protein acts as a selective substrate for autophagy and regulates the formation as well as the degradation of protein aggregates. p62 sequesters keap1 freeing Nrf2 and consequently activating the transcription of its target genes. In the present study, we aimed to investigate the anti-parkinsonian activity of curcumin targeting primarily activation of autophagy via the Nrf2-Keap1 pathway. The mice were subcutaneously injected with rotenone (2.5 mg/kg bodyweight) and co-treated with oral administration of curcumin (80 mg/kg bodyweight) for 35 days. Following completion of dosing, motor activities, anti-oxidative potential, mitochondrial dysfunction, and various protein expressions, including Nrf2, Keap1, p62, LC3, Bcl2, Bax, and caspase 3, were assessed. The results revealed that curcumin restored the motor coordination and anti-oxidative activity while improving the mitochondrial functioning in PD mice. Autophagy was evaluated by the change in the expression of autophagic markers, p62 and LC3-II. Reduced p62 and LC3-II expressions in the rotenone mouse model of PD confirmed the compromised autophagy pathway, consequently increasing the aggregation of misfolded protein α-syn. Whereas, curcumin treatment-enhanced autophagy-mediated clearance of misfolded α-syn proteins by increasing the LC3-II expression and blocked apoptotic cascade. Curcumin administration upregulated the Nrf2 expression and normalized the Nrf2-Keap1 pathway, which justifies the improved anti-oxidative activity. Therefore, the findings reveal that curcumin is a Nrf2-inducer and is endowed with neuroprotective potential, which may prove to be a potential candidate for the anti-Parkinson's disease treatment therapy.
Collapse
Affiliation(s)
- Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Zambrano K, Barba D, Castillo K, Robayo P, Arizaga E, Caicedo A, Gavilanes AWD. A new hope: Mitochondria, a critical factor in the war against prions. Mitochondrion 2022; 65:113-123. [PMID: 35623560 DOI: 10.1016/j.mito.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/28/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Prion diseases encompass a group of incurable neurodegenerative disorders that occur due to the misfolding and aggregation of infectious proteins. The most well-known prion diseases are Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (also known as mad cow disease), and kuru. It is estimated that around 1-2 persons per million worldwide are affected annually by prion disorders. Infectious prion proteins propagate in the brain, clustering in the cells and rapidly inducing tissue degeneration and death. Prion disease alters cell metabolism and energy production damaging mitochondrial function and dynamics leading to a fast accumulation of damage. Dysfunction of mitochondria could be considered as an early precursor and central element in the pathogenesis of prion diseases such as in sporadic CJD. Preserving mitochondria function may help to resist the rapid spread and damage of prion proteins and even clearance. In the war against prions and other degenerative diseases, studying how to preserve the function of mitochondria by using antioxidants and even replacing them with artificial mitochondrial transfer/transplant (AMT/T) may bring a new hope and lead to an increase in patients' survival. In this perspective review, we provide key insights about the relationship between the progression of prion disease and mitochondria, in which understanding how protecting mitochondria function and viability by using antioxidants or AMT/T may help to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador
| | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador
| | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador.
| |
Collapse
|
6
|
Adhikari UK, Sakiz E, Habiba U, Mikhael M, Senesi M, David MA, Guillemin GJ, Ooi L, Karl T, Collins S, Tayebi M. Treatment of microglia with Anti-PrP monoclonal antibodies induces neuronal apoptosis in vitro. Heliyon 2021; 7:e08644. [PMID: 35005289 PMCID: PMC8715334 DOI: 10.1016/j.heliyon.2021.e08644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Previous reports highlighted the neurotoxic effects caused by some motif-specific anti-PrPC antibodies in vivo and in vitro. In the current study, we investigated the detailed alterations of the proteome with liquid chromatography–mass spectrometry following direct application of anti-PrPC antibodies on mouse neuroblastoma cells (N2a) and mouse primary neuronal (MPN) cells or by cross-linking microglial PrPC with anti-PrPC antibodies prior to co-culture with the N2a/MPN cells. Here, we identified 4 (3 upregulated and 1 downregulated) and 17 (11 upregulated and 6 downregulated) neuronal apoptosis-related proteins following treatment of the N2a and N11 cell lines respectively when compared with untreated cells. In contrast, we identified 1 (upregulated) and 4 (2 upregulated and 2 downregulated) neuronal apoptosis-related proteins following treatment of MPN cells and N11 when compared with untreated cells. Furthermore, we also identified 3 (2 upregulated and 1 downregulated) and 2 (1 upregulated and 1 downregulated) neuronal apoptosis-related related proteins following treatment of MPN cells and N11 when compared to treatment with an anti-PrP antibody that lacks binding specificity for mouse PrP. The apoptotic effect of the anti-PrP antibodies was confirmed with flow cytometry following labelling of Annexin V-FITC. The toxic effects of the anti-PrP antibodies was more intense when antibody-treated N11 were co-cultured with the N2a and the identified apoptosis proteome was shown to be part of the PrPC-interactome. Our observations provide a new insight into the prominent role played by microglia in causing neurotoxic effects following treatment with anti-PrPC antibodies and might be relevant to explain the antibody mediated toxicity observed in other related neurodegenerative diseases such as Alzheimer. Antibody cross-linking neuronal PrPC induces apoptosis. Antibody cross-linking microglial PrPC induces neuronal apoptosis. Different apoptotic pathways were triggered by specific anti-PrP antibody treatments.
