1
|
Kij A, Kieronska-Rudek A, Bar A, Czyzynska-Cichon I, Strus M, Kozien L, Wiecek G, Zeber-Lubecka N, Kulecka M, Kwiatkowski G, Przyborowski K, Mohaissen T, Sternak M, Buczek E, Zakrzewska A, Proniewski B, Kus K, Franczyk-Zarow M, Kostogrys RB, Pieterman EJ, Princen HMG, Chlopicki S. Low phylloquinone intake deteriorates endothelial function in normolipidemic and dyslipidaemic mice. J Nutr Biochem 2025; 140:109867. [PMID: 39978646 DOI: 10.1016/j.jnutbio.2025.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
While the plasma phylloquinone (PK) concentration is inversely correlated with cardiovascular risk, the involvement of PK in regulating endothelial function has not been directly investigated. Therefore, in this study we assessed the effects of short-term treatment with PK-deficient diets (5-10 weeks) on endothelial function in normolipidemic 14-week-old male C57BL/6JCmd mice and age-matched dyslipidaemic male E3L.CETP mice. Our results show that in normolipidemic mice dietary PK deficiency was associated with a marked reduction of PK levels in the plasma and liver (liquid chromatography-mass spectrometry measurements) and with impaired endothelium-dependent vasodilation assessed in vivo by magnetic resonance imaging (MRI). Dietary PK deficiency-induced endothelial dysfunction was fully reversed by PK supplementation. In dyslipidaemic E3L.CETP mice, dietary PK deficiency exacerbated preexisting endothelial dysfunction. Furthermore, dietary PK deficiency decreased menaquinone-4 (MK-4) levels in the aorta but did not affect blood coagulation (calibrated automated thrombography), microbiota composition (culturing and next-generation sequencing), and gut menaquinone production. In conclusion, our study demonstrated for the first time that sufficient dietary PK intake supports endothelial function in normolipidemic and dyslipidaemic mice indicating nutritional significance of dietary PK in the maintenance of endothelial function in humans.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Anna Kieronska-Rudek
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland; Jagiellonian University Medical College, Krakow, Poland
| | - Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Magdalena Strus
- Jagiellonian University Medical College, Department of Bacteriology, Microbial Ecology and Parasitology, Krakow, Poland
| | - Lucja Kozien
- Jagiellonian University Medical College, Department of Bacteriology, Microbial Ecology and Parasitology, Krakow, Poland
| | - Grazyna Wiecek
- Jagiellonian University Medical College, Department of Bacteriology, Microbial Ecology and Parasitology, Krakow, Poland
| | - Natalia Zeber-Lubecka
- Centre of Postgraduate Medical Education Department of Gastroenterology, Hepatology and Clinical Oncology, Warszawa, Poland; Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Maria Kulecka
- Centre of Postgraduate Medical Education Department of Gastroenterology, Hepatology and Clinical Oncology, Warszawa, Poland; Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland; University of Copenhagen, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Magdalena Sternak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Kamil Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Magdalena Franczyk-Zarow
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, Krakow, Poland
| | - Renata B Kostogrys
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, Krakow, Poland
| | - Elsbeth J Pieterman
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland; Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Kopacz A, Kloska D, Bar A, Targosz-Korecka M, Cysewski D, Awsiuk K, Piechota-Polanczyk A, Cichon M, Chlopicki S, Jozkowicz A, Grochot-Przeczek A. Endothelial miR-34a deletion guards against aneurysm development despite endothelial dysfunction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167812. [PMID: 40139409 DOI: 10.1016/j.bbadis.2025.167812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
We previously reported a link between NRF2, a cytoprotective transcription factor, and the ageing of endothelial cells (ECs) and aorta. We also found that NRF2 KO mice are more susceptible to the development of abdominal aortic aneurysm (AAA), which is an age-associated condition. Since miR-34a is a marker of ageing, we explored its relationship with NRF2 and its role in vascular function and AAA formation. Here, we demonstrate that premature NRF2-dependent ageing of ECs is mediated by miR-34a. Infusion of hypertensive angiotensin II (Ang II) in mice increases miR-34a in the aortic endothelial layer and serum, particularly in mice developing AAA. Mice lacking endothelial miR-34a exhibit severe EC dysfunction. Despite that, they are protected from AAA, also on the NRF2 KO background. This protective effect is reversed by rapamycin, which suppresses Ang II-induced EC proliferation. We identified MTA2, but not SIRT1, as a target of miR-34a that inhibits EC proliferation stimulated by Ang II. These findings suggest that fine-tuning of EC proliferation could have potential therapeutic implications for the treatment of aneurysms.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Awsiuk
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Milena Cichon
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
3
|
Briones A, Hernanz R, García‐Redondo A, Rodríguez C, Blanco‐Colio L, Val‐Blasco A, Alonso M, Salaices M. Role of Inflammatory and Proresolving Mediators in Endothelial Dysfunction. Basic Clin Pharmacol Toxicol 2025; 136:e70026. [PMID: 40159875 PMCID: PMC11955787 DOI: 10.1111/bcpt.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Excessive local inflammation is a common mechanism in many cardiovascular diseases (CVDs) such as hypertension, atherosclerosis and aortic aneurysms. In endothelial cells, inflammatory cytokines such as interferons, tumour necrosis factor alpha or interleukins increase oxidative stress and contractile prostanoids and the expression of adhesion molecules that reduce nitric oxide (NO) availability and bind leucocytes, thereby impairing endothelial function. Despite this evidence, anti-inflammatory therapies are not yet indicated for the treatment of most CVD. Resolution of inflammation is mediated by a family of specialized pro-resolving mediators (SPMs) that act on cognate G protein-coupled receptors to limit immune cell infiltration and initiate tissue repair. SPMs, generated from omega-3 and omega-6 polyunsaturated fatty acids, belong to four major families: lipoxins, resolvins, protectins and maresins. SPM receptors are expressed in immune and vascular cells where they regulate important processes such as phagocytosis and polarization, production of cytokines, NO and prostacyclin, and modulation of smooth muscle cell phenotype. Growing evidence in animal models demonstrates that activation of SPM receptors can protect vascular function and structure and provide beneficial effects in various CVD. We will review recent advances in the role of inflammation and SPMs in vascular (dys)function in hypertension, atherosclerosis, and aortic aneurysms.
Collapse
Affiliation(s)
- Ana M. Briones
- Department of Pharmacology, Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
- Hospital La Paz Institute for Health Research (IdiPaz)MadridSpain
- CIBER Cardiovascular (CIBERCV)MadridSpain
| | - Raquel Hernanz
- Hospital La Paz Institute for Health Research (IdiPaz)MadridSpain
- CIBER Cardiovascular (CIBERCV)MadridSpain
- Department of Basic Health SciencesUniversidad Rey Juan CarlosMadridSpain
| | - Ana B. García‐Redondo
- Hospital La Paz Institute for Health Research (IdiPaz)MadridSpain
- CIBER Cardiovascular (CIBERCV)MadridSpain
- Department of Physiology, Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Cristina Rodríguez
- CIBER Cardiovascular (CIBERCV)MadridSpain
- Institut de Recerca Sant Pau (IR SANT PAU)BarcelonaSpain
| | - Luis M. Blanco‐Colio
- CIBER Cardiovascular (CIBERCV)MadridSpain
- Laboratory for Vascular BiologyIIS‐Fundación Jiménez DíazMadridSpain
| | - Almudena Val‐Blasco
- Hospital La Paz Institute for Health Research (IdiPaz)MadridSpain
- CIBER Cardiovascular (CIBERCV)MadridSpain
| | - María J. Alonso
- Hospital La Paz Institute for Health Research (IdiPaz)MadridSpain
- CIBER Cardiovascular (CIBERCV)MadridSpain
- Department of Basic Health SciencesUniversidad Rey Juan CarlosMadridSpain
| | - Mercedes Salaices
- Department of Pharmacology, Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
- Hospital La Paz Institute for Health Research (IdiPaz)MadridSpain
- CIBER Cardiovascular (CIBERCV)MadridSpain
| |
Collapse
|
4
|
Bar A, Berkowicz P, Kurpinska A, Mohaissen T, Karaś A, Kaczara P, Suraj-Prażmowska J, Sternak M, Marczyk B, Malinowska A, Kij A, Jasztal A, Czyzynska-Cichon I, Pieterman EJ, Princen HMG, Wiśniewski JR, Chlopicki S. Effects of life-long hyperlipidaemia on age-dependent development of endothelial dysfunction in humanised dyslipidaemic mice. GeroScience 2025:10.1007/s11357-025-01578-w. [PMID: 40240752 DOI: 10.1007/s11357-025-01578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/22/2025] [Indexed: 04/18/2025] Open
Abstract
Little is known, how life-long hyperlipidaemia affects vascular ageing, before atherosclerosis. Here, we characterise effects of mild, life-long hyperlipidaemia on age-dependent endothelial dysfunction (ED) in humanised dyslipidaemia model of E3L.CETP mice. Vascular function was characterised using magnetic resonance imaging in vivo and wire myograph ex vivo. Plasma endothelial biomarkers and non-targeted proteomics in plasma and aorta were analysed. Early atherosclerosis lesions were occasionally present only in 40-week-old or older E3L.CETP mice. However, age-dependent ED developed earlier, in 14-week-old male and 22-week-old female E3L.CETP mice as compared with 40-week-old female and male C57BL/6J mice. Acetylcholine-induced vasodilation in 8-week-old E3L.CETP, especially female mice, was blocked by catalase and attributed to H2O2. In 8-week-old female E3L.CETP mice, changes in plasma proteome in response to hyperlipidaemia were modest, while in male mice a number of differentially expressed proteins were identified that were involved in oxidative stress response, inflammation and regulation of metabolic pathways. In contrast, in older E3L.CETP and C57BL/6J mice, either plasma or aortic proteome displayed similar pattern of vascular ageing, dominating over hyperlipidaemia-induced changes. Interestingly, in 48-week-old male but not female E3L.CETP mice, vascular mitochondrial functional response was impaired. Early resilience of hyperlipidaemia-induced detrimental effects in young female E3L.CETP mice on a functional level was associated with a switch in vasodilation mechanism, blunted systemic proteomic response in plasma and slower ED development as compared to male E3L.CETP mice. The results indicate that profile of early vascular response to risk factors in young age may determine level of ED in older age before atherosclerosis development.
Collapse
Affiliation(s)
- Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Piotr Berkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- University of Copenhagen, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 København, Copenhagen, Denmark
| | - Agnieszka Karaś
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agata Malinowska
- Polish Academy of Sciences, Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Pawińskiego St 5a, 02-106, Warsaw, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Elsbet J Pieterman
- The Netherlands Organisation of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organisation of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | - Jacek R Wiśniewski
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, 82152 Planegg, Martinsried, Germany
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland.
