1
|
Zhang X, Zhu Y, Xiong Z, Xie W, Shao M, Liu Z. Broad-Spectrum ROS/RNS Scavenging Catalase-Loaded Microreactors for Effective Oral Treatment of Inflammatory Bowel Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501341. [PMID: 40263925 DOI: 10.1002/smll.202501341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/20/2025] [Indexed: 04/24/2025]
Abstract
Inflammatory bowel disease (IBD) such as ulcerative colitis (UC) is an autoimmune disease characterized by persistent inflammation along the gastrointestinal tract with excessive generation of reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation. Here, catalase (CAT)-containing microreactor capsules with long-lasting broad-spectrum ROS/RNS-scavenging capability are developed for the treatment of IBD. In this design, CAT is encapsulated in the dense hydrogel network of calcium alginate (ALG) microspheres, which provides long-term protection of CAT activity in protease-rich intestinal environment. Afterward, the polydopamine (PDA) modification on the surface of CAT@ALG microspheres can provide them bioadhesiveness to achieve prolonged retention in the intestinal tract and broad-spectrum scavenging capability against various types of ROS/RNS beyond hydrogen peroxide. Enteric capsules are further used to protect the CAT@ALG-PDA microspheres from gastric fluid for selective release at the intestinal site. The combined action of PDA and CAT in CAT@ALG-PDA microreactors results in the broad-spectrum scavenging of excess ROS/RNS and regulates redox balance in acute UC rat model, showing satisfactory therapeutic effects superior to the mesalazine and adalimumab at clinically relevant doses without obvious side effects. This work highlights that these CAT@ALG-PDA capsules can act as long-acting broad-spectrum ROS/RNS reactors, promising for IBD treatment.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zijian Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Wenjie Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Ming Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
2
|
Das M, Mondal S, Ghosh R, Roy L, Kumar Das A, Sankar Bhattacharya S, Pal D, Bhattacharya D, Chakrabarti P, Kumar Mallick A, Kumar Kundu J, Kumar Pal S. A Pleiotropic Nanomedicine Mitigates Splenic Hyperplasia, Ineffective Erythropoiesis, G6PDH Anomaly through Redox Buffering in Preclinical Mice Model. ChemMedChem 2025; 20:e202400698. [PMID: 39544113 DOI: 10.1002/cmdc.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Here, we present a pleiotropic nanomedicine-a smart, functionalized redox buffering nanoparticle-that may be used to treat hematological diseases, associated splenic hyperplasia, and issues related to restricted erythropoiesis. With a diameter of 5-7 nm, the spherical nanomaterial is made of manganese oxide and citrate. Here, we have produced the novel nanomaterial and, using cutting-edge electron microscopic and spectroscopic techniques, extensively assessed its redox buffering potential in vitro with its structural integrity. Using an appropriate animal model (Phenylhydrazine, PHz, intoxicated C57BL/6J mice), we assessed the therapeutic efficacy of the redox buffering nanomedicine in the treatment of anemia and related consequences. We have further investigated the intricate molecular mechanism of the nanomedicine and its therapeutic impact, which includes increased erythropoiesis and G6PDH production, decreased inflammatory responses, mitigation of splenic hyperplasia, and synergistic intracellular redox buffering. To the best of our knowledge, our studies would find relevance in the innovative management of anemia, decreased erythropoiesis, and splenic hyperplasia.
Collapse
Affiliation(s)
- Monojit Das
- Department of Zoology, Vidyasagar University, Rangamati, Midnapore, 721102, India
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
| | - Susmita Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Ria Ghosh
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| | - Anjan Kumar Das
- Department of Pathology, Coochbehar Government Medical College and Hospital, Kotwali, Coochbehar, 736101, India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
| | - Debasish Bhattacharya
- Department of Gynecology & Obstetrics, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - Prantar Chakrabarti
- Department of Hematology, Vivekananda Institute of Medical Sciences, Kolkata, 700026, India
| | - Asim Kumar Mallick
- Department of Pediatric Medicine, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - Jayanta Kumar Kundu
- Department of Zoology, Vidyasagar University, Rangamati, Midnapore, 721102, India
| | - Samir Kumar Pal
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| |
Collapse
|
3
|
Pop RM, Gherman LM, Jianu EM, Roșian ȘH, Onofrei MM, Mocan LP, Chedea VS, Bocsan IC, Apostu D, Todea AR, Dulf EH, Cruceru J, Mihu CM, Pârvu AE, Buzoianu AD. Inflammation and oxidative stress processes in induced precocious puberty in rats. Heliyon 2024; 10:e40962. [PMID: 39759285 PMCID: PMC11699080 DOI: 10.1016/j.heliyon.2024.e40962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
This study aimed to assess the influence of different types of blue light sources on male and female rats' puberty onset, the morphologic-induced alterations in reproductive organs tissues, the impact on inflammation and oxidative stress markers, anxiety levels, and mathematical modeling for tissue data interpretation. Four groups of sixteen rats each (8 females and 8 males/group) were investigated: three groups were exposed to blue light from mobile phones (MP), computer screens (PC), or LED lamps (LED) versus the control group (CTRL). The rats in the CTRL group had no exposure while the other groups were exposed for 30 days to the blue light of MP, PC, and LED for 16 h per day. Serum levels of cortisol, TNF-α, IL-6, and MMP-2 and MMP-9 ovaries and testis tissue levels were analyzed using the ELISA technique. Total oxidative stress (TOS), nitric oxide (NO), and malondialdehyde (MDA) in serum were determined spectrophotometrically. Histomorphological examination was performed on both male and female genital organs. Rats of both sexes presented significant early onset of puberty secondary to blue light exposure. LED-emitted light significantly increased TNF-α and MMP-9 levels in both sexes. The MP and PC emitted light significantly affected the levels of MMP-2 in both females and males. Levels of TOS and NO were increased by LED, respectively by MP and LED exposure in female rats. The histopathological examination revealed no statistically significant differences in the ovaries and testes of rats across the different groups. Blue light exposure induces precocious puberty, by accelerating sexual maturation, and triggers the overproduction of MMPs that could promote organic alteration through tissue remodeling. Oxidative stress parameters were upregulated only in female rats, while cortisol levels were higher in male rats.
Collapse
Affiliation(s)
- Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Luciana Mădălina Gherman
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
- Experimental Centre of "Iuliu Haţieganu" University of Medicine and Pharmacy, Louis Pasteur, No 6, 400349, Cluj-Napoca, Romania
| | - Elena-Mihaela Jianu
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Ștefan Horia Roșian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților Street, 400001, Cluj-Napoca, Romania
- Department of Cardiology—Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Calea Moților Street No. 19-21, 400001, Cluj-Napoca, Romania
| | - Mădălin Mihai Onofrei
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Lavinia Patricia Mocan
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400, Blaj, Romania
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Dragoș Apostu
- Orthopaedics and Traumatology, Department of Surgical Specialities, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Andreea Roxana Todea
- Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului Street No. 28, 400014, Cluj-Napoca, Romania
| | - Eva Henrietta Dulf
- Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului Street No. 28, 400014, Cluj-Napoca, Romania
| | - Jeanine Cruceru
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| | - Alina Elena Pârvu
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Wu C, Xu X, Shi Y, Li F, Zhang X, Huang Y, Xia D. Neutrophil Extracellular Trap Formation Model Induced by Monosodium Urate and Phorbol Myristate Acetate: Involvement in MAPK Signaling Pathways. Int J Mol Sci 2024; 26:143. [PMID: 39796001 PMCID: PMC11719704 DOI: 10.3390/ijms26010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production. The microstructure of neutrophils was observed by transmission electron microscopy, and the expression of key proteins was determined by Western blotting. Additionally, the effect of various inhibitors targeting the MAPK signaling pathway on NET formation was evaluated. They include the Ras inhibitor Salirasib, Raf inhibitor Vemurafenib, ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, as well as NADPH oxidase inhibitor DPI and neutrophil elastase inhibitor Alvelestat. The results showed that MSU and PMA triggered significant NET formation, which was accompanied by increased ROS levels, lactate dehydrogenase release, dsDNA, and IL-8. Notably, selective MAPK pathway inhibitors and DPI and Alvelestat, except for SB203580, effectively down-regulated these indicators. These data indicated that the activation of a signaling pathway involving Ras-Raf-ERK, which is dependent on ROS, is crucial for the induction of NET formation by MSU and PMA. Given the involvement of NETs in multiple pathologies, our findings could potentially serve as molecular targets for the intervention and treatment of crystal-related diseases, especially for gout.
