1
|
Ji J, Xiong C, Yang H, Jiang Z, Zhang Y, Wang X, Yu T, Li Q, Zhu S, Zhou Y. The aryl hydrocarbon receptor: A crucial mediator in ocular disease pathogenesis and therapeutic target. Exp Eye Res 2024; 249:110144. [PMID: 39486499 DOI: 10.1016/j.exer.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a pivotal nuclear receptor involved in mediating cellular responses to a wide range of environmental pollutants and endogenous ligands. AHR plays a central role in regulating essential physiological processes, including xenobiotic metabolism, immune response modulation, cell cycle control, tumorigenesis, and developmental events. Recent studies have identified AHR as a critical mediator and a potential therapeutic target in the pathogenesis of ocular diseases. This review provides a thorough analysis of the various functions of AHR signalling in the ocular environment, with a specific emphasis on its effects on the retina, retinal pigment epithelium (RPE), choroid, and cornea. We provide a detailed discussion on the molecular mechanisms through which AHR integrates environmental and endogenous signals, influencing the development and progression of age-related macular degeneration (AMD), retinitis pigmentosa, uveitis, and other major ocular disorders. Furthermore, we evaluate the therapeutic potential of modulating AHR activity through novel ligands and agonists as a strategy for treating eye diseases. Understanding the molecular mechanisms of AHR in ocular tissues may facilitate the development of AHR-targeted therapies, which is crucial for addressing the pressing clinical demand for novel treatment strategies in ocular diseases.
Collapse
Affiliation(s)
- Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chanyu Xiong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Kim HY, Seok YS, Moon HY, Cho GJ, Ahn KH, Hong SC, Oh MJ, Kim HJ. The Role of the Aryl Hydrocarbon Receptor in Vascular Factors Related to Preeclampsia in a Smoking Mouse Model. Curr Issues Mol Biol 2024; 46:741-752. [PMID: 38248350 PMCID: PMC10814390 DOI: 10.3390/cimb46010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Smoking cigarettes is known to lower the risk of preeclampsia. The objective of this study is to evaluate the effect of smoking on the expression of soluble FMS-like tyrosine kinase-1 (sFlt-1), vascular endothelial growth factor (VEGF), and endoglin (sEng)-1 and the role of the aryl hydrocarbon receptor (AhR) in pregnant mice. We developed a smoking mouse model using a gas-filling system. One or two cigarettes per day were exposed to each of the five pregnant mice for five days a week throughout pregnancy. AhR agonist and antagonist were injected. Serum levels and expression in the placenta of sFlt-1, VEGF, and sEng-1 were analyzed and compared among the cigarette smoke and no-exposure groups after delivery. Compared to the no-smoke exposure group, the serum level of sFlt-1 was significantly decreased in the two-cigarette-exposed group (p < 0.001). When the AhR antagonist was added to the two-cigarette-exposed group, sFlt-1 levels were significantly increased compared to the two-cigarette group (p = 0.002). The levels of sFlt-1 in the AhR antagonist group did not change regardless of two-cigarette exposure (p = 0.064). With the AhR agonist, sFlt-1 decreased significantly compared to the control (p = 0.001) and AhR antagonist group (p = 0.002). The sFlt-1 level was significantly decreased after the injection of the AhR agonist compared to the control group (p = 0.001). Serum levels of VEGF were significantly decreased in the one-cigarette-exposed group compared to the control group; however, there was no difference between the control and the two-cigarette-exposed groups. The placental expression of sFlt-1, VEGF, and sEng were inconsistent. This study offers insights into the potential role of AhR on antiangiogenic sFlt-1 associated with preeclampsia. It may support the invention of a new treatment strategy for preeclampsia using AhR activation.
Collapse
Affiliation(s)
- Ho-Yeon Kim
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Ye-Seon Seok
- Department of Obstetric and Gynecology, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Hye-Yeon Moon
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Geum-Joon Cho
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Ki-Hoon Ahn
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Soon-Cheol Hong
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| |
Collapse
|
3
|
Han L, Ma C, Wu Z, Xu H, Li H, Pan G. AhR-STAT3-HO-1/COX-2 signalling pathway may restrict ferroptosis and improve hMSC accumulation and efficacy in mouse liver. Br J Pharmacol 2024; 181:125-141. [PMID: 37538043 DOI: 10.1111/bph.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The low efficacy of mesenchymal stem cells (MSCs) has restricted their application in the treatment of liver disease. Emerging evidence suggested that ferroptosis may provoke hepatocyte dysfunction and exacerbate damage to the liver microenvironment. Here, we have investigated the contribution of liver ferroptosis to the elimination and effectiveness of human MSC (hMSC). Furthermore, potential links between liver ferroptosis and aryl hydrocarbon receptors (AhR) were explored. EXPERIMENTAL APPROACH Two mouse models, iron supplement-induced hepatic ferroptosis and hepatic ischaemia/reperfusion (I/R) injury, were used to identify effects of ferroptosis on hMSC pharmacokinetics (PK)/pharmacodynamics (PD). KEY RESULTS AhR inhibition attenuated hepatic ferroptosis and improved survival of hMSCs. hMSC viability was decreased by iron supplementation or serum from I/R mice. The AhR antagonist CH223191 reversed iron overload and oxidative stress induced by ferroptosis and increased hMSC concentration and efficacy in mouse models. Effects of CH223191 were greater than those of deferoxamine, a conventional ferroptosis inhibitor. Transcriptomic results suggested that the AhR-signal transducer and activator of transcription 3 (STAT3)-haem oxygenase 1/COX-2 signalling pathway is critical to this process. These results were confirmed in a mouse model of hepatic I/R injury. In mice pre-treated with CH223191, hMSC exhibited more potent protective effects, linked to decreased hepatic ferroptosis. CONCLUSION AND IMPLICATIONS Our findings showed that ferroptosis was a critical factor in determining the fate of hMSCs. Inhibition of AhR decreased hepatic ferroptosis, thereby increasing survival and therapeutic effects of hMSCs in mouse models of liver disease.
