1
|
van Veggel L, Schepers M, Tiane A, Kumar V, Willems E, Rombaut B, Noordijk J, Vangansewinkel T, Li A, Wolfs E, Ozcan B, Nouboers E, Moya PR, Sauer DB, Diliën H, Hellings N, Schreiber R, Vanmierlo T. EAAT3 modulation: A potential novel avenue towards remyelination in multiple sclerosis. Biomed Pharmacother 2025; 186:117960. [PMID: 40138922 DOI: 10.1016/j.biopha.2025.117960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Modulating the excitatory amino acid transporter 3 (EAAT3) can be considered a novel approach for the treatment of multiple sclerosis (MS). EAAT3 plays a crucial role in regulating oxidative stress and oligodendrocyte function through its ability to transport cysteine, the rate-limiting building block in the synthesis of the antioxidant glutathione. Therefore, EAAT3 activation is hypothesised to improve oligodendrocyte health and relieve its differentiation block in MS, improving remyelination capacity. Using a cuprizone-induced demyelination model, the effects of EAAT3 overexpression by viral transduction of oligodendrocytes and pharmacological inhibition of EAAT3 were examined. Surprisingly, EAAT3 overexpression significantly hampered remyelination, while EAAT3 inhibition prevented demyelination and improved functional remyelination as assessed by visual evoked potentials and post mortem myelin basic protein fluorescent staining. Next, cellular mechanisms underlying these results were investigated. Consistent with the in vivo findings, post mortem gene expression analysis of the corpus callosum of cuprizone treated animals revealed a trend towards upregulation of oligodendrocyte lineage genes in response to EAAT3 inhibition, supporting its role in oligodendrocyte health and myelination processes. In vitro studies using the human oligodendroglioma (HOG) cell line demonstrated the beneficial effects of EAAT3 inhibition on cellular morphology, indicating potential roles in promoting oligodendrocyte maturation and myelination. In contrast, EAAT3 overexpression appears to hamper these processes. These findings suggest that, contrary to our initial hypothesis, EAAT3 inhibition could improve oligodendrocyte function and myelination processes, highlighting its potential as a therapeutic target for demyelinating disorders. Future studies should address the exact molecular mechanism through which this effect is obtained.
Collapse
Affiliation(s)
- Lieve van Veggel
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Melissa Schepers
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Assia Tiane
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Vijay Kumar
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Willems
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Jurrie Noordijk
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Tim Vangansewinkel
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Anna Li
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Wolfs
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Berra Ozcan
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Evelien Nouboers
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rudy Schreiber
- Section of Psychopharmacology, Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium.
| |
Collapse
|
2
|
Wei D, Wang H, Huangfu S, Qi C, Jiang Y, Yu X, Jiang B, Chen H. Fine-tuning phenoxy silyl scaffolds for the development of glutathione-responsive prodrugs and antibody-drug conjugates. Bioorg Med Chem 2025; 120:118088. [PMID: 39914224 DOI: 10.1016/j.bmc.2025.118088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
Silyl ether is particularly attractive for application in drug development for its easy preparation, non-toxicity and remarkable biocompatibility. Earlier studies relied on the use of intracellular acidic conditions to induce the cleavage of alkoxy silyl ethers. However, acidic conditions are not suitable to trigger the release of phenoxy silyl ethers, since they are more stable under acidic conditions compared with neutral conditions. We explored the vulnerability of the phenoxy silyl ether towards biological nucleophilic reagents and found that glutathione (GSH) could effectively and selectively induce the cleavage of phenoxy silyl ether. We also demonstrated that the rate of cleavage was controllable by adjusting the substituents on the phenyl ring. Phenoxy silyl ether-based prodrugs and antibody-drug conjugates (ADCs) were designed and synthesized, which could be effectively activated in cells with high GSH levels and there was an obvious therapeutic window between cells with different GSH levels.
Collapse
Affiliation(s)
- Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210 China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210 China
| | - Huihui Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210 China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210 China
| | - Shangwei Huangfu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210 China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China
| | - Cheng Qi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210 China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China
| | - Yuecheng Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210 China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China
| | - Xianqiang Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210 China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210 China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210 China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China; Shanghai Clinical Research and Trial Center, Shanghai 201210 China.
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210 China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210 China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China; Shanghai Clinical Research and Trial Center, Shanghai 201210 China.
| |
Collapse
|
3
|
Mena-García A, Meissner JM, Pajuelo D, Morán-Valero MI, Cristos A, Díez-Municio M, Mullor JL. Kyoh ® Rocket Leaf Extract Regulates Proliferation and VEGF and FGF7 Expression in Human Dermal Follicle Papilla Cells. Molecules 2025; 30:1489. [PMID: 40286110 PMCID: PMC11990418 DOI: 10.3390/molecules30071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Androgenetic alopecia is the most common cause of hair loss for women and men. Current treatments for androgenetic alopecia, such as those based on drugs like Minoxidil, Finasteride, or Dutasteride, have been associated with a variety of side effects, such as irritation, contact dermatitis, scalp pruritus, burning, etc. In this regard, plant extracts have emerged as promising alternatives to available chemical-based treatments for androgenetic alopecia given their efficacy, customer acceptability, and potentially minimized side effects. In this study, we evaluated the efficacy of Kyoh®, an extract from rocket leaves, as a treatment to improve the signs of androgenetic alopecia. We found that Kyoh® contained 2.1% total flavonoids, with kaempferol, quercetin, and isorhamnetin diglucosides being the most abundant. Additionally, Kyoh® showed a stimulating effect on the growth of human dermal follicle papilla cells in laboratory conditions. Most importantly, Kyoh® enhanced the gene expression of the hair growth-associated growth factors VEGF (Vascular Endothelial Growth Factor) and FGF7 (Fibroblast Growth Factor 7). Specifically, VEGF expression increased by 60.7% after 4 h and 267.3% after 24 h, while FGF7 expression increased by 50.3% after 4 h and 244.3% after 24 h, indicating both a rapid induction of gene expression and a sustained effect lasting at least one day. Moreover, Kyoh® increased the gene expression of NRF2 (Nuclear factor erythroid 2-related factor 2) by 71.2%, which encodes for a protein participating in the antioxidant response. Overall, our study shows that flavonol-rich rocket extract (Kyoh®) is a promising treatment for promoting hair growth, demonstrated by its proliferation-promoting effect, potential antioxidant priming, and induction of the expression of growth factors associated with hair growth and health.
Collapse
Affiliation(s)
- Adal Mena-García
- Pharmactive Biotech Products S.L.U., Faraday 7, 28049 Madrid, Spain; (M.I.M.-V.); (A.C.); (M.D.-M.)
| | - Justyna M. Meissner
- Bionos S.L., Biopolo La Fe, Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (D.P.); (J.L.M.)
| | - David Pajuelo
- Bionos S.L., Biopolo La Fe, Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (D.P.); (J.L.M.)
| | - María Inés Morán-Valero
- Pharmactive Biotech Products S.L.U., Faraday 7, 28049 Madrid, Spain; (M.I.M.-V.); (A.C.); (M.D.-M.)
| | - Ana Cristos
- Pharmactive Biotech Products S.L.U., Faraday 7, 28049 Madrid, Spain; (M.I.M.-V.); (A.C.); (M.D.-M.)
| | - Marina Díez-Municio
- Pharmactive Biotech Products S.L.U., Faraday 7, 28049 Madrid, Spain; (M.I.M.-V.); (A.C.); (M.D.-M.)
| | - Jose Luis Mullor
- Bionos S.L., Biopolo La Fe, Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (D.P.); (J.L.M.)
| |
Collapse
|
4
|
Jiang Z, Chen L, Dou X. Glutathionylation and metabolic dysfunction-associated steatotic liver disease. Biochimie 2025; 234:10-19. [PMID: 40147581 DOI: 10.1016/j.biochi.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Zhe Jiang
- Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Lin Chen
- Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Zhang Y, Cao J, Yuan Z, Zhou J, Zuo H, Miao X, Gu X. Knockdown of SLC7A5 inhibits malignant progression and attenuates oxaliplatin resistance in gastric cancer by suppressing glycolysis. Mol Med 2025; 31:115. [PMID: 40133832 PMCID: PMC11938572 DOI: 10.1186/s10020-025-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Chemotherapy resistance is a major challenge in the treatment of intermediate and advanced gastric cancer (GC). This study aimed to recognize oxaliplatin resistance-related genes (OXARGs) in GC and to explore their role and mechanism in oxaliplatin resistance of GC. METHODS OXARGs with prognostic value in GC were analyzed using GC oxaliplatin resistance data from the GEO and TCGA databases. RT-qPCR and WB assay were applied to verify the expression of MT2A, NOTCH1 and SLC7A5 in oxaliplatin-resistant GC cells (HGC27R and MKN45R). The effect of SLC7A5 on the malignant phenotype of oxaliplatin-resistant GC cells was verified by CCK-8, EDU, TUNEL, colony formation, wound healing, transwell assay, tumor bearing experiments and WB assay. RESULTS Bioinformatics analysis and experimental validation indicate that SLC7A5 was a target for oxaliplatin-resistance in GC. Knockdown of SLC7A5 obviously decreased the viability, migration, and invasion of oxaliplatin-resistant GC cells in vitro and tumor growth in vivo. It also increased the apoptosis levels and BAX expression, and reduced the expression of BCL2, MMP 2 and MMP9. Additionally, the knockdown of SLC7A5 enhanced the sensitivity of oxaliplatin-resistant GC cells to oxaliplatin both in vitro and in vivo. Furthermore, knockdown of SLC7A5 downregulated the expression of HK2, LDHA, Glut1, and PDK1 both in vivo and in vitro, leading to increased extracellular glucose levels and decreased lactate levels. However, glutathione significantly attenuated the regulatory effect of SLC7A5 knockdown on the malignant phenotype of oxaliplatin-resistant GC cells. TRIAL REGISTRATION Not Applicable. CONCLUSION Knockdown of SLC7A5 inhibits malignant progression and attenuates oxaliplatin resistance in GC by suppressing glycolysis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China.
| | - Jian Cao
- Department of Gastroenterology, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Daoqianjie 26, Suzhou, 215000, China
| | - Zheng Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Jiahui Zhou
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Hao Zuo
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Xinsheng Miao
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou Hospital Affiliated to Gusu School of Nanjing Medical University, Suzhou, 215000, China.
