1
|
Schrier MS, Smirnova MI, Nemeth DP, Deth RC, Quan N. Flavins and Flavoproteins in the Neuroimmune Landscape of Stress Sensitization and Major Depressive Disorder. J Inflamm Res 2025; 18:681-699. [PMID: 39839188 PMCID: PMC11748166 DOI: 10.2147/jir.s501652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Major Depressive Disorder (MDD) is a common and severe neuropsychiatric condition resulting in irregular alterations in affect, mood, and cognition. Besides the well-studied neurotransmission-related etiologies of MDD, several biological systems and phenomena, such as the hypothalamic-pituitary-adrenal (HPA) axis, reactive oxygen species (ROS) production, and cytokine signaling, have been implicated as being altered and contributing to depressive symptoms. However, the manner in which these factors interact with each other to induce their effects on MDD development has been less clear, but is beginning to be understood. Flavins are potent biomolecules that regulate many redox activities, including ROS generation and energy production. Studies have found that circulating flavin levels are modulated during stress and MDD. Flavins are also known for their importance in immune responses. This review offers a unique perspective that considers the redox-active cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), as vital substrates for linking MDD-related maladaptive processes together, by permitting stress-induced enhancement of microglial interleukin-1 beta (IL-1β) signaling.
Collapse
Affiliation(s)
- Matt Scott Schrier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maria Igorevna Smirnova
- The International Max Planck Research School (IMPRS) for Synapses and Circuits, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, USA
| | - Daniel Paul Nemeth
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
2
|
Zhang YJ, Chen LY, Lin F, Zhang X, Xiang HF, Rao Q. ROS responsive nanozyme loaded with STING silencing for the treatment of sepsis-induced acute lung injury. Toxicol Appl Pharmacol 2024; 493:117155. [PMID: 39537108 DOI: 10.1016/j.taap.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Acute lung injury (ALI) is a common complication of sepsis and a leading cause of mortality in septic patients. Studies indicate that STING may play a crucial role in the pathogenesis of sepsis-induced ALI by interacting with the PARP-1/NLRP3 pathway. Therefore, targeting STING inhibition has potential as a novel therapeutic strategy for ALI. However, effective inhibition remains challenging due to the widespread expression of STING across various tissues. In this study, we developed a nanozyme-based drug delivery system, DSPE-TK-mPEG-MnO2@siSTING (abbreviated as DTmM@siSTING), using DSPE-TK-mPEG-MnO2 as the carrier, and characterized it via scanning electron microscopy, dynamic light scattering, nanoparticle size analysis, and gel electrophoresis. To evaluate the therapeutic effects of DTmM@siSTING, an in vitro ALI cell model and an in vivo ALI mouse model were established, assessing the nanozyme's impact on ROS levels, inflammatory responses, and the PARP-1/NLRP3 pathway in sepsis-induced ALI. Results demonstrated that DTmM@siSTING exhibited good physiological stability. In vitro, DTmM@siSTING significantly reduced ROS levels, myeloperoxidase activity, and expression of inflammatory cytokines, while also inhibiting PARP-1/NLRP3 pathway activation. In vivo experiments further revealed that DTmM@siSTING effectively delivered siSTING to the lungs, mitigating sepsis-induced ALI and associated inflammatory responses. Additionally, DTmM@siSTING displayed excellent biocompatibility. In summary, our findings suggest that DTmM@siSTING significantly enhances the therapeutic efficacy of siSTING, alleviating ALI by inhibiting ROS production, inflammatory responses, and activation of the PARP-1/NLRP3 pathway. This novel approach presents a promising therapeutic avenue for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yin-Jin Zhang
- Blood Purification Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Ling-Yang Chen
- Blood Purification Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Feng Lin
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Xia Zhang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Hai-Fei Xiang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China.
| | - Qing Rao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China.
| |
Collapse
|
3
|
Dong L, Choi BR, Jeong HB, Lee H, Liu Z, Yoon D, Lee HE, Lee DS, Lee DY. Effects of Leaf Extracts from Genetic Resource of Capsicum spp. on Neuroprotection and Anti-Neuroinflammation in HT22 and in BV2 Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:2820. [PMID: 39409690 PMCID: PMC11478504 DOI: 10.3390/plants13192820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024]
Abstract
To develop functional varieties of Capsicum spp. leaves, 40 genetic resources were collected and extracted with 30% aqueous-fermented ethanol. We investigated the protective effects of extracts from 40 genetic resources of Capsicum spp. on glutamate-induced HT22 and LPS-induced BV2 cells. The results showed that the five extracts exhibited cell-protective activities. We also investigated the anti-inflammatory effects of these five extracts on LPS-induced BV2 cell neuroinflammation and found that 23OM18 exhibited superior anti-inflammatory effects. We further investigated the protective activity and anti-inflammatory mechanisms of 23OM18 in these two cell models. In addition, the profiles of 16 metabolites were compared between the representative accessions and among the five genetic resources using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). The results showed that 23OM18 protected HT22 cells by inhibiting reactive oxygen species generation and regulating the MAPK-JNK signaling pathway, thereby reducing LPS-induced BV2 cell neuroinflammation by regulating the NF-κB and MAPK signaling pathways. Based on these results, 23OM18 has the potential to be developed as a functional food for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Linsha Dong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; (L.D.); (H.L.); (Z.L.)
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea; (B.-R.C.); (D.Y.)
| | - Hyo Bong Jeong
- Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.B.J.); (H.E.L.)
| | - Hwan Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; (L.D.); (H.L.); (Z.L.)
| | - Zhiming Liu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; (L.D.); (H.L.); (Z.L.)
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea; (B.-R.C.); (D.Y.)
| | - Hye Eun Lee
- Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.B.J.); (H.E.L.)
| | - Dong-Sung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; (L.D.); (H.L.); (Z.L.)
| | - Dae Young Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
5
|
Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, Muhammad A, Zhang X, Lu J. Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host-Pathogen Dynamics. Antioxidants (Basel) 2024; 13:545. [PMID: 38790650 PMCID: PMC11117976 DOI: 10.3390/antiox13050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host-pathogen interactions, offering valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
- Omer M. A. Dagah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Billton Bryson Silaa
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Minghui Zhu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Qiu Pan
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Linlin Qi
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Xinyu Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Yuqi Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Wenjing Peng
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Zakir Ullah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Appolonia F. Yudas
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Amir Muhammad
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| |
Collapse
|
6
|
Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol 2024; 15:1359600. [PMID: 38515749 PMCID: PMC10954773 DOI: 10.3389/fimmu.2024.1359600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The innate immune response represents the first-line of defense against invading pathogens. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been implicated in various aspects of innate immune function, which involves respiratory bursts and inflammasome activation. These reactive species widely distributed within the cellular environment are short-lived intermediates that play a vital role in cellular signaling and proliferation and are likely to depend on their subcellular site of formation. NADPH oxidase complex of phagocytes is known to generate superoxide anion radical (O2 •-) that functions as a precursor for antimicrobial hydrogen peroxide (H2O2) production, and H2O2 is utilized by myeloperoxidase (MPO) to generate hypochlorous acid (HOCl) that mediates pathogen killing. H2O2 modulates the expression of redox-responsive transcriptional factors, namely NF-kB, NRF2, and HIF-1, thereby mediating redox-based epigenetic modification. Survival and function of immune cells are under redox control and depend on intracellular and extracellular levels of ROS/RNS. The current review focuses on redox factors involved in the activation of immune response and the role of ROS in oxidative modification of proteins in macrophage polarization and neutrophil function.