Collapse
Affiliation(s)
- Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Xinru Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Yueyue Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (C.W.); (X.X.); (Y.S.); (F.L.); (Y.H.)
| |
Collapse
|
5
|
Jayathilaka EHTT, Hasitha Madhawa Dias MK, Tennakoon MSBWTMNS, Chulhong O, Nikapitiya C, Shin HJ, De Zoysa M. Mapping the proteomic landscape and anti-inflammatory role of Streptococcus parauberis extracellular vesicles. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109945. [PMID: 39378979 DOI: 10.1016/j.fsi.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are nanoscale membrane-bound structures involved in intercellular communication and transport of bioactive molecules. In this study, we described the proteomic insight and anti-inflammatory activity of Streptococcus parauberis BEVs (SpEVs). Proteomics analysis of SpEVs identified 6209 distinct peptides and 1039 proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated enrichment in pathways related to the biosynthesis of aminoacyl tRNA, amino acids, and secondary metabolites. Based on the predicted protein-protein interactions, we discovered key immunological proteins such as IL12A, IL12B, IL8, CD28, and NF-κB between SpEVs and human proteins. Functionally, SpEVs exhibit strong anti-inflammatory activity in LPS-stimulated Raw 264.7 cells by reducing the production of key inflammatory mediators. These include nitric oxide (NO), reactive oxygen species (ROS), inflammatory cytokines such as TNFα and IL6, as well as inflammation-related proteins like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). qRT-PCR and immunoblotting results clearly indicate that SpEVs modulate the NF-κB and MAPK pathways to induce anti-inflammatory activity. Furthermore, in vivo experiments with zebrafish larvae demonstrated that SpEVs treatment reduced the NO and ROS production with minimal cell mortality. Finally, we validated the anti-inflammatory activity of SpEVs in vivo by systematically assessing the inhibition of NO production, reduction in ROS generation, prevention of cell death, and modulation of NF-κB and MAPK signaling pathways. In conclusion, SpEVs contain rich in unique proteins that play crucial roles in mediating anti-inflammatory effects.
Collapse
Affiliation(s)
- E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | | | - M S B W T M Nipuna Sudaraka Tennakoon
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Oh Chulhong
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Gujwa-eup, Jeju 2670, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Israni DK, Raghani NR, Soni J, Shah M, Prajapati BG, Chorawala MR, Mangmool S, Singh S, Chittasupho C. Harnessing Cannabis sativa Oil for Enhanced Skin Wound Healing: The Role of Reactive Oxygen Species Regulation. Pharmaceutics 2024; 16:1277. [PMID: 39458608 PMCID: PMC11510192 DOI: 10.3390/pharmaceutics16101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa emerges as a noteworthy candidate for its medicinal potential, particularly in wound healing. This review article explores the efficacy of cannabis oil in reducing reactive oxygen species (ROS) during the healing of acute and chronic wounds, comparing it to the standard treatments. ROS, produced from various internal and external sources, play a crucial role in wound development by causing cell and tissue damage. Understanding the role of ROS on skin wounds is essential, as they act both as signaling molecules and contributors to oxidative damage. Cannabis oil, recognized for its antioxidant properties, may help mitigate oxidative damage by scavenging ROS and upregulating antioxidative mechanisms, potentially enhancing wound healing. This review emphasizes ongoing research and the future potential of cannabis oil in dermatological treatments, highlighted through clinical studies and patent updates. Despite its promising benefits, optimizing cannabis oil formulations for therapeutic applications remains a challenge, underscoring the need for further research to realize its medicinal capabilities in wounds.
Collapse
Affiliation(s)
- Dipa K. Israni
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Neha R. Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India;
| | - Jhanvi Soni
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University, Waghodia, Vadodara 391760, Gujarat, India;
| | - Mansi Shah
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Mehul R. Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India;
| | | | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
7
|
Guan Z, Xiao M, Hu S, Li Y, Mo C, Yin Y, Li R, Zhang Z, Zhang X, Liao M. Proteomic study of localized tissue necrosis by Naja atra venom. Toxicon 2024; 247:107829. [PMID: 38925341 DOI: 10.1016/j.toxicon.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Naja atra bites often result in immediate and severe illness. The venom of N. atra contains a complex mixture of toxins that can cause significant damage to the patient's skin tissue. If left untreated, this condition can progress to localized necrosis, potentially resulting in impairment or even amputation in severe cases. Despite the known effects of the venom, the exact mechanisms underlying this tissue necrosis are not fully understood. This study aimed to investigate the protein components responsible for tissue necrosis induced by N. atra venom at both the organism-wide and molecular levels. To achieve this, venom was injected into Bama miniature pigs to cause ulcers, and exudate samples were collected at various time points after injection. Label-free proteomics analysis identified 1119, 1016, 938, 864, and 855 proteins in the exudate at 6, 12, 24, 36, and 48 h post-injection, respectively. Further analysis revealed 431 differentially expressed proteins, with S100A8, MMP-2, MIF, and IDH2 identified as proteins associated with local tissue necrosis. In this study, we established a Bama miniature pig model for N. atra venom injection and performed proteomic analysis of the wound exudate, which provides important insights into the molecular pathology of snakebite-induced tissue necrosis and potential theoretical bases for clinical treatment. Proteomic data from this study can be accessed through ProteomeXchange using the identifier PXD052498.
Collapse
Affiliation(s)
- Zhezhe Guan
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China; Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, Beijing, 100142, PR China
| | - Manqi Xiao
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Shaocong Hu
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Yalan Li
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Caifeng Mo
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Yalong Yin
- First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Ruopeng Li
- Department of Dioptometry of Shanxi Aier Eye Hospital, Shanxi, 030000, PR China
| | - Ziyan Zhang
- School of Basic Medicine of Guangxi Medical University, Nanning, 530021, PR China
| | - Xuerong Zhang
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China
| | - Ming Liao
- Institute of Life Sciences of Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
8
|
Butenko S, Nagalla RR, Guerrero-Juarez CF, Palomba F, David LM, Nguyen RQ, Gay D, Almet AA, Digman MA, Nie Q, Scumpia PO, Plikus MV, Liu WF. Hydrogel crosslinking modulates macrophages, fibroblasts, and their communication, during wound healing. Nat Commun 2024; 15:6820. [PMID: 39122702 PMCID: PMC11315930 DOI: 10.1038/s41467-024-50072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/28/2024] [Indexed: 08/12/2024] Open
Abstract
Biomaterial wound dressings, such as hydrogels, interact with host cells to regulate tissue repair. This study investigates how crosslinking of gelatin-based hydrogels influences immune and stromal cell behavior and wound healing in female mice. We observe that softer, lightly crosslinked hydrogels promote greater cellular infiltration and result in smaller scars compared to stiffer, heavily crosslinked hydrogels. Using single-cell RNA sequencing, we further show that heavily crosslinked hydrogels increase inflammation and lead to the formation of a distinct macrophage subpopulation exhibiting signs of oxidative activity and cell fusion. Conversely, lightly crosslinked hydrogels are more readily taken up by macrophages and integrated within the tissue. The physical properties differentially affect macrophage and fibroblast interactions, with heavily crosslinked hydrogels promoting pro-fibrotic fibroblast activity that drives macrophage fusion through RANKL signaling. These findings suggest that tuning the physical properties of hydrogels can guide cellular responses and improve healing, offering insights for designing better biomaterials for wound treatment.
Collapse
Affiliation(s)
- Sergei Butenko
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Raji R Nagalla
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | | | - Francesco Palomba
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Li-Mor David
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Ronald Q Nguyen
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Denise Gay
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Axel A Almet
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Dermatology, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, CA, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA.
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Eshkevari L, Sales M, Collins C, Totoraitis J, Donohue L, Bowman-Dalley C, Bregman B, Negro P, Gordon S, Estrada C. Efficacy of addition of the anti-inflammatory, IV glutathione to standard ketamine IV therapy in major depressive disorder. Psychiatry Res 2024; 337:115949. [PMID: 38795698 DOI: 10.1016/j.psychres.2024.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Ketamine, a N-methyl-D-aspartate (NMDA) antagonist, is used for treatment-resistant depression (TRD). Recent studies have shown that there are increased levels of pro-inflammatory cytokines in individuals with major depressive disorder (MDD) and those with higher levels of oxidative stress markers have a decreased or null response to conventional antidepressants. Glutathione (GSH) as an antioxidant adjuvant to ketamine has not been well studied. This double-blind study with 30 patients divided into 2 groups of 15 each, aimed to determine if GSH, added to standard ketamine infusion (GSH+K), rendered better outcomes in MDD patients versus patients receiving ketamine infusions with a normal saline placebo (K+NS). There were significant drops in BDI-II scores from day 1 to day 14, PHQ- scores from day 1 to day 14 and PHQ-9 scores day 14 to day 28, suggesting the overall treatment was effective. There were no statistically significant differences between the groups over time. However, a sustained improvement in depressive symptoms was observed for 14 days post-infusion in both groups.