| |
Collapse
|
6
|
Zhao C, Zhang T, Xue ST, Zhang P, Wang F, Li Y, Liu Y, Zhao L, Wu J, Yan Y, Mao X, Chen Y, Yuan J, Li Z, Li K. Adipocyte-derived glutathione promotes obesity-related breast cancer by regulating the SCARB2-ARF1-mTORC1 complex. Cell Metab 2025; 37:692-707.e9. [PMID: 39442522 DOI: 10.1016/j.cmet.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Obesity is a major risk factor for poor breast cancer outcomes, but the impact of obesity-induced tumor microenvironment (TME) metabolites on breast cancer growth and metastasis remains unclear. Here, we performed TME metabolomic analysis in high-fat diet (HFD) mouse models and found that glutathione (GSH) levels were elevated in the TME of obesity-accelerated breast cancer. The deletion of glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in GSH biosynthesis, in adipocytes but not tumor cells reduced obesity-related tumor progression. Mechanistically, we identified that GSH entered tumor cells and directly bound to lysosomal integral membrane protein-2 (scavenger receptor class B, member 2 [SCARB2]), interfering with the interaction between its N and C termini. This, in turn, recruited mTORC1 to lysosomes through ARF1, leading to the activation of mTOR signaling. Overall, we demonstrated that GSH links obesity and breast cancer progression by acting as an activator of mTOR signaling. Targeting the GSH/SCARB2/mTOR axis could benefit breast cancer patients with obesity.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Si-Tu Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peitao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunxuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yechao Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - Yuping Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Cancer Center, Tongji University School of Medicine, Shanghai 200331, China
| | - Jian Yuan
- Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Cancer Center, Tongji University School of Medicine, Shanghai 200331, China
| | - Zhuorong Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ke Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Koc S, Erdogmus E, Bozdemir O, Ozkan-Vardar D, Yaman U, Erkekoglu P, Zeybek ND, Kocer-Gumusel B. Prepubertal phthalate exposure can cause histopathological alterations, DNA methylation and histone acetylation changes in rat brain. Toxicol Ind Health 2025; 41:163-175. [PMID: 39873534 DOI: 10.1177/07482337251315212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60). The rats in the study groups were sacrificed during adulthood, and histopathological changes, epigenetic changes, and oxidative stress parameters were evaluated in brain tissues. Histopathological findings indicating the presence of deterioration in brain tissue morphology were obtained, more prominently in the DEHP-H group. Examining the hippocampus under the light microscope, pyramidal neuron loss was detected only in CA1 of the DEHP-L group, while in DEHP-H rats, pyramidal neuron losses were detected in the CA1, CA2, and CA3 regions. No significant change was observed in brain lipid peroxidation levels with DEHP compared to control. Significant increases in total glutathione (GSH) in both dose groups were considered to be an adaptive response to DEHP-induced oxidative stress. The decrease in DNA methylation in the brain, although not statistically significant, and the increase in histone modification showed that exposure to DEHP may cause epigenetic changes in the brain and these epigenetic changes may also take place as one of the mechanisms underlying the damage observed in the brain. The results suggest that DEHP exposure during early development may have a significant effect on brain development.
Collapse
Affiliation(s)
- Seyda Koc
- Department of Toxicology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| | - Ekin Erdogmus
- Department of Toxicology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| | - Ozlem Bozdemir
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey
| | - Deniz Ozkan-Vardar
- Pharmacy Services, Vocational School of Health Services, Lokman Hekim University, Ankara, Turkey
| | - Unzile Yaman
- Department of Toxicology, Faculty of Pharmacy, Katip Celebi University, İzmir, Turkey
| | - Pınar Erkekoglu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey
| |
Collapse
|
8
|
Wang M, Wang L, Sun H, Yuan H, Li Y. Mechanisms of ferroptosis and glucagon-like peptide-1 receptor agonist in post-percutaneous coronary intervention restenosis. Mol Cell Biochem 2025; 480:1465-1480. [PMID: 39283562 DOI: 10.1007/s11010-024-05118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 02/21/2025]
Abstract
Cardiovascular disease (CVD) claims millions of lives every year, with atherosclerotic cardiovascular disease (ASCVD) being the main cause. ASCVD treatment includes drug therapy, lifestyle intervention, and Percutaneous Coronary Intervention (PCI) all of which significantly enhance cardiovascular function and reduce mortality. However, hyperplasia can lead to vascular obstruction, worsen angina symptoms, or even cause heart disease, affecting patients' long-term prognosis. Therefore, finding effective ways to combat hyperplasia is crucial for cardiovascular therapy. In recent years, ferroptosis has gained attention as a new form of cell death closely associated with several diseases, including cardiovascular diseases. It involves complex metabolic processes critical for cellular homeostasis and normal function. Abnormal proliferation and phenotypic transformation of vascular smooth muscle cells (VSMC) are crucial mechanisms underlying cardiovascular disease development. Inhibiting ferroptosis in VSMC has the potential to significantly reduce neointima proliferation. Glucagon-like peptide-1 receptor agonist (GLP-1RA) constitutes a widely employed class of hypoglycemic agents with direct implications for the cardiovascular system, mitigating adverse cardiovascular events. Research indicates that the stimulation of GLP-1 holds promise as a therapeutic strategy in mitigating cardiovascular events such as restenosis. Hence, investigating the potential of GLP-1RA as a treatment option for cardiovascular ailments carries immense clinical significance.
Collapse
Affiliation(s)
- Miao Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liren Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Huanxin Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hong Yuan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
9
|
Chang Y, Zou Q. Mitochondrial calcium homeostasis and atrial fibrillation: Mechanisms and therapeutic strategies review. Curr Probl Cardiol 2025; 50:102988. [PMID: 39828107 DOI: 10.1016/j.cpcardiol.2025.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance. However, Ca²⁺ homeostasis disruptions, particularly overload, result in excessive ROS production, mitochondrial permeability transition pore (mPTP) opening, and oxidative stress-induced damage. These changes lead to mitochondrial dysfunction, Ca²⁺ leakage, and cardiomyocyte apoptosis, driving AF progression and atrial remodeling. Therapeutically, targeting mitochondrial Ca²⁺ homeostasis shows promise in mitigating AF. Moderate Ca²⁺ regulation enhances energy metabolism, stabilizes mitochondrial membrane potential, and bolsters antioxidant defenses by upregulating enzymes like superoxide dismutase and glutathione peroxidase. This reduces ROS generation and facilitates clearance. Proper Ca²⁺ levels also prevent electron leakage and promote mitophagy, aiding in damaged mitochondria removal and reducing ROS accumulation. Future strategies include modulating Ryanodine receptor 2 (RyR2), mitochondrial calcium uniporter (MCU), and sodium-calcium exchanger (NCLX) to control Ca²⁺ overload and oxidative damage. Addressing mitochondrial Ca²⁺ dynamics offers a compelling approach to breaking the cycle of Ca²⁺ overload, oxidative stress, and AF progression. Further research is needed to clarify the mechanisms of mitochondrial Ca²⁺ regulation and its role in AF pathogenesis. This knowledge will guide the development of innovative treatments to improve outcomes and quality of life for AF patients.
Collapse
Affiliation(s)
- Yixuan Chang
- School of Health Management, Binzhou Medical University, BinZhou, 256600, PR China
| | - Qi Zou
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, 730030, PR China.
| |
Collapse
|
10
|
Liu X, Chen G, Yang Y, Liu F, Wu G, An L, Tang T, Zhang J. Comprehensive multi-omics analysis reveals the mechanism of hepatotoxicity induced by Emilia sonchifolia (L.) DC. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119371. [PMID: 39826791 DOI: 10.1016/j.jep.2025.119371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Emilia sonchifolia is a very widely used traditional Chinese medicine, with the efficacy of heat-clearing, detoxicating, dissipating blood stasis, reducing swelling and relieving pain. As a widely used traditional miao herb, Emilia sonchifolia is often used to treat upper respiratory tract infections, oral ulcer, pneumonia, mastitis, enteritis, bacillum, urinary tract infection, sores, eczema, falls and injuries, etc. In fact, many cases of liver injury caused by Emilia sonchifolia have been reported clinically. However, the mechanisms underlying hepatotoxicity induced by Emilia sonchifolia remain poorly understood. AIM OF THE STUDY This study aimed to systematically evaluate the acute and chronic hepatotoxicity of water extract from Emilia sonchifolia, identify its hepatotoxic metabolites, and elucidate the potential mechanisms underlying Emilia sonchifolia-induced hepatotoxicity. MATERIAL AND METHOD The chemical components in the water extract of Emilia sonchifolia were identified using mass spectrometry. The acute toxicity study was conducted by orally administering a gradient dose of water extract of Emilia sonchifolia ranging from 0 to 37.6 g/kg. Mice were orally administered a water extract of Emilia sonchifolia at a dose of 13.72 g/kg/d for 14 days to induce liver injury. The hepatotoxicity was evaluated using hematoxylin and eosin staining as well as enzyme-linked immunosorbent assay (ELISA). The mechanisms of hepatotoxicity were explored through transcriptomics, proteomics, and metabolomics analysis. Meanwhile, the core pathways related to the hepatotoxicity of Emilia sonchifolia were analyzed and validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and ELISA. RESULT The present study demonstrates that the water extract of Emilia sonchifolia can induce hepatotoxicity in mice. We found that the water extract of Emilia sonchifolia contained hepatotoxic pyrrolizidine alkaloids, such as seneciphyllin, senecionine, rinderine, echimidine, retrorsine and echimidine N-oxide. A dose of 19.20 g/kg or higher of the water extract of Emilia sonchifolia caused acute liver failure and death in mice. A dose of 13.72 g/kg or lower of the water extract of Emilia sonchifolia produced dose-dependent acute hepatotoxicity. Meanwhile, a dose of 13.72 g/kg of the water extract from Emilia sonchifolia induced chronic hepatotoxicity in mice. Furthermore, the results of liver transcriptomics, proteomics, and metabolomics indicate that the mechanism of hepatotoxicity induced by the water extract of Emilia sonchifolia is associated with ferroptosis caused by abnormalities in bile acid accumulation, lipid and bilirubin accumulation, and glutathione metabolism. The validation experiment results demonstrate that in mice treated with the water extract of Emilia sonchifolia, the gene levels of Cyp2c29, Cyp3a41a and Ugt2b1 decreased while the gene level of Hsd3b3 increased. In mice treated with a water extract of Emilia sonchifolia, the levels of total bilirubin, direct bilirubin, total bile acids, alkaline phosphatase, and γ-glutamyl transferase were significantly elevated. Additionally, in mice treated with a water extract of Emilia sonchifolia, the levels of malondialdehyde increased while the levels of catalase and superoxide dismutase decreased. CONCLUSION In conclusion, our results suggest that the water extract of Emilia sonchifolia can cause hepatotoxicity in mice. The chronic hepatotoxicity of Emilia sonchifolia is associated with Cyp2c29, Cyp3a41a, Ugt2b1, and Hsd3b3-mediated cholestasis, oxidative stress, and ferroptosis.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Gongzhen Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
| | - Yuqi Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Feng Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Guangzhou Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Lili An
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Ting Tang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
11
|
Chen Z, Fan J, Chen X, Yang K, Wang K. Oxidative Stress and Redox Signaling in Gastric Cancer: From Mechanisms to Therapeutic Implications. Antioxidants (Basel) 2025; 14:258. [PMID: 40227215 PMCID: PMC11939249 DOI: 10.3390/antiox14030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress, which is characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, has critical roles in the initiation, progression, and treatment of gastric cancer. On the one hand, an excessive ROS accumulation induces oxidative damage and cancer cell death. On the other hand, moderate levels of ROS cause genetic mutations and dysregulation of signaling pathways to promote proliferation, inflammation, angiogenesis, and metastasis in gastric cancer. Notably, emerging evidence has revealed that ROS also mediate oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, which can directly affect protein functions and regulate redox signaling in cancer cells. Therefore, elucidating the regulatory mechanisms of oxidative stress and redox signaling in gastric cancer holds great promise to identify novel therapeutic targets or redox-targeting strategies. This review will summarize the mechanisms of oxidative stress in regulating the hallmarks of gastric cancer and highlight the roles of ROS-mediated oxPTMs in gastric cancer. In addition, we will discuss emerging strategies targeting oxidative stress for the treatment of gastric cancer, with an emphasis on the use of bioactive natural products and nanomaterials.