Collapse
|
7
|
Foliaki ST, Race B, Williams K, Baune C, Groveman BR, Haigh CL. Reduced SOD2 expression does not influence prion disease course or pathology in mice. PLoS One 2021; 16:e0259597. [PMID: 34735539 PMCID: PMC8568125 DOI: 10.1371/journal.pone.0259597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Prion diseases are progressive, neurodegenerative diseases affecting humans and animals. Also known as the transmissible spongiform encephalopathies, for the hallmark spongiform change seen in the brain, these diseases manifest increased oxidative damage early in disease and changes in antioxidant enzymes in terminal brain tissue. Superoxide dismutase 2 (SOD2) is an antioxidant enzyme that is critical for life. SOD2 knock-out mice can only be kept alive for several weeks post-birth and only with antioxidant therapy. However, this results in the development of a spongiform encephalopathy. Consequently, we hypothesized that reduced levels of SOD2 may accelerate prion disease progression and play a critical role in the formation of spongiform change. Using SOD2 heterozygous knock-out and litter mate wild-type controls, we examined neuronal long-term potentiation, disease duration, pathology, and degree of spongiform change in mice infected with three strains of mouse adapted scrapie. No influence of the reduced SOD2 expression was observed in any parameter measured for any strain. We conclude that changes relating to SOD2 during prion disease are most likely secondary to the disease processes causing toxicity and do not influence the development of spongiform pathology.
Collapse
Affiliation(s)
- Simote T. Foliaki
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brent Race
- Veterinary Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Katie Williams
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Chase Baune
- Veterinary Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Bradley R. Groveman
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Cathryn L. Haigh
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
- * E-mail:
| |
Collapse
|
8
|
Adhikari UK, Sakiz E, Zhou X, Habiba U, Kumar S, Mikhael M, Senesi M, Guang Li C, Guillemin GJ, Ooi L, David MA, Collins S, Karl T, Tayebi M. Cross-Linking Cellular Prion Protein Induces Neuronal Type 2-Like Hypersensitivity. Front Immunol 2021; 12:639008. [PMID: 34394070 PMCID: PMC8361482 DOI: 10.3389/fimmu.2021.639008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background Previous reports identified proteins associated with ‘apoptosis’ following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with anti-PrP antibody-mediated ‘apoptosis’, however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response. Methods Initially, we predicted the allergenicity of the epitope sequences associated with ‘neurotoxic’ anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of mouse primary neurons (MPN), neuroblastoma cells (N2a) and microglia (N11) cell lines lead to a neuronal allergenic response. Results In-Silico studies showed that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for previously reported ‘neurotoxic’ antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of anti-PrPC antibodies on N2a cells, we identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, we identified 8 neuronal allergenic-related proteins following treatment of N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells when compared with untreated cells. Antibody treatment of MPN or MPN co-cultured with antibody-treated N11 led to identifying 10 and 7 allergenic-related proteins when compared with untreated cells. However, comparison with 3F4 antibody treatment revealed 5 and 4 allergenic-related proteins respectively. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Finally, co-culture of N2a or MPN with N11-treated with anti-PrP antibodies resulted in significant accumulation of NO and IL6 but not TNF-α in the cell culture media supernatant. Conclusions This study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal hypersensitivity response and highlights the important role of microglia in triggering an IgG-mediated neuronal hypersensitivity response. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative disorders to derive safe and targeted biotherapeutics.
Collapse
Affiliation(s)
| | - Elif Sakiz
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Xian Zhou
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Umma Habiba
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Sachin Kumar
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Matteo Senesi
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Chun Guang Li
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Wollongong, NSW, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
9
|
Carroll JA, Groveman BR, Williams K, Moore R, Race B, Haigh CL. Prion protein N1 cleavage peptides stimulate microglial interaction with surrounding cells. Sci Rep 2020; 10:6654. [PMID: 32313035 PMCID: PMC7171115 DOI: 10.1038/s41598-020-63472-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/29/2020] [Indexed: 01/06/2023] Open
Abstract
Microglia act as the protective immune cell of the brain. By surveying the tissue to identify and rectify problems, they function to maintain the health of brain cells. The prion protein N-terminal cleavage fragment, N1, has demonstrated neuroprotective activities in vitro and in vivo. This study aimed to elucidate whether N1 could modulate microglial function and, if so, determine the consequences for the surrounding tissue. Using a mixed neuronal lineage and microglia co-culture system, we showed that N1 stimulation changed overall morphology and metabolism, suggesting enhanced cellular viability. Furthermore, N1 induced an increase in Cxcl10 secretion in the co-cultures. Recombinant Cxcl10, administered exogenously, mediated the changes in the mixed neuronal lineage culture morphology and metabolism in the absence of microglia, but no effect of Cxcl10 was observed on microglia cultured on their own. Direct cell-to-cell contact was required for N1 to influence microglia in the co-cultures, and this was linked with restructuring of microglial membrane composition to include a higher GM1 content at interaction sites with surrounding cells. Our findings show that N1 can play a regulatory role in microglial function in the context of an inter-connected network of cells by changing both cellular interaction sites and cytokine secretion.