Collapse
Affiliation(s)
- Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Li
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Alluli A, Fonseca G, Matthews J, Eidelman DH, Baglole CJ. Regulation of long non-coding RNA expression by aryl hydrocarbon receptor activation. Toxicol Lett 2024; 391:13-25. [PMID: 38036013 DOI: 10.1016/j.toxlet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor that can be activated by endogenous or xenobiotic ligands. Upon activation, the AhR translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT), and binds to specific DNA sequences called xenobiotic response elements (XRE) to promote target gene transcription, including cytochrome P450 (e.g., CYP1A1) expression. In addition to mRNA, the AhR may also regulate long non-coding RNA (lncRNA) expression. lncRNA are transcripts more than 200 nucleotides in length that do not encode a protein. Herein, we tested whether AhR activation regulates the expression of lncRNA in response to benzo[a]pyrene (B[a]P) using RNA sequencing (RNA-seq). We found that many lncRNA (e.g., SATB1-AS1, MIR4290HG, AC008969.1, LINC01533, VIPR1-AS1) and protein-coding RNA (e.g., CYP1A1, BX005266.2, AQP3, BTG2, DCX, and AhRR) were differentially expressed (DE) in A549 cells treated with B[a]P; many of these genes were dependent on AhR expression including CYP1A1, CYP1B1 and TiPARP. GO analyses indicated that DE protein-coding RNAs in A549WT cells are associated with distinct molecular functions compared to A549KO cells. KEGG analyses showed the hsa01100 pathway was associated with DE lncRNA only in A549WT cells. A549KO cells treated with B[a]P exhibited a distinct set of differentially-regulated lncRNA including upregulation of HOTAIR. We further confirmed that despite AhR activation in A549WT cells, B[a]P did not alter the expression of many well-characterized lncRNA including NEAT1, HOTTIP, SOX2OT, MALAT1, H19, and Linc00673. Thus, there is control over select lncRNA expression in A549 cells exposed to B[a]P, a finding which could yield insight into the molecular function of the AhR.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Alvik K, Shao P, Hutin D, Baglole C, Grant DM, Matthews J. Increased sensitivity to chemically induced colitis in mice harboring a DNA-binding deficient aryl hydrocarbon receptor. Toxicol Sci 2023; 191:321-331. [PMID: 36519841 PMCID: PMC9936212 DOI: 10.1093/toxsci/kfac132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a transcription factor best known for mediating toxic responses of environmental pollutants, also integrates metabolic signals to promote anti-inflammatory responses, intestinal homeostasis, and maintain barrier integrity. AHR regulates its target genes through direct DNA-binding to aryl hydrocarbon response elements (AHREs) but also through tethering to other transcription factors in a DNA-binding independent manner. However, it is not known if AHR's anti-inflammatory role in the gut requires its ability to bind to AHREs. To test this, we determined the sensitivity of Ahrdbd/dbd mice, a genetically modified mouse line that express an AHR protein incapable of binding to AHREs, to dextran sulfate sodium (DSS)-induced colitis. Ahrdbd/dbd mice exhibited more severe symptoms of intestinal inflammation than Ahr+/+ mice. None of the Ahrdbd/dbd mice survived after the 5-day DSS followed by 7-day washout period. By day 6, the Ahrdbd/dbd mice had severe body weight loss, shortening of the colon, higher disease index scores, enlarged spleens, and increased expression of several inflammation genes, including interleukin 1b (Il-1b), Il-6, Il-17, C-x-c motif chemokine ligand 1 (Cxcl1), Cxcl2, Prostaglandin-endoperoxide synthase (Ptgs2), and lipocalin-2. Our findings show that AHR's DNA-binding domain and ability to bind to AHREs are required to reduce inflammation, maintain a healthy intestinal environment, and protect against DSS-induced colitis.
Collapse
Affiliation(s)
- Karoline Alvik
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Carolyn Baglole
- Department of Medicine, McGill University, Montreal H4A3J1, Canada.,Department of Pathology, McGill University, Montreal H4A3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| |
Collapse
|
6
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
7
|
Morgan L, Antenos M, Kirby GM. Nrf2-mediated induction of Cyp2a5 partially protects against reductive endoplasmic reticulum stress in mouse hepatocytes. Toxicology 2022; 471:153162. [PMID: 35341795 DOI: 10.1016/j.tox.2022.153162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Cytochrome P450 2a5 (Cyp2a5) is distinct from other P450 enzymes in that it is induced in the endoplasmic reticulum (ER) of mouse hepatocytes in conditions that are injurious to the liver. These conditions cause ER stress eventually resulting in apoptosis if not rectified. We previously showed that mouse hepatic Cyp2a5 is induced during reductive ER stress caused by the intramolecular disulfide form of dithiothreitol, trans-4,5-dihydroxy-1,2-dithiane (DTTox), and that overexpression of Cyp2a5 provides partial protection against apoptosis due to bilirubin (BR), a compound known to cause ER stress. The purpose of this study was to investigate the mechanism of Cyp2a5 gene regulation by DTTox and to determine if Cyp2a5 plays a cytoprotective role during reductive ER stress. Exposure to DTTox (10 mM) and another reductive ER stressor, 2-mercaptoethanol (1 mM), for 48 h markedly increased Cyp2a5 protein levels in primary mouse hepatocytes. In addition, DTTox transactivated Cyp2a5 via a mechanism involving the transcription factor nuclear factor-(erythroid-derived 2)-like 2 (Nrf2). Expression of the BR-conjugating enzyme, UDP glucuronosyl transferase 1A1 (UGT1A1) was also increased after DTTox treatment, however, this was reduced by Cyp2a5 overexpression. Hemin, a porphyrin inducer of Cyp2a5, induced mRNA splicing of X-box binding protein 1 (XBP-1), a transcription factor involved in the ER stress response, however, this was also reduced by Cyp2a5 overexpression. Finally, overexpression of Cyp2a5 partially blocked DTTox-mediated caspase-3 cleavage in Hepa 1-6 cells suggesting a cytoprotective role during ER stress. These findings demonstrate that Nrf2-mediated induction of Cyp2a5 in a reducing ER environment provides partial protection against ER stress-induced apoptosis by decreasing XBP-1 mRNA splicing and caspase-3 cleavage.
Collapse
Affiliation(s)
- Larry Morgan
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Monica Antenos
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Gordon M Kirby
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
8
|
Hammond CL, Roztocil E, Gupta V, Feldon SE, Woeller CF. More than Meets the Eye: The Aryl Hydrocarbon Receptor is an Environmental Sensor, Physiological Regulator and a Therapeutic Target in Ocular Disease. FRONTIERS IN TOXICOLOGY 2022; 4:791082. [PMID: 35295218 PMCID: PMC8915869 DOI: 10.3389/ftox.2022.791082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor originally identified as an environmental sensor of xenobiotic chemicals. However, studies have revealed that the AHR regulates crucial aspects of cell growth and metabolism, development and the immune system. The importance of the AHR and AHR signaling in eye development, toxicology and disease is now being uncovered. The AHR is expressed in many ocular tissues including the retina, choroid, cornea and the orbit. A significant role for the AHR in age-related macular degeneration (AMD), autoimmune uveitis, and other ocular diseases has been identified. Ligands for the AHR are structurally diverse organic molecules from exogenous and endogenous sources. Natural AHR ligands include metabolites of tryptophan and byproducts of the microbiome. Xenobiotic AHR ligands include persistent environmental pollutants such as dioxins, benzo (a) pyrene [B (a) P] and polychlorinated biphenyls (PCBs). Pharmaceutical agents including the proton pump inhibitors, esomeprazole and lansoprazole, and the immunosuppressive drug, leflunomide, activate the AHR. In this review, we highlight the role of the AHR in the eye and discuss how AHR signaling is involved in responding to endogenous and environmental stimuli. We also present the emerging concept that the AHR is a promising therapeutic target for eye disease.