- Jagiellonian University Medical College, Faculty of Medicine, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
5
|
Rodriguez C, Carrasco J, Bruner-Montero G, Pires Júnior OR, Gutiérrez M, Díaz-Ferguson E. Components and Biological Activities of Venom from Lionfishes (Scorpaenidae: Pterois). Mar Drugs 2025; 23:55. [PMID: 39997179 PMCID: PMC11856947 DOI: 10.3390/md23020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Fishes of the genus Pterois possess spines that provoke intense pain, which can last for weeks. Since the first toxicological description of their spine venom, a significant amount of research has been published regarding their biochemical characterization. This minireview presents research published from 1959 to 2024 on bioactive substances found in Pterois species. Pterois venom mainly contains peptides and proteins that display a range of biological activities, including anticancer, antimicrobial, antioxidant, antiviral, enzymatic, cardiovascular, procoagulant, neurological, neuromuscular, and nutraceutical effects. Although Pterois venom contains bioactive substances, the toxic side effects, such as hemolysis and nociception, of these venoms should be considered. Hence, further intense research is needed to establish the potential uses of Pterois venom for human health.
Collapse
Affiliation(s)
- Candelario Rodriguez
- Estación Científica Coiba-AIP, Ciudad del Saber, Clayton, Panama 0816-02852, Panama; (C.R.); (G.B.-M.); (O.R.P.J.)
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología-AIP, (INDICASAT), Ciudad del Saber, Clayton, Panama 0843-01103, Panama
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Ciudad del Saber, Clayton, Panama 0816-02852, Panama
| | - Jafeth Carrasco
- Centro de Biología Celular y Molecular de Enfermedades, INDICASAT, Ciudad del Saber, Clayton, Panama 0843-01103, Panama;
| | - Gaspar Bruner-Montero
- Estación Científica Coiba-AIP, Ciudad del Saber, Clayton, Panama 0816-02852, Panama; (C.R.); (G.B.-M.); (O.R.P.J.)
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología-AIP, (INDICASAT), Ciudad del Saber, Clayton, Panama 0843-01103, Panama
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Ciudad del Saber, Clayton, Panama 0816-02852, Panama
| | - Osmindo Rodrigues Pires Júnior
- Estación Científica Coiba-AIP, Ciudad del Saber, Clayton, Panama 0816-02852, Panama; (C.R.); (G.B.-M.); (O.R.P.J.)
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología-AIP, (INDICASAT), Ciudad del Saber, Clayton, Panama 0843-01103, Panama
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Ciudad del Saber, Clayton, Panama 0816-02852, Panama
| | - Edgardo Díaz-Ferguson
- Estación Científica Coiba-AIP, Ciudad del Saber, Clayton, Panama 0816-02852, Panama; (C.R.); (G.B.-M.); (O.R.P.J.)
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Ciudad del Saber, Clayton, Panama 0816-02852, Panama
| |
Collapse
|
6
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
7
|
Olkowicz M, Karas A, Berkowicz P, Kaczara P, Jasztal A, Kurylowicz Z, Fedak F, Rosales-Solano H, Roy KS, Kij A, Buczek E, Pawliszyn J, Chlopicki S. Upregulation of ALOX12-12-HETE pathway impairs AMPK-dependent modulation of vascular metabolism in ApoE/LDLR -/- mice. Pharmacol Res 2024; 210:107478. [PMID: 39448044 DOI: 10.1016/j.phrs.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Mitochondrial dysfunction and 12-lipoxygenase (ALOX12)-derived 12(S)-HETE production have been associated with vascular inflammation and the pathogenesis of atherosclerosis. However, the role of ALOX12 in regulating vascular energy metabolism in vascular inflammation has not been studied to date. Using mitochondrial and glycolysis functional profiling with the Seahorse extracellular flux analyzer, metabolipidomics, and proteomic analysis (LC-MS/MS), we characterized alterations in vascular energy metabolism in 2- and 6-month-old ApoE/LDLR-/- vs. control C57BL/6 mice. We identified that aorta of 6-month-old ApoE/LDLR-/- mice displayed compromised mitochondrial metabolism manifested by the reduced expression of mitochondrial enzymes, impaired mitochondrial respiration, and consequently diminished respiratory reserve capacity. An increased flux through the glycolysis/lactate shuttle, the hexosamine biosynthetic pathway (HBP), and the pentose phosphate pathway (PPP) was also recognized. Interestingly, ALOX12-12-HETE was the most upregulated axis in eicosanoid metabolism and histological examinations indicated that ApoE/LDLR-/- mice showed increased aortic expression of ALOX12, particularly in early atherosclerotic plaque areas. Remarkably, the joint blocking of ALOX12 and activation of AMPK, but not AMPK activation alone, resulted in the reprogramming of vascular metabolism, with improved mitochondrial respiration and suppressed auxiliary pathways (HBP, PPP, itaconate shunt). In conclusion, excessive activation of the ALOX12-12-HETE pathway in vascular inflammation in early atherosclerosis inhibits AMPK-dependent regulation of vascular metabolism. Consequently, ALOX12 may represent a novel target to boost impaired vascular mitochondrial function in pro-atherosclerotic vascular inflammation.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland.
| | - Agnieszka Karas
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Piotr Berkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Filip Fedak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Hernando Rosales-Solano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, Krakow 31-531, Poland
| |
Collapse
|
8
|
Zhang W, Jiang L, Tong X, He H, Zheng Y, Xia Z. Sepsis-Induced Endothelial Dysfunction: Permeability and Regulated Cell Death. J Inflamm Res 2024; 17:9953-9973. [PMID: 39628705 PMCID: PMC11612565 DOI: 10.2147/jir.s479926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Endothelial cells (ECs) are an important cell type typically affected in sepsis, resulting in compromised barrier function and various forms of regulated cell death (RCD). However, the precise mechanisms underlying sepsis-induced EC damage remain unclear. This review summarizes the recent research progress on factors and mechanisms that may affect the permeability and RCD of ECs under septic conditions, including glycocalyx, damage-associated molecular patterns, and various forms of RCD in ECs, such as apoptosis, pyroptosis, ferroptosis, and autophagy. This review offers important insights into the underlying mechanisms of endothelial dysfunction in sepsis, aiming to contribute to developing small-molecule targeted clinical therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Luofeng Jiang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Xirui Tong
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Heng He
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
9
|
Salica A, Cammisotto V, Scaffa R, Folino G, De Paulis R, Carnevale R, Benedetto U, Saade W, Marullo A, Sciarretta S, Sarto G, Palmerio S, Valenti V, Peruzzi M, Miraldi F, Irace FG, Frati G. Different Oxidative Stress and Inflammation Patterns of Diseased Left Anterior Descending Coronary Artery versus Internal Thoracic Artery. Antioxidants (Basel) 2024; 13:1180. [PMID: 39456434 PMCID: PMC11505158 DOI: 10.3390/antiox13101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation are typically implied in atherosclerosis pathogenesis and progression, especially in coronary artery disease (CAD). Our objective was to investigate the oxidative stress and inflammation burden directly associated with atherosclerotic plaque in patients with stable coronary disease undergoing coronary artery bypass graft (CABG) surgery. Specifically, markers of oxidative stress and inflammation were compared in blood samples obtained from the atherosclerotic left anterior descending artery (LAD) and blood samples obtained from the healthy left internal thoracic artery (LITA), used as a bypass graft, within the same patient. METHODS Twenty patients scheduled for off-pump CABG were enrolled. Blood samples were collected from the LITA below anastomosis and the LAD below the stenosis. Samples were analysed for oxidative stress (sNOXdp, H2O2, NO) and inflammation markers (TNFα, IL-6, IL-1β, IL-10). RESULTS The analysis showed a significant increase in oxidative stress burden in the LAD as compared to LITA, as indicated by higher sNOX2-dp and H2O2 levels and lower NO levels (p < 0.01). Also, pro-inflammatory cytokines were increased in the LAD as compared to the LITA, as indicated by higher TNFα and IL-6 amounts (p < 0.01). On the other hand, no significant differences could be seen regarding IL-1β and IL-10 levels between the two groups. CONCLUSIONS The oxidative stress and inflammatory burden are specifically enhanced in the LAD artery of stable coronary patients compared to systemic blood from the LITA of stable coronary patients.
Collapse
Affiliation(s)
- Andrea Salica
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Vittoria Cammisotto
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Raffaele Scaffa
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Giulio Folino
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
- UniCamillus, International University of Health Sciences, Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| | - Umberto Benedetto
- Department of Cardiac Surgery, University “G. d’Annunzio”, 66013 Pescara, Italy
| | - Wael Saade
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Antonino Marullo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| | - Gianmarco Sarto
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | | | - Valentina Valenti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, 48010 Cotignola, Italy
| | - Mariangela Peruzzi
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
- Maria Cecilia Hospital, GVM Care & Research, 48010 Cotignola, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Francesco Giosuè Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, Circ.ne Gianicolense 87, 00152 Rome, Italy
| | - Giacomo Frati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| |
Collapse
|
10
|
Piao J, Su Z, He J, Zhu T, Fan F, Wang X, Yang Z, Zhan H, Luo D. SphK1 deficiency ameliorates the development of atherosclerosis by inhibiting the S1P/S1PR3/Rhoa/ROCK pathway. Cell Signal 2024; 121:111252. [PMID: 38852936 DOI: 10.1016/j.cellsig.2024.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND AIMS S1P is an important factor regulating the function of the vascular endothelial barrier. SphK1 is an important limiting enzyme for the synthesis of S1P. However, the role of the SphK1/S1P-mediated vascular endothelial barrier function in atherosclerosis has not been fully revealed. This study explored the roles and mechanisms of SphK1 on atherosclerosis in vivo and in vitro. METHODS In vivo, ApoE-/- and SphK1-/-ApoE-/- mice were fed a high-fat diet to induce atherosclerosis. In vitro, ox-LDL induced HUVECs to establish a cell model. Aortic histological changes were measured by H&E staining, Oil Red O staining, EVG staining, Sirius scarlet staining, immunofluorescence, and Evans Blue Assay. Western blotting was performed to explore the specific mechanism. RESULTS We validated that deficiency of SphK1 resulted in a marked amelioration of atherosclerosis, as indicated by the decreased lipid accumulation, inflammatory factors, oxidative stress, aortic plaque area, inflammatory factor infiltration, VCAM-1 expression, and vascular endothelial permeability. Moreover, deficiency of SphK1 downregulated the expression of aortic S1PR3, Rhoa, ROCK, and F-actin. The results of administration with the SphK1 inhibitor PF-543 and the S1PR3 inhibitor VPC23019 in vitro further confirmed the conclusion that deficiency of SphK1 reduced S1P level and S1PR3 protein expression, inhibited Rhoa/ROCK signaling pathway, regulated protein expression of F-actin, improved vascular endothelial dysfunction and permeability, and exerted anti-atherosclerotic effects. CONCLUSIONS This study revealed that deficiency of SphK1 relieved vascular endothelial barrier function in atherosclerosis mice via SphK1/S1P/S1PR signaling pathway.