Collapse
Affiliation(s)
- J A Carroll
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - B R Groveman
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - K Williams
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - R Moore
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - B Race
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - C L Haigh
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
10
|
Cussell PJG, Howe MS, Illingworth TA, Gomez Escalada M, Milton NGN, Paterson AWJ. The formyl peptide receptor agonist FPRa14 induces differentiation of Neuro2a mouse neuroblastoma cells into multiple distinct morphologies which can be specifically inhibited with FPR antagonists and FPR knockdown using siRNA. PLoS One 2019; 14:e0217815. [PMID: 31170199 PMCID: PMC6553754 DOI: 10.1371/journal.pone.0217815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
The N-formyl peptide receptors (FPRs) have been identified within neuronal tissues and may serve as yet undetermined functions within the nervous system. The FPRs have been implicated in the progression and invasiveness of neuroblastoma and other cancers. In this study the effects of the synthetic FPR agonist FPRa14, FPR antagonists and FPR knockdown using siRNA on mouse neuroblastoma neuro2a (N2a) cell differentiation plus toxicity were examined. The FPRa14 (1-10μM) was found to induce a significant dose-dependent differentiation response in mouse neuroblastoma N2a cells. Interestingly, three distinct differentiated morphologies were observed, with two non-archetypal forms observed at the higher FPRa14 concentrations. These three forms were also observed in the human neuroblastoma cell-lines IMR-32 and SH-SY5Y when exposed to 100μM FPRa14. In N2a cells combined knockdown of FPR1 and FPR2 using siRNA inhibited the differentiation response to FPRa14, suggesting involvement of both receptor subtypes. Pre-incubating N2a cultures with the FPR1 antagonists Boc-MLF and cyclosporin H significantly reduced FPRa14-induced differentiation to near baseline levels. Meanwhile, the FPR2 antagonist WRW4 had no significant effect on FPRa14-induced N2a differentiation. These results suggest that the N2a differentiation response observed has an FPR1-dependent component. Toxicity of FPRa14 was only observed at higher concentrations. All three antagonists used blocked FPRa14-induced toxicity, whilst only siRNA knockdown of FPR2 reduced toxicity. This suggests that the toxicity and differentiation involve different mechanisms. The demonstration of neuronal differentiation mediated via FPRs in this study represents a significant finding and suggests a role for FPRs in the CNS. This finding could potentially lead to novel therapies for a range of neurological conditions including neuroblastoma, Alzheimer's disease, Parkinson's disease and neuropathic pain. Furthermore, this could represent a potential avenue for neuronal regeneration therapies.
Collapse
Affiliation(s)
- Peter J. G. Cussell
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Michael S. Howe
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Thomas A. Illingworth
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | | | - Nathaniel G. N. Milton
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Andrew W. J. Paterson
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front Mol Neurosci 2018; 11:310. [PMID: 30337853 DOI: 10.3389/fnmol.2018.00310/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 05/26/2023] Open
Abstract
Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual's brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front Mol Neurosci 2018; 11:310. [PMID: 30337853 PMCID: PMC6180192 DOI: 10.3389/fnmol.2018.00310] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual’s brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Collins SJ, Tumpach C, Groveman BR, Drew SC, Haigh CL. Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression. Cell Mol Life Sci 2018; 75:3231-3249. [PMID: 29574582 PMCID: PMC6063333 DOI: 10.1007/s00018-018-2790-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 01/06/2023]
Abstract
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.
Collapse
Affiliation(s)
- Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Carolin Tumpach
- Doherty Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, USA
| | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Cathryn L Haigh
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, USA.
| |
Collapse
|
14
|
Prion acute synaptotoxicity is largely driven by protease-resistant PrPSc species. PLoS Pathog 2018; 14:e1007214. [PMID: 30089152 PMCID: PMC6101418 DOI: 10.1371/journal.ppat.1007214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
Although misfolding of normal prion protein (PrPC) into abnormal conformers (PrPSc) is critical for prion disease pathogenesis our current understanding of the underlying molecular pathophysiology is rudimentary. Exploiting an electrophysiology paradigm, herein we report that at least modestly proteinase K (PK)-resistant PrPSc (PrPres) species are acutely synaptotoxic. Brief exposure to ex vivo PrPSc from two mouse-adapted prion strains (M1000 and MU02) prepared as crude brain homogenates (cM1000 and cMU02) and cell lysates from chronically M1000-infected RK13 cells (MoRK13-Inf) caused significant impairment of hippocampal CA1 region long-term potentiation (LTP), with the LTP disruption approximating that reported during the evolution of murine prion disease. Proof of PrPSc (especially PrPres) species as the synaptotoxic agent was demonstrated by: significant rescue of LTP following selective immuno-depletion of total PrP from cM1000 (dM1000); modestly PK-treated cM1000 (PK+M1000) retaining full synaptotoxicity; and restoration of the LTP impairment when employing reconstituted, PK-eluted, immuno-precipitated M1000 preparations (PK+IP-M1000). Additional detailed electrophysiological analyses exemplified by impairment of post-tetanic potentiation (PTP) suggest possible heightened pre-synaptic vulnerability to the acute synaptotoxicity. This dysfunction correlated with cumulative insufficiency of replenishment of the readily releasable pool (RRP) of vesicles during repeated high-frequency stimulation utilised for induction of LTP. Broadly comparable results with LTP and PTP impairment were obtained utilizing hippocampal slices from PrPC knockout (PrPo/o) mice, with cM1000 serial dilution assessments revealing similar sensitivity of PrPo/o and wild type (WT) slices. Size fractionation chromatography demonstrated that synaptotoxic PrP correlated with PK-resistant species >100kDa, consistent with multimeric PrPSc, with levels of these species >6 ng/ml appearing sufficient to induce synaptic dysfunction. Biochemical analyses of hippocampal slices manifesting acute synaptotoxicity demonstrated reduced levels of multiple key synaptic proteins, albeit with noteworthy differences in PrPo/o slices, while such changes were absent in hippocampi demonstrating rescued LTP through treatment with dM1000. Our findings offer important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development of targeted effective therapies. Misfolding of the normal prion protein (PrPC) into disease-associated conformations (PrPSc) is the critical initiating step for prion diseases. Similar to other neurodegenerative disorders, progressive failure of brain synapses is considered a primary deleterious event underpinning prion disease evolution. Our current understanding of the underlying mechanisms associated with synaptic failure is rudimentary contributing to difficulties in developing effective treatments. Herein we report the use of an electrophysiology paradigm that allowed us to demonstrate that at least modestly proteinase K (PK)-resistant PrPSc species from two mouse-adapted prion strains (M1000 and MU02) are directly synaptotoxic causing significant acute impairment of hippocampal CA1 region long-term potentiation (LTP). Of note, the LTP disruption approximated that reported in prion animal models. Additional detailed analyses provided novel pathophysiological insights suggesting possible heightened pre-synaptic vulnerability to the acute synaptotoxicity through impairment of replenishment of the readily releasable pool of neurotransmitter vesicles, while biochemical analyses demonstrated reduced levels of multiple key pre-and post-synaptic proteins. Broadly similar acute synaptic dysfunction and dose-response susceptibility were observed in slices from mice not expressing PrPC albeit with minor but noteworthy differences in electrophysiological and biochemical findings. Our study offers important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development effective therapies.