Collapse
Affiliation(s)
| | | | | | | | - Collynn F. Woeller
- Flaum Eye Institute, Rochester, NY, United States
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- *Correspondence: Collynn F. Woeller,
| |
Collapse
|
9
|
Thome T, Miguez K, Willms AJ, Burke SK, Chandran V, de Souza AR, Fitzgerald LF, Baglole C, Anagnostou ME, Bourbeau J, Jagoe RT, Morais JA, Goddard Y, Taivassalo T, Ryan TE, Hepple RT. Chronic aryl hydrocarbon receptor activity phenocopies smoking-induced skeletal muscle impairment. J Cachexia Sarcopenia Muscle 2022; 13:589-604. [PMID: 34725955 PMCID: PMC8818603 DOI: 10.1002/jcsm.12826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) patients exhibit skeletal muscle atrophy, denervation, and reduced mitochondrial oxidative capacity. Whilst chronic tobacco smoke exposure is implicated in COPD muscle impairment, the mechanisms involved are ambiguous. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that activates detoxifying pathways with numerous exogenous ligands, including tobacco smoke. Whereas transient AHR activation is adaptive, chronic activation can be toxic. On this basis, we tested the hypothesis that chronic smoke-induced AHR activation causes adverse muscle impact. METHODS We used clinical patient muscle samples, and in vitro (C2C12 myotubes) and in vivo models (mouse), to perform gene expression, mitochondrial function, muscle and neuromuscular junction morphology, and genetic manipulations (adeno-associated virus-mediated gene transfer). RESULTS Sixteen weeks of tobacco smoke exposure in mice caused muscle atrophy, neuromuscular junction degeneration, and reduced oxidative capacity. Similarly, smoke exposure reprogrammed the muscle transcriptome, with down-regulation of mitochondrial and neuromuscular junction genes. In mouse and human patient specimens, smoke exposure increased muscle AHR signalling. Mechanistically, experiments in cultured myotubes demonstrated that smoke condensate activated the AHR, caused mitochondrial impairments, and induced an AHR-dependent myotube atrophy. Finally, to isolate the role of AHR activity, expression of a constitutively active AHR mutant without smoke exposure caused atrophy and mitochondrial impairments in cultured myotubes, and muscle atrophy and neuromuscular junction degeneration in mice. CONCLUSIONS These results establish that chronic AHR activity, as occurs in smokers, phenocopies the atrophy, mitochondrial impairment, and neuromuscular junction degeneration caused by chronic tobacco smoke exposure.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Kayla Miguez
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Alexander J Willms
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Sarah K Burke
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | | | - Angela R de Souza
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Liam F Fitzgerald
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Carolyn Baglole
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | | | - Jean Bourbeau
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - R Thomas Jagoe
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jose A Morais
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Yana Goddard
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
11
|
Zhou J, Jiang G, Xu E, Zhou J, Liu L, Yang Q. Identification of SRXN1 and KRT6A as Key Genes in Smoking-Related Non-Small-Cell Lung Cancer Through Bioinformatics and Functional Analyses. Front Oncol 2022; 11:810301. [PMID: 35071014 PMCID: PMC8767109 DOI: 10.3389/fonc.2021.810301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related mortality worldwide. Although cigarette smoking is an established risk factor for lung cancer, few reliable smoking-related biomarkers for non-small-cell lung cancer (NSCLC) are available. An improved understanding of these biomarkers would further the development of new biomarker-targeted therapies and lead to improvements in overall patient survival. Methods We performed bioinformatic analysis to screened potential target genes, then quantitative PCR, western, siRNA, CCK-8, flow cytometry, tumorigenicity assays in nude mice were performed to validated the function. Results In this study, we identified 83 smoking-related genes (SRGs) based on an integration analysis of two Gene Expression Omnibus (GEO) datasets, and 27 hub SRGs with potential carcinogenic effects by analyzing a dataset of smokers with NSCLC in The Cancer Genome Atlas (TCGA) database. A survival analysis revealed three genes with potential prognostic value, namely SRXN1, KRT6A and JAKMIP3. A univariate Cox analysis revealed significant associations of elevated SRXN1 and KRT6A expression with prognosis. A receiver operating characteristic (ROC) curve analysis indicated the high diagnostic value of SRXN1 and KRT6A for smoking and cancer. Quantitative PCR and western blotting validated the increased expression of SRXN1 and KRT6A mRNA and protein, respectively, in lung cancer cell lines and NSCLC tissues. In patients with NSCLC, SRXN1 and KRT6A expression was associated with the tumor–node–metastasis (TNM) stage, presence of metastasis, history of smoking and daily smoking consumption. Furthermore, inhibition of SRXN1 or KRT6A suppressed viability and enhanced apoptosis in the A549 human lung carcinoma cell line. Tumorigenicity assays in nude mice confirmed that the siRNA-mediated downregulation of SRXN1 and KRT6A expression inhibited tumor growth in vivo. Conclusions In summary, SRXN1 and KRT6A act as oncogenes in NSCLC and might be potential biomarkers of smoking exposure and the early diagnosis and prognosis of NSCLC in smokers, which is vital for lung cancer therapy.