Collapse
Affiliation(s)
- Jinyu Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Zhuoxuan Su
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Jiqian He
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Tianxin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Faxin Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Xin Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Zhenzhen Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Huixia Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
11
|
Xia KR, Zhang XY, Zhang HQ, Su KL, Shang EX, Xiao QL, Li WW, Guo S, Duan JA, Liu P. Network pharmacology analysis and experimental verification of the antithrombotic active compounds of trichosanthis pericarpium (Gualoupi) in treating coronary heart disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118158. [PMID: 38614263 DOI: 10.1016/j.jep.2024.118158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trichosanthis pericarpium (TP; Gualoupi, pericarps of Trichosanthes kirilowii Maxim) has been used in traditional Chinese medicine (TCM) to reduce heat, resolve phlegm, promote Qi, and clear chest congestion. It is also an essential herbal ingredient in the "Gualou Xiebai" formula first recorded by Zhang Zhongjing (from the Eastern Han Dynasty) in the famous TCM classic "Jin-Guì-Yào-Lüe" for treating chest impediments. According to its traditional description, Gualou Xiebai is indicated for symptoms of chest impediments, which correspond to coronary heart diseases (CHD). AIM OF THE STUDY This study aimed to identify the antithrombotic compounds in Gualoupi for the treatment of CHD. MATERIALS AND METHODS A CHD rat model was established with a combination of high-fat diet and isoproterenol hydrochloride (ISO) administration via subcutaneous multi-point injection in the back of the neck. This model was used to evaluate the antithrombotic effect of two mainstream cultivars of TP ("HaiShi GuaLou" and "WanLou") by analyzing the main components and their effects. Network pharmacology, molecular docking-based studies, and a zebrafish (Danio rerio) thrombosis model induced by phenylhydrazine was used to validate the antithrombosis components of TP. RESULTS TP significantly reduced the body weight of the CHD rats, improved myocardial ischemia, and reduced collagen deposition and fibrosis around the infarcted tissue. It reduced thrombosis in a dose-dependent manner and significantly reduced inflammation and oxidative stress damage. Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as candidate active TP compounds with antithrombotic effects. The key potential targets of TP in thrombosis treatment were initially identified by molecular docking-based analysis, which showed that the candidate active compounds have a strong binding affinity to the potential targets (protein kinase C alpha type [PKCα], protein kinase C beta type [PKCβ], von Willebrand factor [vWF], and prostaglandin-endoperoxide synthase 1 [PTGS1], fibrinogen alpha [Fga], fibrinogen beta [Fgb], fibrinogen gamma [Fgg], coagulation factor II [F2], and coagulation factor VII [F7]). In addition, the candidate active compounds reduced thrombosis, improved oxidative stress damage, and down-regulated the expression of thrombosis-related genes (PKCα, PKCβ, vWF, PTGS1, Fga, Fgb, Fgg, F2, and F7) in the zebrafish model. CONCLUSION Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as the active antithrombotic compounds of TP used to treat CHD. Mechanistically, the active compounds were found to be involved in oxidative stress injury, platelet activation pathway, and complement and coagulation cascade pathways.
Collapse
Affiliation(s)
- Kai-Rou Xia
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Yu Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Huang-Qin Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Ke-Lei Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing-Ling Xiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Wei-Wen Li
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Sheng Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
12
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
13
|
Dou B, Zhu Y, Sun M, Wang L, Tang Y, Tian S, Wang F. Mechanisms of Flavonoids and Their Derivatives in Endothelial Dysfunction Induced by Oxidative Stress in Diabetes. Molecules 2024; 29:3265. [PMID: 39064844 PMCID: PMC11279171 DOI: 10.3390/molecules29143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic complications pose a significant threat to life and have a negative impact on quality of life in individuals with diabetes. Among the various factors contributing to the development of these complications, endothelial dysfunction plays a key role. The main mechanism underlying endothelial dysfunction in diabetes is oxidative stress, which adversely affects the production and availability of nitric oxide (NO). Flavonoids, a group of phenolic compounds found in vegetables, fruits, and fungi, exhibit strong antioxidant and anti-inflammatory properties. Several studies have provided evidence to suggest that flavonoids have a protective effect on diabetic complications. This review focuses on the imbalance between reactive oxygen species and the antioxidant system, as well as the changes in endothelial factors in diabetes. Furthermore, we summarize the protective mechanisms of flavonoids and their derivatives on endothelial dysfunction in diabetes by alleviating oxidative stress and modulating other signaling pathways. Although several studies underline the positive influence of flavonoids and their derivatives on endothelial dysfunction induced by oxidative stress in diabetes, numerous aspects still require clarification, such as optimal consumption levels, bioavailability, and side effects. Consequently, further investigations are necessary to enhance our understanding of the therapeutic potential of flavonoids and their derivatives in the treatment of diabetic complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Furong Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| |
Collapse
|
14
|
Grosicki M, Wojnar-Lason K, Mosiolek S, Mateuszuk L, Stojak M, Chlopicki S. Distinct profile of antiviral drugs effects in aortic and pulmonary endothelial cells revealed by high-content microscopy and cell painting assays. Toxicol Appl Pharmacol 2024; 490:117030. [PMID: 38981531 DOI: 10.1016/j.taap.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Antiretroviral therapy have significantly improved the treatment of viral infections and reduced the associated mortality and morbidity rates. However, highly effective antiretroviral therapy (HAART) may lead to an increased risk of cardiovascular diseases, which could be related to endothelial toxicity. Here, seven antiviral drugs (remdesivir, PF-00835231, ritonavir, lopinavir, efavirenz, zidovudine and abacavir) were characterized against aortic (HAEC) and pulmonary (hLMVEC) endothelial cells, using high-content microscopy. The colourimetric study (MTS test) revealed similar toxicity profiles of all antiviral drugs tested in the concentration range of 1 nM-50 μM in aortic and pulmonary endothelial cells. Conversely, the drugs' effects on morphological parameters were more pronounced in HAECs as compared with hLMVECs. Based on the antiviral drugs' effects on the cytoplasmic and nuclei architecture (analyzed by multiple pre-defined parameters including SER texture and STAR morphology), the studied compounds were classified into five distinct morphological subgroups, each linked to a specific cellular response profile. In relation to morphological subgroup classification, antiviral drugs induced a loss of mitochondrial membrane potential, elevated ROS, changed lipid droplets/lysosomal content, decreased von Willebrand factor expression and micronuclei formation or dysregulated cellular autophagy. In conclusion, based on specific changes in endothelial cytoplasm, nuclei and subcellular morphology, the distinct endothelial response was identified for remdesivir, ritonavir, lopinavir, efavirenz, zidovudine and abacavir treatments. The effects detected in aortic endothelial cells were not detected in pulmonary endothelial cells. Taken together, high-content microscopy has proven to be a robust and informative method for endothelial drug profiling that may prove useful in predicting the organ-specific endothelial toxicity of various drugs.
Collapse
Affiliation(s)
- Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Sylwester Mosiolek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
15
|
Yu M, Song X, Guo J, Feng Q, Tian J. Exploring potential predictors of Henoch-Schönlein purpura nephritis: a pilot investigation on urinary metabolites. Eur J Pediatr 2024; 183:3117-3128. [PMID: 38668796 DOI: 10.1007/s00431-024-05573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 06/22/2024]
Abstract
Henoch-Schönlein purpura nephritis (HSPN) is the most severe manifestation of Henoch-Schönlein purpura (HSP). This study aimed to determine the role of urine metabolomics in predicting HSPN and explore the potential mechanisms of HSP. A liquid chromatography-tandem mass spectrometry-based untargeted metabolomics analysis was performed to investigate the urinary metabolic profiles of 90 participants, comprising 30 healthy children (group CON) and 60 patients with HSP, including 30 HSP patients without renal involvement (group H) and 30 HSPN patients (group HSPN). The differentially expressed metabolites (DEMs) were identified using orthogonal partial least squares discriminant analysis (OPLS-DA), and subsequent bioinformatics analysis was conducted to elucidate the perturbed metabolic pathways. A total of 43 DEMs between H and HSPN groups were analyzed by the Kyoto Encyclopedia of Gene and Genome (KEGG) database, and the result indicates that glycine, serine and threonine metabolism, and cysteine and methionine metabolism were significantly disturbed. A composite model incorporating propionylcarnitine and indophenol sulfate was developed to assess the risk of renal involvement in pediatric patients with HSP. Conclusion: This study reveals the metabolic alterations in healthy children, HSPN patients, and HSP patients without renal involvement. Furthermore, propionylcarnitine and indophenol sulfate may be potential predictive biomarkers of the occurrence of HSPN. What is Known: • HSP is the predominant type of vasculitis observed in children. The long-term prognosis of HSP is contingent upon the extent of renal impairment. In severe nephritis, a delay in appropriate treatment may lead to fibrosis progression and subsequent development of chronic kidney disease (CKD), even leading to renal failure. • The application of metabolomics in investigating diverse renal disorders has been documented. Urine is a robust and sensitive medium for metabolomics detection. What is New: • The metabolic profiles were identified in urine samples of healthy children and those with HSP at the early stage of the disease. Different metabolites were identified between HSP patients without nephritis and those who developed HSPN. • These different metabolites may affect oxidative stress in the progression of HSPN.
Collapse
Affiliation(s)
- Minyi Yu
- Department of Rheumatology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Xiaoxiang Song
- Department of Rheumatology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Jie Guo
- Department of Rheumatology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Qihua Feng
- Department of Rheumatology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Jianmei Tian
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
16
|
Li X, Hu X, You C. Interactive effects of Composite Dietary Antioxidant Index with Body Mass Index for the risk of stroke among U.S. adults: insight from NHANES 2001-2018. Front Nutr 2024; 11:1378479. [PMID: 38912299 PMCID: PMC11190190 DOI: 10.3389/fnut.2024.1378479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background This cross-sectional study aims to explore the interactive effects of the Composite Dietary Antioxidant Index (CDAI) and Body Mass Index (BMI) on stroke risk among U.S. adults, utilizing data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2001 and 2018. Methods The analysis involved 42,042 participants from a representative sample of non-institutionalized U.S. civilians, selected through a stratified, multistage probability sampling method. Dietary intake data were collected over two 24-h periods using the Automated Multiple-Pass Method. The study calculated a modified CDAI to assess dietary antioxidant intake, excluding supplements and water sources. Statistical methods included multivariable logistic regression and Generalized Additive Models (GAM) to evaluate the interaction between CDAI scores and BMI in relation to stroke risk, adjusting for a wide range of demographic, lifestyle, and health covariates. Results The research identified a significant interaction between CDAI scores and BMI categories in stroke risk assessment. While a negative correlation was observed between CDAI scores and stroke risk across the total population (OR 0.97, 95% CI 0.96-0.99), this relationship varied notably across different BMI groups. In participants with a BMI ≥25, a statistically significant negative association persisted, displaying a non-linear pattern. The study also revealed an inflection point in the CDAI score, indicating a shift in the relationship between dietary antioxidants and stroke risk. Conclusion This study underscores the complex interaction between dietary antioxidant intake and BMI in determining stroke risk among U.S. adults. The findings suggest that individuals with higher BMI may experience more pronounced benefits from dietary antioxidants in stroke prevention. These insights could inform targeted dietary recommendations and public health strategies aimed at reducing stroke risk, particularly in populations with higher BMI. Further research is needed to fully understand these interactions and their implications for stroke prevention guidelines.