Collapse
Affiliation(s)
- Ladan Eshkevari
- Georgetown University Medical Center, Avesta Alternative Care, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
11
|
Probst D, Sode K. Development of closed bipolar electrode based L-lactate sensor employing quasi-direct electron transfer type enzyme with cyclic voltammetry. Biosens Bioelectron 2024; 254:116197. [PMID: 38493528 DOI: 10.1016/j.bios.2024.116197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Herein, we present a proof-of-concept of an enzyme sensor combining closed bipolar electrode system with quasi-direct electron transfer (DET) type enzyme. The closed bipolar electrode system was tested using cyclic voltammetry, with L-lactate as a model substrate. L-Lactate was detected through measurement of the change in junction potential across the bipolar electrode. This change in junction potential was caused by reduction of amino reactive phenazine ethosulfate conjugated to Aerococcus vilidans derived engineered L-lactate oxidase (AvLOx) which shows a quasi-DET signal. Using the closed bipolar electrode system allowed simultaneous measuring using cyclic voltammetry and open circuit potential (OCP) and achieved a limit of detection of 400 μM and 76.2 μM lactate respectively. The sensor was then demonstrated to perform with equivalent sensitivity using OCP across varying surface areas. To the best of our knowledge this is the first time a closed bipolar electrode system has been used with an enzyme which is capable of quasi-direct or direct electron transfer. This work can be expanded further to other enzymes capable of directly altering the junction potential of an electrode surface.
Collapse
Affiliation(s)
- David Probst
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Joorabloo A, Liu T. Recent advances in reactive oxygen species scavenging nanomaterials for wound healing. EXPLORATION (BEIJING, CHINA) 2024; 4:20230066. [PMID: 38939866 PMCID: PMC11189585 DOI: 10.1002/exp.20230066] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 06/29/2024]
Abstract
Reactive oxygen species play a crucial role in cell signaling pathways during wound healing phases. Treatment strategies to balance the redox level in the deep wound tissue are emerging for wound management. In recent years, reactive oxygen species scavenging agents including natural antioxidants, reactive oxygen species (ROS) scavenging nanozymes, and antioxidant delivery systems have been widely employed to inhibit oxidative stress and promote skin regeneration. Here, the importance of reactive oxygen species in different wound healing phases is critically analyzed. Various cutting-edge bioactive ROS nanoscavengers and antioxidant delivery platforms are discussed. This review also highlights the future directions for wound therapies via reactive oxygen species scavenging. This comprehensive review offers a map of the research on ROS scavengers with redox balancing mechanisms of action in the wound healing process, which benefits development and clinical applications of next-generation ROS scavenging-based nanomaterials in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia
| | - Tianqing Liu
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia
| |
Collapse
|
13
|
Sankaralingam S, Kolluru G. Editorial: Reactive oxygen species signaling and immune diseases. Front Immunol 2024; 15:1422095. [PMID: 38835786 PMCID: PMC11148556 DOI: 10.3389/fimmu.2024.1422095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
| | - Gopi Kolluru
- Departments of Pathology Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Cellular Biology and Anatomy, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
14
|
Dascălu RC, Bărbulescu AL, Stoica LE, Dinescu ȘC, Biță CE, Popoviciu HV, Ionescu RA, Vreju FA. Review: A Contemporary, Multifaced Insight into Psoriasis Pathogenesis. J Pers Med 2024; 14:535. [PMID: 38793117 PMCID: PMC11122105 DOI: 10.3390/jpm14050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a chronic recurrent inflammatory autoimmune pathology with a significant genetic component and several interferences of immunological cells and their cytokines. The complex orchestration of psoriasis pathogenesis is related to the synergic effect of immune cells, polygenic alterations, autoantigens, and several other external factors. The major act of the IL-23/IL-17 axis, strongly influencing the inflammatory pattern established during the disease activity, is visible as a continuous perpetuation of the pro-inflammatory response and keratinocyte activation and proliferation, leading to the development of psoriatic lesions. Genome-wide association studies (GWASs) offer a better view of psoriasis pathogenic pathways, with approximately one-third of psoriasis's genetic impact on psoriasis development associated with the MHC region, with genetic loci located on chromosome 6. The most eloquent genetic factor of psoriasis, PSORS1, was identified in the MHC I site. Among the several factors involved in its complex etiology, dysbiosis, due to genetic or external stimulus, induces a burst of pro-inflammatory consequences; both the cutaneous and gut microbiome get involved in the psoriasis pathogenic process. Cutting-edge research studies and comprehensive insights into psoriasis pathogenesis, fostering novel genetic, epigenetic, and immunological factors, have generated a spectacular improvement over the past decades, securing the path toward a specific and targeted immunotherapeutic approach and delayed progression to inflammatory arthritis. This review aimed to offer insight into various domains that underline the pathogenesis of psoriasis and how they influence disease development and evolution. The pathogenesis mechanism of psoriasis is multifaceted and involves an interplay of cellular and humoral immunity, which affects susceptible microbiota and the genetic background. An in-depth understanding of the role of pathogenic factors forms the basis for developing novel and individualized therapeutic targets that can improve disease management.
Collapse
Affiliation(s)
- Rucsandra Cristina Dascălu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Andreea Lili Bărbulescu
- Department of Pharmacology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Loredana Elena Stoica
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Cristina Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Horațiu Valeriu Popoviciu
- Department of Rheumatology, BFK and Medical Rehabilitation, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Mures, Romania;
| | - Răzvan Adrian Ionescu
- Third Internal Medicine Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Florentin Ananu Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| |
Collapse
|
15
|
Yang K, Gao R, Chen H, Hu J, Zhang P, Wei X, Shi J, Chen Y, Zhang L, Chen J, Lyu Y, Dong Z, Wei W, Hu K, Guo Y, Ge J, Sun A. Myocardial reperfusion injury exacerbation due to ALDH2 deficiency is mediated by neutrophil extracellular traps and prevented by leukotriene C4 inhibition. Eur Heart J 2024; 45:1662-1680. [PMID: 38666340 PMCID: PMC11089336 DOI: 10.1093/eurheartj/ehae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND AND AIMS The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.
Collapse
Affiliation(s)
- Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Rifeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
- Department of Cardiac Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Hanchuan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Jingjing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310006, China
| | - Peng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, Minhang Hospital affiliated to Fudan University, 170 Xinsong Road, Shanghai 201100, China
| | - Xiang Wei
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Jiaran Shi
- Department of Cardiology, Lihuili Hospital Facilitated to Ningbo University, 57 Xingning Road, Ningbo 315040, China
| | - Yinyin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Department of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Liwei Zhang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yang Lyu
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Wei Wei
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Heart Failure Center Alliance, 134 Dongjie Road, Fuzhou 350001, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, 180 Fenglin Road, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| |
Collapse
|
16
|
Fathima SN, Firdous SM, Pal S, Ghazzawy HS, Gouda MM. Assessment of In Vitro Antioxidant and Anti-Inflammatory Activities of Pumpkin ( Cucurbita pepo) Natural Plant. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241257127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
Objectives The objective of this research was to investigate the potential anti-inflammatory properties of the Cucurbita pepo fruit. Given the adverse effects associated with long-term use or excessive doses of conventional anti-inflammatory medications, exploring herbal therapies as alternatives has become increasingly important. Methods Various preliminary tests and antioxidant assays, both enzymatic and non-enzymatic, were conducted on the C . pepo fruit. Bioactive substances present in the fruit, including alkaloids, carbohydrates, flavonoids, tannins, amino acids, triterpenoids, and saponin glycosides, were identified through early analysis. Different extraction solvents, such as chloroform, methanol, and water, were utilized to extract samples. The methanolic extract was subjected to further testing for its in vitro anti-inflammatory characteristics. This involved evaluating their ability to stabilize RBC membranes, inhibit protein denaturation, and suppress proteinase activity using two concentrations (150 µg/ml and 300 µg/ml) of the extract. Results The methanolic extract of the C. pepo fruit exhibited strong free radical scavenging activity in both DPPH and H2O2 assays. Moreover, it demonstrated the dose-dependent stabilization of RBC membranes, resulting in reduced hemolysis, protein denaturation, and proteinase activity. These findings suggest potent anti-inflammatory effects of the methanolic extract. Conclusion This research study has found that the C. pepo fruit methanolic extract significantly reduced inflammation. This demonstrates the promise of natural chemicals as less risky substitutes for traditional anti-inflammatory medications. Potentially safe and efficient treatments for inflammatory illnesses could be found in herbal remedies such as the C. pepo fruit. Therefore, this study highlights the significance of exploring herbal remedies as a potential treatment option for inflammation-related diseases.
Collapse
Affiliation(s)
- Syeda Nishat Fathima
- Department of Pharmacology, Jayamukhi College of Pharmacy, Narsempet, Warangal, Telangana, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India
| | - Sourav Pal
- P.G. Institute of Medical Sciences, Dhurabila, Dhamkuria, Chandrakona Town, Paschim Medinipur, West Bengal, India
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory for Date palm Research and Development, Agriculture Research Center, Giza, Egypt
| | - Mostafa M. Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
17
|
Jonsson AH. Granzyme K + CD8 T cells in autoimmunity. Best Pract Res Clin Rheumatol 2024; 38:101930. [PMID: 38307763 PMCID: PMC11291703 DOI: 10.1016/j.berh.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
CD8 T cells expressing granzyme K are enriched in synovial tissue from patients with rheumatoid arthritis and in tissues affected by several other autoimmune diseases. The roles these cells play in autoimmune disease is under active investigation, and several recent studies have begun to shed light on this question. Putting this cell type into functional perspective is especially important given their enrichment at the sites of disease. This review summarizes available evidence for the presence of CD8 T cells and other granzyme K-expressing cells in tissues in autoimmune diseases and discusses the effects these cells may have on the pathogenesis of autoimmune conditions.