Collapse
Affiliation(s)
- Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Guanqing Jiang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, China
| | - Jiaxin Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Endogenous regulation of the Akt pathway by the aryl hydrocarbon receptor (AhR) in lung fibroblasts. Sci Rep 2021; 11:23189. [PMID: 34848742 PMCID: PMC8632926 DOI: 10.1038/s41598-021-02339-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known to mediate toxic responses to dioxin. However, the role of the AhR in the regulation of cellular physiology has only recently been appreciated, including its ability to control cell cycle progression and apoptosis by unknown mechanisms. We hypothesized that the AhR enhances the activation of the AKT serine/threonine kinase (Akt) pathway to promote cell survival. Utilizing AhR knock-out (Ahr−/−) and wild-type (Ahr+/+) mouse lung fibroblasts (MLFs), we found that Ahr−/− MLFs have significantly higher basal Akt phosphorylation but that AhR did not affect Akt phosphorylation in MLFs exposed to growth factors or AhR ligands. Basal Akt phosphorylation was dependent on PI3K but was unaffected by changes in intracellular glutathione (GSH) or p85α. There was no significant decrease in cell viability in Ahr−/− MLFs treated with LY294002—a PI3K inhibitor—although LY294002 did attenuate MTT reduction, indicating an affect on mitochondrial function. Using a mass spectrometry (MS)-based approach, we identified several proteins that were differentially phosphorylated in the Ahr−/− MLFs compared to control cells, including proteins involved in the regulation of extracellular matrix (ECM), focal adhesion, cytoskeleton remodeling and mitochondrial function. In conclusion, Ahr ablation increased basal Akt phosphorylation in MLFs. Our results indicate that AhR may modulate the phosphorylation of a variety of novel proteins not previously identified as AhR targets, findings that help advance our understanding of the endogenous functions of AhR.
Collapse
|
13
|
Guerrina N, Traboulsi H, Rico de Souza A, Bossé Y, Thatcher TH, Robichaud A, Ding J, Li PZ, Simon L, Pareek S, Bourbeau J, Tan WC, Benedetti A, Obeidat M, Sin DD, Brandsma CA, Nickle DC, Sime PJ, Phipps RP, Nair P, Zago M, Hamid Q, Smith BM, Eidelman DH, Baglole CJ. Aryl hydrocarbon receptor deficiency causes the development of chronic obstructive pulmonary disease through the integration of multiple pathogenic mechanisms. FASEB J 2021; 35:e21376. [PMID: 33605487 DOI: 10.1096/fj.202002350r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 01/26/2023]
Abstract
Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pathology, McGill University, Montreal, QC, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Thomas H Thatcher
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jun Ding
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Pei Z Li
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Leora Simon
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Swati Pareek
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pathology, McGill University, Montreal, QC, Canada
| | - Jean Bourbeau
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Wan C Tan
- The University of British Columbia (UBC) James Hogg Research Centre, UBC, Vancouver, BC, Canada
| | - Andrea Benedetti
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada.,Department of Epidemiology, McGill University, Montreal, QC, Canada.,Department of Biostatistics, McGill University, Montreal, QC, Canada.,Department of Occupational Health, McGill University, Montreal, QC, Canada
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,Division of Respiratory Medicine, UBC, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,Division of Respiratory Medicine, UBC, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Patricia J Sime
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Parameswaran Nair
- Department of Medicine, McMaster University & St Joseph's Healthcare, Hamilton, ON, Canada
| | | | - Qutayba Hamid
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,University of Sharjah College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Benjamin M Smith
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada
| | | | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pathology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Rico de Souza A, Traboulsi H, Wang X, Fritz JH, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor Attenuates Acute Cigarette Smoke-Induced Airway Neutrophilia Independent of the Dioxin Response Element. Front Immunol 2021; 12:630427. [PMID: 33659010 PMCID: PMC7917085 DOI: 10.3389/fimmu.2021.630427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a prevalent respiratory toxicant that remains a leading cause of death worldwide. Cigarette smoke induces inflammation in the lungs and airways that contributes to the development of diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). Due to the presence of aryl hydrocarbon receptor (AhR) ligands in cigarette smoke, activation of the AhR has been implicated in driving this inflammatory response. However, we have previously shown that the AhR suppresses cigarette smoke-induced pulmonary inflammation, but the mechanism by which the AhR achieves its anti-inflammatory function is unknown. In this study, we use the AhR antagonist CH-223191 to inhibit AhR activity in mice. After an acute (3-day) cigarette smoke exposure, AhR inhibition was associated with significantly enhanced neutrophilia in the airways in response to cigarette smoke, mimicking the phenotype of AhR-deficient mice. We then used genetically-modified mouse strains which express an AhR that can bind ligand but either cannot translocate to the nucleus or bind its cognate response element, to show that these features of the AhR pathway are not required for the AhR to suppress pulmonary neutrophilia. Finally, using the non-toxic endogenous AhR ligand FICZ, we provide proof-of-concept that activation of pulmonary AhR attenuates smoke-induced inflammation. Collectively, these results support the importance of AhR activity in mediating its anti-inflammatory function in response to cigarette smoke. Further investigation of the precise mechanisms by which the AhR exerts is protective functions may lead to the development of therapeutic agents to treat people with chronic lung diseases that have an inflammatory etiology, but for which few therapeutic options exist.
Collapse
Affiliation(s)
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xinyu Wang
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Western University, London, ON, Canada
| | - Jorg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Guerrina N, Aloufi N, Shi F, Prasade K, Mehrotra C, Traboulsi H, Matthews J, Eidelman DH, Hamid Q, Baglole CJ. The aryl hydrocarbon receptor reduces LC3II expression and controls endoplasmic reticulum stress. Am J Physiol Lung Cell Mol Physiol 2020; 320:L339-L355. [PMID: 33236922 DOI: 10.1152/ajplung.00122.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose physiological function is poorly understood. The AhR is highly expressed in barrier organs such as the skin, intestine, and lung. The lungs are continuously exposed to environmental pollutants such as cigarette smoke (CS) that can induce cell death mechanisms such as apoptosis, autophagy, and endoplasmic reticulum (ER) stress. CS also contains toxicants that are AhR ligands. We have previously shown that the AhR protects against apoptosis, but whether the AhR also protects against autophagy or ER stress is not known. Using cigarette smoke extract (CSE) as our in vitro surrogate of environmental tobacco exposure, we first assessed the conversion of LC3I to LC3II, a classic feature of both autophagic and ER stress-mediated cell death pathways. LC3II was elevated in CSE-exposed lung structural cells [mouse lung fibroblasts (MLFs), MLE12 and A549 cells] when AhR was absent. However, this heightened LC3II expression could not be explained by increased expression of key autophagy genes (Gabarapl1, Becn1, Map1lc3b), upregulation of upstream autophagic machinery (Atg5-12, Atg3), or impaired autophagic flux, suggesting that LC3II may be autophagy independent. This was further supported by the absence of autophagosomes in Ahr-/- lung cells. However, Ahr-/- lung cells had widespread ER dilation, elevated expression of the ER stress markers CHOP and GADD34, and an accumulation of ubiquitinated proteins. These findings collectively illustrate a novel role for the AhR in attenuating ER stress by a mechanism that may be autophagy independent.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Noof Aloufi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Fangyi Shi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Kashmira Prasade
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Caitlin Mehrotra
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Aloufi N, Traboulsi H, Ding J, Fonseca GJ, Nair P, Huang SK, Hussain SNA, Eidelman DH, Baglole CJ. Angiotensin-converting enzyme 2 expression in COPD and IPF fibroblasts: the forgotten cell in COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 320:L152-L157. [PMID: 33112187 PMCID: PMC7869954 DOI: 10.1152/ajplung.00455.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic is associated with severe pneumonia and acute respiratory distress syndrome leading to death in susceptible individuals. For those who recover, post-COVID-19 complications may include development of pulmonary fibrosis. Factors contributing to disease severity or development of complications are not known. Using computational analysis with experimental data, we report that idiopathic pulmonary fibrosis (IPF)- and chronic obstructive pulmonary disease (COPD)-derived lung fibroblasts express higher levels of angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 entry and part of the renin-angiotensin system that is antifibrotic and anti-inflammatory. In preclinical models, we found that chronic exposure to cigarette smoke, a risk factor for both COPD and IPF and potentially for SARS-CoV-2 infection, significantly increased pulmonary ACE2 protein expression. Further studies are needed to understand the functional implications of ACE2 on lung fibroblasts, a cell type that thus far has received relatively little attention in the context of COVID-19.
