1
|
Yang K, He T, Sun X, Dong W. Post-translational modifications and bronchopulmonary dysplasia. Front Pediatr 2025; 12:1426030. [PMID: 39830627 PMCID: PMC11738936 DOI: 10.3389/fped.2024.1426030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Bronchopulmonary dysplasia is a prevalent respiratory disorder posing a significant threat to the quality of life in premature infants. Its pathogenesis is intricate, and therapeutic options are limited. Besides genetic coding, protein post-translational modification plays a pivotal role in regulating cellular function, contributing complexity and diversity to substrate proteins and influencing various cellular processes. Substantial evidence indicates that post-translational modifications of several substrate proteins are intricately related to the molecular mechanisms underlying bronchopulmonary dysplasia. These modifications facilitate the progression of bronchopulmonary dysplasia through a cascade of signal transduction events. This review outlines the relationships between substrate protein phosphorylation, acetylation, ubiquitination, SUMOylation, methylation, glycosylation, glycation, S-glutathionylation, S-nitrosylation and bronchopulmonary dysplasia. The aim is to provide novel insights into bronchopulmonary dysplasia's pathogenesis and potential therapeutic targets for clinical management.
Collapse
Affiliation(s)
| | | | | | - Wenbin Dong
- Department of Neonatology, Children’s Medical Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Gnimpieba E, Diing DM, Ailts J, Cucak A, Gakh O, Isaya G, Vitiello S, Wang S, Pierce P, Cooper A, Roux K, Rogers LK, Vitiello PF. Mapping Novel Frataxin Mitochondrial Networks Through Protein- Protein Interactions. RESEARCH SQUARE 2024:rs.3.rs-4259413. [PMID: 38746130 PMCID: PMC11092868 DOI: 10.21203/rs.3.rs-4259413/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Friedreich's Ataxia (FRDA) is a neuromuscular degenerative disorder caused by trinucleotide expansions in the first intron of the frataxin (FXN) gene, resulting in insufficient levels of functional FNX protein. Deficits in FXN involve mitochondrial disruptions including iron-sulfur cluster synthesis and impaired energetics. These studies were to identify unique protein-protein interactions with FXN to better understand its function and design therapeutics. Two complementary approaches were employed, BioID and Co-IP, to identify protein interactions with FXN at the direct binding, indirect binding, and non-proximal levels. Forty-one novel protein interactions were identified by BioID and IP techniques. The FXN protein landscape was further analyzed incorporating both interaction type and functional pathways using a maximum path of 6 proteins with a potential direct interaction between FXN and NFS1. Probing the intersection between FXN-protein landscape and biological pathways associated with FRDA, we identified 41 proteins of interest. Peroxiredoxin 3 (Prdx3) was chosen for further analysis because of its role in mitochondrial oxidative injury. Our data has demonstrated the strengths of employing complementary methods to identify a unique interactome for FXN. Our data provides new insights into FXN function and regulation, a potential direct interaction between FXN and NFS1, and pathway interactions between FXN and Prdx3.
Collapse
Affiliation(s)
| | | | - Jared Ailts
- University of South Dakota Sanford School of Medicine
| | | | | | | | | | | | - Paul Pierce
- University of Oklahoma Health Sciences Center
| | - Alec Cooper
- University of Oklahoma Health Sciences Center
| | | | | | | |
Collapse
|
3
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ailing Chen
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Renqiang Yu
| |
Collapse
|
4
|
Song Y, Dong X, Hu G. Transcriptome analysis of turbot (Scophthalmus maximus) head kidney and liver reveals immune mechanism in response to Vibrio anguillarum infection. JOURNAL OF FISH DISEASES 2022; 45:1045-1057. [PMID: 35543437 DOI: 10.1111/jfd.13628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The diseases triggered by Vibrio anguillarum infection have created huge economic losses to the turbot (Scophthalmus maximus) farming industry. However, the immune mechanism of turbot to V. anguillarum infection has not been deeply investigated. To better understand the immune response of turbot to V. anguillarum infection, transcriptome analysis of the head kidney and liver of turbot was performed. A total of 15,948 and 11,494 differentially expressed genes (DEGs) were obtained from the turbot head kidney and liver, respectively. Transcriptome analysis revealed that the head kidney and liver of turbot have some differences in the gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEGs for the different functions of these two organs. Although there are many uncertain factors in this immune process, such as the occurrence of alternative splicing (AS) events and the differences in the protein structure of the DEGs, the NFκB signalling pathway, MKK-dependent AP-1 activation, JAK-STAT signalling pathway, the signal transmission of MHC Ⅰ and a series of DEGs including HSP90 driving NLRP3 to produce inflammatory factors (IL-1β, IL-8, TNFα, etc.) were possible important immune response pathways for turbot to V. anguillarum infection. Overall, our research has conducted a preliminary exploration of the immune mechanism of turbot in response to V. anguillarum infection.
Collapse
Affiliation(s)
- Yuting Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xianzhi Dong
- Institute of Biophysis, Chinese Academy of Sciences, Beijing, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Fanta CC, Tlusty KJ, Pauley SE, Johnson AL, Benjamin GA, Yseth TK, Bunde MM, Pierce PT, Wang S, Vitiello PF, Mays JR. Synthesis and Evaluation of Functionalized Aryl and Biaryl Isothiocyanates Against Human MCF-7 Cells. ChemMedChem 2022; 17:e202200250. [PMID: 35588002 DOI: 10.1002/cmdc.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/18/2022] [Indexed: 11/11/2022]
Abstract
Organic isothiocyanates (ITCs) are a class of anticancer agents which naturally result from the enzymatic degradation of glucosinolates produced by Brassica vegetables. Previous studies have demonstrated that the structure of an ITC impacts its potency and mode(s) of anticancer properties, opening the way to preparation and evaluation of synthetic, non-natural ITC analogues. This study describes the preparation of a library of 79 non-natural ITC analogues intended to probe further structure-activity relationships for aryl ITCs and second-generation, functionalized biaryl ITC variants. ITC candidates were subjected to bifurcated evaluation of antiproliferative and antioxidant response element (ARE)-induction capacity against human MCF-7 cells. The results of this study led to the identification of (1) several key structure-activity relationships and (2) lead ITCs demonstrating potent antiproliferative properties.