Collapse
Affiliation(s)
- Anna Helena Jonsson
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
18
|
Wang L, Qiao Y, Yu J, Wang Q, Wu X, Cao Q, Zhang Z, Feng Z, He H. Endurance exercise preconditioning alleviates ferroptosis induced by doxorubicin-induced cardiotoxicity through mitochondrial superoxide-dependent AMPKα2 activation. Redox Biol 2024; 70:103079. [PMID: 38359747 PMCID: PMC10878110 DOI: 10.1016/j.redox.2024.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Doxorubicin-induced cardiotoxicity (DIC) adversely impacts patients' long-term health and quality of life. Its underlying mechanism is complex, involving regulatory cell death mechanisms, such as ferroptosis and autophagy. Moreover, it is a challenge faced by patients undergoing cardiac rehabilitation. Endurance exercise (E-Exe) preconditioning effectively counters DIC injury, potentially through the adenosine monophosphate-activated protein kinase (AMPK) pathway. However, detailed studies on this process's mechanisms are scarce. Here, E-Exe preconditioning and DIC models were established using mice and primary cultured adult mouse cardiomyocytes (PAMCs). Akin to ferrostatin-1 (ferroptosis inhibitor), rapamycin (autophagic inducer), and MitoTEMPO (mitochondrial free-radical scavenger), E-Exe preconditioning effectively alleviated Fe2+ accumulation and oxidative stress and improved energy metabolism and mitochondrial dysfunction in DIC injury, as demonstrated by multifunctional, enzymatic, and morphological indices. However, erastin (ferroptosis inducer), 3-methyladenine (autophagic inhibitor), adenovirus-mediated AMPKα2 downregulation, and AMPKα2 inhibition by compound C significantly diminished these effects, both in vivo and in vitro. The results suggest a non-traditional mechanism where E-Exe preconditioning, under mild mitochondrial reactive oxygen species generation, upregulates and phosphorylates AMPKα2, thereby enhancing mitochondrial complex I activity, activating adaptive autophagy, and improving myocardial tolerance to DIC injury. Overall, this study highlighted the pivotal role of mitochondria in myocardial DIC-induced ferroptosis and shows how E-Exe preconditioning activated AMPKα2 against myocardial DIC injury. This suggests that E-Exe preconditioning could be a viable strategy for patients undergoing cardiac rehabilitation.
Collapse
Affiliation(s)
- Liang Wang
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang Qiao
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jingzhi Yu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Qihao Wang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Xinyu Wu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Qiqi Cao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Zeyu Zhang
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhen Feng
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China.
| |
Collapse
|
19
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
20
|
Kong J, Zou R, Chu R, Hu N, Liu J, Sun Y, Ge X, Mao M, Yu H, Wang Y. An Ultrasmall Cu/Cu 2O Nanoparticle-Based Diselenide-Bridged Nanoplatform Mediating Reactive Oxygen Species Scavenging and Neuronal Membrane Enhancement for Targeted Therapy of Ischemic Stroke. ACS NANO 2024; 18:4140-4158. [PMID: 38134247 DOI: 10.1021/acsnano.3c08734] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Ischemic stroke is one of the major causes of death and disability worldwide, and an effective and timely treatment of ischemic stroke has been a challenge because of the narrow therapeutic window and the poor affinity with thrombus of the thrombolytic agent. In this study, rPZDCu, a multifunctional nanoparticle (NP) with the effects of thrombolysis, reactive oxygen species (ROS) scavenging, and neuroprotection, was synthesized based on an ultrasmall Cu4.6O NP, the thrombolytic agent rt-PA, and docosahexaenoic acid (DHA), which is a major component of the neuronal membrane. rPZDCu showed strong thrombus-targeting ability, which was achieved by the platelet cell membrane coating on the NP surface, and a good thrombolytic effect in both the common carotid artery clot model and embolic middle cerebral artery occlusion (MCAO) model of rats. Furthermore, rPZDCu exhibited a good escape from the phagocytosis of macrophages, effective promotion of the polarization of microglia, and efficient recovery of neurobiological and behavioral functions in the embolic MCAO model of rats. This is a heuristic report of (1) the Cu0/Cu+ NP for the treatments of brain diseases, (2) the integration of DHA and ROS scavengers for central nervous system therapies, and (3) diselenide-based ROS-responsive NPs for ischemic stroke treatments. This study also offers an example of cell membrane-camouflaged stimuli-responsive nanomedicine for brain-targeting drug delivery.
Collapse
Affiliation(s)
- Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Rui Zou
- Department of Nuclear Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Runxuan Chu
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, People's Republic of China
| | - Nan Hu
- Changchun Institute of Technology, Changchun 130012, People's Republic of China
| | - Jiawen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| |
Collapse
|
21
|
Dong Y, Wang Z. ROS-scavenging materials for skin wound healing: advancements and applications. Front Bioeng Biotechnol 2023; 11:1304835. [PMID: 38149175 PMCID: PMC10749972 DOI: 10.3389/fbioe.2023.1304835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
The intricate healing process of skin wounds includes a variety of cellular and molecular events. Wound healing heavily relies on reactive oxygen species (ROS), which are essential for controlling various processes, including inflammation, cell growth, angiogenesis, granulation, and the formation of extracellular matrix. Nevertheless, an overabundance of reactive oxygen species (ROS) caused by extended oxidative pressure may result in the postponement or failure of wound healing. It is crucial to comprehend the function of reactive oxygen species (ROS) and create biomaterials that efficiently eliminate ROS to enhance the healing process of skin wounds. In this study, a thorough examination is presented on the role of reactive oxygen species (ROS) in the process of wound healing, along with an exploration of the existing knowledge regarding biomaterials employed for ROS elimination. In addition, the article covers different techniques and substances used in the management of skin wound. The future prospects and clinical applications of enhanced biomaterials are also emphasized, highlighting the potential of biomaterials that scavenge active oxygen to promote skin repair. This article seeks to enhance the understanding of the complex processes of ROS in the healing of wounds and the application of ROS-scavenging materials. Its objective is to create novel strategies for effective treatment skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Kweon B, Kim DU, Oh JY, Bae GS, Park SJ. Guggulsterone protects against lipopolysaccharide-induced inflammation and lethal endotoxemia via heme oxygenase-1. Int Immunopharmacol 2023; 124:111073. [PMID: 37844468 DOI: 10.1016/j.intimp.2023.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Guggulsterone (GS) is a phytosterol used to treat inflammatory diseases. Although many studies have examined the anti-inflammatory activities of GS, the detailed mechanisms of GS in lipopolysaccharide (LPS)-induced inflammation and endotoxemia have not yet been examined. Therefore, we investigated the anti-inflammatory effects of GS on LPS-induced inflammation. In murine peritoneal macrophages, the anti-inflammatory activity of GS was primarily mediated by heme oxygenase-1 (HO-1) induction. HO-1 induction by GS was mediated by GSH depletion and reactive oxygen species (ROS) production. The ROS generated by GS caused the phosphorylation of GSK3β (ser9/21) and p38, leading to the translocation of nuclear factor erythroid-related factor 2 (Nrf2), which ultimately induced HO-1. In addition, GS pretreatment significantly inhibited inducible nitric oxide synthase (iNOS), iNOS-derived NO, and COX-2 protein and mRNA expression, and production of COX-derived prostaglandin PGE2, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). In a mouse model of endotoxemia, GS treatment prolonged survival and inhibited the expression of inflammatory mediators, including IL-1β, IL-6, and TNF-α. GS treatment also inhibited LPS-induced liver injury. These results suggest that GS-induced HO-1 could exert anti-inflammatory effects via ROS-dependent GSK (ser21/9)-p38 phosphorylation and nuclear translocation of Nrf2.
Collapse
Affiliation(s)
- Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Jin-Young Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea.
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea; Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, 54538 Jeonbuk, South Korea.
| |
Collapse
|
23
|
Shekar Roy H, K M N, Rajput S, Sadhukhan S, Gowri V, Hassan Dar A, Monga M, Salaria N, Guha R, Chattopadhyay N, Jayamurugan G, Ghosh D. Efficient Nitric Oxide Scavenging by Urea-Functionalized Push-Pull Chromophore Modulates NO-Mediated Diseases. Chemistry 2023; 29:e202301748. [PMID: 37431238 DOI: 10.1002/chem.202301748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The excess nitric oxide (NO) produced in the body in response to bacterial/proinflammatory stimuli is responsible for several pathological conditions. The current approaches that target the production of excess NO, either through the inhibition of nitric oxide synthase enzyme or its downstream mediators have been clinically unsuccessful. With an aim to regulate the excess NO, urea-functionalized push-pull chromophores containing 1,1,4,4-tetracyanobuta-1,3-dienes (TCBD) or expanded TCBD (eTCBD) were developed as NO scavengers. The NMR mechanistic studies revealed that upon NO binding, these molecules are converted to uncommon stable NONOates. The unique emissive property of Urea-eTCBD enables its application in vitro, as a NO-sensor. Furthermore, the cytocompatible Urea-eTCBD, rapidly inactivated the NO released from LPS-activated cells. The therapeutic efficacy of the molecule in modulating NO-mediated pathological condition was confirmed using a carrageenan-induced inflammatory paw model and a corneal injury model. While the results confirm the advantages of scavenging the excess NO to address a multitude of NO-mediated diseases, the promising sensing and bioactivity of Urea-eTCBD can motivate further exploration of such molecules in allied areas of research.