Collapse
|
15
|
T. Islam AM, Adlard PA, Finkelstein DI, Lewis V, Biggi S, Biasini E, Collins SJ. Acute Neurotoxicity Models of Prion Disease. ACS Chem Neurosci 2018; 9:431-445. [PMID: 29393619 DOI: 10.1021/acschemneuro.7b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Prion diseases are phenotypically diverse, transmissible, neurodegenerative disorders affecting both animals and humans. Misfolding of the normal prion protein (PrPC) into disease-associated conformers (PrPSc) is considered the critical etiological event underpinning prion diseases, with such misfolded isoforms linked to both disease transmission and neurotoxicity. Although important advances in our understanding of prion biology and pathogenesis have occurred over the last 3-4 decades, many fundamental questions remain to be resolved, including consensus regarding the principal pathways subserving neuronal dysfunction, as well as detailed biophysical characterization of PrPSc species transmitting disease and/or directly associated with neurotoxicity. In vivo and in vitro models have been, and remain, critical to furthering our understanding across many aspects of prion disease patho-biology. Prion animal models are arguably the most authentic in vivo models of neurodegeneration that exist and have provided valuable and multifarious insights into pathogenesis; however, they are expensive and time-consuming, and it can be problematic to clearly discern evidence of direct PrPSc neurotoxicity in the overall context of pathogenesis. In vitro models, in contrast, generally offer greater tractability and appear more suited to assessments of direct acute neurotoxicity but have until recently been relatively simplistic, and overall there remains a relative paucity of validated, biologically relevant models with heightened reliability as far as translational insights, contributing to difficulties in redressing our knowledge gaps in prion disease pathogenesis. In this review, we provide an overview of the spectrum and methodological diversity of in vivo and in vitro models of prion acute toxicity, as well as the pathogenic insights gained from these studies.
Collapse
Affiliation(s)
| | | | | | | | - S. Biggi
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - E. Biasini
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | | |
Collapse
|
16
|
Senesi M, Lewis V, Kim JH, Adlard PA, Finkelstein DI, Collins SJ. In vivo prion models and the disconnection between transmissibility and neurotoxicity. Ageing Res Rev 2017; 36:156-164. [PMID: 28450269 DOI: 10.1016/j.arr.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 02/01/2023]
Abstract
The primary causative event in the development of prion diseases is the misfolding of the normal prion protein (PrPC) into an ensemble of altered conformers (herein collectively denoted as PrPSc) that accumulate in the brain. Prominent amongst currently unresolved key aspects underpinning prion disease pathogenesis is whether transmission and toxicity are sub-served by different molecular species of PrPSc, which may directly impact on the development of effective targeted treatments. The use of murine models of prion disease has been of fundamental importance for probing the relationship between hypothesised "neurotoxic" and "transmissible" PrPSc and the associated kinetic profiles of their production during disease evolution, but unfortunately consensus has not been achieved. Recent in vivo studies have led to formulation of the "two-phase" hypothesis, which postulates that there is first an exponential increase in transmitting PrPSc species followed by an abrupt transition to propagation of neurotoxic PrPSc species. Such observations however, appear inconsistent with previous in vivo murine studies employing detailed time-course behavioural testing, wherein evidence of neurotoxicity could be detected early in disease progression. This review analyses the contributions of in vivo murine models attempting to provide insights into the relationship between transmitting and neurotoxic PrPSc species and explores possible refinements to the "two-phase hypothesis", that better accommodate the available historical and recent evidence.