Collapse
Affiliation(s)
- Claire C Fanta
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Sarah E Pauley
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | | | - Taylor K Yseth
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Paul T Pierce
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Shirley Wang
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Peter F Vitiello
- The University of Oklahoma Health Sciences Center, Pediatrics; Physiology; Biochemistry & Molecular Biology, UNITED STATES
| | - Jared R Mays
- Augustana University, Chemistry & Biochemistry, 2001 S. Summit Ave., 57197, Sioux Falls, UNITED STATES
| |
Collapse
|
6
|
Barbacini P, Torretta E, Arosio B, Ferri E, Capitanio D, Moriggi M, Gelfi C. Novel Insight into the Serum Sphingolipid Fingerprint Characterizing Longevity. Int J Mol Sci 2022; 23:ijms23052428. [PMID: 35269570 PMCID: PMC8910653 DOI: 10.3390/ijms23052428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/25/2023] Open
Abstract
Sphingolipids (SLs) are structural components of the lipid bilayer regulating cell functions. In biological fluids, their distribution is sex-specific and is at variance in aging and many disorders. The aim of this study is to identify SL species associated with the decelerated aging of centenarians. SLs, extracted from serum of adults (Ad, 35–37 years old), aged (Ag, 75–77 years old) and centenarian (C, 105–107 years old) women were analyzed by LC-MS/MS in combination with mRNA levels in peripheral blood mononuclear cells (PBMCs) of SL biosynthetic enzymes. Results indicated in Ag and C vs. Ad a comparable ceramides (Cers) increase, whereas dihydroceramide (dhCer) decreased in C vs. Ad. Hexosylceramides (HexCer) species, specifically HexCer 16:0, 22:0 and 24:1 acyl chains, increased in C vs. Ag representing a specific trait of C. Sphingosine (Sph), dihydrosphingosine (dhSph), sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), increased both in Ag and C vs. Ad, with higher levels in Ag, indicating a SL fine-tuning associated with a reduced physiological decline in C. mRNA levels of enzymes involved in ceramide de novo biosynthesis increased in Ag whereas enzymes involved in sphingomyelin (SM) degradation increased in C. Collectively, results suggest that Ag produce Cers by de novo synthesis whereas C activate a protective mechanism degrading SMs to Cers converting it into glycosphingolipids.
Collapse
Affiliation(s)
- Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
| | | | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy;
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
| | - Manuela Moriggi
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Correspondence: ; Tel.: +39-02-50330475
| |
Collapse
|
7
|
Compensatory Protection of Thioredoxin-Deficient Cells from Etoposide-Induced Cell Death by Selenoprotein W via Interaction with 14-3-3. Int J Mol Sci 2021; 22:ijms221910338. [PMID: 34638679 PMCID: PMC8508763 DOI: 10.3390/ijms221910338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Selenoprotein W (SELENOW) is a 9.6 kDa protein containing selenocysteine (Sec, U) in a conserved Cys-X-X-Sec (CXXU) motif. Previously, we reported that SELENOW regulates various cellular processes by interacting with 14-3-3β at the U of the CXXU motif. Thioredoxin (Trx) is a small protein that plays a key role in the cellular redox regulatory system. The CXXC motif of Trx is critical for redox regulation. Recently, an interaction between Trx1 and 14-3-3 has been predicted. However, the binding mechanism and its biological effects remain unknown. In this study, we found that Trx1 interacted with 14-3-3β at the Cys32 residue in the CXXC motif, and SELENOW and Trx1 were bound at Cys191 residue of 14-3-3β. In vitro binding assays showed that SELENOW and Trx1 competed for interaction with 14-3-3β. Compared to control cells, Trx1-deficient cells and SELENOW-deficient cells showed increased levels of both the subG1 population and poly (ADP-ribose) polymerase (PARP) cleavage by etoposide treatment. Moreover, Akt phosphorylation of Ser473 was reduced in Trx1-deficient cells and was recovered by overexpression of SELENOW. These results indicate that SELENOW can protect Trx1-deficient cells from etoposide-induced cell death through its interaction with 14-3-3β.
Collapse
|
8
|
Jovanovic B, Eiermann N, Talwar D, Boulougouri M, Dick TP, Stoecklin G. Thioredoxin 1 is required for stress granule assembly upon arsenite-induced oxidative stress. Food Chem Toxicol 2021; 156:112508. [PMID: 34390821 DOI: 10.1016/j.fct.2021.112508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 10/25/2022]
Abstract
Arsenic is a major water pollutant and health hazard, leading to acute intoxication and, upon chronic exposure, several diseases including cancer development. Arsenic exerts its pronounced cellular toxicity through its trivalent oxide arsenite (ASN), which directly inhibits numerous proteins including Thioredoxin 1 (Trx1), and causes severe oxidative stress. Cells respond to arsenic by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic condensates of stalled mRNAs, translation factors and RNA-binding proteins. The biological role of SGs is diverse and not completely understood; they are important for regulation of cell signaling and survival under stress conditions, and for adapting de novo protein synthesis to the protein folding capacity during the recovery from stress. In this study, we identified Trx1 as a novel component of SGs. Trx1 is required for the assembly of ASN-induced SGs, but not for SGs induced by energy deprivation or heat shock. Importantly, our results show that Trx1 is essential for cell survival upon acute exposure to ASN, through a mechanism that is independent of translation inhibition.
Collapse
Affiliation(s)
- Bogdan Jovanovic
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | - Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Deepti Talwar
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maria Boulougouri
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Seriani R, Paula CPD, Cunha AFD, Oliveira MAD, Krempel PG, Frias DP, Negri EM, Mauad T, Macchione M. Expression patterns of peroxiredoxin genes in bronchial epithelial cells exposed to diesel exhaust particles. Exp Mol Pathol 2021; 120:104641. [PMID: 33901418 DOI: 10.1016/j.yexmp.2021.104641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022]
Abstract
Several mechanisms have been suggested to explain the adverse effects of air pollutants on airway cells. One such explanation is the presence of high concentrations of oxidants and pro-oxidants in environmental pollutants. All animal and plant cells have developed several mechanisms to prevent damage by oxidative molecules. Among these, the peroxiredoxins (PRDXs) are of interest due to a high reactivity with reactive oxygen species (ROS) through the functioning of the thioredoxin/thioredoxin reductase system. This study aimed to verify the gene expression patterns of the PRDX family in bronchial epithelial airway cells (BEAS-2B) cells exposed to diesel exhaust particles (DEPs) at a concentration of 15 μg/mL for 1 or 2 h because this it is a major component of particulate matter in the atmosphere. There was a significant decrease in mRNA fold changes of PRDX2 (0.43 ± 0.34; *p = 0.0220), PRDX5 (0.43 ± 0.34; *p = 0.0220), and PRDX6 (0.33 ± 0.25; *p = 0.0069) after 1 h of exposure to DEPs. The reduction in mRNA levels may consequently lead to a decrease in the levels of PRDX proteins, increasing oxidative stress in bronchial epithelial cells BEAS-2B and thus, negatively affecting cellular functions.