Collapse
Affiliation(s)
- Noof Aloufi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jun Ding
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Gregory J Fonseca
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Parameswaran Nair
- Department of Medicine, McMaster University & St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sabah N A Hussain
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Ramos PM, Anzai A, Duque-Estrada B, Farias DC, Melo DF, Mulinari-Brenner F, Pinto GM, Abraham LS, Santos LDN, Pirmez R, Miot HA. Risk factors for frontal fibrosing alopecia: A case-control study in a multiracial population. J Am Acad Dermatol 2020; 84:712-718. [PMID: 32835739 DOI: 10.1016/j.jaad.2020.08.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Frontal fibrosing alopecia (FFA) is a chronic cicatricial alopecia with unknown etiology and a worldwide rising incidence. OBJECTIVE The objective of this study was to evaluate the association of FFA with demographic and exposure factors in a Brazilian multiracial population. METHODS A multicenter case-control study was conducted in 11 referral centers throughout Brazil. The study was a case-control study that prospectively recruited 902 participants (451 patients with FFA and 451 sex-matched control individuals). Study participants completed a thorough questionnaire comprising variables grouped as baseline demographics, environmental exposure, diet, hormonal factors, allergies, and hair and skin care. RESULTS When adjusted by sex, age, menopause, and skin color, FFA was associated with hair straightening with formalin (odds ratio [OR], 3.18), use of ordinary (nondermatologic) facial soap (OR, 2.09) and facial moisturizer (OR, 1.99), thyroid disorders (OR, 1.69), and rosacea (OR, 2.08). Smokers (OR, 0.33) and users of antiresidue/clarifying shampoo (OR, 0.35) presented a negative association with FFA. There was no association with the use of sunscreen. LIMITATIONS Recall bias. CONCLUSIONS The association with moisturizers, ordinary facial soap, and hair straightening with formalin and the negative association with antiresidue/clarifying shampoo reinforce the possibility of an exogenous particle triggering FFA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rodrigo Pirmez
- Santa Casa de Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
18
|
Ihantola T, Di Bucchianico S, Happo M, Ihalainen M, Uski O, Bauer S, Kuuspalo K, Sippula O, Tissari J, Oeder S, Hartikainen A, Rönkkö TJ, Martikainen MV, Huttunen K, Vartiainen P, Suhonen H, Kortelainen M, Lamberg H, Leskinen A, Sklorz M, Michalke B, Dilger M, Weiss C, Dittmar G, Beckers J, Irmler M, Buters J, Candeias J, Czech H, Yli-Pirilä P, Abbaszade G, Jakobi G, Orasche J, Schnelle-Kreis J, Kanashova T, Karg E, Streibel T, Passig J, Hakkarainen H, Jokiniemi J, Zimmermann R, Hirvonen MR, Jalava PI. Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke. Part Fibre Toxicol 2020; 17:27. [PMID: 32539833 PMCID: PMC7296712 DOI: 10.1186/s12989-020-00355-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJ− 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.
Collapse
Affiliation(s)
- Tuukka Ihantola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Mikko Happo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Ramboll Finland, P.O.Box 25 Itsehallintokuja 3, FI-02601, Espoo, Finland
| | - Mika Ihalainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Oskari Uski
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Kari Kuuspalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Present address: Savonia University of applied sciences, Microkatu 1, FI-70210, Kuopio, Finland
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Jarkko Tissari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Anni Hartikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Teemu J Rönkkö
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Kati Huttunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Petra Vartiainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Heikki Suhonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Miika Kortelainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Heikki Lamberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Ari Leskinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Finnish Meteorological Institute, Yliopistonranta 1 F, FI-70210, Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Marco Dilger
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Gunnar Dittmar
- Luxembourg institute of health, 1A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Johannes Beckers
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Technical University of Munich, Chair of Experimental Genetics, D-85350, Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jeroen Buters
- ZAUM - Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802, Munich, Germany
| | - Joana Candeias
- ZAUM - Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802, Munich, Germany
| | - Hendryk Czech
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Pasi Yli-Pirilä
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Gülcin Abbaszade
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Tamara Kanashova
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, D-13125, Berlin, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Johannes Passig
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Henri Hakkarainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Jorma Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Maija-Riitta Hirvonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| |
Collapse
|
19
|
Šimečková P, Marvanová S, Kulich P, Králiková L, Neča J, Procházková J, Machala M. Screening of Cellular Stress Responses Induced by Ambient Aerosol Ultrafine Particle Fraction PM0.5 in A549 Cells. Int J Mol Sci 2019; 20:E6310. [PMID: 31847237 PMCID: PMC6940800 DOI: 10.3390/ijms20246310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Effects of airborne particles on the expression status of markers of cellular toxic stress and on the release of eicosanoids, linked with inflammation and oxidative damage, remain poorly characterized. Therefore, we proposed a set of various methodological approaches in order to address complexity of PM0.5-induced toxicity. For this purpose, we used a well-characterized model of A549 pulmonary epithelial cells exposed to a non-cytotoxic concentration of ambient aerosol particle fraction PM0.5 for 24 h. Electron microscopy confirmed accumulation of PM0.5 within A549 cells, yet, autophagy was not induced. Expression profiles of various cellular stress response genes that have been previously shown to be involved in early stress responses, namely unfolded protein response, DNA damage response, and in aryl hydrocarbon receptor (AhR) and p53 signaling, were analyzed. This analysis revealed induction of GREM1, EGR1, CYP1A1, CDK1A, PUMA, NOXA and GDF15 and suppression of SOX9 in response to PM0.5 exposure. Analysis of eicosanoids showed no oxidative damage and only a weak anti-inflammatory response. In conclusion, this study helps to identify novel gene markers, GREM1, EGR1, GDF15 and SOX9, that may represent a valuable tool for routine testing of PM0.5-induced in vitro toxicity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miroslav Machala
- Veterinary Research Institute, Department of Chemistry and Toxicology, Hudcova 296/70, 62100 Brno, Czech Republic; (P.Š.); (S.M.); (P.K.); (L.K.); (J.N.); (J.P.)