Collapse
Affiliation(s)
- Matteo Senesi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia
| | - Victoria Lewis
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia
| | - Jee H Kim
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - Paul A Adlard
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - David I Finkelstein
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - Steven J Collins
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
17
|
Abstract
Traditional primary and secondary cell cultures have been used for the investigation of prion biology and disease for many years. While both types of cultures produce highly valid and immensely valuable results, they also have their limitations; traditional cell lines are often derived from cancers, therefore subject to numerous DNA changes, and primary cultures are labor-intensive and expensive to produce requiring sacrifice of many animals. Neural stem cell (NSC) cultures are a relatively new technology to be used for the study of prion biology and disease. While NSCs are subject to their own limitations-they are generally cultured ex vivo in environments that artificially force their growth-they also have their own unique advantages. NSCs retain the ability for self-renewal and can therefore be propagated in culture similarly to secondary cultures without genetic manipulation. In addition, NSCs are multipotent; they can be induced to differentiate into mature cells of central nervous system (CNS) linage. The combination of self-renewal and multipotency allows NSCs to be used as a primary cell line over multiple generations saving time, costs, and animal harvests, thus providing a valuable addition to the existing cell culture repertoire used for investigation of prion biology and disease. Furthermore, NSC cultures can be generated from mice of any genotype, either by embryonic harvest or harvest from adult brain, allowing gene expression to be studied without further genetic manipulation. This chapter describes a standard method of culturing adult NSCs and assays for monitoring NSC growth, migration, and differentiation and revisits basic reactive oxygen species detection in the context of NSC cultures.
Collapse
Affiliation(s)
- Cathryn L Haigh
- Department of Medicine, Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3010, Australia. .,Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
18
|
Collins SJ, Haigh CL. Simplified Murine 3D Neuronal Cultures for Investigating Neuronal Activity and Neurodegeneration. Cell Biochem Biophys 2016; 75:3-13. [PMID: 27796787 DOI: 10.1007/s12013-016-0768-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022]
Abstract
The ability to model brain tissue in three-dimensions offers new potential for elucidating functional cellular interactions and corruption of such functions during pathogenesis. Many protocols now exist for growing neurones in three-dimensions and these vary in complexity and cost. Herein, we describe a straight-forward method for generating three-dimensional, terminally differentiated central nervous system cultures from adult murine neural stem cells. The protocol requires no specialist equipment, is not labour intensive or expensive and produces mature cultures within 10 days that can survive beyond a month. Populations of functional glutamatergic neurones could be identified within cultures. Additionally, the three dimensional neuronal cultures can be used to investigate tissue changes during the development of neurodegenerative disease where demonstration of hallmark features, such as plaque generation, has not previously been possible using two-dimensional cultures of neuronal cells. Using a prion model of acquired neurodegenerative disease, biochemical changes indicative of prion pathology were induced within 2-3 weeks in the three dimensional cultures. Our findings show that tissue differentiated in this simplified three dimensional culture model is physiologically competent to model central nervous system cellular behaviour as well as manifest the functional failures and pathological changes associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, 30 Royal Parade, Parkville, Melbourne, VIC, 3010, Australia
| | - Cathryn L Haigh
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, 30 Royal Parade, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
19
|
Haigh CL, Tumpach C, Collins SJ, Drew SC. A 2-Substituted 8-Hydroxyquinoline Stimulates Neural Stem Cell Proliferation by Modulating ROS Signalling. Cell Biochem Biophys 2016; 74:297-306. [DOI: 10.1007/s12013-016-0747-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 01/05/2023]
|
20
|
Roles of methionine oxidation in E200K prion protein misfolding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:346-58. [DOI: 10.1016/j.bbapap.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 01/20/2023]
|
21
|
Liu C, Li X, Lu B. The Immp2l mutation causes age-dependent degeneration of cerebellar granule neurons prevented by antioxidant treatment. Aging Cell 2016; 15:167-76. [PMID: 26616244 PMCID: PMC4717271 DOI: 10.1111/acel.12426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 12/04/2022] Open
Abstract
Reactive oxygen species are implicated in age‐associated neurodegeneration, although direct in vivo evidence is lacking. We recently showed that mice with a mutation in the Inner Mitochondrial Membrane Peptidase 2‐like (Immp2l) gene had elevated levels of mitochondrial superoxide, impaired fertility and age‐associated phenotypes, including kyphosis and ataxia. Here we show that ataxia and cerebellar hypoplasia occur in old mutant mice (> 16 months). Cerebellar granule neurons (CGNs) are significantly underrepresented; Purkinje cells and cells in the molecular layer are not affected. Treating mutant mice with the mitochondria‐targeted antioxidant SkQ1 from 6 weeks to 21 months protected cerebellar granule neurons. Apoptotic granule neurons were observed in mutant mice but not in age‐matched normal control mice or SkQ1‐treated mice. Old mutant mice showed increased serum protein carbonyl content, cerebellar 4‐hydroxynonenal (HNE), and nitrotyrosine modification compared to old normal control mice. SOD2 expression was increased in Purkinje cells but decreased in granule neurons of old mutant mice. Mitochondrial marker protein VDAC1 also was decreased in CGNs of old mutant mice, suggesting decreased mitochondrial number. SkQ1 treatment decreased HNE and nitrotyrosine modification, and restored SOD2 and VDAC1 expression in CGNs of old mutant mice. Neuronal expression of nitric oxide synthase was increased in cerebella of young mutant mice but decreased in old mutant mice. Our work provides evidence for a causal role of oxidative stress in neurodegeneration of Immp2l mutant mice. The Immp2l mutant mouse model could be valuable in elucidating the role of oxidative stress in age‐associated neurodegeneration.