Collapse
Affiliation(s)
- Himadri Shekar Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Neethu K M
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Vijayendran Gowri
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Arif Hassan Dar
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Malika Monga
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Navita Salaria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Govindasamy Jayamurugan
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| |
Collapse
|
24
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Juric M, Rawat V, Amaradhi R, Zielonka J, Ganesh T. Novel NADPH Oxidase-2 Inhibitors as Potential Anti-Inflammatory and Neuroprotective Agents. Antioxidants (Basel) 2023; 12:1660. [PMID: 37759963 PMCID: PMC10525516 DOI: 10.3390/antiox12091660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
A family of seven NADPH oxidase enzymes (Nox1-5, Duox1-2) has been implicated in a variety of diseases, including inflammatory lung diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Here, we report the results of our studies aimed at developing novel brain-permeable Nox2 inhibitors with potential application as neuroprotective agents. Using cell-based assays, we identified a novel Nox2 inhibitor, TG15-132, that prevents PMA-stimulated oxygen consumption and reactive oxygen species (superoxide radical anion and hydrogen peroxide) formation upon acute treatment in differentiated HL60 cells. Long-term treatment with TG15-132 attenuates the induction of genes encoding Nox2 subunits, several inflammatory cytokines, and iNOS in differentiated THP-1 cells. Moreover, TG15-132 shows a relatively long plasma half-life (5.6 h) and excellent brain permeability, with a brain-to-plasma ratio (>5-fold) in rodent models. Additionally, TG15-132 does not cause any toxic effects on vital organs or blood biomarkers of toxicity in mice upon chronic dosing for seven days. We propose that TG15-132 may be used as a Nox2 inhibitor and a potential neuroprotective agent, with possible further structural modifications to increase its potency.
Collapse
Affiliation(s)
- Matea Juric
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Varun Rawat
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.R.); (R.A.)
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.R.); (R.A.)
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.R.); (R.A.)
| |
Collapse
|
26
|
Liu L, de Leeuw K, Arends S, Doornbos-van der Meer B, Bulthuis MLC, van Goor H, Westra J. Biomarkers of Oxidative Stress in Systemic Lupus Erythematosus Patients with Active Nephritis. Antioxidants (Basel) 2023; 12:1627. [PMID: 37627622 PMCID: PMC10451241 DOI: 10.3390/antiox12081627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress plays an important role in systemic lupus erythematosus (SLE) and especially in lupus nephritis (LN). The aim of this study was to compare redox-related biomarkers between patients with active LN, quiescent SLE (Q-SLE) and healthy controls (HC) and to explore their association with clinical characteristics such as disease activity in patients. We investigated levels of plasma free thiols (R-SH, sulfhydryl groups), levels of soluble receptor for advanced glycation end products (sRAGE) and levels of malondialdehyde (MDA) in SLE patients with active LN (n = 23), patients with quiescent SLE (n = 47) and HC (n = 23). Data of LN patients who previously participated in Dutch lupus nephritis studies and longitudinal samples up to 36 months were analyzed. Thiol levels were lower in active LN at baseline and Q-SLE patients compared to HC. In generalized estimating equation (GEE) modelling, free thiol levels were negatively correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) over time (p < 0.001). sRAGE and MDA were positively correlated with the SLEDAI over time (p = 0.035 and p = 0.016, respectively). These results indicate that oxidative stress levels in LN patients are increased compared to HC and associated with SLE disease activity. Therefore, interventional therapy to restore redox homeostasis may be useful as an adjunctive therapy in the treatment of oxidative damage in SLE.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| | - Marian L. C. Bulthuis
- Department of Pathology and Medical Biology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (M.L.C.B.); (H.v.G.)
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (M.L.C.B.); (H.v.G.)
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| |
Collapse
|
27
|
Yaşayan G, Nejati O, Ceylan AF, Karasu Ç, Kelicen Ugur P, Bal-Öztürk A, Zarepour A, Zarrabi A, Mostafavi E. Tackling chronic wound healing using nanomaterials: advancements, challenges, and future perspectives. APPLIED MATERIALS TODAY 2023; 32:101829. [DOI: 10.1016/j.apmt.2023.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Zhao X, Amevor FK, Xue X, Wang C, Cui Z, Dai S, Peng C, Li Y. Remodeling the hepatic fibrotic microenvironment with emerging nanotherapeutics: a comprehensive review. J Nanobiotechnology 2023; 21:121. [PMID: 37029392 PMCID: PMC10081370 DOI: 10.1186/s12951-023-01876-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Liver fibrosis could be the last hope for treating liver cancer and remodeling of the hepatic microenvironment has emerged as a strategy to promote the ablation of liver fibrosis. In recent years, especially with the rapid development of nanomedicine, hepatic microenvironment therapy has been widely researched in studies concerning liver cancer and fibrosis. In this comprehensive review, we summarized recent advances in nano therapy-based remodeling of the hepatic microenvironment. Firstly, we discussed novel strategies for regulatory immune suppression caused by capillarization of liver sinusoidal endothelial cells (LSECs) and macrophage polarization. Furthermore, metabolic reprogramming and extracellular matrix (ECM) deposition are caused by the activation of hepatic stellate cells (HSCs). In addition, recent advances in ROS, hypoxia, and impaired vascular remodeling in the hepatic fibrotic microenvironment due to ECM deposition have also been summarized. Finally, emerging nanotherapeutic approaches based on correlated signals were discussed in this review. We have proposed novel strategies such as engineered nanotherapeutics targeting antigen-presenting cells (APCs) or direct targeting T cells in liver fibrotic immunotherapy to be used in preventing liver fibrosis. In summary, this comprehensive review illustrated the opportunities in drug targeting and nanomedicine, and the current challenges to be addressed.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- , No. 1166, Liu Tai Avenue, Wenjiang district, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
30
|
Motta G, Gualtieri M, Saibene M, Bengalli R, Brigliadori A, Carrière M, Mantecca P. Preliminary Toxicological Analysis in a Safe-by-Design and Adverse Outcome Pathway-Driven Approach on Different Silver Nanoparticles: Assessment of Acute Responses in A549 Cells. TOXICS 2023; 11:toxics11020195. [PMID: 36851069 PMCID: PMC9965967 DOI: 10.3390/toxics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/15/2023]
Abstract
Silver nanoparticles (Ag NPs) are among the most widely used metal-based nanomaterials (NMs) and their applications in different products, also as antibacterial additives, are increasing. In the present manuscript, according to an adverse outcome pathway (AOP) approach, we tested two safe-by-design (SbD) newly developed Ag NPs coated with hydroxyethyl cellulose (HEC), namely AgHEC powder and AgHEC solution. These novel Ag NPs were compared to two reference Ag NPs (naked and coated with polyvinylpyrrolidone-PVP). Cell viability, inflammatory response, reactive oxygen species, oxidative DNA damage, cell cycle, and cell-particle interactions were analyzed in the alveolar in vitro model, A549 cells. The results show a different toxicity pattern of the novel Ag NPs compared to reference NPs and that between the two novel NPs, the AgHEC solution is the one with the lower toxicity and to be further developed within the SbD framework.
Collapse
Affiliation(s)
- Giulia Motta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Maurizio Gualtieri
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
- Correspondence: ; Tel.: +39-026-448-2110
| | - Melissa Saibene
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Rossella Bengalli
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Brigliadori
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics (CNR-ISSMC former CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - Paride Mantecca
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
31
|
Quantitative Assessment of Low-Dose Photodynamic Therapy Effects on Diabetic Wound Healing Using Raman Spectroscopy. Pharmaceutics 2023; 15:pharmaceutics15020595. [PMID: 36839917 PMCID: PMC9966264 DOI: 10.3390/pharmaceutics15020595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
One of challenges that faces diabetes is the wound healing process. The delayed diabetic wound healing is caused by a complicated molecular mechanism involving numerous physiological variables. Low-dose photodynamic therapy (LDPDT) provides excellent results in rejuvenation and wound healing. In this study, the LDPDT effect on diabetic wounds in mice was studied using two photosensitizers, 5-aminolevulinic acid and methylene blue, and two laser dose expositions of 1 J/cm2 and 4 J/cm2 by Raman spectroscopy (RS). The latter was used as a noninvasive method, providing specific information about tissue state based on the fundamental vibrational modes of its molecular components. RS allows high spatial resolution acquisition of biochemical and structural information through the generation of point spectra or spectral images. An approach to in vivo quantitative assessment of diabetic wound healing state was developed. This approach is based on an application of the principal component analysis combined with the Mahalanobis metrics to skin Raman spectra, in particular, intensities of the amide I and CH2 bands.
