1
|
Chen S, Zheng W, Wang Y, Zhao X, Deng W, Chai N. Paeoniflorin attenuates cisplatin induced ototoxicity by inhibiting ferroptosis mediated by HMGB1/NRF2/GPX4 pathway. Food Chem Toxicol 2025:115550. [PMID: 40374000 DOI: 10.1016/j.fct.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Cisplatin-induced ototoxicity is a major dose-limiting complication in cancer therapy, profoundly diminishing quality of life. Paeoniflorin (PAE), a bioactive compound from Paeonia lactiflora, exhibits diverse pharmacological activities. This study aimed to evaluate the efficacy of PAE in countering cisplatin-induced ototoxicity and explore its molecular mechanisms. Cochlear hair cell injury models were established both in vitro and in vivo using cisplatin. Ferroptosis was induced in HEI-OC1 cells with RSL3, and HMGB1-overexpressing models were constructed to investigate its role. The findings indicated that PAE effectively alleviated cisplatin-induced hearing loss and cochlear cell damage in both in vitro and in vivo models. Moreover, PAE significantly mitigated the inflammatory response triggered by cisplatin exposure. Mechanistically, PAE reduced oxidative stress and ferroptosis by upregulating nuclear factor erythroid 2-related factor 2 (NRF2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4). Notably, PAE directly interacted with HMGB1 and suppressed its expression, thereby inhibiting HMGB1-mediated ferroptosis in cochlear cells. This study highlights PAE as a promising therapeutic candidate for preventing cisplatin-induced ototoxicity. By elucidating the role of PAE in modulating ferroptosis through HMGB1 and the NRF2/SLC7A11/GPX4 pathway, our findings provide new insights into potential strategies for mitigating cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Shaoli Chen
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zheng
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Zhao
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenhao Deng
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ni Chai
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Yamahara K, Ohnishi H, Nakagawa T, Omori K, Yamamoto N. Insulin-like growth factor 1 protects cochlear outer hair cells against cisplatin. Hear Res 2025; 463:109287. [PMID: 40334501 DOI: 10.1016/j.heares.2025.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
Cisplatin, an effective anti-neoplastic drug widely used in oncology protocols, has an adverse effect such as ototoxicity, for which no current treatment exists. Histological lesions in the cochlea after cisplatin administration are most prominent in outer hair cells in the organ of Corti. We have previously reported that insulin-like growth factor 1 (IGF1) protects cochlear hair cells (HCs) against several types of damage to the cochlea, including noise exposure, ischemia, surgical trauma, and aminoglycoside, resulting in hearing recovery. In the present study, we investigated the efficacy of IGF1 as a molecule to protect inner ear auditory sensory HCs against cisplatin using cochlear explant culture systems of postnatal day 2 mice. Administration of IGF1 to the explants grown in the medium containing cisplatin markedly protected outer HCs from cisplatin-induced damage. Pharmacological inhibition of IGF1 receptor (IGF1R) using an IGF1R antagonist or inhibitor markedly attenuated the protective activity of IGF1, indicating that IGF1R is specifically required for IGF1 effects in HCs against cisplatin. As a protective mechanism against cisplatin, we found that the administration of IGF1 reduces cisplatin-induced oxidative stress. IGF1 effects on the maintenance of HC numbers are achieved by inhibiting the apoptosis of HCs, not by inducing the proliferation of HCs or supporting cells (SCs). We conclude that treatment with IGF1 could be an efficient and safe approach to treat cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Kohei Yamahara
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Fujita Health University, Toyoake City, Aichi 470-1192, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Otolaryngology, Kobe City Medical Center General Hospital, Kobe City, Hyogo 650-0047, Japan.
| |
Collapse
|
3
|
Orasan A, Negru MC, Morgovan AI, Fleser RC, Sandu D, Sitaru AM, Motofelea AC, Balica NC. Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps. Audiol Res 2025; 15:22. [PMID: 40126270 PMCID: PMC11932224 DOI: 10.3390/audiolres15020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Cisplatin, a widely used chemotherapeutic agent, is associated with significant ototoxicity, leading to progressive and irreversible sensorineural hearing loss in up to 93% of patients. Cisplatin generates reactive oxygen species (ROS) in the cochlea, activating apoptotic and necroptotic pathways that result in hair cell death. Inflammatory processes and nitrative stress also contribute to cochlear damage. METHODS This literature review was conducted to explore the mechanisms underlying cisplatin-induced ototoxicity and evaluate protective strategies, including both current and emerging approaches. A structured search was performed in multiple scientific databases, including PubMed and ScienceDirect, for articles published up to November 2024. RESULTS Current otoprotective strategies include systemic interventions such as antioxidants, anti-inflammatory agents, and apoptosis inhibitors, as well as localized delivery methods like intratympanic injection and nanoparticle-based systems. However, these approaches have limitations, including potential interference with cisplatin's antitumor efficacy and systemic side effects. Emerging strategies focus on genetic and biomarker-based risk stratification, novel otoprotective agents targeting alternative pathways, and combination therapies. Repurposed drugs like pravastatin also show promise in reducing cisplatin-induced ototoxicity. CONCLUSIONS Despite these advancements, significant research gaps remain in translating preclinical findings to clinical applications and developing selective otoprotective agents that do not compromise cisplatin's efficacy. This review examines the mechanisms of cisplatin-induced ototoxicity, current otoprotective strategies, and emerging approaches to mitigate this adverse effect.