Collapse
Affiliation(s)
- Zehua Chen
- Department of General Surgery and Laboratory of Gastric Cancer, West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (J.F.); (X.C.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiawu Fan
- Department of General Surgery and Laboratory of Gastric Cancer, West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (J.F.); (X.C.)
| | - Xiaolong Chen
- Department of General Surgery and Laboratory of Gastric Cancer, West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (J.F.); (X.C.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Yang
- Department of General Surgery and Laboratory of Gastric Cancer, West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (J.F.); (X.C.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Wang
- Department of General Surgery and Laboratory of Gastric Cancer, West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.C.); (J.F.); (X.C.)
| |
Collapse
|
12
|
Li R, Yang Y, Lou H, Wang W, Du R, Chen H, Du X, Hu S, Wang GL, Yan J, Shan X, Xie D. Glutathione triggers leaf-to-leaf, calcium-based plant defense signaling. Nat Commun 2025; 16:1915. [PMID: 39994230 PMCID: PMC11850895 DOI: 10.1038/s41467-025-57239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Animals rely on nervous systems to cope with environmental variability, whereas plants are characterized by lack of nervous system but still have evolved systemic communication systems through signaling molecules that trigger long-distance defense signaling events when encountered with environmental challenges. Here, our genetic screening of the previously constructed hairpin RNA-based Arabidopsis library identifies a glutathione (GSH)-deficient mutant that has high accumulation of glutamate (Glu), a previously defined wound signal essential for activating plant defense, but disharmoniously exhibits attenuation of defense signaling events. We further uncover GSH as a critical signaling molecule that relies on GLUTAMATE RECEPTOR-LIKE 3.3 (GLR3.3) to trigger long-distance calcium-based defense signaling events in plants. Our findings offer new insights into highly sophisticated systemic defense systems evolved by plants to defend against herbivory and pathogen invasion.
Collapse
Affiliation(s)
- Rui Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongfang Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Lou
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weicheng Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haidong Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxi Du
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology & San Ya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuai Hu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology & San Ya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
13
|
Hu J, Tian S, Liu Q, Hou J, wu J, Wang X, Shu Y. A prognostic signature of Glutathione metabolism-associated long non-coding RNAs for lung adenocarcinoma with immune microenvironment insights. Front Immunol 2025; 16:1477437. [PMID: 39995658 PMCID: PMC11847877 DOI: 10.3389/fimmu.2025.1477437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Background Glutathione (GSH) metabolism supports tumor redox balance and drug resistance, while long non-coding RNAs (lncRNAs) influence lung adenocarcinoma (LUAD) progression. This study developed a prognostic model using GSH-related lncRNAs to predict LUAD outcomes and assess tumor immunity. Methods This study analyzed survival data from The Cancer Genome Atlas (TCGA) and identified GSH metabolism-related lncRNAs using Pearson correlation. A prognostic model was built with Cox and Least Absolute Shrinkage and Selection Operator (LASSO) methods and validated by Kaplan-Meier analysis, Receiver Operating Characteristic (ROC) curves, and Principal Component Analysis (PCA). Functional analysis revealed immune infiltration and drug sensitivity differences. Quantitative PCR and experimental studies confirmed the role of lnc-AL162632.3 in LUAD. Results Our model included a total of nine lncRNAs, namely AL162632.3, AL360270.1, LINC00707, DEPDC1-AS1, GSEC, LINC01711, AL078590.2, AC026355.2, and AL096701.4. The model effectively forecasted patient survival, and the nomogram, incorporating additional clinical risk factors, satisfied clinical needs adequately. Patient stratification based on model scores revealed significant disparities in immune cell composition, functionality, and mutations between groups. Additionally, variations were noted in the IC50 values for key lung cancer medications such as Cisplatin, Docetaxel, and Paclitaxel. In vitro cell experiment results showed that AL162632.3 was markedly upregulated, while AC026355.2 tended to be downregulated across these cell lines. Ultimately, suppressing lnc-AL162632.3 markedly reduced the growth, mobility, and invasiveness of lung cancer cells. Conclusion This study identified GSH metabolism-related lncRNAs as key prognostic factors in LUAD and developed a model for risk stratification. High-risk patients showed increased tumor mutation burden (TMB) and stemness, emphasizing the potential of personalized immunotherapy to improve survival outcomes.
Collapse
Affiliation(s)
- Junxi Hu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Shuyu Tian
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
- Dalian Medical University, Dalian, China
| | - Qingwen Liu
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
- Dalian Medical University, Dalian, China
| | - Jiaqi Hou
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
- Dalian Medical University, Dalian, China
| | - Jun wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Xiaolin Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Yusheng Shu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
14
|
Qiu F, Lin J, Huang X, Yang B, Lu W, Dai Z. The immunoregulatory effects of scoparone on immune-mediated inflammatory diseases. Front Immunol 2025; 16:1518886. [PMID: 39958341 PMCID: PMC11825328 DOI: 10.3389/fimmu.2025.1518886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Scoparone (SCO), also known as 6,7-Dimethoxycoumarin, is a naturally occurring bioactive ingredient originally derived from Chinese herb Artemisiae Scopariae Herba (Yin-Chen-Hao). Previous studies have shown that it is effective in treating some of the liver diseases. Beyond its hepatoprotective effects, an expanding body of research has underscored the immunoregulatory properties of SCO, indicating its potential therapeutic benefits for autoimmune and other inflammatory diseases. Over the past decade, significant advances have been made in understanding the mechanistic insights into its effects on immune-mediated diseases as well as liver diseases. SCO has an impact on various immune cells, including mast cells, monocytes, macrophages, neutrophils and T cells, and affects a broad range of intracellular signaling pathways, including TLR4/Myd88/NFκB, TGFβR/Smad3 and JNK/Sab/SHP-1 etc. Therefore, this review not only summarizes the immunomodulatory and therapeutic effects of SCO on immune-based inflammatory diseases (IMIDs), such as inflammatory bowel disease, osteoarthritis, allergic rhinitis, acute lung injury, type 1 diabetes and neuroinflammatory diseases etc., but also provides a comprehensive summary of its therapeutic effects on hepatic diseases, including non-alcoholic steatohepatitis, fulminant hepatic failure and hepatic fibrosis. In this review, we also include the broad impacts of SCO on intracellular signaling pathways, such as TLR4/Myd88/NFκB, TGFβR/Smad3, Nrf2/P38, JAK2/STAT3 and JNK/Sab/SHP-1 etc. Further researches on SCO may help understand its in-depth mechanisms of action and pave the way for the development of novel drugs to prevent and treat various immune-mediated inflammatory disorders as well as hepatic diseases, thereby significantly advancing its innovations and pharmaceutical applications.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingru Lin
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaofei Huang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences University of Leicester, Leicester, United Kingdom
| | - Weihui Lu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Le Y, Zhu S, Peng H, Wang Z. Unveiling the omics tapestry of B-acute lymphoblastic leukemia: bridging genomics, metabolomics, and immunomics. Sci Rep 2025; 15:3188. [PMID: 39863799 PMCID: PMC11762316 DOI: 10.1038/s41598-025-87684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL. Our findings indicate that the PI3K-Akt signaling pathway is significantly enriched across all groups, highlighting its critical role in B-ALL pathogenesis and progression. Furthermore, metabolomic analysis revealed that lipid metabolism, ferroptosis, and glutathione metabolism are closely linked to disease progression. Notably, in relapsed patients, dysregulated lipid metabolism and the activation of antioxidant mechanisms may contribute to treatment resistance. Immune-related pathways, such as the complement system and coagulation cascade, were also significantly enriched in patients with B-ALL. This suggests that these pathways, alongside the PI3K-Akt pathway, play a role in forming the tumor microenvironment, thereby promoting disease progression and relapse. Based on these findings, this study provides novel potential therapeutic targets for the personalized treatment of B-ALL and lays the foundation for further development of PI3K-Akt pathway inhibitors and immunometabolism-targeted therapies.
Collapse
Affiliation(s)
- Yin Le
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China
- Institute of Molecular Hematology, Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Shicong Zhu
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongling Peng
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011, Hunan, China.
- Institute of Molecular Hematology, Central South University, Changsha, China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China.
| | - Zhihua Wang
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Chan WY, Sakamoto R, Doering T, Narayana VK, De Souza DP, McConville MJ, van Oppen MJH. Heat-Evolved Microalgae (Symbiodiniaceae) Are Stable Symbionts and Influence Thermal Tolerance of the Sea Anemone Exaiptasia diaphana. Environ Microbiol 2025; 27:e70011. [PMID: 39838803 PMCID: PMC11751664 DOI: 10.1111/1462-2920.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025]
Abstract
Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum. The novel symbioses persisted for 1.5 years and determined holobiont thermotolerance during a simulated summer heatwave. Anemones hosting SS8, one of the six heat-evolved strains tested, exhibited the highest thermotolerance. Notably, anemones hosting the wild-type C. proliferum (WT10) were the second most thermally tolerant group, whereas anemones hosting the heat-evolved SS5 or SS9 strains were among the most thermosensitive. Elevated temperatures led to an increase in the levels of many amino acids and a decrease in tricarboxylic acid (TCA) metabolites in all anemone hosts, potentially indicating an increase in autophagy and a reduction in energy and storage production. Some consistent differences were observed in changes in metabolite levels between anemone groups in response to elevated temperature, suggesting that the algal symbiont influenced host metabolome and nutritional budget.