Collapse
|
32
|
Lipid Liquid Crystal Nanoparticles: Promising Photosensitizer Carriers for the Treatment of Infected Cutaneous Wounds. Pharmaceutics 2023; 15:pharmaceutics15020305. [PMID: 36839628 PMCID: PMC9964009 DOI: 10.3390/pharmaceutics15020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Cutaneous chronic wounds impose a silent pandemic that affects the lives of millions worldwide. The delayed healing process is usually complicated by opportunistic bacteria that infect wounds. Staphylococcus aureus is one of the most prevalent bacteria in infected cutaneous wounds, with the ability to form antibiotic-resistant biofilms. Recently, we have demonstrated the potential of gallium protoporphyrin lipid liquid crystalline nanoparticles (GaPP-LCNP) as a photosensitizer against S. aureus biofilms in vitro. Herein, we investigate the potential of GaPP-LCNP using a pre-clinical model of infected cutaneous wounds. GaPP-LCNP showed superior antibacterial activity compared to unformulated GaPP, reducing biofilm bacterial viability by 5.5 log10 compared to 2.5 log10 in an ex vivo model, and reducing bacterial viability by 1 log10 in vivo, while unformulated GaPP failed to reduce bacterial burden. Furthermore, GaPP-LCNP significantly promoted wound healing through reduction in the bacterial burden and improved early collagen deposition. These findings pave the way for future pre-clinical investigation and treatment optimizations to translate GaPP-LCNP towards clinical application.
Collapse
|
33
|
Inside the Mechanism of Action of Three Pyrazole Derivatives in Human Platelets and Endothelial Cells. Antioxidants (Basel) 2023; 12:antiox12020216. [PMID: 36829775 PMCID: PMC9952262 DOI: 10.3390/antiox12020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In the effort to obtain multitarget compound interfering with inflammation, oxidative stress, and tumorigenesis, we synthesized a small library of pyrazole compounds, selecting 4a, 4f, and 4g as the most noteworthy being IC50 against platelet ROS production induced by thrombin of about 10 µM. The in vitro antioxidant potential of the three molecules was evaluated, and since they show a remarkable antioxidative activity, their effect on several parameter indicative of oxidative status and on the efficiency of the aerobic metabolism was tested. The three molecules strongly inhibit superoxide anion production, lipid peroxidation, NADPH oxidase activity and almost restore the oxidative phosphorylation efficiency in thrombin-stimulated platelet, demonstrating a protective effect against oxidative stress. This effect was confirmed in endothelial cell in which 4a, 4f, and 4g show an interesting inhibition activity on H2O2-stimulated EA.hy926 cells. At last, antiproliferative activity of 4a, 4f, and 4g was submitted to a large screening at the NCI. The molecules show interesting anticancer activity, among them the most remarkable is 4g able to strongly inhibit the proliferation of both solid tumor and leukemia cells lines. In conclusion, all the three newly synthetized pyrazoles show remarkable antioxidant and antiproliferative effect worthy of further study.
Collapse
|
34
|
Sun R, Liu C, Liu J, Yin S, Song R, Ma J, Cao G, Lu Y, Zhang G, Wu Z, Chen A, Wang Y. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds. Sci Rep 2023; 13:132. [PMID: 36599852 PMCID: PMC9811895 DOI: 10.1038/s41598-022-26043-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Naringenin is a citrus flavonoid with various biological functions and a potential therapeutic agent for skin diseases, such as UV radiation and atopic dermatitis. The present study investigates the therapeutic effect and pharmacological mechanism of naringenin on chronic wounds. Using network pharmacology, we identified 163 potential targets and 12 key targets of naringenin. Oxidative stress was confirmed to be the main biological process modulated by naringenin. The transcription factor p65 (RELA), alpha serine/threonine-protein kinase (AKT1), mitogen-activated protein kinase 1 (MAPK1) and mitogen-activated protein kinase 3 (MAPK3) were identified as common targets of multiple pathways involved in treating chronic wounds. Molecular docking verified that these four targets stably bound naringenin. Naringenin promoted wound healing in mice in vivo by inhibiting wound inflammation. Furthermore, in vitro experiments showed that a low naringenin concentration did not significantly affect normal skin cell viability and cell apoptosis; a high naringenin concentration was cytotoxic and reduced cell survival by promoting apoptosis. Meanwhile, comprehensive network pharmacology, molecular docking and in vivo and in vitro experiments revealed that naringenin could treat chronic wounds by alleviating oxidative stress and reducing the inflammatory response. The underlying mechanism of naringenin in chronic wound therapy involved modulating the RELA, AKT1 and MAPK1/3 signalling pathways to inhibit ROS production and inflammatory cytokine expression.
Collapse
Affiliation(s)
- Rui Sun
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Chunyan Liu
- grid.452422.70000 0004 0604 7301Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Jian Liu
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,grid.452422.70000 0004 0604 7301Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Siyuan Yin
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,grid.452422.70000 0004 0604 7301Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Ru Song
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Jiaxu Ma
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Guoqi Cao
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Yongpan Lu
- grid.464402.00000 0000 9459 9325The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Guang Zhang
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Zhenjie Wu
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Aoyu Chen
- grid.452422.70000 0004 0604 7301Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| | - Yibing Wang
- grid.27255.370000 0004 1761 1174Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250012 People’s Republic of China ,grid.452422.70000 0004 0604 7301Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014 People’s Republic of China ,grid.464402.00000 0000 9459 9325The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014 People’s Republic of China ,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014 People’s Republic of China
| |
Collapse
|
35
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Gomes NA, Lima e Silva FDC, de Oliveira Volpe CM, Villar-Delfino PH, de Sousa CF, Rocha-Silva F, Nogueira-Machado JA. Overexpression of mTOR in Leukocytes from ALS8 Patients. Curr Neuropharmacol 2023; 21:482-490. [PMID: 36722478 PMCID: PMC10207909 DOI: 10.2174/1570159x21666230201151016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The mutated VAPBP56S (vesicle B associated membrane protein - P56S) protein has been described in a Brazilian family and classified as Amyotrophic Lateral Sclerosis type 8 (ALS8). OBJECTIVE We aimed to study altered biochemical and immunological parameters in cells from ALS8 patients to identify possible biomarkers or therapeutic targets. METHODS Wild-type VAPB, VAPBP56S, mTOR, proinflammatory cytokines, and oxidant/reducing levels in serum, leucocytes, and cellular lysate from ALS8 patients and health Controls were performed by ELISA, fluorimetry, and spectrophotometry. RESULTS Our results showed similar levels of mutant and wild-type VAPB in serum and intracellular lysate (p > 0.05) when ALS8 patients and Controls were compared. IL-1β, IL-6, and IL-18 levels in patients and Controls showed no difference, suggesting an absence of peripheral inflammation (p > 0.05). Oxidative metabolic response, assessed by mitochondrial ROS production, and reductive response by MTT reduction, were higher in the ALS8 group compared to Controls (p < 0.05), although not characterizing typical oxidative stress in ALS8 patients. Total mTOR levels (phosphorylated or non-phosphorylated) of ALS8 patients were significantly lower in serum and higher in intracellular lysate than the mean equivalents in Controls (p < 0.05). A similar result was observed when we quantified the phosphorylated protein (p < 0.05). CONCLUSION We demonstrate the possibility of using these biochemical and immunological parameters as potential therapeutic targets or biomarkers. Furthermore, by hypothesis, we suggest a hormetic response in which both VAPB forms could coexist in different proportions throughout life. The mutated VAPBP56S production would increase with aging and predominate over the wild-type VAPB levels, determining the onset of symptoms and aggravating the disease.
Collapse
Affiliation(s)
- Nathália Augusta Gomes
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | | | - Caroline Maria de Oliveira Volpe
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Henrique Villar-Delfino
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Ferreira de Sousa
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - José Augusto Nogueira-Machado
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
37
|
Yu J, Zhao Q, Wang X, Zhou H, Hu J, Gu L, Hu Y, Zeng F, Zhao F, Yue C, Zhou P, Li G, Li Y, Wu W, Zhou Y, Li J. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J Autoimmun 2022; 133:102916. [PMID: 36209691 DOI: 10.1016/j.jaut.2022.102916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022]
Abstract
Psoriasis is a common inflammatory skin disease involving interactions between keratinocytes and immune cells that significantly affects the quality of life. It is characterized by hyperproliferation and abnormal differentiation of keratinocytes and excessive infiltration of immune cells in the dermis and epidermis. The immune mechanism underlying this disease has been elucidated in the past few years. Research shows that psoriasis is regulated by the complex interactions among immune cells, such as keratinocytes, dendritic cells, T lymphocytes, neutrophils, macrophages, natural killer cells, mast cells, and other immune cells. An increasing number of signaling pathways have been found to be involved in the pathogenesis of psoriasis, which has prompted the search for new treatment targets. In the past decades, studies on the pathogenesis of psoriasis have focused on the development of targeted and highly effective therapies. In this review, we have discussed the relationship between various types of immune cells and psoriasis and summarized the major signaling pathways involved in the pathogenesis of psoriasis, including the PI3K/AKT/mTOR, JAK-STAT, JNK, and WNT pathways. In addition, we have discussed the results of the latest omics research on psoriasis and the epigenetics of the disease, which provide insights regarding its pathogenesis and therapeutic prospects; we have also summarized its treatment strategies and observations of clinical trials. In this paper, the various aspects of psoriasis are described in detail, and the limitations of the current treatment methods are emphasized. It is necessary to improve and innovate treatment methods from the molecular level of pathogenesis, and further provide new ideas for the treatment and research of psoriasis.