Collapse
Affiliation(s)
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
7
|
Ou DL, Liao ZX, Kempson IM, Li L, Yang PC, Tseng SJ. Nano-modified viruses prime the tumor microenvironment and promote the photodynamic virotherapy in liver cancer. J Biomed Sci 2024; 31:1. [PMID: 38163894 PMCID: PMC10759334 DOI: 10.1186/s12929-023-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND As of 2020, hepatocellular carcinoma (HCC), a form of liver cancer, stood as the third most prominent contributor to global cancer-related mortality. Combining immune checkpoint inhibitors (ICI) with other therapies has shown promising results for treating unresectable HCC, offering new opportunities. Recombinant adeno-associated viral type 2 (AAV2) virotherapy has been approved for clinical use but it efficacy is stifled through systemic administration. On the other hand, iron oxide nanoparticles (ION) can be cleared via the liver and enhance macrophage polarization, promoting infiltration of CD8+ T cells and creating a more favorable tumor microenvironment for immunotherapy. METHODS To enhance the efficacy of virotherapy and promote macrophage polarization towards the M1-type in the liver, ION-AAV2 were prepared through the coupling of ION-carboxyl and AAV2-amine using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)/N-hydroxysulfosuccinimide (Sulfo-NHS). Efficacy after systemic delivery of ION-AAV2 in an orthotopic HCC model was evaluated. RESULTS After 28 days, the tumor weight in mice treated with ION-AAV2 was significantly reduced by 0.56-fold compared to the control group. The ION-AAV2 treatment led to an approximate 1.80-fold increase in the level of tumor associated M1-type macrophages, while the number of M2-type macrophages was reduced by 0.88-fold. Moreover, a proinflammatory response increased the population of tumor-infiltrating CD8+ T cells in the ION-AAV2 group. This transformation converted cold tumors into hot tumors. CONCLUSIONS Our findings suggest that the conjugation of ION with AAV2 could be utilized in virotherapy while simultaneously exploiting macrophage-modulating cancer immunotherapies to effectively suppress HCC growth.
Collapse
Affiliation(s)
- Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, 10051, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Lin Li
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, 10051, Taiwan.
- Program in Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
8
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
9
|
Kukulage DSK, Yapa Abeywardana M, Matarage Don NNJ, Hu RM, Shishikura K, Matthews ML, Ahn YH. Chemoproteomic strategy identified p120-catenin glutathionylation regulates E-cadherin degradation and cell migration. Cell Chem Biol 2023; 30:1542-1556.e9. [PMID: 37714153 PMCID: PMC10840712 DOI: 10.1016/j.chembiol.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Identification of cysteines with high oxidation susceptibility is important for understanding redox-mediated biological processes. In this report, we report a chemical proteomic strategy that finds cysteines with high susceptibility to S-glutathionylation. Our proteomic strategy, named clickable glutathione-based isotope-coded affinity tag (G-ICAT), identified 1,518 glutathionylated cysteines while determining their relative levels of glutathionylated and reduced forms upon adding hydrogen peroxide. Among identified cysteines, we demonstrated that CTNND1 (p120) C692 has high susceptibility to glutathionylation. Also, p120 wild type (WT), compared to C692S, induces its dissociation from E-cadherin under oxidative stress, such as glucose depletion. p120 and E-cadherin dissociation correlated with E-cadherin destabilization via its proteasomal degradation. Lastly, we showed that p120 WT, compared to C692S, increases migration and invasion of MCF7 cells under glucose depletion, supporting a model that p120 C692 glutathionylation increases cell migration and invasion by destabilization of E-cadherin, a core player in cell-cell adhesion.
Collapse
Affiliation(s)
| | | | | | - Ren-Ming Hu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Riggs PK, Anderson AM, Tang B, Rubin LH, Morgello S, Marra CM, Gelman BB, Clifford DB, Franklin D, Heaton RK, Ellis RJ, Fennema-Notestine C, Letendre SL. Elevated Plasma Protein Carbonyl Concentration Is Associated with More Abnormal White Matter in People with HIV. Viruses 2023; 15:2410. [PMID: 38140650 PMCID: PMC10747698 DOI: 10.3390/v15122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Structural brain abnormalities, including those in white matter (WM), remain common in people with HIV (PWH). Their pathogenesis is uncertain and may reflect multiple etiologies. Oxidative stress is associated with inflammation, HIV, and its comorbidities. The post-translational carbonylation of proteins results from oxidative stress, and circulating protein carbonyls may reflect this. In this cross-sectional analysis, we evaluated the associations between protein carbonyls and a panel of soluble biomarkers of neuronal injury and inflammation in plasma (N = 45) and cerebrospinal fluid (CSF, n = 32) with structural brain MRI. The volume of abnormal WM was normalized for the total WM volume (nAWM). In this multisite project, all regression models were adjusted for the scanner. The candidate covariates included demographics, HIV disease characteristics, and comorbidities. Participants were PWH on virally suppressive antiretroviral therapy (ART) and were mostly white (64.4%) men (88.9%), with a mean age of 56.8 years. In unadjusted analyses, more nAWM was associated with higher plasma protein carbonyls (p = 0.002) and higher CCL2 (p = 0.045). In the adjusted regression models for nAWM, the association with plasma protein carbonyls remained significant (FDR p = 0.018). Protein carbonyls in plasma may be a valuable biomarker of oxidative stress and its associated adverse health effects, including within the central nervous system. If confirmed, these findings would support the hypothesis that reducing oxidative stress could treat or prevent WM injury in PWH.
Collapse
Affiliation(s)
- Patricia K. Riggs
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Leah H. Rubin
- Departments of Neurology, Psychiatry and Behavioral Sciences, and Epidemiology, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mt Sinai School of Medicine, New York, NY 10029, USA
| | - Christina M. Marra
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Benjamin B. Gelman
- Departments of Pathology, and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David B. Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Scott L. Letendre
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
11
|
Hu Y, He B, Cao Q, Li Y, Tang Y, Cao T, Peng B, Zhou X, Liu S. Crosstalk of ferroptosis and oxidative stress in infectious diseases. Front Mol Biosci 2023; 10:1315935. [PMID: 38131014 PMCID: PMC10733455 DOI: 10.3389/fmolb.2023.1315935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Ferroptosis is a type of programmed cell death that pathogens can leverage to enhance their replication, transmission, and pathogenicity. Hosts typically combat pathogenic infections by utilizing oxidative stress as a defense mechanism. Nonetheless, some pathogens can trigger considerable oxidative stress while infecting, inducing an intense inflammatory response in the host's immune system and activating cell death. The process of ferroptosis is closely linked to oxidative stress, with their interaction exerting a substantial impact on the outcome of infectious diseases. This article presents an overview of the interrelated mechanisms of both Ferroptosis and oxidative stress in infectious diseases, identifying potential targets for treating such diseases in the context of their interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Aguida B, Chabi MM, Baouz S, Mould R, Bell JD, Pooam M, André S, Archambault D, Ahmad M, Jourdan N. Near-Infrared Light Exposure Triggers ROS to Downregulate Inflammatory Cytokines Induced by SARS-CoV-2 Spike Protein in Human Cell Culture. Antioxidants (Basel) 2023; 12:1824. [PMID: 37891903 PMCID: PMC10604116 DOI: 10.3390/antiox12101824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The leading cause of mortality from SARS-CoV-2 is an exaggerated host immune response, triggering cytokine storms, multiple organ failure and death. Current drug- and vaccine-based therapies are of limited efficacy against novel viral variants. Infrared therapy is a non-invasive and safe method that has proven effective against inflammatory conditions for over 100 years. However, its mechanism of action is poorly understood and has not received widespread acceptance. We herein investigate whether near-infrared (NIR) light exposure in human primary alveolar and macrophage cells could downregulate inflammatory cytokines triggered by the SARS-CoV-2 spike (S) protein or lipopolysaccharide (LPS), and via what underlying mechanism. Our results showed a dramatic reduction in pro-inflammatory cytokines within days of NIR light treatment, while anti-inflammatory cytokines were upregulated. Mechanistically, NIR light stimulated mitochondrial metabolism, induced transient bursts in reactive oxygen species (ROS) and activated antioxidant gene transcription. These, in turn, downregulated ROS and inflammatory cytokines. A causal relationship was shown between the induction of cellular ROS by NIR light exposure and the downregulation of inflammatory cytokines triggered by SARS-CoV-2 S. If confirmed by clinical trials, this method would provide an immediate defense against novel SARS-CoV-2 variants and other inflammatory infectious diseases.