Collapse
Affiliation(s)
- Xi Li
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Saeed A, Farouk MM, Sabri NA, Saleh MA, Ahmed MA. Effect of pentoxifylline on endothelial dysfunction, oxidative stress and inflammatory markers in STEMI patients. Future Sci OA 2024; 10:FSO967. [PMID: 38817362 PMCID: PMC11137834 DOI: 10.2144/fsoa-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 06/01/2024] Open
Abstract
Aim: ST-elevation myocardial infarction (STEMI) patients suffer higher mortality and adverse outcomes linked to endothelial dysfunction (ED). Methods: 43 patients were randomized to pentoxifylline (PTX) 400 mg thrice daily (n = 22) or placebo (n = 21). Soluble vascular cell adhesion molecule-1, malondialdehyde, interleukin-1 (IL-1), interleukin-6 (IL-6), high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor-α (TNF-α) were assessed at baseline and 2 months. Results: After 2 months, no significant difference was observed in markers' levels between the 2 groups. However, a within-group comparison revealed a statistically significant change in hs-CRP in the PTX group (10.057 (9.779-10.331) versus 9.721 (6.102-10.191)), p = 0.032. Conclusion: PTX for 2 months in STEMI patients was safe and well-tolerated but had no significant detectable effect on ED, oxidative stress or inflammatory markers. Clinical Trial Registration: NCT04367935 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Asmaa Saeed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed Ayman Saleh
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, 11591 Egypt
| | - Marwa Adel Ahmed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
18
|
Kaczara P, Czyzynska-Cichon I, Kus E, Kurpinska A, Olkowicz M, Wojnar-Lason K, Pacia MZ, Lytvynenko O, Baes M, Chlopicki S. Liver sinusoidal endothelial cells rely on oxidative phosphorylation but avoid processing long-chain fatty acids in their mitochondria. Cell Mol Biol Lett 2024; 29:67. [PMID: 38724891 PMCID: PMC11084093 DOI: 10.1186/s11658-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND It is generally accepted that endothelial cells (ECs), primarily rely on glycolysis for ATP production, despite having functional mitochondria. However, it is also known that ECs are heterogeneous, and their phenotypic features depend on the vascular bed. Emerging evidence suggests that liver sinusoidal ECs (LSECs), located in the metabolically rich environment of the liver, show high metabolic plasticity. However, the substrate preference for energy metabolism in LSECs remains unclear. METHODS Investigations were conducted in primary murine LSECs in vitro using the Seahorse XF technique for functional bioenergetic assays, untargeted mass spectrometry-based proteomics to analyse the LSEC proteome involved in energy metabolism pathways, liquid chromatography-tandem mass spectrometry-based analysis of acyl-carnitine species and Raman spectroscopy imaging to track intracellular palmitic acid. RESULTS This study comprehensively characterized the energy metabolism of LSECs, which were found to depend on oxidative phosphorylation, efficiently fuelled by glucose-derived pyruvate, short- and medium-chain fatty acids and glutamine. Furthermore, despite its high availability, palmitic acid was not directly oxidized in LSEC mitochondria, as evidenced by the acylcarnitine profile and etomoxir's lack of effect on oxygen consumption. However, together with L-carnitine, palmitic acid supported mitochondrial respiration, which is compatible with the chain-shortening role of peroxisomal β-oxidation of long-chain fatty acids before further degradation and energy generation in mitochondria. CONCLUSIONS LSECs show a unique bioenergetic profile of highly metabolically plastic ECs adapted to the liver environment. The functional reliance of LSECs on oxidative phosphorylation, which is not a typical feature of ECs, remains to be determined.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Edyta Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Mariola Olkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Marta Z Pacia
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Olena Lytvynenko
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Myriam Baes
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, 3000, Leuven, Belgium
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| |
Collapse
|
19
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
20
|
Godos J, Romano GL, Gozzo L, Laudani S, Paladino N, Dominguez Azpíroz I, Martínez López NM, Giampieri F, Quiles JL, Battino M, Galvano F, Drago F, Grosso G. Resveratrol and vascular health: evidence from clinical studies and mechanisms of actions related to its metabolites produced by gut microbiota. Front Pharmacol 2024; 15:1368949. [PMID: 38562461 PMCID: PMC10982351 DOI: 10.3389/fphar.2024.1368949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide, with dietary factors being the main risk contributors. Diets rich in bioactive compounds, such as (poly)phenols, have been shown to potentially exert positive effects on vascular health. Among them, resveratrol has gained particular attention due to its potential antioxidant and anti-inflammatory action. Nevertheless, the results in humans are conflicting possibly due to interindividual different responses. The gut microbiota, a complex microbial community that inhabits the gastrointestinal tract, has been called out as potentially responsible for modulating the biological activities of phenolic metabolites in humans. The present review aims to summarize the main findings from clinical trials on the effects of resveratrol interventions on endothelial and vascular outcomes and review potential mechanisms interesting the role of gut microbiota on the metabolism of this molecule and its cardioprotective metabolites. The findings from randomized controlled trials show contrasting results on the effects of resveratrol supplementation and vascular biomarkers without dose-dependent effect. In particular, studies in which resveratrol was integrated using food sources, i.e., red wine, reported significant effects although the resveratrol content was, on average, much lower compared to tablet supplementation, while other studies with often extreme resveratrol supplementation resulted in null findings. The results from experimental studies suggest that resveratrol exerts cardioprotective effects through the modulation of various antioxidant, anti-inflammatory, and anti-hypertensive pathways, and microbiota composition. Recent studies on resveratrol-derived metabolites, such as piceatannol, have demonstrated its effects on biomarkers of vascular health. Moreover, resveratrol itself has been shown to improve the gut microbiota composition toward an anti-inflammatory profile. Considering the contrasting findings from clinical studies, future research exploring the bidirectional link between resveratrol metabolism and gut microbiota as well as the mediating effect of gut microbiota in resveratrol effect on cardiovascular health is warranted.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nadia Paladino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Irma Dominguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidade Internacional do Cuanza, Cuito, Angola
- Universidad de La Romana, La Romana, Dominican Republic
| | - Nohora Milena Martínez López
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
- Fundación Universitaria Internacional de Colombia, Bogotá, Colombia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - José L. Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnologico de la Salud, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy
| |
Collapse
|
21
|
Feng J, Li K, Xie F, Han L, Wu Y. IL-35 ameliorates lipopolysaccharide-induced endothelial dysfunction by inhibiting endothelial-to-mesenchymal transition. Int Immunopharmacol 2024; 129:111567. [PMID: 38335651 DOI: 10.1016/j.intimp.2024.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome (SIRS) caused mainly by bacterial infection. The morbidity and mortality rates of sepsis are extremely high. About 18 million people worldwide suffer from severe sepsis each year, and about 14,000 people die from it every day. Previous studies have revealed that endothelial dysfunction plays a vital role in the pathological change of sepsis. Furthermore, endothelial-mesenchymal transition (EndMT, EndoMT) is capable of triggering endothelial dysfunction. And yet, it remains obscure whether interleukin-35 (IL-35) can alleviate endothelial dysfunction by attenuating LPS-induced EndMT. Here, through in vivo and in vitro experiments, we revealed that IL-35 has a previously unknown function to attenuate LPS-induced endothelial dysfunction by inhibiting LPS-induced EndMT. Mechanistically, IL-35 acts by regulating the NFκB signaling pathway.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Kai Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Feng Xie
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Leilei Han
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
22
|
Mohaissen T, Kij A, Bar A, Marczyk B, Wojnar-Lason K, Buczek E, Karas A, Garcia-Redondo AB, Briones AM, Chlopicki S. Chymase-independent vascular Ang-(1-12)/Ang II pathway and TXA 2 generation are involved in endothelial dysfunction in the murine model of heart failure. Eur J Pharmacol 2024; 966:176296. [PMID: 38158114 DOI: 10.1016/j.ejphar.2023.176296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The angiotensin (Ang)-(1-12)/Ang II pathway contributes to cardiac pathology. However, its involvement in the development of peripheral endothelial dysfunction associated with heart failure (HF) remains unknown. Therefore, this study aimed to characterise the effect of exogenous Ang-(1-12) and its conversion to Ang II on endothelial function using the murine model of HF (Tgαq*44 mice), focusing on the role of chymase and vascular-derived thromboxane A2 (TXA2). Ex vivo myographic assessments of isolated aorta showed impaired endothelium-dependent vasodilation in late-stage HF in 12-month-old Tgαq*44 mice. However, endothelium-dependent vasodilation was fully preserved in the early stage of HF in 4-month-old Tgαq*44 mice and 4- and 12-month-old FVB control mice. Ang-(1-12) impaired endothelium-dependent vasodilation in 4- and 12-month-old Tgαq*44 mice, that was associated with increased Ang II production. The chymase inhibitor chymostatin did not inhibit this response. Interestingly, TXA2 production reflected by TXB2 measurement was upregulated in response to Ang-(1-12) and Ang II in aortic rings isolated from 12-month-old Tgαq*44 mice but not from 4-month-old Tgαq*44 mice or age-matched FVB mice. Furthermore, in vivo magnetic resonance imaging showed that Ang-(1-12) impaired endothelium-dependent vasodilation in the aorta of Tgαq*44 mice and FVB mice. However, this response was inhibited by angiotensin I converting enzyme (ACE) inhibitor; perindopril, angiotensin II receptor type 1 (AT1) antagonist; losartan and TXA2 receptor (TP) antagonist-picotamide in 12-month-old-Tgαq*44 mice only. In conclusion, the chymase-independent vascular Ang-(1-12)/Ang II pathway and subsequent TXA2 overactivity contribute to systemic endothelial dysfunction in the late stage of HF in Tgαq*44 mice. Therefore, the vascular TXA2 receptor represents a pharmacotherapeutic target to improve peripheral endothelial dysfunction in chronic HF.
Collapse
Affiliation(s)
- Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland
| | - Elzbieta Buczek
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Agnieszka Karas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Ana B Garcia-Redondo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Ana M Briones
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain; CIBER Cardiovascular, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland.
| |
Collapse
|
23
|
Patil SG, Khode V, Christa E, Desai RM, Chandrasekaran AM, Vadiraja HS, Raghavendra R, Aithal K, Champa R, Deepak KK, Roy A, Kinra S, Dorairaj P. Effect of Yoga on Endothelial Function: A Systematic Review and Meta-Analysis. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:233-249. [PMID: 37878297 DOI: 10.1089/jicm.2023.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Introduction: Endothelial dysfunction is the initial step in the pathogenesis of atherosclerosis; and it plays a central role in the development of cardiovascular diseases and many types of human diseases (diabetes, kidney failure, cancer, and viral infections). Strategies that are effective in protecting vascular endothelial function and retard or reversing endothelial dysfunction in the early stage appear to be potential in the prevention of vascular, cardiac, and many human diseases. Several studies have been carried out on the effects of yoga on endothelial function, but the results of these studies have not been synthesized. This study aimed at conducting a systematic review and meta-analysis to determine the effectiveness of yoga on endothelial function. Methods: A systematic review and meta-analysis of studies that assessed the effect of yoga practice on vascular endothelial function was done as per the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The PubMed, Scopus, Google Scholar, and Cochrane controlled register of trials (CENTRAL) were searched from inception to August 2022. The search strategy was constructed around yoga-based techniques and endothelial function. All the yoga-based interventional studies on endothelial function or dysfunction were included in this review. A narrative synthesis and descriptive analysis were done due to the diverse methodology of selected studies. We carried out a formal meta-analysis of controlled trials that assessed the effect of yoga on flow-mediated dilatation (FMD), a measure of endothelial function. Results: A total of 18 studies were included for review involving 1043 participants. Yoga training showed improved endothelial function in 12 studies, whereas 6 studies did not find any statistically robust effect. Meta-analysis (n = 395 participants, 6-studies, 7 comparisons) showed an increase in brachial FMD by yoga practice (mean difference = -1.23%; 95% confidence interval -2.23 to -0.23; p = 0.02). The heterogeneity between the studies was 43% (Tau2 = 0.70, χ2 = 10.49). The risk of bias was low to moderate in these studies. No adverse effects were reported. Conclusions: Yoga practice improved endothelial function. Yoga could be a safe and potential integrative medicine to improve endothelial function. However, as the statistical heterogeneity, that is, variation in the FMD among the studies was moderate, large clinical trials are necessary for its clinical recommendations.