Collapse
Affiliation(s)
- Robson Seriani
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, FMUSP- Av. Dr. Arnaldo 455, 1°floor, room 1150, São Paulo, SP 01246-903, Brazil; PROSCED - Consulting, Training and Development, Rua Alto Belo, 742, room 01, São Paulo, SP 03478-040, Brazil.
| | - Carla Peres de Paula
- Genetic and Evolution Department, Federal University of São Carlos, UFSCar- Av. Washington Luiz Km 235, São Carlos, SP 13565-905, Brazil
| | - Anderson Ferreira da Cunha
- Genetic and Evolution Department, Federal University of São Carlos, UFSCar- Av. Washington Luiz Km 235, São Carlos, SP 13565-905, Brazil
| | - Marcos Antonio de Oliveira
- Biosciences Institute, Coastal Campus, São Paulo State University, Structural and Functional Molecular Biology, UNESP- Praça Infante Dom Henrique s/n°, São Vicente, SP 11330-900, Brazil
| | - Paloma Gava Krempel
- Laboratory for Investigations in Ophthalmology (LIM-33), University of São Paulo Medical School São Paulo, FMUSP - Dr. Arnaldo 455, 5° floorr, São Paulo, SP 01246-903, Brazil
| | - Daniela Perroni Frias
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, FMUSP- Av. Dr. Arnaldo 455, 1°floor, room 1150, São Paulo, SP 01246-903, Brazil
| | - Elnara Marcia Negri
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, FMUSP- Av. Dr. Arnaldo 455, 1°floor, room 1150, São Paulo, SP 01246-903, Brazil
| | - Thais Mauad
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, FMUSP- Av. Dr. Arnaldo 455, 1°floor, room 1150, São Paulo, SP 01246-903, Brazil
| | - Mariangela Macchione
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, FMUSP- Av. Dr. Arnaldo 455, 1°floor, room 1150, São Paulo, SP 01246-903, Brazil
| |
Collapse
|
10
|
Ganguly A, Ofman G, Vitiello PF. Hydrogen Sulfide-Clues from Evolution and Implication for Neonatal Respiratory Diseases. CHILDREN (BASEL, SWITZERLAND) 2021; 8:213. [PMID: 33799529 PMCID: PMC7999351 DOI: 10.3390/children8030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.
Collapse
Affiliation(s)
- Abhrajit Ganguly
- Center for Pregnancy and Newborn Research, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.O.); (P.F.V.)
| | | | | |
Collapse
|
11
|
Abstract
Significance: Redox homeostasis is finely tuned and governed by distinct intracellular mechanisms. The dysregulation of this either by external or internal events is a fundamental pathophysiologic base for many pulmonary diseases. Recent Advances: Based on recent discoveries, it is increasingly clear that cellular redox state and oxidation of signaling molecules are critical modulators of lung disease and represent a final common pathway that leads to poor respiratory outcomes. Critical Issues: Based on the wide variety of stimuli that alter specific redox signaling pathways, improved understanding of the disease and patient-specific alterations are needed for the development of therapeutic targets. Further Directions: For the full comprehension of redox signaling in pulmonary disease, it is essential to recognize the role of reactive oxygen intermediates in modulating biological responses. This review summarizes current knowledge of redox signaling in pulmonary development and pulmonary vascular disease.
Collapse
Affiliation(s)
- Gaston Ofman
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trent E Tipple
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
12
|
Rivera O, McHan L, Konadu B, Patel S, Sint Jago S, Talbert ME. A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster. J Comp Physiol B 2019; 189:179-198. [PMID: 30810797 PMCID: PMC6711602 DOI: 10.1007/s00360-019-01209-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 12/25/2022]
Abstract
Obesity predisposes humans to a range of life-threatening comorbidities, including type 2 diabetes and cardiovascular disease. Obesity also aggravates neural pathologies, such as Alzheimer's disease, but this class of comorbidity is less understood. When Drosophila melanogaster (flies) are exposed to high-fat diet (HFD) by supplementing a standard medium with coconut oil, they adopt an obese phenotype of decreased lifespan, increased triglyceride storage, and hindered climbing ability. The latter development has been previously regarded as a potential indicator of neurological decline in fly models of neurodegenerative disease. Our objective was to establish the obesity phenotype in Drosophila and identify a potential correlation, if any, between obesity and neurological decline through behavioral assays and gene expression microarray. We found that mated female w1118 flies exposed to HFD maintained an obese phenotype throughout adult life starting at 7 days, evidenced by increased triglyceride stores, diminished life span, and impeded climbing ability. While climbing ability worsened cumulatively between 7 and 14 days of exposure to HFD, there was no corresponding alteration in triglyceride content. Microarray analysis of the mated female w1118 fly head revealed HFD-induced changes in expression of genes with functions in memory, metabolism, olfaction, mitosis, cell signaling, and motor function. Meanwhile, an Aversive Phototaxis Suppression assay in mated female flies indicated reduced ability to recall an entrained memory 6 h after training. Overall, our results support the suitability of mated female flies for examining connections between diet-induced obesity and nervous or neurobehavioral pathology, and provide many directions for further investigation.
Collapse
Affiliation(s)
- Osvaldo Rivera
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Lara McHan
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Bridget Konadu
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Sumitkumar Patel
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Silvienne Sint Jago
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Matthew E Talbert
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA.
| |
Collapse
|
13
|
Leary S, Das P, Ponnalagu D, Singh H, Bhandari V. Genetic Strain and Sex Differences in a Hyperoxia-Induced Mouse Model of Varying Severity of Bronchopulmonary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:999-1014. [PMID: 30794808 DOI: 10.1016/j.ajpath.2019.01.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a disease prevalent in preterm babies with a need for supplemental oxygen, resulting in impaired lung development and dysregulated vascularization. Epidemiologic studies have shown that males are more prone to BPD and have a delayed recovery compared with females, for reasons unknown. Herein, we tried to recapitulate mild, moderate, and severe BPD, using two different strains of mice, in males and females: CD1 (outbred) and C57BL/6 (inbred). Aside from higher body weight in the CD1 strain, there were no other gross morphologic differences with respect to alveolar development between the two strains. With respect to lung morphology after oxygen exposure, females had less injury with better preservation of alveolar chord length and decreased alveolar protein leak and inflammatory cells in the bronchoalveolar lavage fluid. In addition, housekeeping genes, which are routinely used as loading controls, were expressed differently in males and females. In the BPD mouse model, gonadotropin-releasing hormone was increased in females compared with males. Specific miRNAs (miR-146 and miR-34a) were expressed differently in the sexes. In the severe BPD mouse model, administering miR-146 mimic to males attenuated lung damage, whereas administering miR-146 inhibitor to females increased pulmonary injury.