Collapse
Affiliation(s)
- Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Yifan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
38
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
39
|
Manda G, Milanesi E, Genc S, Niculite CM, Neagoe IV, Tastan B, Dragnea EM, Cuadrado A. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Radic Biol Med 2022; 190:179-201. [PMID: 35964840 DOI: 10.1016/j.freeradbiomed.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an important inflammatory component accompanied by deregulated redox-dependent signaling pathways that are feeding back into inflammation. In this context, we bring into focus the transcription factor NRF2, a master redox regulator that exerts exquisite antioxidant and anti-inflammatory effects. The review does not intend to be exhaustive, but to point out arguments sustaining the rationale for applying an NRF2-directed co-treatment in RA as well as its potential limitations. The involvement of NRF2 in RA is emphasized through an analysis of publicly available transcriptomic data on NRF2 target genes and the findings from NRF2-knockout mice. The impact of NRF2 on concurrent pathologic mechanisms in RA is explained by its crosstalk with major redox-sensitive inflammatory and cell death-related pathways, in the context of the increased survival of pathologic cells in RA. The proposed adjunctive therapy targeted to NRF2 is further sustained by the existence of promising NRF2 activators that are in various stages of drug development. The interference of NRF2 with conventional anti-rheumatic therapies is discussed, including the cytoprotective effects of NRF2 for alleviating drug toxicity. From another perspective, the review presents how NRF2 activation would be decreasing the efficacy of synthetic anti-rheumatic drugs by increasing drug efflux. Future perspectives regarding pharmacologic NRF2 activation in RA are finally proposed.
Collapse
Affiliation(s)
- Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Elena Milanesi
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Sermin Genc
- Neurodegeneration and Neuroprotection Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cristina Mariana Niculite
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ionela Victoria Neagoe
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Bora Tastan
- Neurodegeneration and Neuroprotection Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Elena Mihaela Dragnea
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
40
|
Carvalho GR, Braz DS, Gonçalves TCO, Aires R, Côco LZ, Guidoni M, Fronza M, Endringer DC, Júnior ADS, Campos-Toimil M, Nogueira BV, Vasquez EC, Campagnaro BP, Pereira TMC. Development and Evaluation of Virola oleifera Formulation for Cutaneous Wound Healing. Antioxidants (Basel) 2022; 11:antiox11091647. [PMID: 36139721 PMCID: PMC9495449 DOI: 10.3390/antiox11091647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
In regions adjacent to the Brazilian Atlantic Forest, Virola oleifera (VO) resin extract has been popularly used for decades as a skin and mucosal healing agent. However, this antioxidant-rich resin has not yet been investigated in wound healing, whose physiological process might also be aggravated by oxidative stress-related diseases (e.g., hypertension/diabetes). Our aim, therefore, was to investigate whether VO resin presents healing effects through an innovative cream for topical applications. For this, adult male Wistar rats were divided into four groups. Then, four 15 mm excisions were performed on the shaved skin. All treatments were applied topically to the wound area daily. At the end of experiments (0, 3rd, and 10th days) macroscopic analysis of wound tissue contraction and histological analysis of inflammatory cell parameters were performed. The group treated with VO cream showed the best wound contraction (15%, p < 0.05) and reduced levels of lipid peroxidation and protein oxidation (118% and 110%, p < 0.05, respectively) compared to the control group. Our results demonstrated the healing capacity of a new formulation prepared with VO, which could be, at least in part, justified by antioxidant mechanisms that contribute to re-epithelialization, becoming a promising dermo-cosmetic for the treatment of wound healing.
Collapse
Affiliation(s)
- Glaucimeire R. Carvalho
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Débora S. Braz
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Talita C. O. Gonçalves
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Rafaela Aires
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Larissa Z. Côco
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Marcio Guidoni
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Marcio Fronza
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Denise C. Endringer
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Antonio D. S. Júnior
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Breno V. Nogueira
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitoria 29047-105, Brazil
| | - Elisardo C. Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Bianca P. Campagnaro
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Thiago M. C. Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha 29106-010, Brazil
- Correspondence: ; Tel.: +55-(27)-3421-2001
| |
Collapse
|
41
|
Detection and Quantification of Nanoparticle-Induced Intracellular ROS in Live Cells by Laser Scanning Confocal Microscopy. Methods 2022; 207:11-19. [PMID: 36028162 DOI: 10.1016/j.ymeth.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 12/07/2022] Open
Abstract
All living organisms utilise reactive oxygen species (ROS) for essential cellular functions, the majority of which involve signal transduction pathways, such as enzyme regulation, cell growth and differentiation signalling, and inflammation mediation. Increased ROS in cancer cells can be caused by abnormalities in the tumor environment. However, using fluorescence microscopy to detect and quantify ROS changes in biological systems is difficult for several reasons: (1) lack of specificity of ROS-sensitive probes, (2) high turnover of ROS species, (3) rapid decrease in ROS fluorescence with time, and (4) detection and quantification techniques with insufficient sensitivity. Existing approaches to ROS measurement using confocal microscopy imaging focus solely on ROS detection rather than quantification. A novel fluorescence-based ROS detection and quantification technique has been developed for the purpose of resolving the limitations of existing methods. In general, ROS is detected by fluorescence using instrumentation such as flow cytometry and laser scanning confocal microscopy. However, these approaches confirm only the presence or absence of ROS; they are not quantitative, which is essential for therapeutic applications. In the newly developed technique, cerium-based ROS-generating nanoparticles have been used to elevate the ROS in HT-1080 fibrosarcoma cells. The elevated ROS levels are detected using an H2DCFDA fluorescence probe, which is used widely for this application, and captured as digital images using a 488 nm fluorescence channel. Quantification of the ROS is achieved using script in MATLAB software to convert the fluorescence intensities to numerical values. Thus, this technique nearly simultaneously integrates both detection and quantification of the ROS, which provides the statistical justification necessary to support therapeutic translation.
Collapse
|
42
|
Meng Y, Ma J, Yao C, Ye Z, Ding H, Liu C, Li J, Li G, He Y, Li J, Yin Z, Wu L, Zhou H, Shen N. The NCF1 variant aggravates autoimmunity by facilitating the activation of plasmacytoid dendritic cells. J Clin Invest 2022; 132:153619. [PMID: 35788118 PMCID: PMC9374378 DOI: 10.1172/jci153619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a professional type I IFN producer that play critical roles in the pathogenesis of autoimmune diseases. However, both genetic regulation of the function of pDCs and their relationships with autoimmunity are largely undetermined. Here, we investigated the causality of the neutrophil cytosolic factor 1 (NCF1) missense variant, which is one of the most significant associated risk variants for lupus, and found that the substitution of arginine (R) for histidine (H) at position 90 in the NCF1 protein (NCF1 p.R90H) led to excessive activation of pDCs. A mechanism study demonstrated that p.R90H reduced the affinity of NCF1 for phospholipids, thereby impairing endosomal localization of NCF1. As NCF1 is a subunit of the NADPH oxidase 2 (NOX2) complex, this impairment led to an acidified endosomal pH and facilitated downstream TLR signaling. Consistently, the homozygous knockin mice manifested aggravated lupus progression in a pDC-dependent lupus model. More important, pharmaceutical intervention revealed that hydroxychloroquine (HCQ) could antagonize the detrimental function of NCF1 p.R90H in the lupus model and systemic lupus erythematosus samples, supporting the idea that NCF1 p.R90H could be identified as a genetic biomarker for HCQ application. Therefore, our study provides insights into the genetic control of pDC function and a paradigm for applying genetic variants to improve targeted therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Yao Meng
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Liu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanhua Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Shenzhen, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Jonsson AH, Zhang F, Dunlap G, Gomez-Rivas E, Watts GFM, Faust HJ, Rupani KV, Mears JR, Meednu N, Wang R, Keras G, Coblyn JS, Massarotti EM, Todd DJ, Anolik JH, McDavid A, Wei K, Rao DA, Raychaudhuri S, Brenner MB. Granzyme K + CD8 T cells form a core population in inflamed human tissue. Sci Transl Med 2022; 14:eabo0686. [PMID: 35704599 PMCID: PMC9972878 DOI: 10.1126/scitranslmed.abo0686] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T cell-derived pro-inflammatory cytokines are a major driver of rheumatoid arthritis (RA) pathogenesis. Although these cytokines have traditionally been attributed to CD4 T cells, we have found that CD8 T cells are notably abundant in synovium and make more interferon (IFN)-γ and nearly as much tumor necrosis factor (TNF) as their CD4 T cell counterparts. Furthermore, using unbiased high-dimensional single-cell RNA-seq and flow cytometric data, we found that the vast majority of synovial tissue and synovial fluid CD8 T cells belong to an effector CD8 T cell population characterized by high expression of granzyme K (GzmK) and low expression of granzyme B (GzmB) and perforin. Functional experiments demonstrate that these GzmK+ GzmB+ CD8 T cells are major cytokine producers with low cytotoxic potential. Using T cell receptor repertoire data, we found that CD8 GzmK+ GzmB+ T cells are clonally expanded in synovial tissues and maintain their granzyme expression and overall cell state in blood, suggesting that they are enriched in tissue but also circulate. Using GzmK and GzmB signatures, we found that GzmK-expressing CD8 T cells were also the major CD8 T cell population in the gut, kidney, and coronavirus disease 2019 (COVID-19) bronchoalveolar lavage fluid, suggesting that they form a core population of tissue-associated T cells across diseases and human tissues. We term this population tissue-enriched expressing GzmK or TteK CD8 cells. Armed to produce cytokines in response to both antigen-dependent and antigen-independent stimuli, CD8 TteK cells have the potential to drive inflammation.