Collapse
Affiliation(s)
- Satish G Patil
- Department of Physiology, SDM College of Medical Sciences & Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | - Vitthal Khode
- Department of Physiology, SDM College of Medical Sciences & Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | - Edmin Christa
- All India Institute of Medical Sciences, New Delhi, India
- Government Yoga and Naturopathy Medical College & Hospital, Chennai, India
| | - Rathnamala M Desai
- Department of Physiology, SDM College of Medical Sciences & Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | | | | | - Rao Raghavendra
- Central Council for Research in Yoga and Naturopathy, New Delhi, India
| | - Kiran Aithal
- Department of Physiology, SDM College of Medical Sciences & Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | - R Champa
- Department of Physiology, SDM College of Medical Sciences & Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | | | - Ambuj Roy
- All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Kinra
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Prabhakaran Dorairaj
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, New Delhi, India
| |
Collapse
|
24
|
Kumar SK, Mani KP. Proinflammatory signaling mechanism of endocan in macrophages: Involvement of TLR2 mediated MAPK-NFkB pathways. Cytokine 2024; 175:156482. [PMID: 38159469 DOI: 10.1016/j.cyto.2023.156482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Endocan is an endothelial cell-specific proteoglycan that contributes to vascular dysfunction by impairing endothelial function and inducing vascular smooth muscle cell migration. However, its role in regulating macrophage inflammation, a key pathological feature of vascular dysfunction, is not well understood. In this study, we investigated the effect of endocan on macrophage inflammation to better understand its contribution to vascular dysfunction. We found that endocan upregulated pro-inflammatory cytokines including IL-1β, IL-6 and TNF-α in RAW 264.7 cells and activated MAPK/NFkB signaling pathways. Inhibiting these pathways reduced endocan-induced cytokine levels, while inhibiting TLR2 compromised the MAPK/NFkB regulation. Additionally, LPS-induced HUVEC conditioned medium stimulated cytokine levels in RAW 264.7 cells, which were reduced by endocan siRNA treatment in HUVEC. These results suggest that endocan positively regulates pro-inflammation in macrophages through the TLR2-MAPK-NFkB axis, highlighting the potential of targeting endocan to reduce inflammation in vascular dysfunction.
Collapse
Affiliation(s)
- Sarwareddy Kartik Kumar
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Krishna Priya Mani
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
25
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
26
|
Xuan C, Li J, Liu RH, Guo JJ, Zhao C, Zhou TT, Wang Y, He GW, Lun LM. Association between serum gamma-glutamyltransferase and early-onset coronary artery disease: a retrospective case-control study. Ann Med 2023; 55:2289606. [PMID: 38061693 PMCID: PMC10836269 DOI: 10.1080/07853890.2023.2289606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Serum gamma-glutamyltransferase (GGT) activity has been proposed as a promising predictor of atherosclerosis-related complications and a prognostic marker for cardiovascular diseases. The objective of this study was to investigate the potential correlation between serum levels of GGT and early-onset coronary artery disease (EOCAD). METHODS A retrospective, hospital-based case-control study was conducted, which included 860 patients with EOCAD and gender- and age-matched controls. Serum levels of GGT were measured using the reference measurement procedure on an automatic biochemistry analyser. RESULTS The serum GGT levels of patients with EOCAD (34.90 ± 31.44 U/L) were significantly higher than those of the control group (21.57 ± 16.44 U/L, p < .001). Elevated serum levels of GGT were found to be an independent risk factor for EOCAD, with an odds ratio (OR) of 1.021 (95% confidence interval (CI): 1.014-1.029). Additionally, for every quartile increase in serum GGT levels, the risk of developing EOCAD increased by 1.6-fold. Moreover, serum GGT levels were significantly associated with disease severity, with lower GGT levels observed in patients without significant vascular disease (31.74 ± 24.06 U/L) compared to those with two-vessel disease (33.06 ± 25.00 U/L, p = .002) and three-vessel disease (37.75 ± 36.76 U/L, p = .001). CONCLUSIONS The results of this study suggest that elevated serum GGT levels are associated with the development of EOCAD, and GGT may be implicated in the pathogenesis of the disease. Further large-scale prospective studies are needed to explore the potential relationship between serum GGT levels and the dynamic development of EOCAD.
Collapse
Affiliation(s)
- Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Hua Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cong Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting-Ting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Health Management Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Li-Min Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Pinheiro‐de‐Sousa I, Fonseca‐Alaniz MH, Giudice G, Valadão IC, Modestia SM, Mattioli SV, Junior RR, Zalmas L, Fang Y, Petsalaki E, Krieger JE. Integrated systems biology approach identifies gene targets for endothelial dysfunction. Mol Syst Biol 2023; 19:e11462. [PMID: 38031960 PMCID: PMC10698507 DOI: 10.15252/msb.202211462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro- and anti-ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro-ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti-ED network was enriched in hypoxia, angiogenesis and cancer-related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease-specific candidate drug targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Iguaracy Pinheiro‐de‐Sousa
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Miriam Helena Fonseca‐Alaniz
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Girolamo Giudice
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Iuri Cordeiro Valadão
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Silvestre Massimo Modestia
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Sarah Viana Mattioli
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- Department of Biophysics and PharmacologyInstitute of Biosciences of Botucatu, Universidade Estadual PaulistaBotucatuBrazil
| | - Ricardo Rosa Junior
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Lykourgos‐Panagiotis Zalmas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusCambridgeUK
- Open Targets, Wellcome Genome CampusCambridgeUK
| | - Yun Fang
- Department of MedicineUniversity of ChicagoChicagoILUSA
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
28
|
Yan Q, Xiao Z, Zhang X, Wang G, Zhong C, Qiu D, Huang S, Zheng L, Gao Z. Association of organophosphate flame retardants with all-cause and cause-specific mortality among adults aged 40 years and older. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115690. [PMID: 37976933 DOI: 10.1016/j.ecoenv.2023.115690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The longitudinal associations of urinary concentrations of diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP) with all-cause, cardiovascular, and cancer mortality in a population of adults aged 40 years and older are still unclear. A total of 3238 participants were included in this cohort study. Urinary BCEP levels were positively associated with all-cause mortality and cardiovascular mortality. Specifically, a logarithmic increase in BCEP concentration was related to a 26 % higher risk of all-cause mortality and a 32 % higher risk of cardiovascular mortality. No significant associations were observed for DPHP and BDCPP in relation to mortality. Doseresponse analysis confirmed the linear associations of BCEP with all-cause and cardiovascular mortality and the nonlinear inverted U-shaped association between DPHP exposure and all-cause mortality. Notably, the economic burden associated with BCEP exposure was estimated, and it was shown that concentrations in the third tertile of BCEP exposure incurred approximately 507 billion dollars of financial burden for all-cause mortality and approximately 717 billion dollars for cardiovascular mortality. These results highlight the importance of addressing exposure to BCEP and its potential health impacts on the population. More research is warranted to explore the underlying mechanisms and develop strategies for reducing exposure to this harmful chemical.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhihao Xiao
- School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Gang Wang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dezhi Qiu
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Lei Zheng
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
29
|
Yang Y, Wang Y, Wei S, Wang X, Zhang J. Effects and Mechanisms of Non-Thermal Plasma-Mediated ROS and Its Applications in Animal Husbandry and Biomedicine. Int J Mol Sci 2023; 24:15889. [PMID: 37958872 PMCID: PMC10648079 DOI: 10.3390/ijms242115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Non-thermal plasma (NTP) is an ionized gas composed of neutral and charged reactive species, electric fields, and ultraviolet radiation. NTP presents a relatively low discharge temperature because it is characterized by the fact that the temperature values of ions and neutral particles are much lower than that of electrons. Reactive species (atoms, radicals, ions, electrons) are produced in NTP and delivered to biological objects induce a set of biochemical processes in cells or tissues. NTP can mediate reactive oxygen species (ROS) levels in an intensity- and time-dependent manner. ROS homeostasis plays an important role in animal health. Relatively low or physiological levels of ROS mediated by NTP promote cell proliferation and differentiation, while high or excessive levels of ROS mediated by NTP cause oxidative stress damage and even cell death. NTP treatment under appropriate conditions not only produces moderate levels of exogenous ROS directly and stimulates intracellular ROS generation, but also can regulate intracellular ROS levels indirectly, which affect the redox state in different cells and tissues of animals. However, the treatment condition of NTP need to be optimized and the potential mechanism of NTP-mediated ROS in different biological targets is still unclear. Over the past ten decades, interest in the application of NTP technology in biology and medical sciences has been rapidly growing. There is significant optimism that NTP can be developed for a wide range of applications such as wound healing, oral treatment, cancer therapy, and biomedical materials because of its safety, non-toxicity, and high efficiency. Moreover, the combined application of NTP with other methods is currently a hot research topic because of more effective effects on sterilization and anti-cancer abilities. Interestingly, NTP technology has presented great application potential in the animal husbandry field in recent years. However, the wide applications of NTP are related to different and complicated mechanisms, and whether NTP-mediated ROS play a critical role in its application need to be clarified. Therefore, this review mainly summarizes the effects of ROS on animal health, the mechanisms of NTP-mediated ROS levels through antioxidant clearance and ROS generation, and the potential applications of NTP-mediated ROS in animal growth and breeding, animal health, animal-derived food safety, and biomedical fields including would healing, oral treatment, cancer therapy, and biomaterials. This will provide a theoretical basis for promoting the healthy development of animal husbandry and the prevention and treatment of diseases in both animals and human beings.
Collapse
Affiliation(s)
| | | | | | | | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.Y.); (Y.W.); (S.W.); (X.W.)
| |
Collapse
|
30
|
Nasoni MG, Crinelli R, Iuliano L, Luchetti F. When nitrosative stress hits the endoplasmic reticulum: Possible implications in oxLDL/oxysterols-induced endothelial dysfunction. Free Radic Biol Med 2023; 208:178-185. [PMID: 37544487 DOI: 10.1016/j.freeradbiomed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Oxidized LDL (oxLDL) and oxysterols are known to play a crucial role in endothelial dysfunction (ED) by inducing endoplasmic reticulum stress (ERS), inflammation, and apoptosis. However, the precise molecular mechanisms underlying these pathophysiological processes remain incompletely understood. Emerging evidence strongly implicates excessive nitric oxide (NO) production in the progression of various pathological conditions. The accumulation of reactive nitrogen species (RNS) leading to nitrosative stress (NSS) and aberrant protein S-nitrosylation contribute to NO toxicity. Studies have highlighted the involvement of NSS and S-nitrosylation in perturbing ER signaling through the modification of ER sensors and resident isomerases in neurons. This review focuses on the existing evidence that strongly associates NO with ERS and the possible implications in the context of ED induced by oxLDL and oxysterols. The potential effects of perturbed NO synthesis on signaling effectors linking NSS with ERS in endothelial cells are discussed to provide a conceptual framework for further investigations and the development of novel therapeutic strategies targeting ED.