Collapse
Affiliation(s)
- Sean Leary
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology, Physiology and Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology, Physiology and Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania; Division of Neonatology, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Hu G, Zhang B, Zhou P, Hou Y, Jia H, Liu Y, Gan L, Zhang H, Mao Y, Fang J. Depletion of protein thiols and the accumulation of oxidized thioredoxin in Parkinsonism disclosed by a red-emitting and environment-sensitive probe. J Mater Chem B 2019; 7:2696-2702. [DOI: 10.1039/c8tb03101k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein sulfhydryl groups play a vital role in maintaining cellular redox homeostasis and protein functions and have attracted increasing interests for the selective detection of protein thiols over low-molecular-weight thiols (LMWTs).
Collapse
|
15
|
Anderson RH, Lensing CJ, Forred BJ, Amolins MW, Aegerter CL, Vitiello PF, Mays JR. Differentiating Antiproliferative and Chemopreventive Modes of Activity for Electron-Deficient Aryl Isothiocyanates against Human MCF-7 Cells. ChemMedChem 2018; 13:1695-1710. [PMID: 29924910 PMCID: PMC6105534 DOI: 10.1002/cmdc.201800348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/12/2018] [Indexed: 12/13/2022]
Abstract
The consumption of Brassica vegetables provides beneficial effects through organic isothiocyanates (ITCs), products of the enzymatic hydrolysis of glucosinolate secondary metabolites. The ITC l-sulforaphane (l-SFN) is the principle agent in broccoli that demonstrates several modes of anticancer action. While the anticancer properties of ITCs like l-SFN have been extensively studied and l-SFN has been the subject of multiple human clinical trials, the scope of this work has largely been limited to those derivatives found in nature. Previous studies have demonstrated that structural changes in an ITC can lead to marked differences in a compound's potency to 1) inhibit the growth of cancer cells, and 2) alter cellular transcriptional profiles. This study describes the preparation of a library of non-natural aryl ITCs and the development of a bifurcated screening approach to evaluate the dose- and time-dependence on antiproliferative and chemopreventive properties against human MCF-7 breast cancer cells. Antiproliferative effects were evaluated using a commercial MTS cell viability assay. Chemopreventive properties were evaluated using an antioxidant response element (ARE)-promoted luciferase reporter assay. The results of this study have led to the identification of 1) several key structure-activity relationships and 2) lead ITCs for continued development.
Collapse
Affiliation(s)
- Ruthellen H. Anderson
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| | - Cody J. Lensing
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| | - Benjamin J. Forred
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Michael W. Amolins
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Cassandra L. Aegerter
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Peter F. Vitiello
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Jared R. Mays
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| |
Collapse
|
16
|
Shrestha AK, Gopal VYN, Menon RT, Hagan JL, Huang S, Shivanna B. Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model. Am J Physiol Lung Cell Mol Physiol 2018; 315:L734-L741. [PMID: 30047283 DOI: 10.1152/ajplung.00183.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, is associated with long-term morbidities, including pulmonary hypertension (PH). Importantly, hyperoxia causes BPD and PH; however, the underlying mechanisms remain unclear. Herein, we performed high-throughput transcriptomic and proteomic studies using a clinically relevant murine model of BPD with PH. Neonatal wild-type C57BL6J mice were exposed to 21% oxygen (normoxia) or 70% oxygen (hyperoxia) during postnatal days (PNDs) 1-7. Lung tissues were collected for proteomic and genomic analyses on PND 7, and selected genes and proteins were validated by real-time quantitative PCR and immunoblotting analysis, respectively. Hyperoxia exposure dysregulated the expression of 344 genes and 21 proteins. Interestingly, hyperoxia downregulated genes involved in neuronal development and maturation in lung tissues. Gene set enrichment and gene ontology analyses identified apoptosis, oxidoreductase activity, plasma membrane integrity, organ development, angiogenesis, cell proliferation, and mitophagy as the predominant processes affected by hyperoxia. Furthermore, selected deregulated proteins strongly correlated with the expression of specific genes. Collectively, our results identified several potential therapeutic targets for hyperoxia-mediated BPD and PH in infants.
Collapse
Affiliation(s)
- Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Vashisht Y N Gopal
- Department of Melanoma Medical Oncology and Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Joseph L Hagan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
17
|
Ma S, Wang C, Zhao B, Ren X, Tian S, Wang J, Zhang C, Shao Y, Qiu M, Wang X. Tandem mass tags labeled quantitative proteomics to study the effect of tobacco smoke exposure on the rat lung. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:496-506. [PMID: 29307719 DOI: 10.1016/j.bbapap.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND The causal link between tobacco smoke exposure (TSE) and numerous severe respiratory system diseases (RSD), including chronic bronchitis, chronic obstructive pulmonary disease, and lung cancer, is well established. However, the pathogenesis of TSE-induced RSD remains incompletely understood. This research aims to detect the pathogenetic mechanisms and potential therapeutic targets of TSE-induced RSD. METHODS This study employed TSE model which rats were exposed to a concentration of 60% tobacco smoke in a toxicant exposure system for four weeks. Tandem mass tags (TMT) labeled quantitative proteomics combined with off-line high pH reversed-phase fractionation, and nano-liquid chromatography-mass spectrometry method (off-line high pH RPF-nano-LC-MS/MS) were adopted to detect differentially expressed proteins (DEPs) in the lung tissues of the TSE model rats and to compare them with those in control. The accuracy of the results was verified by western blot. RESULTS Compared with the control group, 33 proteins in the TSE model group's lung tissues showed significant differential expression. Analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that, several biological pathways, such as the steroid biosynthesis pathway, were involved and played significant roles in the pathogenesis of the experimental group's TSE. CONCLUSIONS These findings make a crucial contribution to the search for a comprehensive understanding of TSE-induced RSD's pathogenesis, and furthermore provide guidance for the diagnosis and treatment of TSE-induced RSD.