Collapse
Affiliation(s)
- Wing Yan Chan
- Department of Biochemistry and PharmacologyBio21 Institute of Molecular Science and Biotechnology, the University of MelbourneParkvilleVictoriaAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- School of BiosciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Rumi Sakamoto
- School of BiosciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Talisa Doering
- School of BiosciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Vinod K. Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and TechnologyThe University of MelbourneParkvilleVictoriaAustralia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and TechnologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Malcolm J. McConville
- Department of Biochemistry and PharmacologyBio21 Institute of Molecular Science and Biotechnology, the University of MelbourneParkvilleVictoriaAustralia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- School of BiosciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
17
|
Xu Y, Yang Y, Shi Y, Li B, Xie Y, Le G. Dietary methionine supplementation improves cognitive dysfunction associated with transsulfuration pathway upregulation in subacute aging mice. NPJ Sci Food 2024; 8:104. [PMID: 39702349 DOI: 10.1038/s41538-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
To explore the effects of methionine (Met) supplementation on cognitive dysfunction and the associated mechanisms in aging mice. The mice were administrated 0.15 g/kg/day D-galactose subcutaneously and fed a normal (0.86% Met) or a Met-supplemented diet (1.72% Met) for 11 weeks. Behavioral experiments were conducted, and we measured the plasma metabolite levels, hippocampal and plasma redox and inflammatory states, and hippocampal transsulfuration pathway-related parameters. Met supplementation prevented aging-induced anxiety and cognitive deficiencies, and normalized the plasma levels of multiple systemic metabolites (e.g., betaine, taurine, and choline). Furthermore, dietary Met supplementation abolished oxidative stress and inflammation, selectively modulated the expression of multiple cognition-related genes and proteins, and increased flux via the transsulfuration pathway in the hippocampi of aging mice, with significant increase in H2S and glutathione production. Our findings suggest that dietary Met supplementation prevented cognitive deficiencies in aging mice, probably because of increased flux via the transsulfuration pathway.
Collapse
Affiliation(s)
- Yuncong Xu
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhui Yang
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Yonghui Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Guowei Le
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Huo G, Lin Y, Liu L, He Y, Qu Y, Liu Y, Zhu R, Wang B, Gong Q, Han Z, Yin H. Decoding ferroptosis: transforming orthopedic disease management. Front Pharmacol 2024; 15:1509172. [PMID: 39712490 PMCID: PMC11659002 DOI: 10.3389/fphar.2024.1509172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
As a mechanism of cell death, ferroptosis has gained popularity since 2012. The process is distinguished by iron toxicity and phospholipid accumulation, in contrast to autophagy, apoptosis, and other cell death mechanisms. It is implicated in the advancement of multiple diseases across the body. Researchers currently know that osteosarcoma, osteoporosis, and other orthopedic disorders are caused by NRF2, GPX4, and other ferroptosis star proteins. The effective relief of osteoarthritis symptoms from deterioration has been confirmed by clinical treatment with multiple ferroptosis inhibitors. At the same time, it should be reminded that the mechanisms involved in ferroptosis that regulate orthopedic diseases are not currently understood. In this manuscript, we present the discovery process of ferroptosis, the mechanisms involved in ferroptosis, and the role of ferroptosis in a variety of orthopedic diseases. We expect that this manuscript can provide a new perspective on clinical diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guanlin Huo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Yi Qu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Bo Wang
- Department of Orthopaedics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Qing Gong
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhongyu Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongbing Yin
- Orthopedic Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
19
|
Huang PJ, Lin YL, Chen CH, Lin HY, Fang SC. A chloroplast sulphate transporter modulates glutathione-mediated redox cycling to regulate cell division. PLANT, CELL & ENVIRONMENT 2024; 47:5391-5410. [PMID: 39189939 DOI: 10.1111/pce.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Glutathione redox cycling is important for cell cycle regulation, but its mechanisms are not well understood. We previously identified a small-sized mutant, suppressor of mat3 15-1 (smt15-1) that has elevated cellular glutathione. Here, we demonstrated that SMT15 is a chloroplast sulphate transporter. Reducing expression of γ-GLUTAMYLCYSTEINE SYNTHETASE, encoding the rate-limiting enzyme required for glutathione biosynthesis, corrected the size defect of smt15-1 cells. Overexpressing GLUTATHIONE SYNTHETASE (GSH2) recapitulated the small-size phenotype of smt15-1 mutant, confirming the role of glutathione in cell division. Hence, SMT15 may regulate chloroplast sulphate concentration to modulate cellular glutathione levels. In wild-type cells, glutathione and/or thiol-containing molecules (GSH/thiol) accumulated in the cytosol at the G1 phase and decreased as cells entered the S/M phase. While the cytosolic GSH/thiol levels in the small-sized mutants, smt15-1 and GSH2 overexpressors, mirrored those of wild-type cells (accumulating during G1 and declining at early S/M phase), GSH/thiol was specifically accumulated in the basal bodies at early S/M phase in the small-sized mutants. Therefore, we propose that GSH/thiol-mediated redox signalling in the basal bodies may regulate mitotic division number in Chlamydomonas reinhardtii. Our findings suggest a new mechanism by which glutathione regulates the multiple fission cell cycle in C. reinhardtii.
Collapse
Affiliation(s)
- Pin-Jui Huang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ling Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Banach K, Kowalska J, Maszczyk M, Rzepka Z, Rok J, Wrześniok D. An In Vitro Strategy to Evaluate Ketoprofen Phototoxicity at the Molecular and Cellular Levels. Int J Mol Sci 2024; 25:12647. [PMID: 39684359 DOI: 10.3390/ijms252312647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the cytotoxicity and phototoxicity of ketoprofen towards human melanocytes and fibroblasts in three different treatment schemes in order to optimize the study. Cytometric tests (studies of viability, proliferation, intracellular thiol levels, mitochondrial potential, cell cycle, and DNA fragmentation), Western blot analysis (cytochrome c and p44/p42 protein levels), and confocal microscopy imaging were performed to assess the impact of the developed treatments on skin cells. Research on experimental schemes may help reduce or eliminate the risk of phototoxic reactions. In the case of ketoprofen, we found that the strongest phototoxic potential was exhibited in the treatment where the drug was present in the solution during the irradiation of cells, both pigmented and non-pigmented cells. These results indicate that the greatest risk of photosensitivity reactions related to ketoprofen occurs after direct contact with the drug and UV exposure.
Collapse
Affiliation(s)
- Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mateusz Maszczyk
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
21
|
Jahan I, Islam MA, Harun-Ur-Rashid M, Sultana GNN. Cancer prevention at the microscopic level with the potent power of micronutrients. Heliyon 2024; 10:e39680. [PMID: 39553634 PMCID: PMC11564030 DOI: 10.1016/j.heliyon.2024.e39680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, necessitating ongoing exploration of effective prevention strategies. Micronutrients, vital for maintaining cellular health, offer promising avenues for cancer prevention. This review delineates the critical roles of micronutrients in cancer prevention, elucidating their mechanisms at the cellular level. Focusing on essential vitamins and minerals like Vitamins A, C, D, E, selenium, and zinc, we explore their profound effects on fundamental cellular processes such as DNA repair, oxidative stress regulation, cellular proliferation, and immune surveillance. These nutrients, characterized by their antioxidative, anti-inflammatory, and immune-enhancing properties, have shown potential in reducing the risk of cancer. The article synthesizes outcomes from a broad spectrum of clinical trials, epidemiological studies, and systematic reviews to evaluate the efficacy of micronutrients in thwarting cancer development. This critical analysis explores significant trials, addresses controversies in nutrient efficacy, and highlights the implications for clinical practice and public health policy. The review underscores the importance of integrating nutritional strategies into comprehensive cancer prevention frameworks and suggests directions for future research to optimize the preventive potentials of micronutrients.
Collapse
Affiliation(s)
- Israt Jahan
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Aminul Islam
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1230, Bangladesh
| | - Gazi Nurun Nahar Sultana
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
22
|
Li X, Xu J, Yan L, Tang S, Zhang Y, Shi M, Liu P. Targeting Disulfidptosis with Potentially Bioactive Natural Products in Metabolic Cancer Therapy. Metabolites 2024; 14:604. [PMID: 39590840 PMCID: PMC11596291 DOI: 10.3390/metabo14110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Metabolic cancers are defined by metabolic reprogramming. Although this reprograming drives rapid tumour growth and invasion, it also reveals specific metabolic vulnerabilities that can be therapeutically exploited in cancer therapy. A novel form of programmed cell death, known as disulfidptosis, was identified last year; tumour cells with high SLC7A11 expression undergo disulfidptosis when deprived of glucose. Natural products have attracted increasing attention and have shown potential to treat metabolic cancers through diverse mechanisms. METHODS We systematically searched electronic databases involving PubMed, Web of Science, Gooale Scholar. To ensue comprehensive exploration, keywords including metabolic reprogramming, metabolic cancer, disulfidptosis, natural products and some other words were employed. RESULTS In this review, we focus on the shared characteristics and metabolic vulnerabilities of metabolic cancers. Additionally, we discuss the molecular mechanisms underlying disulfidptosis and highlight key regulatory genes. Furthermore, we predict bioactive natural products that target disulfidptosis-related genes, offering new perspectives for anticancer strategies through the modulation of disulfidptosis. CONCLUSIONS By summarizing current research progress, this review mainly analyzed the potential mechanisms of natural products in the treatment of metabolic cancer.