Collapse
Affiliation(s)
- M G Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - R Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - L Iuliano
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, Italy.
| | - F Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
31
|
Zhou Y, Qian C, Tang Y, Song M, Zhang T, Dong G, Zheng W, Yang C, Zhong C, Wang A, Zhao Y, Lu Y. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytother Res 2023; 37:4999-5016. [PMID: 37491826 DOI: 10.1002/ptr.7966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Numerous pharmacological effects of quercetin have been illustrated, including antiinflammation, antioxidation, and anticancer properties. In recent years, the antioxidant activity of quercetin has been extensively reported, in particular, its impacts on glutathione, enzyme activity, signaling transduction pathways, and reactive oxygen species (ROS). Quercetin has also been demonstrated to exert a striking antiinflammatory effect mainly by inhibiting the production of cytokines, reducing the expression of cyclooxygenase and lipoxygenase, and preserving the integrity of mast cells. By regulating oxidative stress and inflammation, which are regarded as two critical processes involved in the defense and regular physiological operation of biological systems, quercetin has been validated to be effective in treating a variety of disorders. Symptoms of these reactions have been linked to degenerative processes and metabolic disorders, including metabolic syndrome, cardiovascular, neurodegeneration, cancer, and nonalcoholic fatty liver disease. Despite that evidence demonstrates that antioxidants are employed to prevent excessive oxidative and inflammatory processes, there are still concerns regarding the expense, accessibility, and side effects of agents. Notably, natural products, especially those derived from plants, are widely accessible, affordable, and generally safe. In this review, the antioxidant and antiinflammatory abilities of the active ingredient quercetin and its application in oxidative stress-related disorders have been outlined in detail.
Collapse
Affiliation(s)
- Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanglu Dong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chongjin Zhong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Osorio-Llanes E, Villamizar-Villamizar W, Ospino Guerra MC, Díaz-Ariza LA, Castiblanco-Arroyave SC, Medrano L, Mengual D, Belón R, Castellar-López J, Sepúlveda Y, Vásquez-Trincado C, Chang AY, Bolívar S, Mendoza-Torres E. Effects of Metformin on Ischemia/Reperfusion Injury: New Evidence and Mechanisms. Pharmaceuticals (Basel) 2023; 16:1121. [PMID: 37631036 PMCID: PMC10459572 DOI: 10.3390/ph16081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The search for new drugs with the potential to ensure therapeutic success in the treatment of cardiovascular diseases has become an essential pathway to follow for health organizations and committees around the world. In June 2021, the World Health Organization listed cardiovascular diseases as one of the main causes of death worldwide, representing 32% of them. The most common is coronary artery disease, which causes the death of cardiomyocytes, the cells responsible for cardiac contractility, through ischemia and subsequent reperfusion, which leads to heart failure in the medium and short term. Metformin is one of the most-used drugs for the control of diabetes, which has shown effects beyond the control of hyperglycemia. Some of these effects are mediated by the regulation of cellular energy metabolism, inhibiting apoptosis, reduction of cell death through regulation of autophagy and reduction of mitochondrial dysfunction with further reduction of oxidative stress. This suggests that metformin may attenuate left ventricular dysfunction induced by myocardial ischemia; preclinical and clinical trials have shown promising results, particularly in the setting of acute myocardial infarction. This is a review of the molecular and pharmacological mechanisms of the cardioprotective effects of metformin during myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Estefanie Osorio-Llanes
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
- Allied Research Society S.A.S., Barranquilla 080001, Colombia;
- Global Disease Research Colombia, Barranquilla 080001, Colombia
| | - Wendy Villamizar-Villamizar
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - María Clara Ospino Guerra
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Luis Antonio Díaz-Ariza
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Sara Camila Castiblanco-Arroyave
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Luz Medrano
- Healthcare Pharmacy and Pharmacology Research Group, Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia; (L.M.); (D.M.); (S.B.)
| | - Daniela Mengual
- Healthcare Pharmacy and Pharmacology Research Group, Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia; (L.M.); (D.M.); (S.B.)
| | - Ricardo Belón
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Jairo Castellar-López
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| | - Yanireth Sepúlveda
- Allied Research Society S.A.S., Barranquilla 080001, Colombia;
- Global Disease Research Colombia, Barranquilla 080001, Colombia
| | - César Vásquez-Trincado
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile;
| | - Aileen Y. Chang
- Department of Medicine, Faculty of Medicine, Foggy Bottom Campus, George Washington University, Washington, DC 20052, USA;
| | - Samir Bolívar
- Healthcare Pharmacy and Pharmacology Research Group, Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia; (L.M.); (D.M.); (S.B.)
| | - Evelyn Mendoza-Torres
- Advanced Biomedicine Research Group, Faculty of Health Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla 081001, Colombia; (E.O.-L.); (W.V.-V.); (M.C.O.G.); (L.A.D.-A.); (S.C.C.-A.); (R.B.); (J.C.-L.)
| |
Collapse
|
33
|
Radwan B, Prabhakaran A, Rocchetti S, Matuszyk E, Keyes TE, Baranska M. Uptake and anti-inflammatory effects of liposomal astaxanthin on endothelial cells tracked by Raman and fluorescence imaging. Mikrochim Acta 2023; 190:332. [PMID: 37500736 PMCID: PMC10374751 DOI: 10.1007/s00604-023-05888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Astaxanthin (AXT) is a lipophilic antioxidant and anti-inflammatory natural pigment whose cellular uptake and bioavailability could be improved via liposomal encapsulation. Endothelial cells (EC) line the lumen of all blood vessels and are tasked with multiple roles toward maintaining cardiovascular homeostasis. Endothelial dysfunction is linked to the development of many diseases and is closely interconnected with oxidative stress and vascular inflammation. The uptake of free and liposomal AXT into EC was investigated using Raman and fluorescence microscopies. AXT was either encapsulated in neutral or cationic liposomes. Enhanced uptake and anti-inflammatory effects of liposomal AXT were observed. The anti-inflammatory effects of liposomal AXT were especially prominent in reducing EC lipid unsaturation, lowering numbers of lipid droplets (LDs), and decreasing intercellular adhesion molecule 1 (ICAM-1) overexpression, which is considered a well-known marker for endothelial inflammation. These findings highlight the benefits of AXT liposomal encapsulation on EC and the applicability of Raman imaging to investigate such effects.
Collapse
Affiliation(s)
- Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| | - Amrutha Prabhakaran
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Stefano Rocchetti
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
| | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland.
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland.
| |
Collapse
|
34
|
Luo L, Dong B, Zhang J, Qiu Y, Liu X, Zhou Z, He J, Zhang X, Chen L, Xia W. Dapagliflozin restores diabetes-associated decline in vasculogenic capacity of endothelial progenitor cells via activating AMPK-mediated inhibition of inflammation and oxidative stress. Biochem Biophys Res Commun 2023; 671:205-214. [PMID: 37302296 DOI: 10.1016/j.bbrc.2023.05.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) provide added vascular protection beyond glucose lowering to patients with type 2 diabetes mellitus (T2DM). Endothelial progenitor cells (EPCs) are an important endogenous repair mechanism for diabetic vascular complications. Yet, whether SGLT2i protect vessels in diabetic patients by improving the function of EPCs remains to be elucidated. Here we enrolled Sixty-three T2DM patients and 60 healthy participants and 15 of T2DM group took dapagliflozin for 3 months. Retinal capillary density (RCD) was examined before and after meditation. Moreover, vasculogenic capacity of EPCs cocultured with or without dapagliflozin in vitro and in vivo (hind limb ischemia model) were assessed. Mechanically, genes related to inflammation/oxidative stress, and the AMPK signaling of EPCs were determined. Our results found T2DM demonstrated a declined RCD and a decreased number of circulating EPCs compared with healthy controls. Compared with the EPCs from healthy individuals, vasculogenic capacity of T2DM EPCs was significantly impaired, which could be restored by dapagliflozin meditation or dapagliflozin coculture. Increased expression of inflammation correlative genes and decreased anti-oxidative stress related genes expression were found in EPCs form T2DM, which were accompanied with reduced phosphorylation level of AMPK. Dapagliflozin treatment activated AMPK signaling, decreased the level of inflammation and oxidative stress, and rescued vasculogenic capacity of EPCs from T2DM. Furthermore, AMPK inhibitor pretreatment diminished the enhancement vasculogenic capacity of diabetic EPCs from dapagliflozin treatment. This study demonstrates for the first time that dapagliflozin restores vasculogenic capacity of EPCs via activating AMPK-mediated inhibition of inflammation and oxidative stress in T2DM.
Collapse
Affiliation(s)
- Lifang Luo
- Department of dermatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Bing Dong
- Department of Hypertension and Vascular Disease, The Eight Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Jianning Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Xiaolin Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Zhe Zhou
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Jiang He
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Xiaoyu Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China.
| | - Long Chen
- The Geriatrics Department, Shenzhen Hospital of Southern Medical University, Shenzhen, 510086, China.
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China.
| |
Collapse
|
35
|
Viana-Mattioli S, Fonseca-Alaniz MH, Pinheiro-de-Sousa I, Krieger JE, Sandrim VC. Missing links in preeclampsia cell model systems of endothelial dysfunction. Trends Mol Med 2023:S1471-4914(23)00073-4. [PMID: 37173223 DOI: 10.1016/j.molmed.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Preeclampsia, one of the main hypertensive disorders of pregnancy, is associated with circulating factors released by the ischemic placenta accompanied by systemic endothelial dysfunction. The etiology of preeclampsia remains poorly understood although it is associated with high maternal and fetal mortality and increased cardiovascular disease risk. Most cell model systems used for studying endothelial dysfunction have not taken into account hemodynamic physical factors such as shear-stress forces which may prevent extrapolation of cell data to in vivo settings. We overview the role of hemodynamic forces in modulating endothelial cell function and discuss strategies to reproduce this biological characteristic in vitro to improve our understanding of endothelial dysfunction associated with preeclampsia.