Collapse
Affiliation(s)
- Chunlian Liu
- Department of Center for Reproductive Medicine General Hospital Ningxia Medical University Ningxia 750004 China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education Ningxia Medical University Ningxia 750004 China
- Wake Forest University Health Sciences Institute for Regenerative Medicine Winston‐Salem NC 27157 USA
| | - Xue Li
- Wake Forest University Health Sciences Institute for Regenerative Medicine Winston‐Salem NC 27157 USA
- Department of Pathology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - Baisong Lu
- Wake Forest University Health Sciences Institute for Regenerative Medicine Winston‐Salem NC 27157 USA
| |
Collapse
|
22
|
Asuni AA, Guridi M, Sanchez S, Sadowski MJ. Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo. Neurochem Int 2015; 90:152-65. [PMID: 26265052 DOI: 10.1016/j.neuint.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/04/2023]
Abstract
Protein misfolding, mitochondrial dysfunction and oxidative stress are common pathomechanisms that underlie neurodegenerative diseases. In prion disease, central to these processes is the post-translational transformation of cellular prion protein (PrP(c)) to the aberrant conformationally altered isoform; PrP(Sc). This can trigger oxidative reactions and impair mitochondrial function by increasing levels of peroxynitrite, causing damage through formation of hydroxyl radicals or via nitration of tyrosine residues on proteins. The 6 member Peroxiredoxin (Prdx) family of redox proteins are thought to be critical protectors against oxidative stress via reduction of H2O2, hydroperoxides and peroxynitrite. In our in vitro studies cellular metabolism of SK-N-SH human neuroblastoma cells was significantly decreased in the presence of H2O2 (oxidative stressor) or CoCl2 (cellular hypoxia), but was rescued by treatment with exogenous Prdx6, suggesting that its protective action is in part mediated through a direct action. We also show that CoCl2-induced apoptosis was significantly decreased by treatment with exogenous Prdx6. We proposed a redox regulator role for Prdx6 in regulating and maintaining cellular homeostasis via its ability to control ROS levels that could otherwise accelerate the emergence of prion-related neuropathology. To confirm this, we established prion disease in mice with and without astrocyte-specific antioxidant protein Prdx6, and demonstrated that expression of Prdx6 protein in Prdx6 Tg ME7-animals reduced severity of the behavioural deficit, decreased neuropathology and increased survival time compared to Prdx6 KO ME7-animals. We conclude that antioxidant Prdx6 attenuates prion-related neuropathology, and propose that augmentation of endogenous Prdx6 protein represents an attractive adjunct therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ayodeji A Asuni
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA; Centre for Biological Sciences, University of Southampton, Southampton, UK.
| | - Maitea Guridi
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Martin J Sadowski
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Haigh CL, Tumpach C, Drew SC, Collins SJ. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses. PLoS One 2015; 10:e0134680. [PMID: 26252007 PMCID: PMC4529310 DOI: 10.1371/journal.pone.0134680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.
Collapse
Affiliation(s)
- Cathryn L. Haigh
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, AUS, 3010
- * E-mail: (CLH); (SJC)
| | - Carolin Tumpach
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, AUS, 3010
| | - Simon C. Drew
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, AUS, 3010
| | - Steven J. Collins
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, AUS, 3010
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, AUS, 3010
- * E-mail: (CLH); (SJC)
| |
Collapse
|
24
|
Collins SJ, Tumpach C, Li QX, Lewis V, Ryan TM, Roberts B, Drew SC, Lawson VA, Haigh CL. The prion protein regulates beta-amyloid-mediated self-renewal of neural stem cells in vitro. Stem Cell Res Ther 2015; 6:60. [PMID: 25884827 PMCID: PMC4435829 DOI: 10.1186/s13287-015-0067-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
The beta-amyloid (Aβ) peptide and the Aβ-oligomer receptor, prion protein (PrP), both influence neurogenesis. Using in vitro murine neural stem cells (NSCs), we investigated whether Aβ and PrP interact to modify neurogenesis. Aβ imparted PrP-dependent changes on NSC self-renewal, with PrP-ablated and wild-type NSCs displaying increased and decreased cell growth, respectively. In contrast, differentiation of Aβ-treated NSCs into mature cells was unaffected by PrP expression. Such marked PrP-dependent differences in NSC growth responses to Aβ provides further evidence of biologically significant interactions between these two factors and an important new insight into regulation of NSC self-renewal in vivo.
Collapse
Affiliation(s)
- Steven J Collins
- Department of Pathology, The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, 3010, Australia. .,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Carolin Tumpach
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Qiao-Xin Li
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Victoria Lewis
- Department of Pathology, The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, 3010, Australia.
| | - Timothy M Ryan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Blaine Roberts
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Simon C Drew
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Victoria A Lawson
- Department of Pathology, The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, 3010, Australia.
| | - Cathryn L Haigh
- Department of Pathology, The University of Melbourne, Melbourne Brain Centre, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
25
|
Haigh CL, McGlade AR, Collins SJ. MEK1 transduces the prion protein N2 fragment antioxidant effects. Cell Mol Life Sci 2015; 72:1613-29. [PMID: 25391659 PMCID: PMC11114014 DOI: 10.1007/s00018-014-1777-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
The prion protein (PrP(C)) when mis-folded is causally linked with a group of fatal neurodegenerative diseases called transmissible spongiform encephalopathies or prion diseases. PrP(C) normal function is still incompletely defined with such investigations complicated by PrP(C) post-translational modifications, such as internal cleavage, which feasibly could change, activate, or deactivate the function of this protein. Oxidative stress induces β-cleavage and the N-terminal product of this cleavage event, N2, demonstrates a cellular protective response against oxidative stress. The mechanisms by which N2 mediates cellular antioxidant protection were investigated within an in vitro cell model. N2 protection was regulated by copper binding to the octarepeat domain, directing the route of internalisation, which stimulated MEK1 signalling. Precise membrane interactions of N2, determined by copper saturation, and involving both the copper-co-ordinating octarepeat region and the structure conferred upon the N-terminal polybasic region by the proline motif, were essential for the correct engagement of this pathway. The phenomenon of PrP(C) post-translational modification, such as cleavage and copper co-ordination, as a molecular "switch" for activation or deactivation of certain functions provides new insight into the apparent multi-functionality of PrP(C).