Collapse
Affiliation(s)
- Xinyan Li
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Liangwen Yan
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Shenkang Tang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yinggang Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Mengjiao Shi
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| |
Collapse
|
23
|
Huang X, Xia K, Wei Z, Liu W, Wei Z, Guo W. SLC38A5 suppresses ferroptosis through glutamine-mediated activation of the PI3K/AKT/mTOR signaling in osteosarcoma. J Transl Med 2024; 22:1004. [PMID: 39511570 PMCID: PMC11542360 DOI: 10.1186/s12967-024-05803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Solute carrier family 38 member 5 (SLC38A5) is an amino acid transporter that plays a significant role in various cellular biological processes and may be involved in regulating the progression of tumors However, its function and underlying mechanism in osteosarcoma remain unexplored. METHODS Utilizing various database analyses and experiments, we have explored the dysregulation of SLC38A5 in osteosarcoma and its prognostic value. A series of in vitro functional experiments, including CCK-8, colony formation, wound healing, and transwell invasion assays, were conducted to evaluate the effects of SLC38A5 on the proliferation, migration, and invasion of osteosarcoma cells. Downstream pathways of SLC38A5 were explored through methods such as western blot and metabolic assays, followed by a series of validations. Finally, we constructed a subcutaneous xenograft tumor model in nude mice to explore SLC38A5 function in vivo. RESULTS SLC38A5 is upregulated in osteosarcoma and is associated with poor prognosis in patients. Upregulation of SLC38A5 promotes proliferation, migration, and invasion of osteosarcoma cells, while the PI3K inhibitor BKM120 can counteract these effects. Additionally, silencing of SLC38A5 inhibits tumor growth in vivo. Mechanistically, SLC38A5 mediates the activation of the PI3K/AKT/mTOR signaling pathway by transporting glutamine, which subsequently enhances the SREBP1/SCD-1 signaling pathway, thereby suppressing ferroptosis in osteosarcoma cells. CONCLUSION SLC38A5 promotes osteosarcoma cell proliferation, migration, and invasion via the glutamine-mediated PI3K/AKT/mTOR signaling pathway and inhibits ferroptosis. Targeting SLC38A5 and the PI3K/AKT signaling axis may provide a meaningful therapeutic strategy for the future treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xinghan Huang
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Kezhou Xia
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zhun Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Wenda Liu
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zicheng Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Weichun Guo
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
24
|
Qin J, Wang C, Zhou X. Glutathione regulates CIA-activated splenic-lymphocytes via NF-κB/MMP-9 and MAPK/PCNA pathways manipulating immune response. Cell Immunol 2024; 405-406:104866. [PMID: 39250860 DOI: 10.1016/j.cellimm.2024.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Reduced glutathione (GSH) is an antioxidant involved in redox homeostasis, and recently regarded as an inducer of Reductive stress. Its immune-regulatory effects on lymphocytes have not been extensively studied. This study is based on the finding that much increased GSH level in collagen-induced arthritis (CIA) rat spleen, and aimed to investigate the effects of GSH (0, 1, 10, 100 mM) on normal and immune-stimulated spleen lymphocytes respectively. The elevated GSH level is associated with the increased levels of inflammatory factors; especially the increased DPP1 activity indicated immune-granulocytes activation in CIA rat spleen. Exogenous GSH had different influences on normal and CIA lymphocytes, affecting intracellular levels of GSH, Glutathione-S-transferases (GSTs) and Reactive oxygen species (ROS); as well as the expressions of NF-κB, MMP-9, Bcl-2, GST, P38, PCNA and TLR4. The increased extracellular GSH level disturbed redox homeostasis and induces reductive stress to spleen lymphocytes, which decreased intracellular GSH concentration and influenced the MAPK/PCNA and NF-κB/MMP-9 signaling pathways, as well as cell cycles respectively, leading to cell senescence/ferroptosis/apoptosis. This study also revealed the multiple faces of GSH in regulating spleen lymphocytes, which depended on its levels in tissue or in cells, and the activation status of lymphocytes. These findings indicate the immune-regulatory role of GSH on spleen-lymphocytes, and the high level GSH in CIA rat spleens may contribute to CIA development.
Collapse
Affiliation(s)
- Jingying Qin
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Xiaoying Zhou
- School of Pharmacy, Changzhou University, Jiangsu 213164, China.
| |
Collapse
|
25
|
Cui J, Dai Y, Lai Y, Tan Y, Liu T. Effects of Abscisic Acid on the Physiological and Biochemical Responses of Saccharina japonica Under High-Temperature Stress. Int J Mol Sci 2024; 25:11581. [PMID: 39519133 PMCID: PMC11545905 DOI: 10.3390/ijms252111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Saccharina japonica is one of the most productive aquatic plants in the world, widely used in food, feed, medicine, and other industries. Predominantly inhabiting temperate marine environments in mid- to high-latitude regions of the Northern Hemisphere, the growth of S. japonica is significantly limited by high-temperature stress. Abscisic acid (ABA) plays an important role in plant growth and development and stress responses. However, the role of ABA on high-temperature stress tolerance in S. japonica still needs to be further elucidated. Here, we found that exogenous ABA significantly alleviated disease and decay in S. japonica under high-temperature stress while also increasing the relative growth rate, chlorophyll fluorescence parameters, photosynthetic pigment, and osmotic substance content. Meanwhile, exogenous ABA enhanced the activity of protective enzymes and up-regulated the transcript levels of antioxidant-related genes, thereby reducing oxidative damage. Most importantly, we observed a significant increase in ABA content and the transcript levels of key genes involved in ABA synthesis in S. japonica under high-temperature stress, which were further amplified by the addition of exogenous ABA. In conclusion, this study provides evidence that ABA can moderate the detrimental effects of high-temperature stress and provides a theoretical basis for the screening of S. japonica germplasm resources and the cultivation of new stress-resistant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Tao Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.C.)
| |
Collapse
|
26
|
Chen JY, He JL, Feng FY, Yang XY, Xie WR. The Clinical Value of Serum Creatinine-to-Bilirubin Ratio in Predicting the Severity and Prognosis of Acute Pancreatitis. Dig Dis 2024; 43:115-124. [PMID: 39433027 DOI: 10.1159/000541901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Bilirubin (BIL) and creatinine (Cr) have long been recognized as potential early indicators of disease severity. A recent study found that the Cr-to-BIL ratio (CTR) was more sensitive and specific than either serum Cr or BIL alone. Our research focused on the clinical significance of CTR in evaluating the severity and prognosticating outcomes of acute pancreatitis (AP) in patients. METHODS Patients diagnosed with AP at the First Affiliated Hospital of Guangdong Pharmaceutical University between July 1, 2016, and December 31, 2020 were included. The analysis then focused on examining the relationship between CTR levels and the severity of the illness, the occurrence of complications, and the prognosticating outcomes for individuals diagnosed with AP. A total of 286 AP patients were enrolled. RESULTS Multivariate regression analyses indicated that AP patients with elevated CTR levels were more likely to develop severe AP. They exhibited higher MODS, Ranson, and APACHE-II scores, an increased incidence of organ failures (acute heart failure [AHF], acute kidney injury [AKI], and acute myocardial infarction), higher 30-day all-cause mortality rates, and a worse prognosis, often requiring more frequent use of vasoactive and diuretic agents compared to those with lower CTR levels. When CTR >14.05, AP patients had increased occurrence of AHF and AKI, higher 30-day all-cause mortality rates, more frequently using vasoactive agent and diuretic agent. Besides, the disease severity scores (MODS, Ranson, and APACHE-II) and hospital stays were markedly increased. CONCLUSION AP patients with elevated CTR levels are prone to more severe disease progression, increased complications, and poorer outcomes compared to those with lower CTR levels.
Collapse
Affiliation(s)
- Jun-Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China,
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, Guangzhou, China,
| | - Jun-Lian He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Feng-Yi Feng
- Department of Gastroenterology, Foshan Nanhai District Sixth People's Hospital, Foshan, China
| | - Xiao-Ya Yang
- Department of Physiology, Guangzhou Health Science College, Guangzhou, China
| | - Wen-Rui Xie
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, Guangzhou, China
| |
Collapse
|
27
|
Eljebbawi A, Dolata A, Strotmann VI, Stahl Y. Stem cell quiescence and dormancy in plant meristems. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6022-6036. [PMID: 38721716 PMCID: PMC11480668 DOI: 10.1093/jxb/erae201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
Plants exhibit opportunistic developmental patterns, alternating between growth and dormancy in response to external cues. Moreover, quiescence plays a critical role in proper plant growth and development, particularly within the root apical meristem and the shoot apical meristem. In these meristematic tissues, cells with relatively slower mitotic activity are present in the quiescent center and the central zone, respectively. These centers form long-term reservoirs of stem cells maintaining the meristematic stem cell niche, and thus sustaining continuous plant development and adaptation to changing environments. This review explores early observations, structural characteristics, functions, and gene regulatory networks of the root and shoot apical meristems. It also highlights the intricate mechanism of dormancy within the shoot apical meristem. The aim is to contribute to a holistic understanding of quiescence in plants, which is fundamental for the proper growth and environmental response of plants.
Collapse
Affiliation(s)
| | | | - Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
28
|
Lee LR, Guillotin B, Rahni R, Hutchison C, Desvoyes B, Gutierrez C, Birnbaum KD. Glutathione accelerates the cell cycle and cellular reprogramming in plant regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569014. [PMID: 38168452 PMCID: PMC10760015 DOI: 10.1101/2023.11.28.569014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The plasticity of plant cells underlies their wide capacity to regenerate, with increasing evidence in plants and animals implicating cell cycle dynamics in cellular reprogramming. To investigate the cell cycle during cellular reprogramming, we developed a comprehensive set of cell cycle phase markers in the Arabidopsis root. Using single-cell RNA-seq profiles and live imaging during regeneration, we found that a subset of cells near an ablation injury dramatically increases division rate by truncating G1. Cells in G1 undergo a transient nuclear peak of glutathione (GSH) prior to coordinated entry into S phase followed by rapid divisions and cellular reprogramming. A symplastic block of the ground tissue impairs regeneration, which is rescued by exogenous GSH. We propose a model in which GSH from the outer tissues is released upon injury licensing an exit from G1 near the wound to induce rapid cell division and reprogramming.
Collapse
Affiliation(s)
- Laura R Lee
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Bruno Guillotin
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Ramin Rahni
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Chanel Hutchison
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | | | | | - Kenneth D Birnbaum
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| |
Collapse
|
29
|
Frohn S, Haas FB, Chavez BG, Dreyer BH, Reiss EV, Ziplys A, Weichert H, Hiltemann S, Ugalde JM, Meyer AJ, D'Auria JC, Rensing SA, Schippers JHM. Evolutionary Conserved and Divergent Responses to Copper Zinc Superoxide Dismutase Inhibition in Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39400938 DOI: 10.1111/pce.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
After an initial evolution in a reducing environment, life got successively challenged by reactive oxygen species (ROS), especially during the great oxidation event (GOE) that followed the development of photosynthesis. Therefore, ROS are deeply intertwined into the physiological, morphological and transcriptional responses of most present-day organisms. Copper-zinc superoxide dismutases (CuZnSODs) evolved during the GOE and are present in charophytes and extant land plants, but nearly absent from chlorophytes. The chemical inhibitor of CuZnSOD, lung cancer screen 1 (LCS-1), could greatly facilitate the study of SODs in diverse plants. Here, we determined the impact of chemical inhibition of plant CuZnSOD activity, on plant growth, transcription and metabolism. We followed a comparative approach by using different plant species, including Marchantia Polymorpha and Physcomitrium patens, representing bryophytes, the sister lineage to vascular plants, and Arabidopsis thaliana. We show that LCS-1 causes oxidative stress in plants and that the inhibition of CuZnSODs provoked a similar core response that mainly impacted glutathione homoeostasis in all plant species analysed. That said, Physcomitrium and Arabidopsis, which contain multiple CuZnSOD isoforms showed a more complex and exacerbated response. In addition, an untargeted metabolomics approach revealed a specific metabolic signature for each plant species. Our comparative analysis exposes a conserved core response at the physiological and transcriptional level towards LCS-1, while the metabolic response largely varies. These differences correlate with the number and localization of the CuZnSOD isoforms present in each species.