Collapse
Affiliation(s)
- Sarah Viana-Mattioli
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Miriam Helena Fonseca-Alaniz
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Iguaracy Pinheiro-de-Sousa
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo, São Paulo, Brazil; European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Valéria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
36
|
Daiber A, Kuntic M, Oelze M, Hahad O, Münzel T. E-cigarette effects on vascular function in animals and humans. Pflugers Arch 2023:10.1007/s00424-023-02813-z. [PMID: 37084087 DOI: 10.1007/s00424-023-02813-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Smoking tobacco cigarettes is a significant (cardiovascular) health risk factor. Although the number of tobacco cigarette users declined over the last decades, shisha smoking and e-cigarette vaping partially compensated for this health benefit. E-cigarettes may create highly addicted dual users (vaping and smoking). E-cigarettes seem not to represent a healthier alternative to tobacco smoking, although they may be less harmful. E-cigarette vaping causes oxidative stress, inflammation, endothelial dysfunction, and associated cardiovascular sequelae. This is primarily due to a significant overlap of toxic compounds in the vapor compared to tobacco smoke and, accordingly, a substantial overlap of pathomechanistic features between vaping and smoking. Whereas the main toxins in vapor are reactive aldehydes such as formaldehyde and acrolein, the toxic mixture in smoke is more complex, comprising particulate matter, reactive gases, transition metals, volatile organic compounds, and N-nitrosamines. However, it seems that both lifestyle drugs impair endothelial function to a quite similar extent, which may be due to the role of oxidative stress as the central pathomechanism to mediate endothelial dysfunction and vascular damage. Finally, the main selling argument for e-cigarette use that they help to quit smoking and get rid of nicotine addiction may be false because it seems that e-cigarettes instead trigger the opposite-younger entrance age and more frequent use. With our review, we summarize the adverse health impact of tobacco cigarettes and e-cigarettes, emphasizing the detrimental effects on endothelial function and cardiovascular health.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany.
| |
Collapse
|
37
|
Campagna R, Vignini A. NAD + Homeostasis and NAD +-Consuming Enzymes: Implications for Vascular Health. Antioxidants (Basel) 2023; 12:376. [PMID: 36829935 PMCID: PMC9952603 DOI: 10.3390/antiox12020376] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous metabolite that takes part in many key redox reactions. NAD+ biosynthesis and NAD+-consuming enzymes have been attracting markedly increasing interest since they have been demonstrated to be involved in several crucial biological pathways, impacting genes transcription, cellular signaling, and cell cycle regulation. As a consequence, many pathological conditions are associated with an impairment of intracellular NAD+ levels, directly or indirectly, which include cardiovascular diseases, obesity, neurodegenerative diseases, cancer, and aging. In this review, we describe the general pathways involved in the NAD+ biosynthesis starting from the different precursors, analyzing the actual state-of-art of the administration of NAD+ precursors or blocking NAD+-dependent enzymes as strategies to increase the intracellular NAD+ levels or to counteract the decline in NAD+ levels associated with ageing. Subsequently, we focus on the disease-related and age-related alterations of NAD+ homeostasis and NAD+-dependent enzymes in endothelium and the consequent vascular dysfunction, which significantly contributes to a wide group of pathological disorders.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
38
|
Münzel T, Daiber A. Vascular redox signaling, eNOS uncoupling and endothelial dysfunction in the setting of transportation noise exposure or chronic treatment with organic nitrates. Antioxid Redox Signal 2023; 38:1001-1021. [PMID: 36719770 PMCID: PMC10171967 DOI: 10.1089/ars.2023.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE Cardiovascular disease and drug-induced health side effects are frequently associated with - or even caused by - an imbalance between the concentrations of reactive oxygen and nitrogen species (RONS) and antioxidants respectively determining the metabolism of these harmful oxidants. RECENT ADVANCES According to the "kindling radical" hypothesis, initial formation of RONS may further trigger the additional activation of RONS formation under certain pathological conditions. The present review will specifically focus on a dysfunctional, uncoupled endothelial nitric oxide synthase (eNOS) caused by RONS in the setting of transportation noise exposure or chronic treatment with organic nitrates, especially nitroglycerin. We will further describe the various "redox switches" that are proposed to be involved in the uncoupling process of eNOS. CRITICAL ISSUES In particular, the oxidative depletion of tetrahydrobiopterin (BH4), and S-glutathionylation of the eNOS reductase domain will be highlighted as major pathways for eNOS uncoupling upon noise exposure or nitroglycerin treatment. In addition, oxidative disruption of the eNOS dimer, inhibitory phosphorylation of eNOS at threonine or tyrosine residues, redox-triggered accumulation of asymmetric dimethylarginine (ADMA) and L-arginine deficiency will be discussed as alternative mechanisms of eNOS uncoupling. FUTURE DIRECTIONS The clinical consequences of eNOS dysfunction due to uncoupling on cardiovascular disease will be summarized also providing a template for future clinical studies on endothelial dysfunction caused by pharmacological or environmental risk factors.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center of the Johannes Gutenberg University Mainz, 39068, Cardiology I, Mainz, Rheinland-Pfalz, Germany;
| | - Andreas Daiber
- University Medical Center of the Johannes Gutenberg University Mainz, 39068, Cardiology I, Mainz, Rheinland-Pfalz, Germany;
| |
Collapse
|
39
|
Naliyadhara N, Kumar A, Kumar Gangwar S, Nair Devanarayanan T, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakara A. Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far? J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
40
|
Guo X, Wu B, Xia W, Gao J, Xie P, Feng L, Sun C, Liang M, Ding X, Zhao D, Ma S, Liu H, Lowe S, Bentley R, Huang C, Qu G, Sun Y. Association of organophosphate ester exposure with cardiovascular disease among US adults: Cross-sectional findings from the 2011-2018 National Health and Nutrition Examination Survey. CHEMOSPHERE 2022; 308:136428. [PMID: 36115470 DOI: 10.1016/j.chemosphere.2022.136428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers worldwide. Therefore, the potentially deleterious effect of OPE on human beings deserves extensive attention. The primary objective of this present study was to untangle the relationship between OPE exposure and cardiovascular disease (CVD) among general population. Detailed information about participants' baseline characteristics, involving socioeconomic data, demographic data and key covariates was obtained from National Health and Nutrition Examination Survey (NHANES) 2011-2018. Multivariate logistic regression models with adjustment for prior-determined covariates were utilized to examine the relationship between various OPEs and CVD among US adults and calculate odd ratios (ORs) and corresponding confidence intervals (CIs). Two multi-pollutant statistical strategies (weighted quantile sum regression and Bayesian kernel machine regression) were employed to investigate the joint effect of OPE mixture on CVD. A total of 5067 participants were included in this study. In completely-adjusted logistic model, the highest tertiles of OPE metabolites were positively associated with CVD risk, while the relationships did not reach statistical significance. The weighted quantile sum (WQS) index was significantly correlated with increased prevalence of CVD (adjusted OR: 1.25; CI: 1.02, 1.53, p value = 0.032) and Diphenyl phosphate (DPHP) was the greatest contributor (31.38%). The BKMR also indicated that mixed OPE exposure associated with an increased risk of CVD. Taken together, the present study demonstrated that there were possible links between OPE exposures and increased risk of CVD, while the relationships did not reach statistical significance. Our study provided the suggestive evidence that cumulative effect of OPE mixtures on CVD. DPHP may be a major driver of this positive association. Given the limitation of cross-sectional design and relatively limited kinds of OPE metabolites, further studies are warranted to longitudinally evaluate the potential effect of a wider range of OPEs on CVD or cardiac metabolism.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Dongdong Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Christy Huang
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV, 89014, United States
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238006, Anhui, China.
| |
Collapse
|
41
|
Pierre CJ, Azeez TA, Rossetti ML, Gordon BS, La Favor JD. Long-term administration of resveratrol and MitoQ stimulates cavernosum antioxidant gene expression in a mouse castration model of erectile dysfunction. Life Sci 2022; 310:121082. [PMID: 36252696 PMCID: PMC9746260 DOI: 10.1016/j.lfs.2022.121082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
AIMS Erectile dysfunction is a common complication within many pathological conditions associated with low testosterone. Testosterone deficiency increases oxidative stress in the penile tissue that contributes to endothelial dysfunction and subsequent erectile dysfunction. Current therapies do not ameliorate oxidative stress so targeting oxidative stress may improve erectile dysfunction. Resveratrol and MitoQ are two prospective drugs that have antioxidant-like properties and may be useful to improve erectile dysfunction induced by androgen deprivation. MATERIALS AND METHODS We castrated 12-week-old male C57BL/6 mice and performed an eight-week intervention with oral delivery of resveratrol or MitoQ at low and high doses. We assessed vascular reactivity of the corpus cavernosum and internal pudendal arteries (IPA) through dose-dependent responses to vasodilatory, vasocontractile, and neurogenic stimuli in a myograph system. We performed qRT-PCR to measure expression changes of 18 antioxidant genes in the corpus cavernosum. KEY FINDINGS Castration significantly impaired erectile function via impaired endothelial-dependent and-independent relaxation, and increased constriction of the corpus cavernosum, and induced severe endothelial dysfunction of the IPA. Castration decreased expression of 8 of the antioxidant genes investigated. Resveratrol and MitoQ were ineffective in reversing the effects of androgen deprivation on vascular reactivity, however high-dose resveratrol treatment upregulated several key antioxidant genes, including Cat, Sod1, Gstm1, and Prdx3. SIGNIFICANCE Our findings suggest that oral resveratrol and MitoQ treatment may provide protection to the corpus cavernosum under androgen deprived conditions by stimulating endogenous antioxidant systems. However, they may need to be paired with vasoactive drugs to reverse erectile dysfunction under androgen deprived conditions.
Collapse
Affiliation(s)
- Clifford J Pierre
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Tooyib A Azeez
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Michael L Rossetti
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Justin D La Favor
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
42
|
Song T, Zhou M, Li W, Lv M, Zheng L, Zhao M. The anti-inflammatory effect of vasoactive peptides from soybean protein hydrolysates by mediating serum extracellular vesicles-derived miRNA-19b/CYLD/TRAF6 axis in the vascular microenvironment of SHRs. Food Res Int 2022; 160:111742. [DOI: 10.1016/j.foodres.2022.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
|
43
|
Sulodexide Increases Glutathione Synthesis and Causes Pro-Reducing Shift in Glutathione-Redox State in HUVECs Exposed to Oxygen–Glucose Deprivation: Implication for Protection of Endothelium against Ischemic Injury. Molecules 2022; 27:molecules27175465. [PMID: 36080234 PMCID: PMC9457652 DOI: 10.3390/molecules27175465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sulodexide (SDX), a purified glycosaminoglycan mixture used to treat vascular diseases, has been reported to exert endothelial protective effects against ischemic injury. However, the mechanisms underlying these effects remain to be fully elucidated. The emerging evidence indicated that a relatively high intracellular concentration of reduced glutathione (GSH) and a maintenance of the redox environment participate in the endothelial cell survival during ischemia. Therefore, the aim of the present study was to examine the hypothesis that SDX alleviates oxygen–glucose deprivation (OGD)-induced human umbilical endothelial cells’ (HUVECs) injury, which serves as the in vitro model of ischemia, by affecting the redox state of the GSH: glutathione disulfide (GSSG) pool. The cellular GSH, GSSG and total glutathione (tGSH) concentrations were measured by colorimetric method and the redox potential (ΔEh) of the GSSG/2GSH couple was calculated, using the Nernst equation. Furthermore, the levels of the glutamate–cysteine ligase catalytic subunit (GCLc) and the glutathione synthetase (GSS) proteins, a key enzyme for de novo GSH synthesis, were determined using enzyme-linked immunoassay (ELISA). We demonstrated that the SDX treatment in OGD conditions significantly elevated the intracellular GSH, enhanced the GSH:GSSG ratio, shifting the redox potential to a more pro-reducing status. Furthermore, SDX increased the levels of both GCLc and GSS. The results show that SDX protects the human endothelial cells against ischemic stress by affecting the GSH levels and cellular redox state. These changes suggest that the reduction in the ischemia-induced vascular endothelial cell injury through repressing apoptosis and oxidative stress associated with SDX treatment may be due to an increase in GSH synthesis and modulation of the GSH redox system.