Collapse
Affiliation(s)
- Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China; Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China
| | - Chunguo Wang
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolei Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Simin Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Juan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Chi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yuanyang Shao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Minyi Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
18
|
Thioredoxin-1 Protects Bone Marrow-Derived Mesenchymal Stromal Cells from Hyperoxia-Induced Injury In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1023025. [PMID: 29599892 PMCID: PMC5828533 DOI: 10.1155/2018/1023025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/18/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
Abstract
Background The poor survival rate of mesenchymal stromal cells (MSC) transplanted into recipient lungs greatly limits their therapeutic efficacy for diseases like bronchopulmonary dysplasia (BPD). The aim of this study is to evaluate the effect of thioredoxin-1 (Trx-1) overexpression on improving the potential for bone marrow-derived mesenchymal stromal cells (BMSCs) to confer resistance against hyperoxia-induced cell injury. Methods 80% O2 was used to imitate the microenvironment surrounding-transplanted cells in the hyperoxia-induced lung injury in vitro. BMSC proliferation and apoptotic rates and the levels of reactive oxygen species (ROS) were measured. The effects of Trx-1 overexpression on the level of antioxidants and growth factors were investigated. We also investigated the activation of apoptosis-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinases (MAPK). Result Trx-1 overexpression significantly reduced hyperoxia-induced BMSC apoptosis and increased cell proliferation. We demonstrated that Trx-1 overexpression upregulated the levels of superoxide dismutase and glutathione peroxidase as well as downregulated the production of ROS. Furthermore, we illustrated that Trx-1 protected BMSCs against hyperoxic injury via decreasing the ASK1/P38 MAPK activation rate. Conclusion These results demonstrate that Trx-1 overexpression improved the ability of BMSCs to counteract hyperoxia-induced injury, thus increasing their potential to treat hyperoxia-induced lung diseases such as BPD.
Collapse
|
19
|
Booth L, Shuch B, Albers T, Roberts JL, Tavallai M, Proniuk S, Zukiwski A, Wang D, Chen CS, Bottaro D, Ecroyd H, Lebedyeva IO, Dent P. Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function. Oncotarget 2017; 7:12975-96. [PMID: 26887051 PMCID: PMC4914336 DOI: 10.18632/oncotarget.7349] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/16/2016] [Indexed: 12/03/2022] Open
Abstract
We performed proteomic studies using the GRP78 chaperone-inhibitor drug AR-12 (OSU-03012) as bait. Multiple additional chaperone and chaperone-associated proteins were shown to interact with AR-12, including: GRP75, HSP75, BAG2; HSP27; ULK-1; and thioredoxin. AR-12 down-regulated in situ immuno-fluorescence detection of ATP binding chaperones using antibodies directed against the NH2-termini of the proteins but only weakly reduced detection using antibodies directed against the central and COOH portions of the proteins. Traditional SDS-PAGE and western blotting assessment methods did not exhibit any alterations in chaperone detection. AR-12 altered the sub-cellular distribution of chaperone proteins, abolishing their punctate speckled patterning concomitant with changes in protein co-localization. AR-12 inhibited chaperone ATPase activity, which was enhanced by sildenafil; inhibited chaperone – chaperone and chaperone – client interactions; and docked in silico with the ATPase domains of HSP90 and of HSP70. AR-12 combined with sildenafil in a GRP78 plus HSP27 –dependent fashion to profoundly activate an eIF2α/ATF4/CHOP/Beclin1 pathway in parallel with inactivating mTOR and increasing ATG13 phosphorylation, collectively resulting in formation of punctate toxic autophagosomes. Over-expression of [GRP78 and HSP27] prevented: AR-12 –induced activation of ER stress signaling and maintained mTOR activity; AR-12 –mediated down-regulation of thioredoxin, MCL-1 and c-FLIP-s; and preserved tumor cell viability. Thus the inhibition of chaperone protein functions by AR-12 and by multi-kinase inhibitors very likely explains why these agents have anti-tumor effects in multiple genetically diverse tumor cell types.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Brian Shuch
- Urologic and Diagnostic Radiology, Yale School of Medicine, New Haven, CT 06520-8058, USA.,Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | - Dasheng Wang
- Molecular and Translational Science, United States Medicinal Chemistry and Pharmacognosy, School of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ching-Shih Chen
- Molecular and Translational Science, United States Medicinal Chemistry and Pharmacognosy, School of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Don Bottaro
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Australia
| | - Iryna O Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
20
|
Li Q, Wall SB, Ren C, Velten M, Hill CL, Locy ML, Rogers LK, Tipple TE. Thioredoxin Reductase Inhibition Attenuates Neonatal Hyperoxic Lung Injury and Enhances Nuclear Factor E2-Related Factor 2 Activation. Am J Respir Cell Mol Biol 2017; 55:419-28. [PMID: 27089175 DOI: 10.1165/rcmb.2015-0228oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxygen toxicity and antioxidant deficiencies contribute to the development of bronchopulmonary dysplasia. Aurothioglucose (ATG) and auranofin potently inhibit thioredoxin reductase-1 (TrxR1), and TrxR1 disruption activates nuclear factor E2-related factor 2 (Nrf2), a regulator of endogenous antioxidant responses. We have shown previously that ATG safely and effectively prevents lung injury in adult murine models, likely via Nrf2-dependent mechanisms. The current studies tested the hypothesis that ATG would attenuate hyperoxia-induced lung developmental deficits in newborn mice. Newborn C3H/HeN mice were treated with a single dose of ATG or saline within 12 hours of birth and were exposed to either room air or hyperoxia (85% O2). In hyperoxia, ATG potently inhibited TrxR1 activity in newborn murine lungs, attenuated decreases in body weight, increased the transcription of Nrf2-regulated genes nicotinamide adenine dinucleotide phosphate reduced quinone oxidoreductase-1 (NQO1) and heme oxygenase 1, and attenuated alterations in alveolar development. To determine the impact of TrxR1 inhibition on Nrf2 activation in vitro, murine alveolar epithelial-12 cells were treated with auranofin, which inhibited TrxR1 activity, enhanced Nrf2 nuclear levels, and increased NQO1 and heme oxygenase 1 transcription. Our novel data indicate that a single injection of the TrxR1 inhibitor ATG attenuates hyperoxia-induced alterations in alveolar development in newborn mice. Furthermore, our data support a model in which the effects of ATG treatment likely involve Nrf2 activation, which is consistent with our findings in other lung injury models. We conclude that TrxR1 represents a novel therapeutic target to prevent oxygen-mediated neonatal lung injury.