Collapse
Affiliation(s)
- Stephanie Frohn
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Bernd H Dreyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Erik V Reiss
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Ziplys
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heiko Weichert
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Saskia Hiltemann
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - José M Ugalde
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
30
|
Feng Z, Shi J, Ren J, Luo L, Liu D, Guo Y, Sun B, Liu G, Deng M, Li Y. Mitochondria-Targeted Antioxidant MitoQ Improves In Vitro Maturation and Subsequent Embryonic Development from Culled Cows. Animals (Basel) 2024; 14:2929. [PMID: 39457858 PMCID: PMC11503749 DOI: 10.3390/ani14202929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The purpose of this study was to investigate the effects and mechanisms of MitoQ on the IVM of culled bovine oocytes and subsequent embryonic development. The results revealed that in comparison to the control group (0 µmol/L), the IVM rate (p < 0.05) and subsequent blastocyst rate (p < 0.05) of the low-concentration 1 and 5 µmol/L MitoQ treatment group were increased. The level of ROS (p < 0.05) in the MitoQ treatment group was decreased in comparison to the control group. Additionally, the level of GSH, MMP, ATP, and mt-DNA in the MitoQ treatment group was increased (p < 0.05) in comparison to the control group. The expression level of BAX was decreased (p < 0.05) in the MitoQ treatment group, and the BCL2, DNM1, Mfn2, SOD, and CAT were increased (p < 0.05). In conclusion, MitoQ improved mitochondrial dysfunction, increased mitochondrial activity during IVM, and reduced oxidative stress, resulting in increased IVM rates and subsequent embryonic development from culled cows.
Collapse
Affiliation(s)
- Zhihao Feng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Junsong Shi
- Yunfu Sub-Center of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China; (J.S.); (J.R.); (L.L.)
| | - Jiajie Ren
- Yunfu Sub-Center of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China; (J.S.); (J.R.); (L.L.)
| | - Lvhua Luo
- Yunfu Sub-Center of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China; (J.S.); (J.R.); (L.L.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| |
Collapse
|
31
|
Zhu Y, Liu X, Shi Y, Liu X, Li H, Ru S, Tian H. Prenatal exposure to bisphenol AF causes toxicities in liver, spleen, and kidney tissues of SD rats. Food Chem Toxicol 2024; 192:114939. [PMID: 39151878 DOI: 10.1016/j.fct.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
As a replacement for bisphenol A (BPA), bisphenol AF (BPAF) showed stronger maternal transfer and higher fetal accumulation than BPA. Therefore, concerns should be raised about the health risks of maternal exposure to BPAF during gestation on the offspring. In this study, SD rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to investigate the bioaccumulation and adverse effects in liver, spleen, and kidney tissues of the offspring at weaning period. Bioaccumulation of BPAF in these tissues with concentrations ranging from 1.56 ng/mg (in spleen of males) to 55.44 ng/mg (in liver of females) led to adverse effects at different biological levels, including increased relative weights of spleen and kidneys, histopathological damage in liver, spleen, and kidney, organ functional damage in liver, spleen, and kidney, upregulated expression of genes related to lipid metabolism (in liver), oxidative stress response (in kidney), immunity and inflammatory (in spleen). Furthermore, dysregulated metabolomics was identified in spleen, with 217 differential metabolites screened and 9 KEGG pathways significantly enriched. This study provides a comprehensive insight into the systemic toxicities of prenatal exposure to BPAF in SD rats. Given the broad applications and widespread occurrence of BPAF, its safety should be re-considered.
Collapse
Affiliation(s)
- Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuxiang Liu
- Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuying Liu
- Wudi County Hospital of Traditional Chinese Medicine, Binzhou, 251900, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
32
|
Siddique AHH, Kale PP. Importance of glucose and its metabolism in neurodegenerative disorder, as well as the combination of multiple therapeutic strategies targeting α-synuclein and neuroprotection in the treatment of Parkinson's disease. Rev Neurol (Paris) 2024; 180:736-753. [PMID: 38040547 DOI: 10.1016/j.neurol.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2023] [Accepted: 08/18/2023] [Indexed: 12/03/2023]
Abstract
According to recent findings, Phosphoglycerate Kinase 1 (pgk-1) enzyme is linked to Parkinson's disease (PD). Mutations in the PGK-1 gene lead to decreases in the pgk-1 enzyme which causes an imbalance in the levels of energy demand and supply. An increase in glycolytic adenosine triphosphate (ATP) production would help alleviate energy deficiency and sustain the acute energetic need of neurons. Neurodegeneration is caused by an imbalance or reduction in ATP levels. Recent data suggest that medications that increase glycolysis and neuroprotection can be used to treat PD. The current study focuses on treatment options for disorders associated with the pgk-1 enzyme, GLP-1, and A2A receptor which can be utilized to treat PD. A combination of metformin and terazosin, exenatide and meclizine, istradefylline and salbutamol treatments may benefit parkinsonism. The review also looked at potential target-specific new techniques that might assist in satisfying unfulfilled requirements in the treatment of PD.
Collapse
Affiliation(s)
- A H H Siddique
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. L. Mehta Road, Vile Parle west, 400056 Mumbai, India.
| | - P P Kale
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. L. Mehta Road, Vile Parle west, 400056 Mumbai, India.
| |
Collapse
|
33
|
Manda-Hakki K, Hassanpour H. Effect of L-glutathione treatment on biochemical properties, antioxidant capacity and antioxidant enzymes activity in strawberry fruits during storage. Heliyon 2024; 10:e38046. [PMID: 39328530 PMCID: PMC11425169 DOI: 10.1016/j.heliyon.2024.e38046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
The potential of L-glutathione (GSH) (0, 4, 16, 32 and 64 mM) to improve the post-harvest quality and antioxidant capacity of strawberries was investigated during storage (0, 5, 10, and 15 days) in this study. Results showed that weight loss in fruits treated with 64 mM GSH was significantly lower than the control. GSH treatments resulted in higher levels of total phenol content and antioxidant capacity in treated fruits of strawberry. Based on the results, GSH 64 mM significantly increased the levels of total flavonoid, anthocyanin, ascorbic acid, total soluble protein, antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and Phenylalanine ammonia-lyase (PAL). In addition, GSH 64 mM decreased Malondialdehyde (MDA) levels and prevented cell membrane lipid peroxidation. In conclusion, the results of the present study showed that the use of GSH 64 mM may be a promising strategy to improve the marketability, quality and antioxidant capacity of strawberry fruits during storage.
Collapse
Affiliation(s)
- Karim Manda-Hakki
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hamid Hassanpour
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
34
|
Glinert A, Zlidennyy V, Turjeman S, Sharon E, Schweitzer R, Khatib S, Izackson L, Koren O. What's GABA got to do with it? A potential link between the microbiome, schizophrenia, and the endo-cannabinoid system. Psychiatry Res 2024; 342:116196. [PMID: 39341178 DOI: 10.1016/j.psychres.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The microbiome has been linked to numerous neurological and psychiatric diseases, including schizophrenia. Nevertheless, correlating microbial perturbations to pathophysiological aspects of schizophrenia remains elusive, as study participants are typically medicated when sampled, complicating mechanistic investigation. Here we explored specific microbial and metabolic alterations in schizophrenia patients, while explicitly considering their medications. We recruited 30 patients and 14 healthy controls. Fecal and serum samples were collected for microbiota and (untargeted) metabolome characterization, respectively. While significant differences were detected between microbiome of controls and schizophrenia patients overall, patients not taking GABA-enhancing drugs had profiles similar to the control group. This pattern was preserved, but to a lesser extent, when comparing metabolomes. Several key metabolic pathways differed between patients and controls, even after filtering out those directly related to pharmaceuticals and their metabolism, and the citric acid cycle and amino acid biosynthesis pathways were enriched in the group prescribed antipsychotics without GABA-enhancers. Administration of exogenous GABA affected overall patient homeostasis, not just disease course, supporting our hypothesis that microbiota play a part in cognitive, emotional, and mental function, and that this role must be considered in the full context of an individual's state, including medication.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Efrat Sharon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Schweitzer
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Analytical Chemistry Laboratory, Tel-Hai College, Upper Galilee, Israel; Department of Natural Compounds and Analytical Chemistry, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Soliman Khatib
- Analytical Chemistry Laboratory, Tel-Hai College, Upper Galilee, Israel; Department of Natural Compounds and Analytical Chemistry, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | | | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Xiao T, Yu X, Tao J, Yang L, Duan X. Metabolomics-Based Study of the Protective Effect of 4-Hydroxybenzyl Alcohol on Ischemic Astrocytes. Int J Mol Sci 2024; 25:9907. [PMID: 39337395 PMCID: PMC11432256 DOI: 10.3390/ijms25189907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Ischemic stroke is a common and dangerous disease in clinical practice. Astrocytes (ASs) are essential for maintaining the metabolic balance of the affected regions during the disease process. 4-Hydroxybenzyl alcohol (4HBA) from Gastrodia elata Bl. has potential neuroprotective properties due to its ability to cross the blood-brain barrier. In an in vitro experiment, we replicated the oxygen-glucose deprivation/reoxygenation model, and used methyl thiazoly tertrazolium, flow cytometry, kits, and other technical means to clarify the protective effect of 4HBA on primary ASs. In in vivo experiments, the 2VO model was replicated, and immunofluorescence and immunohistochemistry techniques were used to clarify the protective effect of 4HBA on ASs and the maintenance of the blood-brain barrier. Differential metabolites and related pathways were screened and verified using metabolomics analysis and western blot. 4HBA noticeably amplified AS cell survival, reduced mitochondrial dysfunction, and mitigated oxidative stress. It demonstrated a protective effect on ASs in both environments and was instrumental in stabilizing the blood-brain barrier. Metabolomic data indicated that 4HBA regulated nucleic acid and glutathione metabolism, influencing purines, pyrimidines, and amino acids, and it activated the N-methyl-D-aspartate/p-cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway via N-methyl-D-aspartate R1/N-methyl-D-aspartate 2C receptors. Our findings suggest that 4HBA is a potent neuroprotective agent against ischemic stroke, enhancing AS cell survival and function while stabilizing the blood-brain barrier. The N-methyl-D-aspartate/p-cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway is activated by 4HBA.