Collapse
|
44
|
Radwan B, Rocchetti S, Matuszyk E, Sternak M, Stodulski M, Pawlowski R, Mlynarski J, Brzozowski K, Chlopicki S, Baranska M. EdU sensing: The Raman way of following endothelial cell proliferation in vitro and ex vivo. Biosens Bioelectron 2022; 216:114624. [PMID: 35995027 DOI: 10.1016/j.bios.2022.114624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Endothelial cells line the lumen of all vessels in the body and maintain vascular homeostasis. In particular, endothelial cell regeneration in response to insult sustain functional endothelial layer. EdU (5-ethynyl-2'-deoxyuridine) is an alkyne-tagged proliferation probe that incorporates into newly synthesized DNA and is used for fluorescence imaging of cell proliferation with the use of "click chemistry" reaction with a fluorescent azide. Here, we utilized EdU as a click-free Raman probe for tracking endothelial cell proliferation. Raman imaging of EdU was performed in live endothelial cells, showing an advantage over fluorescence imaging of EdU, as this technique did not require sample fixation and permeabilization. To validate Raman-based imaging of EdU to study endothelial cell proliferation, we showed that when endothelial cells were treated with cycloheximide or doxorubicin to impair the proliferation of endothelial cells, the Raman-based signal of EdU was diminished. Furthermore, endothelial cells proliferation detected using EdU-labelled Raman imaging was compared with fluorescence imaging. Finally, the method of Raman-based EdU imaging was used in the isolated murine aorta ex vivo. Altogether, our results show that Raman-based imaging of EdU provides a novel alternative for fluorescence-based assay to assess endothelial proliferation and regeneration.
Collapse
Affiliation(s)
- Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str, 30-387, Krakow, Poland
| | - Stefano Rocchetti
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland
| | - Maciej Stodulski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str, 01-224, Warsaw, Poland
| | - Robert Pawlowski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str, 01-224, Warsaw, Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str, 01-224, Warsaw, Poland
| | - Krzysztof Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str, 30-387, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland; Jagiellonian University, 30-348, Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str, 30-387, Krakow, Poland.
| |
Collapse
|
45
|
Campeau MA, Leask RL. Empagliflozin mitigates endothelial inflammation and attenuates endoplasmic reticulum stress signaling caused by sustained glycocalyx disruption. Sci Rep 2022; 12:12681. [PMID: 35879337 PMCID: PMC9314417 DOI: 10.1038/s41598-022-16763-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
The disruption of the endothelial cell (EC) glycocalyx (GCX) leads to cellular dysfunction promoting inflammation and cardiovascular disease progression. Recent studies have shown that empagliflozin (EMPA; Jardiance), a sodium-glucose cotransporter 2 inhibitor used in the treatment of type 2 diabetes, can improve EC functions impacted by GCX disruption although the exact cellular mechanisms remain to be elucidated. In this study, the effect of EMPA on EC inflammatory response induced by sustained GCX disruption was investigated. Human aortic ECs were cultured under shear (10 dyne/cm2) for 24 h with or without sustained degradation of heparan sulfate (HS). HS degradation increased inflammatory cell adhesion to ECs. EMPA (50 μM) normalized adhesion levels under sustained HS degradation. Protein expressions of eNOS, phospho-eNOS Ser1177 and ICAM-1 remained unchanged between conditions. Transcriptome analysis revealed the induction of the unfolded protein response (UPR) through the increased expression of ATF3, ATF4, DDIT3 (CHOP), EIF2AK3 (PERK), HSPA5 (Grp78), PPP1R15A (GADD34) and TRIB3 which was in part downregulated by EMPA. mRNA and protein expression of thioredoxin interacting protein (TXNIP) was also downregulated by EMPA. Mitigation of oxidative stress with N-Acetyl-L-cysteine resulted in similar reduction in inflammatory cell adhesion compared to EMPA which could indicate a potential mechanism by which EMPA normalized the inflammatory response. In conclusion, this study demonstrated the potential of EMPA to resolve the inflammatory response of ECs caused by sustained GCX disruption while altering UPR signaling under endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada. .,McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
46
|
Hahad O, Bayo Jimenez MT, Kuntic M, Frenis K, Steven S, Daiber A, Münzel T. Cerebral consequences of environmental noise exposure. ENVIRONMENT INTERNATIONAL 2022; 165:107306. [PMID: 35635962 DOI: 10.1016/j.envint.2022.107306] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The importance of noise exposure as a major environmental determinant of public health is being increasingly recognized. While in recent years a large body evidence has emerged linking environmental noise exposure mainly to cardiovascular disease, much less is known concerning the adverse health effects of noise on the brain and associated neuropsychiatric outcomes. Despite being a relatively new area of investigation, indeed, mounting research and conclusive evidence demonstrate that exposure to noise, primarily from traffic sources, may affect the central nervous system and brain, thereby contributing to an increased risk of neuropsychiatric disorders such as stroke, dementia and cognitive decline, neurodevelopmental disorders, depression, and anxiety disorder. On a mechanistic level, a significant number of studies suggest the involvement of reactive oxygen species/oxidative stress and inflammatory pathways, among others, to fundamentally drive the adverse brain health effects of noise exposure. This in-depth review on the cerebral consequences of environmental noise exposure aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting adequate mitigation strategies and preventive measures to lower the societal consequences of unhealthy environments.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katie Frenis
- Boston Children's Hospital and Harvard Medical School, Department of Hematology/Oncology, Boston, MA, USA
| | - Sebastian Steven
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
47
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
48
|
Zhou C, Tan Y, Xu B, Wang Y, Cheang WS. 3,4′,5-Trimethoxy-trans-stilbene Alleviates Endothelial Dysfunction in Diabetic and Obese Mice via Activation of the AMPK/SIRT1/eNOS Pathway. Antioxidants (Basel) 2022; 11:antiox11071286. [PMID: 35883777 PMCID: PMC9311592 DOI: 10.3390/antiox11071286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
3,4′,5-trimethoxy-trans-stilbene (TMS) is a methoxylated derivative of resveratrol. Previous studies showed the vaso-protective effects of resveratrol; nevertheless, research on this derivative is scarce. The current study aimed to explore whether TMS can alleviate endothelial dysfunction in diabetic and obese mice, along with the underlying mechanisms. Thoracic aortas isolated from male C57BL/6J mice and primary cultures of rat aortic endothelial cells were treated with high glucose with or without TMS. High glucose exposure impaired acetylcholine-induced endothelium-dependent relaxations, down-regulated NO bioavailability and the AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1)/endothelial nitric oxide synthase (eNOS) pathway, increased endoplasmic reticulum (ER) stress and oxidative stress, which were reversed by TMS treatment. Moreover, the protective effects of TMS were abolished by Compound C (AMPK inhibitor), and EX527 (SIRT1 inhibitor). The mice were fed with high-fat diet (60% kcal% fat) for 14 weeks to establish a diabetic and obese model, and were orally administered TMS (10 mg/kg/day) in the last 4 weeks. Chronic TMS treatment alleviated endothelial dysfunction via enhancing the AMPK/SIRT1/eNOS pathway and attenuated oxidative stress and ER stress in aortas of diet-induced obese mice. In summary, our study reveals the potent vaso-protective effect of TMS and its therapeutic potential against endothelial dysfunction in metabolic disorders.
Collapse
Affiliation(s)
- Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (C.Z.); (Y.T.); (Y.W.)
| | - Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (C.Z.); (Y.T.); (Y.W.)
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China;
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (C.Z.); (Y.T.); (Y.W.)
| | - Wai-San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (C.Z.); (Y.T.); (Y.W.)
- Correspondence: ; Tel.: +86-853-8822-4914
| |
Collapse
|
49
|
Orlando G, Molon B, Viola A, Alaibac M, Angioni R, Piaserico S. Psoriasis and Cardiovascular Diseases: An Immune-Mediated Cross Talk? Front Immunol 2022; 13:868277. [PMID: 35686132 PMCID: PMC9170986 DOI: 10.3389/fimmu.2022.868277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease, characterized by well-demarcated scaly, erythematous, infiltrated plaques. The cutaneous-to-systemic expansion of the inflammation in psoriasis leads to the concept of “psoriatic march” or “inflammatory skin march”. Accordingly, psoriasis is thought to be a systemic inflammatory disease associated with numerous comorbidities. Indeed, it’s currently considered an independent risk factor for cardiovascular diseases. Here, we discuss the current knowledge on TNF-α and IL-23/IL-17 mediated pathways linking the psoriatic plaque to the cardiovascular compartment. We further argue the possible involvement of the endothelial compartment in the psoriatic plaque- cardiovascular system crosstalk.
Collapse
Affiliation(s)
- Gloria Orlando
- Unit of Dermatology, Department of Medicine - DIMED, University of Padova, Padova, Italy.,Department of Biomedical Sciences - DSB, University of Padova, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences - DSB, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica, Città della Speranza - IRP, Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences - DSB, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica, Città della Speranza - IRP, Padova, Italy
| | - Mauro Alaibac
- Unit of Dermatology, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Roberta Angioni
- Department of Biomedical Sciences - DSB, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica, Città della Speranza - IRP, Padova, Italy
| | - Stefano Piaserico
- Unit of Dermatology, Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
50
|
Saleh S, George J, Kott KA, Meikle PJ, Figtree GA. The Translation and Commercialisation of Biomarkers for Cardiovascular Disease—A Review. Front Cardiovasc Med 2022; 9:897106. [PMID: 35722087 PMCID: PMC9201254 DOI: 10.3389/fcvm.2022.897106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
As a leading cause of mortality and morbidity worldwide, cardiovascular disease and its diagnosis, quantification, and stratification remain significant health issues. Increasingly, patients present with cardiovascular disease in the absence of known risk factors, suggesting the presence of yet unrecognized pathological processes and disease predispositions. Fortunately, a host of emerging cardiovascular biomarkers characterizing and quantifying ischaemic heart disease have shown great promise in both laboratory settings and clinical trials. These have demonstrated improved predictive value additional to widely accepted biomarkers as well as providing insight into molecular phenotypes beneath the broad umbrella of cardiovascular disease that may allow for further personalized treatment regimens. However, the process of translation into clinical practice – particularly navigating the legal and commercial landscape – poses a number of challenges. Practical and legal barriers to the biomarker translational pipeline must be further considered to develop strategies to bring novel biomarkers into the clinical sphere and apply these advances at the patient bedside. Here we review the progress of emerging biomarkers in the cardiovascular space, with particular focus on those relevant to the unmet needs in ischaemic heart disease.
Collapse
Affiliation(s)
- Soloman Saleh
- Cardiothoracic and Vascular Health, Kolling Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Katharine A. Kott
- Cardiothoracic and Vascular Health, Kolling Institute of Medical Research, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gemma A. Figtree
- Cardiothoracic and Vascular Health, Kolling Institute of Medical Research, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Gemma A. Figtree
| |
Collapse
|