Collapse
Affiliation(s)
- Blanche Aguida
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| | | | - Soria Baouz
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| | - Rhys Mould
- Research Centre for Optimal Health, University of Westminster, London W1W 6UW, UK (J.D.B.)
| | - Jimmy D. Bell
- Research Centre for Optimal Health, University of Westminster, London W1W 6UW, UK (J.D.B.)
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Sebastien André
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne University, INSERM, 75013 Paris, France
| | - Dominique Archambault
- Laboratoire CHArt, University of Paris 8-Vincennes-Saint-Denis, 93526 Saint-Denis, France
| | - Margaret Ahmad
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
- Department of Biology, Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, USA
| | - Nathalie Jourdan
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| |
Collapse
|
13
|
Dobrzyńska M, Moniuszko-Malinowska A, Skrzydlewska E. Metabolic response to CNS infection with flaviviruses. J Neuroinflammation 2023; 20:218. [PMID: 37775774 PMCID: PMC10542253 DOI: 10.1186/s12974-023-02898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses found worldwide that, when introduced into the human body, cause diseases, including neuroinfections, that can lead to serious metabolic consequences and even death. Some of the diseases caused by flaviviruses occur continuously in certain regions, while others occur intermittently or sporadically, causing epidemics. Some of the most common flaviviruses are West Nile virus, dengue virus, tick-borne encephalitis virus, Zika virus and Japanese encephalitis virus. Since all the above-mentioned viruses are capable of penetrating the blood-brain barrier through different mechanisms, their actions also affect the central nervous system (CNS). Like other viruses, flaviviruses, after entering the human body, contribute to redox imbalance and, consequently, to oxidative stress, which promotes inflammation in skin cells, in the blood and in CNS. This review focuses on discussing the effects of oxidative stress and inflammation resulting from pathogen invasion on the metabolic antiviral response of the host, and the ability of viruses to evade the consequences of metabolic changes or exploit them for increased replication and further progression of infection, which affects the development of sequelae and difficulties in therapy.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
14
|
Holendova B, Plecita-Hlavata L. Cysteine residues in signal transduction and its relevance in pancreatic beta cells. Front Endocrinol (Lausanne) 2023; 14:1221520. [PMID: 37455926 PMCID: PMC10339824 DOI: 10.3389/fendo.2023.1221520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Cysteine is one of the least abundant but most conserved amino acid residues in proteins, playing a role in their structure, metal binding, catalysis, and redox chemistry. Thiols present in cysteines can be modified by post-translational modifications like sulfenylation, acylation, or glutathionylation, regulating protein activity and function and serving as signals. Their modification depends on their position in the structure, surrounding amino acids, solvent accessibility, pH, etc. The most studied modifications are the redox modifications by reactive oxygen, nitrogen, and sulfur species, leading to reversible changes that serve as cell signals or irreversible changes indicating oxidative stress and cell damage. Selected antioxidants undergoing reversible oxidative modifications like peroxiredoxin-thioredoxin system are involved in a redox-relay signaling that can propagate to target proteins. Cysteine thiols can also be modified by acyl moieties' addition (derived from lipid metabolism), resulting in protein functional modification or changes in protein anchoring in the membrane. In this review, we update the current knowledge on cysteine modifications and their consequences in pancreatic β-cells. Because β-cells exhibit well-balanced redox homeostasis, the redox modifications of cysteines here serve primarily for signaling purposes. Similarly, lipid metabolism provides regulatory intermediates that have been shown to be necessary in addition to redox modifications for proper β-cell function and, in particular, for efficient insulin secretion. On the contrary, the excess of reactive oxygen, nitrogen, and sulfur species and the imbalance of lipids under pathological conditions cause irreversible changes and contribute to oxidative stress leading to cell failure and the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Lydie Plecita-Hlavata
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
15
|
Cai Y, Lv L, Lu T, Ding M, Yu Z, Chen X, Zhou X, Wang X. α-KG inhibits tumor growth of diffuse large B-cell lymphoma by inducing ROS and TP53-mediated ferroptosis. Cell Death Discov 2023; 9:182. [PMID: 37308557 DOI: 10.1038/s41420-023-01475-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Metabolic reprogramming is a hallmark of human malignancies. Dysregulation of glutamine metabolism is essential for tumorigenesis, microenvironment remodeling, and therapeutic resistance. Based on the untargeted metabolomics sequencing, we identified that the glutamine metabolic pathway was up-regulated in the serum of patients with primary DLBCL. High levels of glutamine were associated with inferior clinical outcomes, indicative of the prognostic value of glutamine in DLBCL. In contrast, the derivate of glutamine alpha-ketoglutarate (α-KG) was negatively correlated with the invasiveness features of DLBCL patients. Further, we found that treatment with the cell-permeable derivative of α-KG, known as DM-αKG, significantly suppressed tumor growth by inducing apoptosis and non-apoptotic cell death. Accumulation of a-KG promoted oxidative stress in double-hit lymphoma (DHL), which depended on malate dehydrogenase 1 (MDH1)-mediated 2-hydroxyglutarate (2-HG) conversion. High levels of reactive oxygen species (ROS) contributed to ferroptosis induction by promoting lipid peroxidation and TP53 activation. In particular, TP53 overexpression derived from oxidative DNA damage, further leading to the activation of ferroptosis-related pathways. Our study demonstrated the importance of glutamine metabolism in DLBCL progression and highlighted the potential application of α-KG as a novel therapeutic strategy for DHL patients.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Liemei Lv
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
16
|
Yuan Y, Zuo M, Zhang S, Chen S, Feng W, Wang Z, Chen M, Liu Y. Impact of redox-related genes on tumor microenvironment immune characteristics and prognosis of high-grade gliomas. Front Cell Neurosci 2023; 17:1155982. [PMID: 37252189 PMCID: PMC10213429 DOI: 10.3389/fncel.2023.1155982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction High-grade glioma (HGG) defines a group of brain gliomas characterized by contrast enhancement, high tumor heterogeneity, and poor clinical outcome. Disturbed reduction-oxidation (redox) balance has been frequently associated with the development of tumor cells and their microenvironment (TME). Methods To study the influence of redox balance on HGGs and their microenvironment, we collected mRNA-sequencing and clinical data of HGG patients from TCGA and CGGA databases and our own cohort. Redox-related genes (ROGs) were defined as genes in the MSigDB pathways with keyword "redox" that were differentially expressed between HGGs and normal brain samples. Unsupervised clustering analysis was used to discover ROG expression clusters. Over-representation analysis (ORA), gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were also employed to understand the biological implication of differentially expressed genes between HGG clusters. CIBERSORTx and ESTIMATE were used to profile the immune TME landscapes of tumors, and TIDE was used to evaluated the potential response to immune checkpoint inhibitors. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression was used to construct HGG-ROG expression risk signature (GRORS). Results Seventy-five ROGs were found and consensus clustering using the expression profile of ROGs divided the both IDH-mutant (IDHmut) and IDH-wildtype (IDHwt) HGGs into subclusters with different prognosis. Functional enrichment analysis revealed that the differential aggressiveness between redox subclusters in IDHmut HGGs were significantly associated with cell cycle regulation pathways, while IDHwt HGG redox subclusters showed differentially activated immune-related pathways. In silico TME analysis on immune landscapes in the TME showed that the more aggressive redox subclusters in both IDHmut and IDHwt HGGs may harbor a more diverse composition of tumor-infiltrating immune cells, expressed a higher level of immune checkpoints and were more likely to respond to immune checkpoint blockade. Next, we established a GRORS which showed AUCs of 0.787, 0.884, and 0.917 in predicting 1-3-year survival of HGG patients in the held-out validation datasets, and the C-index of a nomogram combining the GRORS and other prognostic information reached 0.835. Conclusion Briefly, our results suggest that the expression pattern of ROGs was closely associated with the prognosis as well as the TME immune profile of HGGs, and may serve as a potential indicator for their response to immunotherapies.