Collapse
Affiliation(s)
- Qian Li
- 1 Neonatal Redox Biology Laboratory.,2 Division of Neonatology, and
| | - Stephanie B Wall
- 1 Neonatal Redox Biology Laboratory.,2 Division of Neonatology, and
| | | | - Markus Velten
- 3 Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich-Wilhelms University, University Medical Center, Bonn, Germany; and
| | - Cynthia L Hill
- 4 Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Morgan L Locy
- 5 Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lynette K Rogers
- 4 Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Trent E Tipple
- 1 Neonatal Redox Biology Laboratory.,2 Division of Neonatology, and
| |
Collapse
|
21
|
Zhang L, Zhao S, Yuan L, Wu H, Jiang H, Luo G. Hyperoxia-mediated LC3B activation contributes to the impaired transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs). Clin Exp Pharmacol Physiol 2017; 43:834-43. [PMID: 27187184 DOI: 10.1111/1440-1681.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022]
Abstract
Life-saving mechanical ventilation can also cause lung injury through the overproduction of reactive oxygen species (ROS), leading to bronchopulmonary dysplasia (BPD)-like symptoms in preterm infants. It is reported that the autophagic protein microtubule-associated protein-1 light chain (LC)-3B can confer protection against hyperoxia-induced DNA damage in lung alveolar epithelium. However, its role in the transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs) is unclear and requires further investigation. In this study, newborn Sprague-Dawley rats were exposed to 90% oxygen for up to 14 days to mimic BPD in human infants, with neonatal pups exposed to room air (21% oxygen) as controls. Primary rat AECIIs were cultured under hyperoxic conditions for up to 24 hours to further investigate the underlying mechanisms. This study found that hyperoxia promoted a significant and time-dependent increase of AECII marker surfactant protein (SP)-C in the lung. The increase of AECI marker T1α was repressed by hyperoxia during lung development. These results indicated an impaired AECII transdifferentiation. Pulmonary ROS concentration and expression of autophagic protein LC-3B were increased gradually in response to hyperoxia exposure. Furthermore, AECIIs produced more ROS when cultured under hyperoxic conditions in vitro. Both the LC3B expression and the conversion from LC3BI to LC3BII were enhanced in hyperoxic AECs. Interestingly, inhibition of LC3B either by ROS inhibitor N-acetyl-l-cysteine (NAC) or adenovirus-mediated LC3B shRNA could partly restore AECII transdifferentiation under hyperoxia condition. In summary, the current study reveals a novel role of activated LC3B induced by hyperoxia in AECII transdifferentiation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Department of Paediatrics, Shenyang Fourth People's Hospital, Shenyang, China
| | - Lijie Yuan
- Department of Biochemistry and Molecular Biology, Harbin Medical University (Daqing Campus), Daqing, China
| | - Hongmin Wu
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Jiang
- Department of Paediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Luo
- Department of Paediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Forred BJ, Daugaard DR, Titus BK, Wood RR, Floen MJ, Booze ML, Vitiello PF. Detoxification of Mitochondrial Oxidants and Apoptotic Signaling Are Facilitated by Thioredoxin-2 and Peroxiredoxin-3 during Hyperoxic Injury. PLoS One 2017; 12:e0168777. [PMID: 28045936 PMCID: PMC5207683 DOI: 10.1371/journal.pone.0168777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023] Open
Abstract
Mitochondria play a fundamental role in the regulation of cell death during accumulation of oxidants. High concentrations of atmospheric oxygen (hyperoxia), used clinically to treat tissue hypoxia in premature newborns, is known to elicit oxidative stress and mitochondrial injury to pulmonary epithelial cells. A consequence of oxidative stress in mitochondria is the accumulation of peroxides which are detoxified by the dedicated mitochondrial thioredoxin system. This system is comprised of the oxidoreductase activities of peroxiredoxin-3 (Prx3), thioredoxin-2 (Trx2), and thioredoxin reductase-2 (TrxR2). The goal of this study was to understand the role of the mitochondrial thioredoxin system and mitochondrial injuries during hyperoxic exposure. Flow analysis of the redox-sensitive, mitochondrial-specific fluorophore, MitoSOX, indicated increased levels of mitochondrial oxidant formation in human adenocarcinoma cells cultured in 95% oxygen. Increased expression of Trx2 and TrxR2 in response to hyperoxia were not attributable to changes in mitochondrial mass, suggesting that hyperoxic upregulation of mitochondrial thioredoxins prevents accumulation of oxidized Prx3. Mitochondrial oxidoreductase activities were modulated through pharmacological inhibition of TrxR2 with auranofin and genetically through shRNA knockdown of Trx2 and Prx3. Diminished Trx2 and Prx3 expression was associated with accumulation of mitochondrial superoxide; however, only shRNA knockdown of Trx2 increased susceptibility to hyperoxic cell death and increased phosphorylation of apoptosis signal-regulating kinase-1 (ASK1). In conclusion, the mitochondrial thioredoxin system regulates hyperoxic-mediated death of pulmonary epithelial cells through detoxification of oxidants and regulation of redox-dependent apoptotic signaling.
Collapse
Affiliation(s)
- Benjamin J. Forred
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Darwin R. Daugaard
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Brianna K. Titus
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Ryan R. Wood
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Miranda J. Floen
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Michelle L. Booze
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Peter F. Vitiello
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States of America
| |
Collapse
|
23
|
Araki K, Ushioda R, Kusano H, Tanaka R, Hatta T, Fukui K, Nagata K, Natsume T. A crosslinker-based identification of redox relay targets. Anal Biochem 2016; 520:22-26. [PMID: 28048978 DOI: 10.1016/j.ab.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hidewo Kusano
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Riko Tanaka
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| |
Collapse
|
24
|
Booze ML, Hansen JM, Vitiello PF. A novel mouse model for the identification of thioredoxin-1 protein interactions. Free Radic Biol Med 2016; 99:533-543. [PMID: 27639450 PMCID: PMC5107173 DOI: 10.1016/j.freeradbiomed.2016.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022]
Abstract
Thiol switches are important regulators of cellular signaling and are coordinated by several redox enzyme systems including thioredoxins, peroxiredoxins, and glutathione. Thioredoxin-1 (Trx1), in particular, is an important signaling molecule not only in response to redox perturbations, but also in cellular growth, regulation of gene expression, and apoptosis. The active site of this enzyme is a highly conserved C-G-P-C motif and the redox mechanism of Trx1 is rapid which presents a challenge in determining specific substrates. Numerous in vitro approaches have identified Trx1-dependent thiol switches; however, these findings may not be physiologically relevant and little is known about Trx1 interactions in vivo. In order to identify Trx1 targets in vivo, we generated a transgenic mouse with inducible expression of a mutant Trx1 transgene to stabilize intermolecular disulfides with protein substrates. Expression of the Trx1 "substrate trap" transgene did not interfere with endogenous thioredoxin or glutathione systems in brain, heart, lung, liver, and kidney. Following immunoprecipitation and proteomic analysis, we identified 41 homeostatic Trx1 interactions in perinatal lung, including previously described Trx1 substrates such as members of the peroxiredoxin family and collapsin response mediator protein 2. Using perinatal hyperoxia as a model of oxidative injury, we found 17 oxygen-induced interactions which included several cytoskeletal proteins which may be important to alveolar development. The data herein validates this novel mouse model for identification of tissue- and cell-specific Trx1-dependent pathways that regulate physiological signals in response to redox perturbations.