| |
Collapse
|
20
|
Elsayed HYA, Borroto ET, Pliego AB, Dibarrat JA, Ramirez FR, Chagoyán JCV, Salas NP, Diaz-Albiter H. Sperm Quality in Mouse After Exposure to Low Doses of TCDD. Curr Top Med Chem 2019; 19:931-943. [DOI: 10.2174/1568026619666190520090132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Background:
In the last decade, the harmful use of dioxin has been demonstrated in human
health and in the whole environment. It is well known among scientists that 2, 3, 7, 8-tetrachloro
dibenzo-p-dioxin (TCDD) is an environmental pollutant that causes endocrine disruption, which causes
male reproductive toxicity.
Objective:
The objective of the present study was to evaluate the toxicity effect of low doses of TCDD
in male CD1 mice.
Materials and Methods:
Three concentrations of TCDD (0.375, 0.75, 1.5 mg / kg) were analyzed and
the effects on spermatozoa were evaluated 10 days after oral administration of the product. As
bioindicators of TCDD toxicity, an exhaustive analysis of several spermatic parameters including
motility, vitality, count, morphology and viability, flow cytometry was used to determine the affected
sperm population by cytotoxicity and apoptosis. In addition, a morphometric analysis of testicles was
performed.
Results:
The results show that the body weight of the treated animals was reduced in medium and high
doses (0.75, 1.5 mg / kg) with respect to the control groups. In the groups treated with TCDD, the
abnormal head of the sperm increased by 52.5% more than the control group. Significant differences in
apoptosis were observed between the negative control and vehicle control, including the median dose
(0.75 mg / kg).
Conclusion:
It is concluded that at these low doses there was an impact on the quality of the mouse
sperm, adding an effect on apoptosis and cytotoxicity of sperm exposed to these doses of TCDD.
Collapse
Affiliation(s)
- Heba Yehia Anwar Elsayed
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Esvieta Tenorio Borroto
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Alberto Barbabosa Pliego
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Jorge Acosta Dibarrat
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | | | - Juan Carlos Vázquez Chagoyán
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Nazario Pescador Salas
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Hector Diaz-Albiter
- Universidad Tecnologica del Valla de Toluca, Estado de Mexico, Toluca, Mexico
| |
Collapse
|
21
|
Domingo-Vidal M, Whitaker-Menezes D, Martos-Rus C, Tassone P, Snyder CM, Tuluc M, Philp N, Curry J, Martinez-Outschoorn U. Cigarette Smoke Induces Metabolic Reprogramming of the Tumor Stroma in Head and Neck Squamous Cell Carcinoma. Mol Cancer Res 2019; 17:1893-1909. [PMID: 31239287 DOI: 10.1158/1541-7786.mcr-18-1191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is comprised of metabolically linked distinct compartments. Cancer-associated fibroblasts (CAF) and nonproliferative carcinoma cells display a glycolytic metabolism, while proliferative carcinoma cells rely on mitochondrial oxidative metabolism fueled by the catabolites provided by the adjacent CAFs. Metabolic coupling between these reprogrammed compartments contributes to HNSCC aggressiveness. In this study, we examined the effects of cigarette smoke-exposed CAFs on metabolic coupling and tumor aggressiveness of HNSCC. Cigarette smoke (CS) extract was generated by dissolving cigarette smoke in growth media. Fibroblasts were cultured in CS or control media. HNSCC cells were cocultured in vitro and coinjected in vivo with CS or control fibroblasts. We found that CS induced oxidative stress, glycolytic flux and MCT4 expression, and senescence in fibroblasts. MCT4 upregulation was critical for fibroblast viability under CS conditions. The effects of CS on fibroblasts were abrogated by antioxidant treatment. Coculture of carcinoma cells with CS fibroblasts induced metabolic coupling with upregulation of the marker of glycolysis MCT4 in fibroblasts and markers of mitochondrial metabolism MCT1 and TOMM20 in carcinoma cells. CS fibroblasts increased CCL2 expression and macrophage migration. Coculture with CS fibroblasts also increased two features of carcinoma cell aggressiveness: resistance to cell death and enhanced cell migration. Coinjection of carcinoma cells with CS fibroblasts generated larger tumors with reduced apoptosis than control coinjections, and upregulation of MCT4 by CS exposure was a driver of these effects. We demonstrate that a tumor microenvironment exposed to CS is sufficient to modulate metabolism and cancer aggressiveness in HNSCC. IMPLICATIONS: CS shifts cancer stroma toward glycolysis and induces head and neck cancer aggressiveness with a mitochondrial profile linked by catabolite transporters and oxidative stress. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/17/9/1893/F1.large.jpg.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cristina Martos-Rus
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Patrick Tassone
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nancy Philp
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Curry
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Guerrina N, Traboulsi H, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor and the Maintenance of Lung Health. Int J Mol Sci 2018; 19:E3882. [PMID: 30563036 PMCID: PMC6320801 DOI: 10.3390/ijms19123882] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Much of what is known about the Aryl Hydrocarbon Receptor (AhR) centers on its ability to mediate the deleterious effects of the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). However, the AhR is both ubiquitously-expressed and evolutionarily-conserved, suggesting that it evolved for purposes beyond strictly mediating responses to man-made environmental toxicants. There is growing evidence that the AhR is required for the maintenance of health, as it is implicated in physiological processes such as xenobiotic metabolism, organ development and immunity. Dysregulation of AhR expression and activity is also associated with a variety of disease states, particularly those at barrier organs such as the skin, gut and lungs. The lungs are particularly vulnerable to inhaled toxicants such as cigarette smoke. However, the role of the AhR in diseases such as chronic obstructive pulmonary disease (COPD)-a respiratory illness caused predominately by cigarette smoking-and lung cancer remains largely unexplored. This review will discuss the growing body of literature that provides evidence that the AhR protects the lungs against the damaging effects of cigarette smoke.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
23
|
Solanki HS, Babu N, Jain AP, Bhat MY, Puttamallesh VN, Advani J, Raja R, Mangalaparthi KK, Kumar MM, Prasad TSK, Mathur PP, Sidransky D, Gowda H, Chatterjee A. Cigarette smoke induces mitochondrial metabolic reprogramming in lung cells. Mitochondrion 2017; 40:58-70. [PMID: 29042306 DOI: 10.1016/j.mito.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
Abstract
Cellular transformation owing to cigarette smoking is due to chronic exposure and not acute. However, systematic studies to understand the molecular alterations in lung cells due to cigarette smoke are lacking. To understand these molecular alterations induced by chronic cigarette smoke exposure, we carried out tandem mass tag (TMT) based temporal proteomic profiling of lung cells exposed to cigarette smoke for upto 12months. We identified 2620 proteins in total, of which 671 proteins were differentially expressed (1.5-fold) after 12months of exposure. Prolonged exposure of lung cells to smoke for 12months revealed dysregulation of oxidative phosphorylation and overexpression of enzymes involved in TCA cycle. In addition, we also observed overexpression of enzymes involved in glutamine metabolism, fatty acid degradation and lactate synthesis. This could possibly explain the availability of alternative source of carbon to TCA cycle apart from glycolytic pyruvate. Our data indicates that chronic exposure to cigarette smoke induces mitochondrial metabolic reprogramming in cells to support growth and survival.