Collapse
Affiliation(s)
- Yunbo Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Zuo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuxin Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wentao Feng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mina Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Bellanti F, Serviddio G, Vendemiale G. Modulation of liver regeneration by the nuclear factor erythroid 2-related factor 2. ADVANCES IN REDOX RESEARCH 2023; 7:100066. [DOI: 10.1016/j.arres.2023.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
18
|
Checconi P, Coni C, Limongi D, Baldelli S, Ciccarone F, De Angelis M, Mengozzi M, Ghezzi P, Ciriolo MR, Nencioni L, Palamara AT. Influenza virus replication is affected by glutaredoxin1-mediated protein deglutathionylation. FASEB J 2023; 37:e22729. [PMID: 36583688 DOI: 10.1096/fj.202201239rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.
Collapse
Affiliation(s)
- Paola Checconi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Cristiana Coni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Dolores Limongi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Sara Baldelli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy
| | - Fabio Ciccarone
- Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marta De Angelis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Pietro Ghezzi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Maria Rosa Ciriolo
- Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Nencioni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
19
|
Sobotka O, Ticha M, Kubickova M, Adamek P, Polakova L, Mezera V, Sobotka L. Should Carbohydrate Intake Be More Liberal during Oral and Enteral Nutrition in Type 2 Diabetic Patients? Nutrients 2023; 15:nu15020439. [PMID: 36678311 PMCID: PMC9863670 DOI: 10.3390/nu15020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Carbohydrate (CHO) intake in oral and enteral nutrition is regularly reduced in nutritional support of older patients due to the high prevalence of diabetes (usually type 2-T2DM) in this age group. However, CHO shortage can lead to the lack of building blocks necessary for tissue regeneration and other anabolic processes. Moreover, low CHO intake decreases CHO oxidation and can increase insulin resistance. The aim of our current study was to determine the extent to which an increased intake of a rapidly digestible carbohydrate-maltodextrin-affects blood glucose levels monitored continuously for one week in patients with and without T2DM. Twenty-one patients (14 T2DM and seven without diabetes) were studied for two weeks. During the first week, patients with T2DM received standard diabetic nutrition (250 g CHO per day) and patients without diabetes received a standard diet (350 g of CHO per day). During the second week, the daily CHO intake was increased to 400 in T2DM and 500 g in nondiabetic patients by addition of 150 g maltodextrin divided into three equal doses of 50 g and given immediately after the main meal. Plasma glucose level was monitored continually with the help of a subcutaneous sensor during both weeks. The increased CHO intake led to transient postprandial increase of glucose levels in T2DM patients. This rise was more manifest during the first three days of CHO intake, and then the postprandial peak hyperglycemia was blunted. During the night's fasting period, the glucose levels were not influenced by maltodextrin. Supplementation of additional CHO did not influence the percentual range of high glucose level and decreased a risk of hypoglycaemia. No change in T2DM treatment was indicated. The results confirm our assumption that increased CHO intake as an alternative to CHO restriction in type 2 diabetic patients during oral and enteral nutritional support is safe.
Collapse
Affiliation(s)
- Ondrej Sobotka
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Marie Ticha
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Marketa Kubickova
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Petr Adamek
- Levit’s Aftercare Centre, 50801 Horice, Czech Republic
| | | | - Vojtech Mezera
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
- Geriatric Center, Pardubice Hospital, 53203 Pardubice, Czech Republic
| | - Lubos Sobotka
- 3rd Department of Medicine, Metabolic Care and Gerontology, Medical Faculty, Charles University, 50005 Hradec Kralove, Czech Republic
- Correspondence:
| |
Collapse
|
20
|
Liu J, Lin S, Wu S, Lin Q, Fan Z, Wang C, Ye D, Guo P. Dietary supplementation with nano-composite of copper and carbon on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. J Anim Sci 2023; 101:skad362. [PMID: 37899715 PMCID: PMC10630021 DOI: 10.1093/jas/skad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023] Open
Abstract
New feed additives as antibiotics substitutes are in urgent need in poultry production. Nano-composite of copper and carbon (NCCC), a novel copper donor with stronger antibacterial properties, is expected to promote broiler growth and diminish the negative effects of excess copper (Cu). Hence, the purpose of this study is to investigate the effects of NCCC on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. A total of 240 1-d-old male yellow-feathered broilers were selected and randomly divided into four groups, with five replications per group and 12 birds per replication. The CON group was fed corn-soybean basal diets, while the N50, N100, and N200 groups were supplemented with 50, 100, and 200 mg/kg of NCCC in basal diets, respectively. The trial lasted for 63 d. The results demonstrated that only 200 mg/kg NCCC addition significantly increased the Cu content in serum and feces, and liver Cu content linearly increased with NCCC dosage increment (P < 0.05). Meanwhile, NCCC supplementation did not alter the growth performance, slaughter performance, immune organ indexes, and liver antioxidant ability of broilers (P > 0.05), but optimized the serum cytokine pattern by elevating the level of serum IL-10 (P < 0.05), and there were linear and quadratic increases in serum IL-4 with NCCC dosage increment (P < 0.05). On the whole, in spite of no impact on growth performance, 50 mg/kg NCCC was optimal to supplement in chicken diets due to the rise of serum IL-10 level and no extra environmental pollution and tissue residues.
Collapse
Affiliation(s)
- Jing Liu
- Instituteof AnimalHusbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Shiying Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqin Wu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingjie Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zitao Fan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingcheng Ye
- Instituteof AnimalHusbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Kukulage DSK, Matarage Don NNJ, Ahn YH. Emerging chemistry and biology in protein glutathionylation. Curr Opin Chem Biol 2022; 71:102221. [PMID: 36223700 PMCID: PMC9844265 DOI: 10.1016/j.cbpa.2022.102221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Protein S-glutathionylation serves a regulatory role in proteins and modulates distinct biological processes implicated in health and diseases. Despite challenges in analyzing the dynamic and reversible nature of S-glutathionylation, recent chemical and biological methods have significantly advanced the field of S-glutathionylation, culminating in selective identification and detection, structural motif analysis, and functional studies of S-glutathionylation. This review will highlight emerging studies of protein glutathionylation, beginning by introducing biochemical tools that enable mass spectrometric identification and live-cell imaging of S-glutathionylation. Next, it will spotlight recent examples of S-glutathionylation regulating physiology and inflammation. Lastly, we will feature two emerging lines of glutathionylation research in cryptic cysteine glutathionylation and protein C-glutathionylation.
Collapse
Affiliation(s)
| | | | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Zhou L, Wang B, Xie H, Du C, Tang J, Tang W. Intrauterine exposure to oxidative stress induces caspase-1-dependent enteric nerve cell pyroptosis. Pediatr Surg Int 2022; 38:1555-1567. [PMID: 35995981 DOI: 10.1007/s00383-022-05199-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE This study determined whether oxidative stress causes the developmental abnormalities of the enteric nervous system during the embryonic period. METHODS Using the test results of tissue specimens of children with Hirschsprung disease (HSCR), we established a pregnant rat model of oxidative stress and a cellular oxidative stress model to conduct related molecular, cellular, and histopathological experiments for exploration and validation. RESULTS The results of the quantitative real-time polymerase chain reaction assay indicated overexpression of pyroptosis markers (NLRP3, ASC, and caspase-1) in HSCR lesions and newborn pups in the oxidative stress group (treated with D-galactose). The expression of cathepsin D was significantly decreased in intestinal tissues of newborn pups in the oxidative stress group compared to the control group. Reactive oxygen species scavengers (N-acetyl-cysteine, NAC), the caspase-1 inhibitor (VX-765), and the NLRP3 siRNA could reverse the release of LDH, decrease the number of propidium iodide stained cells, and reduce the percentage of TUNEL/caspase-3 double-positive cells in the H2O2-treated group. CONCLUSION Oxidative stress can induce the death of enteric nerve cells by activating caspase-1-dependent pyroptosis through NLRP3 inflammasomes, which may contribute to abnormal enteric nervous system development.