Collapse
Affiliation(s)
- Michelle L Booze
- Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Peter F Vitiello
- Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, The University of South Dakota, Sioux Falls, SD 57104, USA.
| |
Collapse
|
25
|
Baack ML, Forred BJ, Larsen TD, Jensen DN, Wachal AL, Khan MA, Vitiello PF. Consequences of a Maternal High-Fat Diet and Late Gestation Diabetes on the Developing Rat Lung. PLoS One 2016; 11:e0160818. [PMID: 27518105 PMCID: PMC4982689 DOI: 10.1371/journal.pone.0160818] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022] Open
Abstract
Rationale Infants born to diabetic or obese mothers are at risk of respiratory distress and persistent pulmonary hypertension of the newborn (PPHN), conceivably through fuel-mediated pathogenic mechanisms. Prior research and preventative measures focus on controlling maternal hyperglycemia, but growing evidence suggests a role for additional circulating fuels including lipids. Little is known about the individual or additive effects of a maternal high-fat diet on fetal lung development. Objective The objective of this study was to determine the effects of a maternal high-fat diet, alone and alongside late-gestation diabetes, on lung alveologenesis and vasculogenesis, as well as to ascertain if consequences persist beyond the perinatal period. Methods A rat model was used to study lung development in offspring from control, diabetes-exposed, high-fat diet-exposed and combination-exposed pregnancies via morphometric, histologic (alveolarization and vasculogenesis) and physiologic (echocardiography, pulmonary function) analyses at birth and 3 weeks of age. Outcomes were interrogated for diet, diabetes and interaction effect using ANOVA with significance set at p≤0.05. Findings prompted additional mechanistic inquiry of key molecular pathways. Results Offspring exposed to maternal diabetes or high-fat diet, alone and in combination, had smaller lungs and larger hearts at birth. High-fat diet-exposed, but not diabetes-exposed offspring, had a higher perinatal death rate and echocardiographic evidence of PPHN at birth. Alveolar mean linear intercept, septal thickness, and airspace area (D2) were not significantly different between the groups; however, markers of lung maturity were. Both diabetes-exposed and diet-exposed offspring expressed more T1α protein, a marker of type I cells. Diet-exposed newborn pups expressed less surfactant protein B and had fewer pulmonary vessels enumerated. Mechanistic inquiry revealed alterations in AKT activation, higher endothelin-1 expression, and an impaired Txnip/VEGF pathway that are important for vessel growth and migration. After 3 weeks, mortality remained highest and static lung compliance and hysteresis were lowest in combination-exposed offspring. Conclusion This study emphasizes the effects of a maternal high-fat diet, especially alongside late-gestation diabetes, on pulmonary vasculogenesis, demonstrates adverse consequences beyond the perinatal period and directs attention to mechanistic pathways of interest. Findings provide a foundation for additional investigation of preventative and therapeutic strategies aimed at decreasing pulmonary morbidity in at-risk infants.
Collapse
Affiliation(s)
- Michelle L. Baack
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States of America
- Department of Internal Medicine, Sanford School of Medicine-University of South Dakota, Sioux Falls, SD, United States of America
- Department of Pediatrics, Sanford School of Medicine-University of South Dakota, Sioux Falls, SD, United States of America
- Children’s Health Specialty Clinic, Sanford Children’s Hospital, Sioux Falls, SD, United States of America
- * E-mail:
| | - Benjamin J. Forred
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States of America
| | - Tricia D. Larsen
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States of America
| | - Danielle N. Jensen
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States of America
| | - Angela L. Wachal
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States of America
| | - Muhammad Ali Khan
- Department of Internal Medicine, Sanford School of Medicine-University of South Dakota, Sioux Falls, SD, United States of America
| | - Peter F. Vitiello
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States of America
- Department of Pediatrics, Sanford School of Medicine-University of South Dakota, Sioux Falls, SD, United States of America
| |
Collapse
|
26
|
Identification of Redox and Glucose-Dependent Txnip Protein Interactions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5829063. [PMID: 27437069 PMCID: PMC4942636 DOI: 10.1155/2016/5829063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/26/2016] [Indexed: 01/23/2023]
Abstract
Thioredoxin-interacting protein (Txnip) acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S). Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.