Collapse
Affiliation(s)
- Hitendra S Solanki
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - Ankit P Jain
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Mahesh M Kumar
- Department of Neuro-Virology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India; YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| | | | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India.
| |
Collapse
|
24
|
Wang DD, Liu Y, Li N, Zhang Y, Jin Q, Hao DC, Piao HL, Dai ZR, Ge GB, Yang L. Induction of CYP1A1 increases gefitinib-induced oxidative stress and apoptosis in A549 cells. Toxicol In Vitro 2017; 44:36-43. [PMID: 28652202 DOI: 10.1016/j.tiv.2017.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
As the first selective EGFR tyrosine kinase inhibitor, gefitinib has been clinically demonstrated to be effective for certain cancer cell types with EGFR-active gene mutations. However, a number of gefitinib-associated adverse pulmonary events have been reported, which could lead to the discontinuation of gefitinib therapy. Although previous reports have implicated that CYP1A1-mediated bioactivation of gefitinib maybe a major reason for the pulmonary toxicity, the roles of CYP1A1 in gefitinib-associated toxicity and the related molecular mechanism have not been well-characterized. This study aimed to reveal whether the induction of CYP1A1 would contribute to the toxic effect of gefitinib in living cells and to investigate the underlying molecular mechanism. The results demonstrated that gefitinib led to the enhancement of the dose-dependent cytotoxicity and the percentage of gefitinib-induced apoptosis was significantly increased on CYP1A1-overexpressed A549 cells, which was accompanied with a substantial increase in the intracellular reactive oxygen species and a remarkable decrease in the mitochondrial membrane potential. These findings strongly suggest that CYP1A1 can enhance the cytotoxicity of gefitinib and gefitinib-induced oxidative stress, which may partially explain the occurrence of pulmonary toxicity in some patients administered with gefitinib.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Yong Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Na Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Yi Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 4500052, China
| | - Qiang Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou 4500052, China
| | - Da-Cheng Hao
- Dalian Jiaotong University, Dalian 116028, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Zi-Ru Dai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 110023, China.
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability. PLoS One 2017; 12:e0180881. [PMID: 28749959 PMCID: PMC5531650 DOI: 10.1371/journal.pone.0180881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 11/19/2022] Open
Abstract
Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.
Collapse
|
26
|
Iu M, Zago M, Rico de Souza A, Bouttier M, Pareek S, White JH, Hamid Q, Eidelman DH, Baglole CJ. RelB attenuates cigarette smoke extract-induced apoptosis in association with transcriptional regulation of the aryl hydrocarbon receptor. Free Radic Biol Med 2017; 108:19-31. [PMID: 28254546 DOI: 10.1016/j.freeradbiomed.2017.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic and prevalent respiratory disease caused primarily by long term inhalation of cigarette smoke. A major hallmark of COPD is elevated apoptosis of structural lung cells including fibroblasts. The NF-κB member RelB may suppress apoptosis in response to cigarette smoke, but its role in lung cell survival is not known. RelB may act as a pro-survival factor by controlling the expression of superoxide dismutase 2 (SOD2). SOD2 is also regulated by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that suppresses cigarette smoke-induced apoptosis. As the AhR is also a binding partner for RelB, we speculate that RelB suppresses cigarette smoke-induced apoptosis by regulating the AhR. Using an in vitro model of cigarette smoke exposure (cigarette smoke extract [CSE]), we found that CSE down-regulated RelB expression in mouse lung fibroblasts, which was associated with elevated levels of cleaved PARP. Genetic ablation of RelB elevated CSE-induced apoptosis, including chromatin condensation, and reduced mitochondrial function. There was also more reactive oxygen species production in RelB-/- cells exposed to CSE. While there was no alteration in Nrf2 expression or localization between RelB-/- and wild type cells in response to CSE, RelB-/- cells displayed significantly decreased AhR mRNA and protein expression, concomitant with loss of AhR target gene expression (Cyp1a1, Cyp1b1, Nqo1). Finally, we found that RelB binds to the Ahr gene at 3 sites to potentially increase its expression via transcriptional induction. These data support that RelB suppresses cigarette smoke-induced apoptosis, potentially by increasing the AhR. Together, these two proteins may comprise an important cell survival signaling pathway that reduces apoptosis upon cigarette smoke exposure.
Collapse
Affiliation(s)
- Matthew Iu
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Michela Zago
- Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| | - Manuella Bouttier
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Swati Pareek
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - John H White
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pathology, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pathology, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Mostafa T, Fouad H, Nabil N, Rashed L, Sabry D, Abougabal K, Gendy BS. Aryl hydrocarbon receptor (AhR) rs2066853 gene polymorphism association with infertile oligoasthenoteratozoospermic men and seminal oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8297-8301. [PMID: 28161861 DOI: 10.1007/s11356-017-8519-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
This study aimed to assess the association between aryl hydrocarbon receptor (AhR) rs2066853 gene polymorphism with infertile oligoasthenoteratozoospermic (OAT) men and seminal oxidative stress (OS). A total of 170 Egyptian men were allocated according to their semen analysis into fertile normozoospermic controls (n = 50) and infertile OAT men (n = 120). They were subjected to history taking, clinical examination, semen analysis, estimation of seminal glutathione peroxidase (GPx), and malondialdehyde (MDA). AhR rs2066853 gene polymorphism was identified in the blood by PCR-RFLP. Comparing infertile OAT men with fertile controls, AhR rs2066853 genotypes showed decreased prevalence for wild homozygous genotype GG (35.8 vs 56%) and for heterozygous genotype GA (17.5 vs 30%) and an increased prevalence for homozygous genotype AA (46.7 vs 14%). Distribution of alleles of AhR rs2066853 among OAT men compared with fertile men showed decreased prevalence of G allele (44.6 vs 71%) and an increased prevalence of A allele (55.4 vs 29%). Seminal MDA demonstrated significant increase whereas seminal GPx demonstrated significant decrease in cases with AA and GA/AA genotypes compared to cases with GG genotype. It is concluded that there is a significant association between AhR rs2066853 genotype polymorphism with decreased sperm parameters as well as increased seminal oxidative stress in infertile OAT men.