Collapse
Affiliation(s)
- Lingling Zhou
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, Children's Hospital of Wujiang District, Suzhou, People's Republic of China
| | - Bingyu Wang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Pediatric Surgery, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Xie
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunxia Du
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Tang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Weibing Tang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
23
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
24
|
Žarković N, Jastrząb A, Jarocka-Karpowicz I, Orehovec B, Baršić B, Tarle M, Kmet M, Lukšić I, Łuczaj W, Skrzydlewska E. The Impact of Severe COVID-19 on Plasma Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165323. [PMID: 36014561 PMCID: PMC9416063 DOI: 10.3390/molecules27165323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Several studies suggested the association of COVID-19 with systemic oxidative stress, in particular with lipid peroxidation and vascular stress. Therefore, this study aimed to evaluate the antioxidant signaling in the plasma of eighty-eight patients upon admission to the Clinical Hospital Dubrava in Zagreb, of which twenty-two died within a week, while the other recovered. The differences between the deceased and the survivors were found, especially in the reduction of superoxide dismutases (SOD-1 and SOD-2) activity, which was accompanied by the alteration in glutathione-dependent system and the intensification of the thioredoxin-dependent system. Reduced levels of non-enzymatic antioxidants, especially tocopherol, were also observed, which correlated with enhanced lipid peroxidation (determined by 4-hydroxynonenal (4-HNE) and neuroprostane levels) and oxidative modifications of proteins assessed as 4-HNE-protein adducts and carbonyl groups. These findings confirm the onset of systemic oxidative stress in patients with severe SARS-CoV-2, especially those who died from COVID-19, as manifested by strongly reduced tocopherol level and SOD activity associated with lipid peroxidation. Therefore, we propose that preventive and/or supplementary use of antioxidants, especially of lipophilic nature, could be beneficial for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Biserka Orehovec
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Bruno Baršić
- Department of Internal Medicine, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marko Tarle
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marta Kmet
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
25
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
26
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
27
|
Metabolic Response to Tick-Borne Encephalitis Virus Infection and Bacterial Co-Infections. Pathogens 2022; 11:pathogens11040384. [PMID: 35456059 PMCID: PMC9030592 DOI: 10.3390/pathogens11040384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ticks are vectors of various pathogens, including tick-borne encephalitis virus and bacteria such as B. burgdorferi and A. phagocytophilum, causing infections/co-infections, which are still a diagnostic and therapeutic problem. Therefore, the aim of this study was to compare the effects of TBEV infection/bacterial co-infection on metabolic changes in the blood of patients before and after treatment. It was found that those infections promote plasma ROS enhanced generation and antioxidant defence reduction, especially in relation to glutathione and thioredoxin systems, despite the increased effectiveness of Nrf2 transcription factor in granulocytes. Observed oxidative stress promotes the oxidative modifications of phospholipids containing polyunsaturated fatty acids (LA, AA, EPA) with increased lipid peroxidation (estimated as 8-isoPGF2α, 4-HNE). It is accompanied by protein modifications measured as 4-HNE-protein adducts, carbonyl groups, dityrosine increase, and tryptophan level decrease, which promote structural and functional modification of the following transcription factors: Nrf2 and NFkB inhibitors. The lower level of 8-iso-PGF2α in co-infections indicates an impairment of the body’s ability to intensify inflammation and fight co-infections, while an increased level of Trx after therapy may contribute to the intensification of the inflammatory process. The obtained results indicate the potential possibility of using the assessed metabolic parameters to introduce targeted pharmacotherapy in cases of TBEV infections/bacterial co-infections.
Collapse
|
28
|
Construction of a Redox-Related Prognostic Model with Predictive Value in Survival and Therapeutic Response for Patients with Lung Adenocarcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7651758. [PMID: 35251577 PMCID: PMC8896929 DOI: 10.1155/2022/7651758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 01/20/2023]
Abstract
Background Lung adenocarcinoma (LUAD) represents the most common histological subtype of lung cancer. Redox plays a significant role in oncogenesis and antitumor immunity. In this study, we aimed to investigate the prognostic redox-associated genes and construct a redox-based prognostic signature for LUAD. Materials and Methods A discovery cohort containing 479 LUAD samples from The Cancer Genome Atlas (TCGA) was analyzed. We identified prognostic redox-associated genes by weighted correlation network analysis (WGCNA) and univariate Cox regression analysis to construct a prognostic model via least absolute shrinkage and selection operator (LASSO)-multivariate Cox regression analyses. The performance of the redox-based model was validated in the TCGA cohort and an independent cohort of 456 samples by Cox regression analyses, log-rank test, and receiver operating characteristic (ROC) curves. Correlations of the model with clinicopathological variables and lymphocyte infiltration were assessed. Gene set enrichment analysis (GSEA) was used to clarify the underlying mechanism of the prognostic model. We constructed a nomogram based on the model and created calibration curves to show the accordance between actual survival and predicted survival of the nomogram. Results Stepwise analyses identified 6 prognostic redox-associated genes of LUAD and constructed a prognostic model that performed well in both the discovery and validation cohorts. The model was found to be associated with tumor stage, mutation of TP53 and EGFR, and lymphocyte infiltration. The model was mainly involved in the regulation of the cell cycle, DNA replication and repair, NADH metabolism, and the p53 signaling pathway. Calibration curves showed the high predictive accuracy of the nomogram. Conclusions This study explored the role of redox-associated genes in LUAD and constructed a prognostic model of LUAD. The signature was also associated with tumor progression and therapeutic response to immunotherapy. These findings contributed to uncovering the underlying mechanism and discovering novel prognostic predictor of LUAD.
Collapse
|
29
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
30
|
|
31
|
Toro-Pérez J, Rodrigo R. Contribution of oxidative stress in the mechanisms of postoperative complications and multiple organ dysfunction syndrome. Redox Rep 2021; 26:35-44. [PMID: 33622196 PMCID: PMC7906620 DOI: 10.1080/13510002.2021.1891808] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The extent of the damage following surgery has been subject of study for several years. Numerous surgical complications can impact postoperative quality of life of patients and even can cause mortality. Although these complications are generally due to multifactorial mechanisms, oxidative stress plays a key pathophysiological role. Moreover, oxidative stress could be an unavoidable effect derived even from the surgical procedure itself. METHODS A systematic review was performed following an electronic search of Pubmed and ScienceDirect databases. Keywords such as sepsis, oxidative stress, organ dysfunction, antioxidants, outcomes in postoperative complications, among others, were used. Review articles were preferably used between the years 2015 onwards, not excluding older ones. RESULTS The vast majority point to the role of oxidative stress in generating greater damage and worse prognosis in postoperative patients without the necessary care and precautions, taking importance on the use of antioxidants to prevent this problem. DISCUSSIONS Oxidative stress represents a common final pathway related to pathological processes such as inflammation or ischemia-reperfusion, among others. The expression of greater severity of these complications can result in multiple organ dysfunction or sepsis. The aim of this study was to present an update of the role of oxidative stress on surgical postoperative complications.