Collapse
Affiliation(s)
- Tian Xiao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xingzhi Yu
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jie Tao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
36
|
Zhu Y, Chen Y, Wang Y, Zhu Y, Wang H, Zuo M, Wang J, Li Y, Chen X. Glutathione S-transferase-Pi 1 protects cells from irradiation-induced death by inhibiting ferroptosis in pancreatic cancer. FASEB J 2024; 38:e70033. [PMID: 39258853 DOI: 10.1096/fj.202400373rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
Glutathione S-transferase-Pi 1 (GSTP1) is an isozyme that plays a key role in detoxification and antioxidative damage. It also confers resistance to tumor therapy. However, the specific role of GSTP1 in radiotherapy resistance in pancreatic cancer (PC) is not known. In this study, we investigated how GSTP1 imparts radioresistance in PC. The findings of previous studies and this study revealed that ionizing radiation (IR) induces ferroptosis in pancreatic cancer cells, primarily by upregulating the expression of ACSL4. Our results showed that after IR, GSTP1 prolonged the survival of pancreatic cancer cells by inhibiting ferroptosis but did not affect apoptosis. The expression of GSTP1 reduced cellular ferroptosis by decreasing the levels of ACSL4 and increasing the GSH content. These changes increase the resistance of pancreatic cancer cells and xenograft tumors to IR. Our findings indicate that ferroptosis participates in irradiation-induced cell death and that GSTP1 prevents IR-induced death of pancreatic cancer cells by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yifan Chen
- Department of Nuclear Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yuling Wang
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yuchun Zhu
- Department of Nuclear Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Hongyan Wang
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Mengzhe Zuo
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jianliang Wang
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuelian Chen
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
37
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
38
|
Mittler R, Jones DP. The redox code of plants. PLANT, CELL & ENVIRONMENT 2024; 47:2821-2829. [PMID: 38088476 DOI: 10.1111/pce.14787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 07/12/2024]
Abstract
Central metabolism is organised through high-flux, Nicotinamide Adenine Dinucleotide (NAD+/NADH) and NADP+/NADPH systems operating at near equilibrium. As oxygen is indispensable for aerobic organisms, these systems are also linked to the levels of reactive oxygen species, such as H2O2, and through H2O2 to the regulation of macromolecular structures and activities, via kinetically controlled sulphur switches in the redox proteome. Dynamic changes in H2O2 production, scavenging and transport, associated with development, growth and responses to the environment are, therefore, linked to the redox state of the cell and regulate cellular function. These basic principles form the 'redox code' of cells and were first defined by D. P. Jones and H. Sies in 2015. Here, we apply these principles to plants in which recent studies have shown that they can also explain cell-to-cell and even plant-to-plant signalling processes. The redox code is, therefore, an integral part of biological systems and can be used to explain multiple processes in plants at the subcellular, cellular, tissue, whole organism and perhaps even community and ecosystem levels. As the environmental conditions on our planet are worsening due to global warming, climate change and increased pollution levels, new studies are needed applying the redox code of plants to these changes.
Collapse
Affiliation(s)
- Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 PMCID: PMC11722958 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Wang X, Lu Y, He J, Li X, Xu Y, Ren L, Li H. Untargeted metabolomics reveals the mechanism of amantadine toxicity on Laminaria japonica. Front Physiol 2024; 15:1448259. [PMID: 39113936 PMCID: PMC11303324 DOI: 10.3389/fphys.2024.1448259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The antiviral agent amantadine is frequently detected in seawater and marine organisms. Because of increasing concentrations, amantadine has become a contaminant of emerging concern. This compound has toxic effects on the brown algae Laminaria japonica. The effects of amantadine on the biological processes of L. japonica and the corresponding toxic mechanisms remain unclear. In this study, amantadine toxicity on L. japonica was investigated using histopathological and physiological characteristics combined with metabolomics analysis. Changes in metabolites were determined by untargeted metabolomics after exposure to 107 ng/L amantadine for 72 h. The catalase activity in the exposure group slightly increased, whereas the superoxide dismutase activity greatly decreased. An increase in the malondialdehyde concentration was observed after amantadine exposure, which suggested that lipid peroxidation and cell damage occurred. Metabolomics analysis showed that there were 406 differentially expressed metabolites after amantadine exposure. These were mainly phospholipids, amino acids, purines, and their derivatives. Inhibition of the glycerophospholipid metabolism affected the lipid bilayer and cell structure, which was aligned with changes in histological observation. Changes in amino acids led to perturbation of protein synthesis and induced oxidative stress through interference with glutathione metabolism and tyrosine metabolism. Amantadine also interfered with energy metabolism in L. japonica by disturbing the tricarboxylic acid cycle and purine metabolism. The results of this study provide new insights into the mechanism of amantadine toxicity on L. japonica.
Collapse
Affiliation(s)
- Xiaohan Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Yao Lu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Jinxia He
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xiaojie Li
- Shandong Oriental Ocean Technology Co. Ltd., Yantai, China
| | - Yingjiang Xu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Lihua Ren
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Huanjun Li
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| |
Collapse
|
41
|
Marcin T, Katarzyna C, Urszula K. Reactive nitrogen species act as the enhancers of glutathione pool in embryonic axes of apple seeds subjected to accelerated ageing. PLANTA 2024; 260:51. [PMID: 38995415 PMCID: PMC11245430 DOI: 10.1007/s00425-024-04472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 07/13/2024]
Abstract
MAIN CONCLUSION Reactive nitrogen species mitigate the deteriorative effect of accelerated seed ageing by affecting the glutathione concentration and activities of GR and GPX-like. The treatment of apple (Malus domestica Borkh.) embryos isolated from accelerated aged seeds with nitric oxide-derived compounds increases their vigour and is linked to the alleviation of the negative effect of excessive oxidation processes. Reduced form of glutathione (GSH) is involved in the maintenance of redox potential. Glutathione peroxidase-like (GPX-like) uses GSH and converts it to oxidised form (GSSG), while glutathione reductase (GR) reduces GSSG into GSH. The aim of this work was to investigate the impact of the short-time NOx treatment of embryos isolated from apple seeds subjected to accelerated ageing on glutathione-related parameters. Apple seeds were subjected to accelerated ageing for 7, 14 or 21 days. Isolated embryos were shortly treated with NOx and cultured for 48 h. During ageing, in the axes of apple embryos, GSH and GSSG levels as well as half-cell reduction potential remained stable, while GR and GPX-like activities decreased. However, the positive effect of NOx in the vigour preservation of embryos isolated from prolonged aged seeds is linked to the increased total glutathione pool, and above all, higher GSH content. Moreover, NOx increased the level of transcripts encoding GPX-like and stimulated enzymatic activity. The obtained results indicate that high seed vigour related to the mode of action of NO and its derivatives is closely linked to the maintenance of higher GSH levels.
Collapse
Affiliation(s)
- Tyminski Marcin
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Ciacka Katarzyna
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Krasuska Urszula
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
42
|
Jiang Y, Glandorff C, Sun M. GSH and Ferroptosis: Side-by-Side Partners in the Fight against Tumors. Antioxidants (Basel) 2024; 13:697. [PMID: 38929136 PMCID: PMC11201279 DOI: 10.3390/antiox13060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glutathione (GSH), a prominent antioxidant in organisms, exhibits diverse biological functions and is crucial in safeguarding cells against oxidative harm and upholding a stable redox milieu. The metabolism of GSH is implicated in numerous diseases, particularly in the progression of malignant tumors. Consequently, therapeutic strategies targeting the regulation of GSH synthesis and metabolism to modulate GSH levels represent a promising avenue for future research. This study aimed to elucidate the intricate relationship between GSH metabolism and ferroptosis, highlighting how modulation of GSH metabolism can impact cellular susceptibility to ferroptosis and consequently influence the development of tumors and other diseases. The paper provides a comprehensive overview of the physiological functions of GSH, including its structural characteristics, physicochemical properties, sources, and metabolic pathways, as well as investigate the molecular mechanisms underlying GSH regulation of ferroptosis and potential therapeutic interventions. Unraveling the biological role of GSH holds promise for individuals afflicted with tumors.
Collapse
Affiliation(s)
- Yulang Jiang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- University Clinic of Hamburg at the HanseMerkur Center of TCM, 20251 Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
43
|
Luo Z, Lin ZY, Li ZF, Fu ZQ, Han FL, Li EC. Next-generation neonicotinoid: The impact of cycloxaprid on the crustacean decapod Penaeus vannamei. CHEMOSPHERE 2024; 358:142150. [PMID: 38679174 DOI: 10.1016/j.chemosphere.2024.142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.
Collapse
Affiliation(s)
- Zhi Luo
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhi-Yu Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen-Fei Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen-Qiang Fu
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China
| | - Feng-Lu Han
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Er-Chao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
44
|
Ruan LL, Lv XY, Hu YL, Chen MX, Jing-Tang, Zhong ZH, Bao MH, Fu LJ, Luo X, Yu SM, Wan Q, Ding YB. Metabolic landscape and pathogenic insights: a comprehensive analysis of high ovarian response in infertile women undergoing in vitro fertilization. J Ovarian Res 2024; 17:105. [PMID: 38760835 PMCID: PMC11102248 DOI: 10.1186/s13048-024-01411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND In the realm of assisted reproduction, a subset of infertile patients demonstrates high ovarian response following controlled ovarian stimulation (COS), with approximately 29.7% facing the risk of Ovarian Hyperstimulation Syndrome (OHSS). Management of OHSS risk often necessitates embryo transfer cancellation, leading to delayed prospects of successful pregnancy and significant psychological distress. Regrettably, these patients have received limited research attention, particularly regarding their metabolic profile. In this study, we aim to utilize gas chromatography-mass spectrometry (GC-MS) to reveal these patients' unique serum metabolic profiles and provide insights into the disease's pathogenesis. METHODS We categorized 145 infertile women into two main groups: the CON infertility group from tubal infertility patients and the Polycystic Ovary Syndrome (PCOS) infertility group. Within these groups, we further subdivided them into four categories: patients with normal ovarian response (CON-NOR group), patients with high ovarian response and at risk for OHSS (CON-HOR group) within the CON group, as well as patients with normal ovarian response (PCOS-NOR group) and patients with high ovarian response and at risk for OHSS (PCOS-HOR group) within the PCOS group. Serum metabolic profiles were analyzed using GC-MS. The risk criteria for OHSS were: the number of developing follicles > 20, peak Estradiol (E2) > 4000pg/mL, and Anti-Müllerian Hormone (AMH) levels > 4.5ng/mL. RESULTS The serum metabolomics analysis revealed four different metabolites within the CON group and 14 within the PCOS group. Remarkably, 10-pentadecenoic acid emerged as a discernible risk metabolite for the CON-HOR, also found to be a differential metabolite between CON-NOR and PCOS groups. cysteine and 5-methoxytryptamine were also identified as risk metabolites for the PCOS-HOR. Furthermore, KEGG analysis unveiled significant enrichment of the aminoacyl-tRNA biosynthesis pathway among the metabolites differing between PCOS-NOR and PCOS-HOR. CONCLUSION Our study highlights significant metabolite differences between patients with normal ovarian response and those with high ovarian response and at risk for OHSS within both the tubal infertility control group and PCOS infertility group. Importantly, we observe metabolic similarities between patients with PCOS and those with a high ovarian response but without PCOS, suggesting potential parallels in their underlying causes.
Collapse
Affiliation(s)
- Ling-Ling Ruan
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 23 Central Park North Road, Yubei District, Chongqing, 401147, PR China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Xing-Yu Lv
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, 610011, China
| | - Yu-Lin Hu
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, 610011, China
| | - Ming-Xing Chen
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jing-Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhao-Hui Zhong
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Mei-Hua Bao
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Li-Juan Fu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shao-Min Yu
- Department of Obstetrics and Gynecology, the People's Hospital of Yubei District, No. 23 Central Park North Road, Chongqing, 401120, China.
| | - Qi Wan
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, 610011, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 23 Central Park North Road, Yubei District, Chongqing, 401147, PR China.