Collapse
Affiliation(s)
- Taymour Mostafa
- Department of Andrology, Sexology& STIs, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt.
| | - Hanan Fouad
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashaat Nabil
- Department of Andrology, Sexology& STIs, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Laila Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Khadiga Abougabal
- Department of Clinical Pathology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Bolis S Gendy
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
28
|
Roussel L, Rousseau S. Exposure of airway epithelial cells to Pseudomonas aeruginosa biofilm-derived quorum sensing molecules decrease the activity of the anti-oxidant response element bound by NRF2. Biochem Biophys Res Commun 2017; 483:829-833. [DOI: 10.1016/j.bbrc.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
|
29
|
Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int J Mol Sci 2017; 18:ijms18020243. [PMID: 28125025 PMCID: PMC5343780 DOI: 10.3390/ijms18020243] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 01/10/2023] Open
Abstract
Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.
Collapse
|
30
|
Rogers S, de Souza AR, Zago M, Iu M, Guerrina N, Gomez A, Matthews J, Baglole CJ. Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure. Sci Rep 2017; 7:40539. [PMID: 28079158 PMCID: PMC5227990 DOI: 10.1038/srep40539] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for its toxic responses to man-made pollutants such as dioxin. More recently, the AhR has emerged as a suppressor of inflammation, oxidative stress and apoptosis from cigarette smoke by mechanisms that may involve the regulation of microRNA. However, little is known about the AhR regulation of miRNA expression in the lung in response to inhaled toxicants. Therefore, we exposed Ahr−/− and Ahr+/− mice to cigarette smoke for 4 weeks and evaluated lung miRNA expression by PCR array. There was a dramatic regulation of lung miRNA by the AhR in the absence of exogenous ligand. In response to cigarette smoke, there were more up-regulated miRNA in Ahr−/− mice compared to Ahr+/− mice, including the cancer-associated miRNA miR-96. There was no significant change in the expression of the AhR regulated proteins HuR and cyclooxygenase-2 (COX-2). There were significant increases in the anti-oxidant gene sulfiredoxin 1 (Srxn1) and FOXO3a- predicted targets of miR-96. Collectively, these data support a prominent role for the AhR in regulating lung miRNA expression. Further studies to elucidate a role for these miRNA may further uncover novel biological function for the AhR in respiratory health and disease.
Collapse
Affiliation(s)
- Sarah Rogers
- Departments of Medicine, McGill University, Montreal, Quebec, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre (RI-MUHC), Meakins-Christie Laboratories, Montreal, QC, Canada
| | - Michela Zago
- Departments of Pharmacology &Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Matthew Iu
- Departments of Medicine, McGill University, Montreal, Quebec, Canada
| | - Necola Guerrina
- Departments of Pathology, McGill University, Montreal, Quebec, Canada
| | - Alvin Gomez
- Department of Pharmacology &Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Department of Pharmacology &Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Nutrition, University of Oslo, Oslo, Norway
| | - Carolyn J Baglole
- Departments of Medicine, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre (RI-MUHC), Meakins-Christie Laboratories, Montreal, QC, Canada.,Departments of Pharmacology &Therapeutics, McGill University, Montreal, Quebec, Canada.,Departments of Pathology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
MacFadden-Murphy E, Roussel L, Martel G, Bérubé J, Rousseau S. Decreasing SMPD1 activity in BEAS-2B bronchial airway epithelial cells results in increased NRF2 activity, cytokine synthesis and neutrophil recruitment. Biochem Biophys Res Commun 2016; 482:645-650. [PMID: 27865842 DOI: 10.1016/j.bbrc.2016.11.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
Niemann-Pick disease (NPD) type B is a rare autosomal recessive disease characterized by variable levels of impairment in sphingomyelin phosphodiesterase 1 (SMPD1) activity. Lung involvement is the most important prognostic factor in NPD-B, with recurrent respiratory infections starting in infancy being the major cause of morbidity and mortality. We hypothesized that decreased SMPD1 activity impaired airway epithelium host defense response. SMPD1 activity was reduced using inducible shRNA. Surprisingly, decreasing SMPD1 activity by 50%, resulted in increased neutrophil recruitment, both at baseline and in response to bacterial stimulation. This correlated with elevated levels of cytokine mRNA shown to contribute to neutrophil recruitment in unstimulated (e.g. IL-8 and GRO-α) and infected cells (e.g. IL-8, GRO-α, GM-CSF and CCL20). Instead of preventing the host defence responses, decreased SMPD1 activity results in an inflammatory response even in the absence of infection. Moreover, decreasing SMPD1 activity resulted in a pro-oxidative shift. Accordingly, expression of an inactive mutant, SMPD1[L225P] but not the WT enzyme increased activation of the antioxidant transcription factor NRF2. Therefore, decreasing SMPD1 activity by 50% in airway epithelial cells, the equivalent of the loss of one allele, results in the accumulation of oxidants that activates NRF2 and a concomitant increased cytokine production as well as neutrophil recruitment. This can result in a chronic inflammatory state that impairs host defence similar to scenarios observe in other chronic inflammatory lung disease such as Chronic Obstructive Pulmonary Disease or Cystic Fibrosis.
Collapse
Affiliation(s)
- Elyse MacFadden-Murphy
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Lucie Roussel
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Guy Martel
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Julie Bérubé
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Antioxidant Functions of the Aryl Hydrocarbon Receptor. Stem Cells Int 2016; 2016:7943495. [PMID: 27829840 PMCID: PMC5088273 DOI: 10.1155/2016/7943495] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT) and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.
Collapse
|
33
|
Faust D, Nikolova T, Wätjen W, Kaina B, Dietrich C. The Brassica-derived phytochemical indolo[3,2-b]carbazole protects against oxidative DNA damage by aryl hydrocarbon receptor activation. Arch Toxicol 2016; 91:967-982. [DOI: 10.1007/s00204-016-1672-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022]
|