Collapse
Affiliation(s)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
32
|
Ding D, Mou D, Zhao L, Jiang X, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal organic selenium supplementation alleviates LPS induced inflammation, autophagy and ER stress in the thymus and spleen of offspring piglets by improving the expression of selenoproteins. Food Funct 2021; 12:11214-11228. [PMID: 34647565 DOI: 10.1039/d1fo01653a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The thymus and spleen are the main reservoir for T lymphocytes, which can regulate the innate immune response and provide protection against pathogens and tissue damage. Oxidative stress, excessive inflammation, abnormal autophagy and endoplasmic reticulum (ER) stress can all lead to dysfunction of the thymus and spleen. This study was conducted to investigate the effect of maternal 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, an organic Se source) supplementation during pregnancy on the selenoprotein expression, inflammation, ER stress and autophagy of their young offspring's thymus and spleen. Thirty sows were randomly assigned to receive one of the following two diets during gestation: control diet (control, basal diet, n = 15) or HMSeBA supplemented diet (HMSeBA, basal diet +0.3 mg Se kg-1 as HMSeBA, n = 15). Tissues of thymus and spleen were collected from the offspring at birth and weaning after the lipopolysaccharide challenge. Results showed that maternal HMSeBA supplementation significantly up-regulated the gene expression of selenoproteins in the thymus and spleen of newborn piglets compared with the basal diet (p < 0.05), as well as the protein abundance of GPX1 and GPX4 (p < 0.05). In addition, maternal HMSeBA supplementation effectively decreased the expression of inflammation and autophagy related proteins in the thymus and spleen of newborn piglets as compared with the control group (p < 0.05). In weaning piglets, maternal HMSeBA significantly increased the antioxidative capacity of thymus and spleen (p < 0.05), and reversed LPS induced MDA content as compared with the control group (p < 0.05). Furthermore, maternal HMSeBA supplementation during gestation reversed the activation of the MAPK/NF-κB pathway, ER stress and autophagy induced by the LPS challenge in the thymus and spleen of weaning piglets (p < 0.05). In conclusion, maternal HMSeBA supplementation during gestation could decrease the level of inflammation, autophagy and ER stress in the thymus and spleen of young offspring by improving the antioxidative capacity and selenoprotein expression in these tissues. Therefore, maternal HMSeBA supplementation during gestation might be beneficial for the immune function of their offspring by alleviating inflammation, autophagy and ER stress levels in the thymus and spleen. This study showed more evidence for the function of Se on mater-offspring integrated nutrition.
Collapse
Affiliation(s)
- Dajiang Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daolin Mou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianpeng Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
33
|
Xia Y, Cao Y, Sun Y, Hong X, Tang Y, Yu J, Hu H, Ma W, Qin K, Bao R. Calycosin Alleviates Sepsis-Induced Acute Lung Injury via the Inhibition of Mitochondrial ROS-Mediated Inflammasome Activation. Front Pharmacol 2021; 12:690549. [PMID: 34737695 PMCID: PMC8560711 DOI: 10.3389/fphar.2021.690549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis-induced acute lung injury (ALI) culminates in multiple organ failure via uncontrolled inflammatory responses and requires effective treatment. Herein, we aimed to investigate the effect of calycosin (CA), a natural isoflavonoid, on sepsis-induced ALI. CA attenuated lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-induced structural damage and inflammatory cell infiltration in lung tissues by histopathological analysis. CA significantly reduced lung wet/dry ratio, inflammatory cell infiltration in bronchoalveolar lavage fluid, and myeloperoxidase activity. Moreover, CA improved the survival of septic mice. CA also substantially inhibited interleukin (IL)-1β and IL-18 levels and cleaved caspase 1 expression and activity in lung tissues. Additionally, CA markedly suppressed oxidative stress by increasing levels of superoxide dismutase and glutathione while decreasing malondialdehyde. In vitro assay showed that CA significantly inhibited LPS-induced IL-1β and IL-18 levels and cleaved caspase 1 expression and activity in BMDMs. Moreover, CA blocked the interaction among NLRP3, ASC, and caspase 1 in LPS-treated cells. CA markedly reduced mitochondrial ROS levels. Significantly, compared with CA treatment, the combination of CA and MitoTEMPO (mitochondria-targeted antioxidant) did not further reduce the IL-1β and IL-18 levels and cleaved caspase 1 expression and activity and decreased mitochondrial ROS levels. Collectively, the inhibition of mitochondrial ROS-mediated NLRP3 inflammasome activation contributes to the protective effects of CA, which may be considered a potential therapeutic agent for septic ALI.
Collapse
Affiliation(s)
- Yu Xia
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Yuanbao Cao
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Yao Sun
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Xiuying Hong
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Yingyan Tang
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Juan Yu
- Department of Clinical Laboratory, LiShui People Hospital, Nanjing, China
| | - Hongjuan Hu
- Department Science and Education, LiShui People Hospital, Nanjing, China
| | - Wenjia Ma
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Kailun Qin
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Rui Bao
- Department of Pharmaceutics, School of Pharmacy of Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Sobotka L, Sobotka O. The predominant role of glucose as a building block and precursor of reducing equivalents. Curr Opin Clin Nutr Metab Care 2021; 24:555-562. [PMID: 34456247 DOI: 10.1097/mco.0000000000000786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Stores of glucose (Glc) in our body are small compared with protein and lipid. Therefore, at times of famines or trauma/disease-related starvation, glucose utilization must be limited only to pathways that can only run with glucose carbon as substrate. We will try to outline how insulin resistance drives these pathways and inhibits glucose oxidation in the stressed organism. RECENT FINDINGS Glc is a basic substrate for a variety of other biomolecules like nucleic acids, amino acids, proteoglycans, mucopolysaccharides and lipids. It is essential for the formation of reducing equivalents, indispensable for anabolic, antioxidative, regulatory and immune processes. As a result, a continuous Glc turnover/cycle is essential to secure at all times the Glc requirements for nonoxidative pathways mentioned above but then requires introduction of extra glucose or other intermediates into the cycle. The production of ATP through complete Glc oxidation occurs only when Glc intake is higher than required for its nonoxidative metabolism. Insulin resistance and decreased Glc oxidation indicate that requirements of Glc for anabolic pathways are high. SUMMARY Glc is an important building block for anabolic reactions and substrate for reducing equivalents formation. Insulin resistance prevents irreversible Glc oxidation and stimulates Glc production during stress or growth. Glc is only oxidized when intake is in excess of its anabolic requirements.
Collapse
Affiliation(s)
- Lubos Sobotka
- 3rd Department of Medicine, Gerontology and Metabolism, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | | |
Collapse
|
35
|
Gómez MA, Navas A, Prieto MD, Giraldo-Parra L, Cossio A, Alexander N, Gore Saravia N. Immuno-pharmacokinetics of Meglumine Antimoniate in Patients With Cutaneous Leishmaniasis Caused by Leishmania (Viannia). Clin Infect Dis 2021; 72:e484-e492. [PMID: 32818964 PMCID: PMC8130027 DOI: 10.1093/cid/ciaa1206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Control of cutaneous leishmaniasis (CL) relies on chemotherapy, yet gaps in our understanding of the determinants of therapeutic outcome impede optimization of antileishmanial drug regimens. Pharmacodynamic (PD) parameters of antimicrobials are based on the relationship between drug concentrations/exposure and microbial kill. However, viable Leishmania persist in a high proportion of individuals despite clinical resolution, indicating that determinants other than parasite clearance are involved in drug efficacy. METHODS In this study, the profiles of expression of neutrophils, monocytes, Th1 and Th17 gene signatures were characterized in peripheral blood mononuclear cells (PBMCs) during treatment with meglumine antimoniate (MA) and clinical cure of human CL caused by Leishmania (Viannia). We explored relationships of immune gene expression with plasma and intracellular antimony (Sb) concentrations. RESULTS Our findings show a rapid and orchestrated modulation of gene expression networks upon exposure to MA. We report nonlinear pharmacokinetic/pharmacodynamic (PK/PD) relationships of Sb and gene expression dynamics in PBMCs , concurring with a time lag in the detection of intracellular drug concentrations and with PK evidence of intracellular Sb accumulation. CONCLUSIONS Our results quantitatively portray the immune dynamics of therapeutic healing, and provide the knowledge base for optimization of antimonial drug treatments, guiding the selection and/or design of targeted drug delivery systems and strategies for targeted immunomodulation.