Collapse
Affiliation(s)
- C. L. Haigh
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
| | - A. R. McGlade
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
- Mental Health Research Institute, The University of Melbourne, Parkville, Melbourne, 3010 Australia
| | - S. J. Collins
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
26
|
Cichon AC, Brown DR. Nrf-2 regulation of prion protein expression is independent of oxidative stress. Mol Cell Neurosci 2014; 63:31-7. [PMID: 25242137 DOI: 10.1016/j.mcn.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/18/2014] [Accepted: 09/12/2014] [Indexed: 12/13/2022] Open
Abstract
Cellular expression of host prion protein (PrP) is essential to infection with prion disease. Understanding the mechanisms that regulate prion protein expression at both the transcriptional and translational levels is therefore an important goal. The cellular prion protein has been associated with resistance to oxidative, and its expression is also increased by oxidative stress. The transcription factor Nrf-2 is associated with cellular responses to oxidative stress and is known to induce upregulation of antioxidant defense mechanisms. We have identified an Nrf-2 binding site in the prion protein promoter (Prnp) and shown that Nrf-2 downregulated PrP expression. However, this effect is independent of oxidative stress as oxidative stress can up-regulate PrP expression regardless of the level of Nrf-2 expression. Furthermore, Nrf-2 has no impact on PrP expression when cells are infected with scrapie. These findings highlight that Nrf-2 can regulate PrP expression, but that this regulation becomes uncoupled during cellular stress.
Collapse
Affiliation(s)
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
27
|
Jalland CMO, Benestad SL, Ersdal C, Scheffler K, Suganthan R, Nakabeppu Y, Eide L, Bjørås M, Tranulis MA. Accelerated clinical course of prion disease in mice compromised in repair of oxidative DNA damage. Free Radic Biol Med 2014; 68:1-7. [PMID: 24296244 DOI: 10.1016/j.freeradbiomed.2013.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
The detailed mechanisms of prion-induced neurotoxicity are largely unknown. Here, we have studied the role of DNA damage caused by reactive oxygen species in a mouse scrapie model by characterizing prion disease in the ogg1(-/-)mutyh(-/-) double knockout, which is compromised in oxidative DNA base excision repair. Ogg1 initiates removal of the major oxidation product 8-oxoguanine (8-oxoG) in DNA, and Mutyh initiates removal of adenine that has been misincorporated opposite 8-oxoG. Our data show that the onset of clinical signs appeared unaffected by Mutyh and Ogg1 expression. However, the ogg1(-/-)mutyh(-/-) mice displayed a significantly shorter clinical phase of the disease. Thus, accumulation of oxidative DNA damage might be of particular importance in the terminal clinical phase of prion disease. The prion-induced pathology and lesion profile were similar between knockout mice and controls. The fragmentation pattern of protease-resistant PrP as revealed in Western blots was also identical between the groups. Our data show that the fundamentals of prion propagation and pathological manifestation are not influenced by the oxidative DNA damage repair mechanisms studied here, but that progressive accumulation of oxidative lesions may accelerate the final toxic phase of prion disease.
Collapse
Affiliation(s)
| | | | - Cecilie Ersdal
- Norwegian School of Veterinary Science, NO-0033 Oslo, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry and Oslo University Hospital, University of Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital, University of Oslo, Norway
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Lars Eide
- Department of Medical Biochemistry and Oslo University Hospital, University of Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, University of Oslo, Norway
| | | |
Collapse
|
28
|
Prion replication elicits cytopathic changes in differentiated neurosphere cultures. J Virol 2013; 87:8745-55. [PMID: 23740992 DOI: 10.1128/jvi.00572-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (dNP0 and dNP20 cultures). Upon exposure to mouse Chandler prions, dNP20 cultures supported the de novo formation of abnormal PrP and the resulting infectivity, as assessed by bioassays. Furthermore, this culture was susceptible to various prion strains, including mouse-adapted scrapie, bovine spongiform encephalopathy, and Gerstmann-Sträussler-Scheinker syndrome prions. Importantly, a subset of the cells in the infected culture that was mainly composed of astrocyte lineage cells consistently displayed late-occurring, progressive signs of cytotoxicity as evidenced by morphological alterations, decreased cell viability, and increased lactate dehydrogenase release. These signs of cytotoxicity were not observed in infected dNP0 cultures, suggesting the requirement of endogenous PrP expression for prion-induced cytotoxicity. Degenerated cells positive for glial fibrillary acidic protein accumulated abnormal PrP and exhibited features of apoptotic death as assessed by active caspase-3 and terminal deoxynucleotidyltransferase nick-end staining. Furthermore, caspase inhibition provided partial protection from prion-mediated cell death. These results suggest that differentiated neurosphere cultures can provide an in vitro bioassay for mouse prions and permit the study of the molecular basis for prion-induced cytotoxicity at the cellular level.