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
45
|
Foyer CH, Kunert K. The ascorbate-glutathione cycle coming of age. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2682-2699. [PMID: 38243395 PMCID: PMC11066808 DOI: 10.1093/jxb/erae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Karl Kunert
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, 2001, South Africa
| |
Collapse
|
46
|
Lavalle S, Masiello E, Iannella G, Magliulo G, Pace A, Lechien JR, Calvo-Henriquez C, Cocuzza S, Parisi FM, Favier V, Bahgat AY, Cammaroto G, La Via L, Gagliano C, Caranti A, Vicini C, Maniaci A. Unraveling the Complexities of Oxidative Stress and Inflammation Biomarkers in Obstructive Sleep Apnea Syndrome: A Comprehensive Review. Life (Basel) 2024; 14:425. [PMID: 38672697 PMCID: PMC11050908 DOI: 10.3390/life14040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSAS), affecting approximately 1 billion adults globally, is characterized by recurrent airway obstruction during sleep, leading to oxygen desaturation, elevated carbon dioxide levels, and disrupted sleep architecture. OSAS significantly impacts quality of life and is associated with increased morbidity and mortality, particularly in the cardiovascular and cognitive domains. The cyclic pattern of intermittent hypoxia in OSAS triggers oxidative stress, contributing to cellular damage. This review explores the intricate relationship between OSAS and oxidative stress, shedding light on molecular mechanisms and potential therapeutic interventions. METHODS A comprehensive review spanning from 2000 to 2023 was conducted using the PubMed, Cochrane, and EMBASE databases. Inclusion criteria encompassed English articles focusing on adults or animals and reporting values for oxidative stress and inflammation biomarkers. RESULTS The review delineates the imbalance between pro-inflammatory and anti-inflammatory factors in OSAS, leading to heightened oxidative stress. Reactive oxygen species biomarkers, nitric oxide, inflammatory cytokines, endothelial dysfunction, and antioxidant defense mechanisms are explored in the context of OSAS. OSAS-related complications include cardiovascular disorders, neurological impairments, metabolic dysfunction, and a potential link to cancer. This review emphasizes the potential of antioxidant therapy as a complementary treatment strategy. CONCLUSIONS Understanding the molecular intricacies of oxidative stress in OSAS is crucial for developing targeted therapeutic interventions. The comprehensive analysis of biomarkers provides insights into the complex interplay between OSAS and systemic complications, offering avenues for future research and therapeutic advancements in this multifaceted sleep disorder.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (C.G.)
| | - Edoardo Masiello
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy;
| | - Giannicola Iannella
- Department of ‘Organi di Senso’, University “Sapienza”, Viale dell’Università, 33, 00185 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Giuseppe Magliulo
- Department of ‘Organi di Senso’, University “Sapienza”, Viale dell’Università, 33, 00185 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Annalisa Pace
- Department of ‘Organi di Senso’, University “Sapienza”, Viale dell’Università, 33, 00185 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Jerome Rene Lechien
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons, 7022 Mons, Belgium;
| | - Christian Calvo-Henriquez
- Service of Otolaryngology, Hospital Complex of Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Salvatore Cocuzza
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, ENT Section, University of Catania, Via S. Sofia, 78, 95125 Catania, Italy; (S.C.); (F.M.P.)
| | - Federica Maria Parisi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, ENT Section, University of Catania, Via S. Sofia, 78, 95125 Catania, Italy; (S.C.); (F.M.P.)
| | - Valentin Favier
- Service d’ORL et de Chirurgie Cervico-Faciale, Centre Hospitalo-Universitaire de Montpellier, 80 Avenue Augustin Fliche, 34000 Montpellier, France
| | - Ahmed Yassin Bahgat
- Department of Otorhinolaryngology, Alexandria University, Alexandria 21577, Egypt;
| | - Giovanni Cammaroto
- Department of Head-Neck Surgery, Otolaryngology, Head-Neck and Oral Surgery Unit, Morgagni Pierantoni Hospital, Via Carlo Forlanini, 34, 47121 Forlì, Italy;
| | - Luigi La Via
- Department of Anaesthesia and Intensive Care, University Hospital Policlinico-San Marco, 95125 Catania, Italy;
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (C.G.)
| | - Alberto Caranti
- ENT and Audiology Department, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.V.)
| | - Claudio Vicini
- ENT and Audiology Department, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.V.)
| | - Antonino Maniaci
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (C.G.)
| |
Collapse
|
47
|
Wei Y, Gu Y, Zhou Z, Wu C, Liu Y, Sun H. TRIM21 Promotes Oxidative Stress and Ferroptosis through the SQSTM1-NRF2-KEAP1 Axis to Increase the Titers of H5N1 Highly Pathogenic Avian Influenza Virus. Int J Mol Sci 2024; 25:3315. [PMID: 38542289 PMCID: PMC10970474 DOI: 10.3390/ijms25063315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection.
Collapse
Affiliation(s)
- Yifan Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Changrong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
48
|
Xia Q, Lan J, Pan Y, Wang Y, Song T, Yang Y, Tian X, Chen L, Gu Z, Ding YY. Effects of Dityrosine on Lactic Acid Metabolism in Mice Gastrocnemius Muscle During Endurance Exercise via the Oxidative Stress-Induced Mitochondria Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5269-5282. [PMID: 38439706 DOI: 10.1021/acs.jafc.3c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Dityrosine (Dityr) has been detected in commercial food as a product of protein oxidation and has been shown to pose a threat to human health. This study aims to investigate whether Dityr causes a decrease in lactic acid metabolism in the gastrocnemius muscle during endurance exercise. C57BL/6 mice were administered Dityr or saline by gavage for 13 weeks and underwent an endurance exercise test on a treadmill. Dityr caused a severe reduction in motion displacement and endurance time, along with a significant increase in lactic acid accumulation in the blood and gastrocnemius muscle in mice after exercise. Dityr induced significant mitochondrial defects in the gastrocnemius muscle of mice. Additionally, Dityr induced serious oxidative stress in the gastrocnemius muscle, accompanied by inflammation, which might be one of the causes of mitochondrial dysfunction. Moreover, significant apoptosis in the gastrocnemius muscle increased after exposure to Dityr. This study confirmed that Dityr induced oxidative stress in the gastrocnemius muscle, which further caused significant mitochondrial damage in the gastrocnemius muscle cell, resulting in decreased capacity of lactic acid metabolism and finally affected performance in endurance exercise. This may be one of the possible mechanisms by which highly oxidized foods cause a decreased muscle energy metabolism.
Collapse
Affiliation(s)
- Qiudong Xia
- Department of Physical Education, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jinchi Lan
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuxiang Pan
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuxin Wang
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tianyuan Song
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xu Tian
- Beijing Competitor Sports Nutrition Research Institute, Beijing 100027, China
| | - Longjun Chen
- Huzhou Shengtao Biotechnology LLC, Huzhou 313000, China
| | - Zhenyu Gu
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yin-Yi Ding
- Food Safety Key Laboratory of Zhejiang Province, National Experimental Teaching Demonstration Center for Food Engineering and Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
49
|
Wei P, Wang J, Yu H, Chen Y, Liu C, Zhang Y, Zeng W, Hu G. Effects of Leonurine on oocyte maturation and parthenogenetic embryo development in sheep. Reprod Domest Anim 2024; 59:e14546. [PMID: 38439683 DOI: 10.1111/rda.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Leonurine (LEO), an alkaloid isolated from Leonurus spp., has anti-oxidant, anti-inflammatory and anti-apoptotic effects and can prevent damage caused by reactive oxygen species (ROS). These properties suggest that it can improve the maturation rate of oocytes and developmental ability of embryos, which are key parameters in animal breeding. In this study, the effects of LEO on in vitro maturation and early embryonic development in sheep oocytes were evaluated. Among various doses examined (0, 10, 20 and 40 μM), a dose of 20 μM was optimal with respect to the oocyte maturation rate. Compared with estimates in the control group, GSH levels and mitochondrial membrane potential of sheep oocytes treated with 20 μM LEO were significantly higher, and 40 μM LEO would affect oocyte maturation. Additionally, ROS levels were significantly lower, expression levels of the antioxidant genes CAT and SOD1 were significantly higher, and there was no significant difference in GPX3 expression. The Bax/Bcl-2 ratio and Caspase-3 expression were significantly reduced in the 20 μM LEO group. During early embryonic development in vitro, the cleavage rate and blastocyst rate were significantly higher in the 20 μM LEO treatment group compared to other groups. GSH levels and mitochondrial membrane potential were significantly higher, while ROS levels were significantly lower, and expression levels of the antioxidant genes CAT, GPX3 and SOD1 were significantly higher in eight-cell embryos treated with 20 μM LEO than in the control group. The Bax/Bcl-2 ratio and Caspase-3 levels were significantly decreased. In summary, LEO can reduce the effect of oxidative stress, improve the oocyte maturation rate and enhance embryonic development.
Collapse
Affiliation(s)
- Panpan Wei
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hengbin Yu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yan Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chang Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yue Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
50
|
Sun Z, Jiao A, Zhao Y, Han T, Zhang H, Gao Q. Isoliquiritin can cause mitochondrial dysfunction and regulate Nrf2 to affect the development of mouse oocytes. Food Chem Toxicol 2024; 185:114445. [PMID: 38311047 DOI: 10.1016/j.fct.2024.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
IsoliQuirtigenin (ILG) has been widely studied in somatic cells and tissues, but less in reproductive development. It is a kind of widely used food additive. In this study, it was found that ILG could significantly increase the levels of ROS,GSH and MMP in mouse oocytes (P < 0.01). In order to explore the cause of this phenomenon, it was found that the abnormal distribution of mitochondria and ATP synthesis levels were significantly increased (P < 0.05). At this time, we made a reasonable hypothesis that ILG affected mitochondrial function. In subsequent studies, it was found that the endogenous ROS accumulation level in mitochondria was significantly increased. After continuous RT-PCR screening, it was found that the expression of Nrf2 was significantly inhibited (P < 0.01). Its upstream and downstream FOXO3 GPX1, CAT, SOD2, SIRT1 gene also appear different degree of significant change (P < 0.05), in which the lower expression of NADP + (P < 0.05) illustrates the mitochondrial ATP synthesis electronic chain were suppressed, it also has the reason, By inhibiting electron chain and ATP synthesis, ILG leads to oocyte apoptosis and initiation of autophagy, reducing oocyte and its subsequent developmental potential.
Collapse
Affiliation(s)
- Zhaoyang Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Anhui Jiao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Yuhan Zhao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Tiancang Han
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Hongbo Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Qingshan Gao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China.
| |
Collapse
|