Collapse
Affiliation(s)
- María Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
- Correspondence: M. Adelaida Gómez, CIDEIM, Calle 18 # 122-135, Universidad Icesi, Edificio O, Cali, Colombia ()
| | - Adriana Navas
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Miguel Dario Prieto
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
| | - Lina Giraldo-Parra
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Alexandra Cossio
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Neal Alexander
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Nancy Gore Saravia
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| |
Collapse
|
36
|
Martinez-Banaclocha M. Interfering Reactive Cysteine Proteome in Covid-19 Disease. Curr Med Chem 2021; 29:1657-1663. [PMID: 34165401 DOI: 10.2174/0929867328666210623142811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Although vaccination against SARS-CoV-2 infection has been initiated, effective therapies for severe Covid-19 disease are still needed. A promising therapeutic strategy is using FDA-approved drugs that have the biological potential to interfere with or modify some of the viral proteins capable of changing the disease's course. Recent studies highlight that some clinically safe drugs can suppress the viral life cycle while potentially promoting an adequate host inflammatory/immune response by interfering with the disease's cysteine proteome.
Collapse
|
37
|
Ghezzi P. Redox regulation of immunity and the role of small molecular weight thiols. Redox Biol 2021; 44:102001. [PMID: 33994345 PMCID: PMC8212150 DOI: 10.1016/j.redox.2021.102001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/31/2021] [Accepted: 05/02/2021] [Indexed: 01/07/2023] Open
Abstract
It is thought that excessive production of reactive oxygen species (ROS) can be a causal component in many diseases, some of which have an inflammatory component. This led to an oversimplification whereby ROS are seen as inflammatory and antioxidants anti-inflammatory. This paper aims at reviewing some of the literature on thiols in host defense. The review will first summarize the mechanisms by which we survive infections by pathogens. Then we will consider how the redox field evolved from the concept of oxidative stress to that of redox regulation and how it intersects the field of innate immunity. A third section will analyze how an oversimplified oxidative stress theory of disease led to a hypothesis on the role of ROS and glutathione (GSH) in immunity, respectively as pro- and anti-inflammatory mediators. Finally, we will discuss some recent research and how to think out of the box of that oversimplification and link the role of thiols in redox regulation to the mechanisms by which we survive an infection outlined in the first section.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, Great Britain, BN1 9RY, UK.
| |
Collapse
|
38
|
Pooam M, Aguida B, Drahy S, Jourdan N, Ahmad M. Therapeutic application of light and electromagnetic fields to reduce hyper-inflammation triggered by COVID-19. Commun Integr Biol 2021; 14:66-77. [PMID: 33995820 PMCID: PMC8096326 DOI: 10.1080/19420889.2021.1911413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 - related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called 'cytokine storms' are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by ROS (Reactive Oxygen Species). Both light (Photobiomodulation) and magnetic fields (e.g., Pulsed Electro Magnetic Field) stimulation are noninvasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either Pulsed Electromagnetic Fields (PEMF), or to Low-Level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects, and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID-19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID-19 patients both in the home and in the hospital.
Collapse
Affiliation(s)
- Marootpong Pooam
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Blanche Aguida
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
| | - Soria Drahy
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
| | - Nathalie Jourdan
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
| | - Margaret Ahmad
- Photobiology Research Group, Sorbonne Université - CNRS, Paris, France
- Xavier University, Cincinnati, Ohio, U.S.A
| |
Collapse
|
39
|
Shang ZZ, Qin DY, Li QM, Zha XQ, Pan LH, Peng DY, Luo JP. Dendrobium huoshanense stem polysaccharide ameliorates rheumatoid arthritis in mice via inhibition of inflammatory signaling pathways. Carbohydr Polym 2021; 258:117657. [PMID: 33593544 DOI: 10.1016/j.carbpol.2021.117657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023]
Abstract
The present study explored the beneficial effect of Dendrobium huoshanense stem polysaccharide (cDHPS) after oral administration on rheumatoid arthritis (RA) using type Ⅱ collagen-induced arthritis (CIA) mouse model. It was found that cDHPS effectively alleviated joint swelling, synovial hyperplasia, pannus formation, cartilage erosion and bone destruction in CIA mice. Concurrently, cDHPS remodeled the balance of Th17 and regulatory T cells, reduced the secretion of pro-inflammatory mediators related to fibroblast-like synoviocyte activation, angiogenesis, articular cartilage degradation and osteoclast differentiation, inhibited HIF-1α expression and promoted anti-inflammatory mediator release in the joint tissues and serum of CIA mice. Western blot of joint tissues showed that cDHPS significantly inhibited the phosphorylation of IκB, p65, JNK, p38, ERK1/2, AKT, PI3K, JAK1 and STAT3 in CIA mice. These results suggest that cDHPS possesses the potential of ameliorating RA and its anti-RA effect may be attributed to the inhibition of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Zhen-Zi Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dan-Yang Qin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
40
|
Aboelella NS, Brandle C, Kim T, Ding ZC, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13050986. [PMID: 33673398 PMCID: PMC7956301 DOI: 10.3390/cancers13050986] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer cells are consistently under oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. This feature has been exploited to develop therapeutic strategies that control tumor growth by modulating the oxidative stress in tumor cells. This review provides an overview of recent advances in cancer therapies targeting tumor oxidative stress, and highlights the emerging evidence implicating the effectiveness of cancer immunotherapies in intensifying tumor oxidative stress. The promises and challenges of combining ROS-inducing agents with cancer immunotherapy are also discussed. Abstract It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.
Collapse
Affiliation(s)
- Nada S. Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
| | - Timothy Kim
- The Center for Undergraduate Research and Scholarship, Augusta University, Augusta, GA 30912, USA;
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-4472
| |
Collapse
|
41
|
Mosleth EF, Vedeler CA, Liland KH, McLeod A, Bringeland GH, Kroondijk L, Berven FS, Lysenko A, Rawlings CJ, Eid KEH, Opsahl JA, Gjertsen BT, Myhr KM, Gavasso S. Cerebrospinal fluid proteome shows disrupted neuronal development in multiple sclerosis. Sci Rep 2021; 11:4087. [PMID: 33602999 PMCID: PMC7892850 DOI: 10.1038/s41598-021-82388-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Despite intensive research, the aetiology of multiple sclerosis (MS) remains unknown. Cerebrospinal fluid proteomics has the potential to reveal mechanisms of MS pathogenesis, but analyses must account for disease heterogeneity. We previously reported explorative multivariate analysis by hierarchical clustering of proteomics data of MS patients and controls, which resulted in two groups of individuals. Grouping reflected increased levels of intrathecal inflammatory response proteins and decreased levels of proteins involved in neural development in one group relative to the other group. MS patients and controls were present in both groups. Here we reanalysed these data and we also reanalysed data from an independent cohort of patients diagnosed with clinically isolated syndrome (CIS), who have symptoms of MS without evidence of dissemination in space and/or time. Some, but not all, CIS patients had intrathecal inflammation. The analyses reported here identified a common protein signature of MS/CIS that was not linked to elevated intrathecal inflammation. The signature included low levels of complement proteins, semaphorin-7A, reelin, neural cell adhesion molecules, inter-alpha-trypsin inhibitor heavy chain H2, transforming growth factor beta 1, follistatin-related protein 1, malate dehydrogenase 1 cytoplasmic, plasma retinol-binding protein, biotinidase, and transferrin, all known to play roles in neural development. Low levels of these proteins suggest that MS/CIS patients suffer from abnormally low oxidative capacity that results in disrupted neural development from an early stage of the disease.