Collapse
Affiliation(s)
- A. Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
- Center for Data Sciences, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Emma Gomez-Rivas
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Gerald F. M. Watts
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Heather J. Faust
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Karishma Vijay Rupani
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Joseph R. Mears
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
- Center for Data Sciences, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nida Meednu
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Runci Wang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Gregory Keras
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Jonathan S. Coblyn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Elena M. Massarotti
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Derrick J. Todd
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Jennifer H. Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry; Rochester, NY 14642, USA
| | | | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
- Center for Data Sciences, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester; Manchester M13 9PT, UK
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
44
|
Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022; 11:antiox11061153. [PMID: 35740050 PMCID: PMC9220354 DOI: 10.3390/antiox11061153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Collapse
Affiliation(s)
- Xing Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qinbin Ye
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Qiong Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: or
| |
Collapse
|
45
|
Szarka A, Lőrincz T, Hajdinák P. Friend or Foe: The Relativity of (Anti)oxidative Agents and Pathways. Int J Mol Sci 2022; 23:ijms23095188. [PMID: 35563576 PMCID: PMC9099968 DOI: 10.3390/ijms23095188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
An element, iron, a process, the generation of reactive oxygen species (ROS), and a molecule, ascorbate, were chosen in our study to show their dual functions and their role in cell fate decision. Iron is a critical component of numerous proteins involved in metabolism and detoxification. On the other hand, excessive amounts of free iron in the presence of oxygen can promote the production of potentially toxic ROS. They can result in persistent oxidative stress, which in turn can lead to damage and cell death. At the same time, ROS—at strictly regulated levels—are essential to maintaining the redox homeostasis, and they are engaged in many cellular signaling pathways, so their total elimination is not expedient. Ascorbate establishes a special link between ROS generation/elimination and cell death. At low concentrations, it behaves as an excellent antioxidant and has an important role in ROS elimination. However, at high concentrations, in the presence of transition metals such as iron, it drives the generation of ROS. In the term of the dual function of these molecules and oxidative stress, ascorbate/ROS-driven cell deaths are not necessarily harmful processes—they can be live-savers too.
Collapse
Affiliation(s)
- András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Correspondence:
| | - Tamás Lőrincz
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Péter Hajdinák
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
46
|
The Intertwined Roles of Oxidative Stress and Endoplasmic Reticulum Stress in Glaucoma. Antioxidants (Basel) 2022; 11:antiox11050886. [PMID: 35624748 PMCID: PMC9137739 DOI: 10.3390/antiox11050886] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, and the burden of the disease continues to grow as the global population ages. Currently, the only treatment option is to lower intraocular pressure. A better understanding of glaucoma pathogenesis will help us to develop novel therapeutic options. Oxidative stress has been implicated in the pathogenesis of many diseases. Oxidative stress occurs when there is an imbalance in redox homeostasis, with reactive oxygen species producing processes overcoming anti-oxidant defensive processes. Oxidative stress works in a synergistic fashion with endoplasmic reticulum stress, to drive glaucomatous damage to trabecular meshwork, retinal ganglion cells and the optic nerve head. We discuss the oxidative stress and endoplasmic reticulum stress pathways and their connections including their key intermediary, calcium. We highlight therapeutic options aimed at disrupting these pathways and discuss their potential role in glaucoma treatment.
Collapse
|
47
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
48
|
Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials 2022; 283:121474. [DOI: 10.1016/j.biomaterials.2022.121474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
|
49
|
Effects of Peroxiredoxin 6 and Its Mutants on the Isoproterenol Induced Myocardial Injury in H9C2 Cells and Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2576310. [PMID: 35378825 PMCID: PMC8976673 DOI: 10.1155/2022/2576310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Abstract
Background Peroxiredoxin 6 (PRDX6) is an important antioxidant enzyme, with a potential application value in the treatment of diseases caused by oxidative damage. Methods PRDX6 and a mutant (mPRDX6) were heterologously expressed by using an E.coli expression system and purified by Ni-affinity chromatography. Isoproterenol (ISO) was used to induce a myocardial cell injury model and an animal myocardial injury model. After the treatment with PRDX6 and mPRDX6, the proliferation activity of H9C2 cells was detected by Cell Counting Kit-8 (CCK8) method; the apoptosis was evaluated by flow cytometry, and the histological changes of myocardial cells were observed by hematoxylin and eosin (H&E) staining, the levels of catalase (CAT), glutathione peroxidase (GPX), malondialdehyde (MDA), and superoxide dismutase (SOD) in ISO-treated H9C2 cells as well as in the heart tissue and serum of rats treated with ISO were detected, and the expression levels of Bax, Bcl-2 and peroxisome proliferators-activated receptors-γ (PPAR-γ) proteins were detected by Western blot. Results PRDX6 and mPRDX6 were successfully expressed and purified. The results of efficacy study showed that the mutant mPRDX6, in which the phospholipaseA2 (PLA2) activity of PRDX6 was deleted by site directed mutation, had a better protective effect against the myocardial injury than PRDX6. CCK8 results showed that compared with that in ISO group, the proliferation activity of H9C2 cells was significantly enhanced (P < 0.01), the apoptosis rate was significantly decreased (P < 0.01), and the fluorescence intensity of reactive oxygen species (ROS) was significantly decreased (P < 0.01) in mPRDX6 group. The results of H&E staining showed that the myocardial injury was alleviated to a certain extent in mPRDX6 group. Compared with those in ISO group, the activities of CAT, GPX, and SOD in H9C2 cells and the heart tissue and serum of rats were significantly increased (P < 0.05), while the contents of MDA were significantly decreased (P < 0.05). Western blot analysis showed that the expression level of Bcl-2 in H9C2 cells was significantly decreased (P < 0.01), and that of Bax and PPAR-γ was significantly increased (P < 0.05). Conclusion mPRDX6 has a protective effect against the myocardial injury induced by ISO, and the mechanism may be related to its antioxidation. This study may provide a theoretical basis for the research and development of drugs used for the treatment of myocardial injury.
Collapse
|
50
|
Teng X, Brown J, Morel L. Redox Homeostasis Involvement in the Pharmacological Effects of Metformin in Systemic Lupus Erythematosus. Antioxid Redox Signal 2022; 36:462-479. [PMID: 34619975 PMCID: PMC8982129 DOI: 10.1089/ars.2021.0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022]
Abstract
Significance: Metformin has been proposed as a treatment for systemic lupus erythematosus (SLE). The primary target of metformin, the electron transport chain complex I in the mitochondria, is associated with redox homeostasis in immune cells, which plays a critical role in the pathogenesis of autoimmune diseases. This review addresses the evidence and knowledge gaps on whether a beneficial effect of metformin in lupus may be due to a restoration of a balanced redox state. Recent Advances: Clinical trials in SLE patients with mild-to-moderate disease activity and preclinical studies in mice have provided encouraging results for metformin. The mechanism by which this therapeutic effect was achieved is largely unknown. Metformin regulates redox homeostasis in a context-specific manner. Multiple cell types contribute to SLE, with evidence of increased mitochondrial oxidative stress in T cells and neutrophils. Critical Issues: The major knowledge gaps are whether the efficacy of metformin is linked to a restored redox homeostasis in the immune system, and if it does, in which cell types it occurs? We also need to know which patients may have a better response to metformin, and whether it corresponds to a specific mechanism? Finally, the identification of biomarkers to predict treatment outcomes would be of great value. Future Directions: Mechanistic studies must address the context-dependent pharmacological effects of metformin. Multiple cell types as well as a complex disease etiology should be considered. These studies must integrate the rapid advances made in understanding how metabolic programs direct the effector functions of immune cells. Antioxid. Redox Signal. 36, 462-479.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Josephine Brown
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|