Collapse
|
29
|
Yuan F, Yang L, Zhang Z, Wu W, Zhou X, Yin X, Zhao D. Cellular prion protein (PrPC) of the neuron cell transformed to a PK-resistant protein under oxidative stress, comprising main mitochondrial damage in prion diseases. J Mol Neurosci 2013; 51:219-24. [PMID: 23715697 PMCID: PMC3739867 DOI: 10.1007/s12031-013-0008-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Abstract
Prion diseases characterize a category of fatal neurodegenerative diseases. Although reports have increasingly shown that oxidative stress plays an important role in the progression of prion diseases, little is known about whether oxidative stress is a cause or a consequence of a prion disease. The mechanism of prion disease development also remains unclear. The purpose of this study was to investigate three things: the possible mechanisms of neuron cell damage, the conformation of anti-protease K (PK) PrPSc, and the role of oxidative stress in the progression of prion diseases. The study results demonstrated that normal PrPC transformed into a PK-resistant protein under oxidative stress in the presence of PrP106–126. Further, the protein misfolding cyclic amplification procedure may have accelerated this process. Mitochondrial damage and dysfunction in prion disease progression were also observed in this study. Our results suggested that neuron cell damage, and particularly mitochondrial damage, was induced by oxidative stress. This damage may be the initial cause of a given prion disease.
Collapse
Affiliation(s)
- Fangzhong Yuan
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zhuming Zhang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Wenyu Wu
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xiaomin Yin
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
30
|
Sinclair L, Lewis V, Collins SJ, Haigh CL. Cytosolic caspases mediate mislocalised SOD2 depletion in an in vitro model of chronic prion infection. Dis Model Mech 2013; 6:952-63. [PMID: 23580200 PMCID: PMC3701215 DOI: 10.1242/dmm.010678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress as a contributor to neuronal death during prion infection is supported by the fact that various oxidative damage markers accumulate in the brain during the course of this disease. The normal cellular substrate of the causative agent, the prion protein, is also linked with protective functions against oxidative stress. Our previous work has found that, in chronic prion infection, an apoptotic subpopulation of cells exhibit oxidative stress and the accumulation of oxidised lipid and protein aggregates with caspase recruitment. Given the likely failure of antioxidant defence mechanisms within apoptotic prion-infected cells, we aimed to investigate the role of the crucial antioxidant pathway components, superoxide dismutases (SOD) 1 and 2, in an in vitro model of chronic prion infection. Increased total SOD activity, attributable to SOD1, was found in the overall population coincident with a decrease in SOD2 protein levels. When apoptotic cells were separated from the total population, the induction of SOD activity in the infected apoptotic cells was lost, with activity reduced back to levels seen in mock-infected control cells. In addition, mitochondrial superoxide production was increased and mitochondrial numbers decreased in the infected apoptotic subpopulation. Furthermore, a pan-caspase probe colocalised with SOD2 outside of mitochondria within cytosolic aggregates in infected cells and inhibition of caspase activity was able to restore cellular levels of SOD2 in the whole unseparated infected population to those of mock-infected control cells. Our results suggest that prion propagation exacerbates an apoptotic pathway whereby mitochondrial dysfunction follows mislocalisation of SOD2 to cytosolic caspases, permitting its degradation. Eventually, cellular capacity to maintain oxidative homeostasis is overwhelmed, thus resulting in cell death.
Collapse
Affiliation(s)
- Layla Sinclair
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | |
Collapse
|
31
|
Abstract
The events leading to the degradation of the endogenous PrP(C) (normal cellular prion protein) have been the subject of numerous studies. Two cleavage processes, α-cleavage and β-cleavage, are responsible for the main C- and N-terminal fragments produced from PrP(C). Both cleavage processes occur within the N-terminus of PrP(C), a region that is significant in terms of function. α-Cleavage, an enzymatic event that occurs at amino acid residues 110 and 111 on PrP(C), interferes with the conversion of PrP(C) into the prion disease-associated isoform, PrP(Sc) (abnormal disease-specific conformation of prion protein). This processing is seen as a positive event in terms of disease development. The study of β-cleavage has taken some surprising turns. β-Cleavage is brought about by ROS (reactive oxygen species). The C-terminal fragment produced, C2, may provide the seed for the abnormal conversion process, as it resembles in size the fragments isolated from prion-infected brains. There is, however, strong evidence that β-cleavage provides an essential process to reduce oxidative stress. β-Cleavage may act as a double-edged sword. By β-cleavage, PrP(C) may try to balance the ROS levels produced during prion infection, but the C2 produced may provide a PrP(Sc) seed that maintains the prion conversion process.
Collapse
|
32
|
Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer. Int J Mol Sci 2012; 13:9615-9626. [PMID: 22949820 PMCID: PMC3431818 DOI: 10.3390/ijms13089615] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022] Open
Abstract
Evolution of reactive oxygen species (ROS), generated during the patho-physiological stress of nervous tissue, has been implicated in the etiology of several progressive human neurological disorders including Alzheimer’s disease (AD) and amylotrophic lateral sclerosis (ALS). In this brief communication we used mixed isomers of 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA; C25H14Cl2O9; MW 529.3), a novel fluorescent indicator, to assess ROS generation within human neuronal-glial (HNG) cells in primary co-culture. We introduced pathological stress using the sulfates of 12 environmentally-, industrially- and agriculturally-relevant divalent and trivalent metals including Al, Cd, Cu, Fe, Hg, Ga, Mg, Mn, Ni, Pb, Sn and Zn. In this experimental test system, of all the metal sulfates analyzed, aluminum sulfate showed by far the greatest ability to induce intracellular ROS. These studies indicate the utility of using isomeric mixtures of carboxy-H2DCFDA diacetates as novel and highly sensitive, long-lasting, cell-permeant, fluorescein-based tracers for quantifying ROS generation in intact, metabolizing human brain cells, and in analyzing the potential epigenetic contribution of different metal sulfates to ROS-generation and ROS-mediated neurological dysfunction.
Collapse
|