Collapse
Affiliation(s)
- Ellen F Mosleth
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway.
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Christian Alexander Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kristian Hovde Liland
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Anette McLeod
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Gerd Haga Bringeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Liesbeth Kroondijk
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Artem Lysenko
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Karim El-Hajj Eid
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Jill Anette Opsahl
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sonia Gavasso
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
42
|
Zhao L, Mao Z, Mou D, Huang L, Yang M, Ding D, Yan H, Fang Z, Che L, Zhuo Y, Jiang X, Xu S, Lin Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal cholecalciferol supplementation during gestation improves antioxidant capacities in gilts and piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1961616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Long Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Dajing Ding
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
43
|
Wang X, Jiang X, Huang Q, Wang H, Gurarie D, Ndeffo-Mbah M, Fan F, Fu P, Horn MA, Mondal A, King C, Xu S, Zhao H, Bai Y. Risk factors of SARS-CoV-2 infection in healthcare workers: a retrospective study of a nosocomial outbreak. Sleep Med X 2020; 2:100028. [PMID: 33860224 PMCID: PMC7554494 DOI: 10.1016/j.sleepx.2020.100028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Healthcare workers (HCWs) are at the forefront of fighting against the COVID-19 pandemic. However, they are at high risk of acquiring the pathogen from infected patients and transmitting to other HCWs. We aimed to investigate risk factors for nosocomial COVID-19 infection among HCWs in a non-COVID-19 hospital yard. METHODS Retrospective data collection on demographics, lifestyles, contact status with infected subjects for 118 HCWs (including 12 COVID-19 HCWs) at Union Hospital of Wuhan, China. Sleep quality and working pressure were evaluated by the Pittsburgh Sleep Quality Index (PSQI) and The Nurse Stress Index (NSI), respectively. The follow-up duration was from Dec 25, 2019, to Feb 15, 2020. RESULTS A high proportion of COVID-19 HCWs had engaged in night shift-work (75.0% vs. 40.6%) and felt working under pressure (66.7% vs. 32.1%) than uninfected HCWs. SARS-CoV-2 infected HCWs had significantly higher scores of PSQI and NSI than uninfected HCWs (P < 0.001). Specifically, scores of 5 factors (sleep quality, sleep time, sleep efficiency, sleep disorder, and daytime dysfunction) in PSQI were higher among infected HCWs. For NSI, its 5 subscales (nursing profession and work, workload and time allocation, working environment and resources, patient care, management and interpersonal relations) were all higher in infected than uninfected nurse. Furthermore, total scores of PSQI (HR = 2.97, 95%CI = 1.86-4.76; P <0.001) and NSI (HR = 4.67, 95%CI = 1.42-15.45; P = 0.011) were both positively associated with the risk of SARS-CoV-2 infection. CONCLUSION Our analysis shows that poor sleep quality and higher working pressure may increase the risk of nosocomial SARS-CoV-2 infection among HCWs.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qimin Huang
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Han Wang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David Gurarie
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Martial Ndeffo-Mbah
- Department of Veterinary and Integrative Biosciences, College of Veterinary and Biomedical Sciences, Texas A&M University, College Station, TX, 77840, USA
- School of Public Health, Texas A&M University, College Station, TX, 77840, USA
| | - Fei Fan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mary Ann Horn
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anirban Mondal
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Charles King
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shuai Xu
- Computer and Data Science Department, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
44
|
Kotsafti A, Scarpa M, Castagliuolo I, Scarpa M. Reactive Oxygen Species and Antitumor Immunity-From Surveillance to Evasion. Cancers (Basel) 2020; 12:E1748. [PMID: 32630174 PMCID: PMC7409327 DOI: 10.3390/cancers12071748] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is a crucial regulator of tumor biology with the capacity to support or inhibit cancer development, growth, invasion and metastasis. Emerging evidence show that reactive oxygen species (ROS) are not only mediators of oxidative stress but also players of immune regulation in tumor development. This review intends to discuss the mechanism by which ROS can affect the anti-tumor immune response, with particular emphasis on their role on cancer antigenicity, immunogenicity and shaping of the tumor immune microenvironment. Given the complex role that ROS play in the dynamics of cancer-immune cell interaction, further investigation is needed for the development of effective strategies combining ROS manipulation and immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Marco Scarpa
- General Surgery Unit, Azienda Ospedaliera di Padova, 35128 Padua, Italy;
| | | | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| |
Collapse
|
45
|
Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020; 9:antiox9020140. [PMID: 32033390 PMCID: PMC7070274 DOI: 10.3390/antiox9020140] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
A human organism depends on stable glucose blood levels in order to maintain its metabolic needs. Glucose is considered to be the most important energy source, and glycolysis is postulated as a backbone pathway. However, when the glucose supply is limited, ketone bodies and amino acids can be used to produce enough ATP. In contrast, for the functioning of the pentose phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. The PPP generates and maintains the levels of nicotinamide adenine dinucleotide phosphate (NADPH) needed for the reduction in oxidized glutathione and protein thiols, the synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox signaling and counteracting infections. The flux of glucose into a PPP—particularly under extreme oxidative and toxic challenges—is critical for survival, whereas the glycolytic pathway is primarily activated when glucose is abundant, and there is lack of NADP+ that is required for the activation of glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative challenges is discussed. Current evidences explain the disruptive metabolic effects and detrimental health consequences of chronic nutritional carbohydrate overload, and provide new insights into the positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet through modulation of redox homeostasis.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine # 1, Lviv National Medical University, 79010 Lviv, Ukraine
- Correspondence:
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine
| | - Tamaz Mdzinarashvili
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University, 0128 Tbilisi, Georgia;
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute “Rudjer Boskovic”, HR-10000 Zagreb, Croatia;
| |
Collapse
|
46
|
Bellanti F, Pannone G, Tartaglia N, Serviddio G. Redox Control of the Immune Response in the Hepatic Progenitor Cell Niche. Front Cell Dev Biol 2020; 8:295. [PMID: 32435643 PMCID: PMC7218163 DOI: 10.3389/fcell.2020.00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023] Open
Abstract
The liver commonly self-regenerates by a proliferation of mature cell types. Nevertheless, in case of severe or protracted damage, the organ renewal is mediated by the hepatic progenitor cells (HPCs), adult progenitors capable of differentiating toward the biliary and the hepatocyte lineages. This regeneration process is determined by the formation of a stereotypical niche surrounding the emerging progenitors. The organization of the HPC niche microenvironment is crucial to drive biliary or hepatocyte regeneration. Furthermore, this is the site of a complex immunological activity mediated by several immune and non-immune cells. Indeed, several cytokines produced by monocytes, macrophages and T-lymphocytes may promote the activation of HPCs in the niche. On the other side, HPCs may produce pro-inflammatory cytokines induced by liver inflammation. The inflamed liver is characterized by high generation of reactive oxygen and nitrogen species, which in turn lead to the oxidation of macromolecules and the alteration of signaling pathways. Reactive species and redox signaling are involved in both the immunological and the adult stem cell regeneration processes. It is then conceivable that redox balance may finely regulate the immune response in the HPC niche, modulating the regeneration process and the immune activity of HPCs. In this perspective article, we summarize the current knowledge on the role of reactive species in the regulation of hepatic immunity, suggesting future research directions for the study of redox signaling on the immunomodulatory properties of HPCs.
Collapse
Affiliation(s)
- Francesco Bellanti
- Center for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- *Correspondence: Francesco Bellanti,
| | - Giuseppe Pannone
- Institute of Anatomical Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nicola Tartaglia
- Institute of General Surgery, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Center for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|