Collapse
|
27
|
Pereira-Fantini PM, Tingay DG. The proteomics of lung injury in childhood: challenges and opportunities. Clin Proteomics 2016; 13:5. [PMID: 26933399 PMCID: PMC4772280 DOI: 10.1186/s12014-016-9106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 12/02/2022] Open
Abstract
Proteomics, the large-scale study of the structure and function of proteins of a cell or organism, is a rapidly developing area of biomedical research which is perfectly suited to the study of pediatric lung injury, where a variety of samples are easily, and repeatedly, accessible including plasma (reflecting a whole body response) and broncheoalveolar lung fluid (reflecting the lungs response). When applied to pediatric lung injury, proteomics could be used to develop much needed early biomarkers of lung injury, elucidate pathological pathways and determine protein alterations associated with specific disease processes. However despite the obvious benefits and need, proteomics is rarely utilized in studies of pediatric injury. This review primarily reports on the last decade of pediatric research into proteomes associated with specific respiratory diseases including bronchopulmonary dysplasia, respiratory infection, cystic fibrosis and asthma whilst also reflecting on the challenges unique to proteomic studies of the pediatric respiratory disease population. We conclude that the number of key pathological differences between the pediatric and adult study populations inhibit inference of results from adult studies onto a pediatric population and necessitate studies of the pediatric proteome. Furthermore the disparity amongst pediatric lung disease in terms of age at onset and underlying pathological mechanism (genetic, immunological, intervention-based, developmental arrest, inhaled toxin) will require proteomic studies which are well designed, with large disease specific patient sets to ensure adequate power as well as matched controls. Regardless of causative agent, pulmonary biomarkers are needed to predict the clinical course of pediatric lung disease, status, progression and response to treatment. Identification of early biomarkers is particularly pertinent in order to understand the natural history of disease and monitor progression so prevention of ongoing lung injury and impact on childhood can targeted.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052 Australia ; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052 Australia ; Department of Paediatrics, University of Melbourne, Parkville, Australia ; Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
28
|
Abstract
The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208]
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Tae-Hoon Lee
- Department of Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
29
|
Dafre AL, Goldberg J, Wang T, Spiegel DA, Maher P. Methylglyoxal, the foe and friend of glyoxalase and Trx/TrxR systems in HT22 nerve cells. Free Radic Biol Med 2015; 89:8-19. [PMID: 26165190 PMCID: PMC5624793 DOI: 10.1016/j.freeradbiomed.2015.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 01/28/2023]
Abstract
Methylglyoxal (MGO) is a major glycating agent that reacts with basic residues of proteins and promotes the formation of advanced glycation end products (AGEs) which are believed to play key roles in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, we examined the effects of MGO on immortalized mouse hippocampal HT22 nerve cells. The endpoints analyzed were MGO and thiol status, the glyoxalase system, comprising glyoxalase 1 and 2 (GLO1/2), and the cytosolic and mitochondrial Trx/TrxR systems, as well as nuclear Nrf2 and its target genes. We found that nuclear Nrf2 is induced by MGO treatment in HT22 cells, as corroborated by induction of the Nrf2-controlled target genes and proteins glutamate cysteine ligase and heme oxygenase 1. Nrf2 knockdown prevented MGO-dependent induction of glutamate cysteine ligase and heme oxygenase 1. The cystine/glutamate antiporter, system xc(-), which is also controlled by Nrf2, was also induced. The increased cystine import (system xc(-)) activity and GCL expression promoted GSH synthesis, leading to increased levels of GSH. The data indicate that MGO can act as both a foe and a friend of the glyoxalase and the Trx/TrxR systems. At low concentrations of MGO (0.3mM), GLO2 is strongly induced, but at high MGO (0.75 mM) concentrations, GLO1 is inhibited and GLO2 is downregulated. The cytosolic Trx/TrxR system is impaired by MGO, where Trx is downregulated yet TrxR is induced, but strong MGO-dependent glycation may explain the loss in TrxR activity. We propose that Nrf2 can be the unifying element to explain the observed upregulation of GSH, GCL, HO1, TrxR1, Trx2, TrxR2, and system xc(-) system activity.
Collapse
Affiliation(s)
- A L Dafre
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - J Goldberg
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - T Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - D A Spiegel
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - P Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Wu J, Hafner C, Schramel JP, Kaun C, Krychtiuk KA, Wojta J, Boehme S, Ullrich R, Tretter EV, Markstaller K, Klein KU. Cyclic and constant hyperoxia cause inflammation, apoptosis and cell death in human umbilical vein endothelial cells. Acta Anaesthesiol Scand 2015; 60:492-501. [PMID: 26489399 DOI: 10.1111/aas.12646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Perioperative high-dose oxygen (O2 ) exposure can cause hyperoxia. While the effect of constant hyperoxia on the vascular endothelium has been investigated to some extent, the impact of cyclic hyperoxia largely remains unknown. We hypothesized that cyclic hyperoxia would induce more injury than constant hyperoxia to human umbilical vein endothelial cells (HUVECs). METHODS HUVECs were exposed to cyclic hyperoxia (5-95% O2 ) or constant hyperoxia (95% O2 ), normoxia (21% O2 ), and hypoxia (5% O2 ). Cell growth, viability (Annexin V/propidium iodide and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT) lactate dehydrogenase (LDH), release, cytokine (interleukin, IL and macrophage migration inhibitory factor, MIF) release, total antioxidant capacity (TAC), and superoxide dismutase activity (SOD) of cell lysate were assessed at baseline and 8, 24, and 72 h. A signal transduction pathway finder array for gene expression analysis was performed after 8 h. RESULTS Constant and cyclic hyperoxia-induced gradually detrimental effects on HUVECs. After 72 h, constant or cyclic hyperoxia exposure induced change in cytotoxic (LDH +12%, P = 0.026; apoptosis +121/61%, P < 0.01; alive cells -15%, P < 0.01; MTT -16/15%, P < 0.01), inflammatory (IL-6 +142/190%, P < 0.01; IL-8 +72/43%, P < 0.01; MIF +147/93%, P < 0.01), or redox-sensitive (SOD +278%, TAC-25% P < 0.01) markers. Gene expression analysis revealed that constant and cyclic hyperoxia exposure differently activates oxidative stress, nuclear factor kappa B, Notch, and peroxisome proliferator-activated receptor pathways. CONCLUSIONS Extreme hyperoxia exposure induces inflammation, apoptosis and cell death in HUVECs. Although our findings cannot be transferred to clinical settings, results suggest that hyperoxia exposure may cause vascular injury that could play a role in determining perioperative outcome.
Collapse
Affiliation(s)
- J. Wu
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
- Department of Anesthesiology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - C. Hafner
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - J. P. Schramel
- Unit of Anaesthesiology and Perioperative Intensive Care; University of Veterinary Medicine; Vienna Austria
| | - C. Kaun
- Department of Internal Medicine II; Medical University Vienna; Vienna Austria
- Core Facilities; Medical University of Vienna; Vienna Austria
| | - K. A. Krychtiuk
- Department of Internal Medicine II; Medical University Vienna; Vienna Austria
- Ludwig Boltzmann Cluster for Cardiovascular Research; Vienna Austria
| | - J. Wojta
- Department of Internal Medicine II; Medical University Vienna; Vienna Austria
- Core Facilities; Medical University of Vienna; Vienna Austria
- Ludwig Boltzmann Cluster for Cardiovascular Research; Vienna Austria
| | - S. Boehme
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - R. Ullrich
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - E. V. Tretter
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - K. Markstaller
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - K. U. Klein
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| |
Collapse
|
31
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
32
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
33
|
Madrigal-Matute J, Fernandez-Garcia CE, Blanco-Colio LM, Burillo E, Fortuño A, Martinez-Pinna R, Llamas-Granda P, Beloqui O, Egido J, Zalba G, Martin-Ventura JL. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med 2015; 86:352-61. [PMID: 26117319 DOI: 10.1016/j.freeradbiomed.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/13/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Luis Miguel Blanco-Colio
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Elena Burillo
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Ana Fortuño
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain
| | - Roxana Martinez-Pinna
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Patricia Llamas-Granda
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Oscar Beloqui
- Department of Internal Medicine, University Clinic, University of Navarra, Pamplona, Spain
| | - Jesus Egido
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - José Luis Martin-Ventura
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain.
| |
Collapse
|