Collapse
Affiliation(s)
- Alexandru Orasan
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Mihaela-Cristina Negru
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Anda Ioana Morgovan
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Razvan Claudiu Fleser
- Otorhinolaryngology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Daniela Sandu
- OncoHelp Cancer Centre, Radiation Oncology Department, “Victor Babes” University of Medicine and Pharmacy, Str. Rusu Sireanu nr. 34 Timisoara, 300041 Timisoara, Romania;
| | - Adrian Mihail Sitaru
- Department of Pediatric Surgery, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania;
| | - Alexandru-Catalin Motofelea
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Nicolae Constantin Balica
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| |
Collapse
|
4
|
Jeong M, Kurihara S, Stankovic KM. An In Vitro Oxidative Stress Model of the Human Inner Ear Using Human-Induced Pluripotent Stem Cell-Derived Otic Progenitor Cells. Antioxidants (Basel) 2024; 13:1407. [PMID: 39594548 PMCID: PMC11591063 DOI: 10.3390/antiox13111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The inner ear organs responsible for hearing (cochlea) and balance (vestibular system) are susceptible to oxidative stress due to the high metabolic demands of their sensorineural cells. Oxidative stress-induced damage to these cells can cause hearing loss or vestibular dysfunction, yet the precise mechanisms remain unclear due to the limitations of animal models and challenges of obtaining living human inner ear tissue. Therefore, we developed an in vitro oxidative stress model of the pre-natal human inner ear using otic progenitor cells (OPCs) derived from human-induced pluripotent stem cells (hiPSCs). OPCs, hiPSCs, and HeLa cells were exposed to hydrogen peroxide or ototoxic drugs (gentamicin and cisplatin) that induce oxidative stress to evaluate subsequent cell viability, cell death, reactive oxygen species (ROS) production, mitochondrial activity, and apoptosis (caspase 3/7 activity). Dose-dependent reductions in OPC cell viability were observed post-exposure, demonstrating their vulnerability to oxidative stress. Notably, gentamicin exposure induced ROS production and cell death in OPCs, but not hiPSCs or HeLa cells. This OPC-based human model effectively simulates oxidative stress conditions in the human inner ear and may be useful for modeling the impact of ototoxicity during early pregnancy or evaluating therapies to prevent cytotoxicity.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
| | - Sho Kurihara
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
- Department of Otolaryngology-Head and Neck Surgery, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo 105-8461, Japan
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
6
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
7
|
Maruyama A, Kawashima Y, Fukunaga Y, Makabe A, Nishio A, Tsutsumi T. Susceptibility of mouse cochlear hair cells to cisplatin ototoxicity largely depends on sensory mechanoelectrical transduction channels both Ex Vivo and In Vivo. Hear Res 2024; 447:109013. [PMID: 38718672 DOI: 10.1016/j.heares.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Cisplatin, a highly effective chemotherapeutic drug for various human cancers, induces irreversible sensorineural hearing loss as a side effect. Currently there are no highly effective clinical strategies for the prevention of cisplatin-induced ototoxicity. Previous studies have indicated that short-term cisplatin ototoxicity primarily affects the outer hair cells of the cochlea. Therefore, preventing the entry of cisplatin into hair cells may be a promising strategy to prevent cisplatin ototoxicity. This study aimed to investigate the entry route of cisplatin into mouse cochlear hair cells. The competitive inhibitor of organic cation transporter 2 (OCT2), cimetidine, and the sensory mechanoelectrical transduction (MET) channel blocker benzamil, demonstrated a protective effect against cisplatin toxicity in hair cells in cochlear explants. Sensory MET-deficient hair cells explanted from Tmc1Δ;Tmc2Δ mice were resistant to cisplatin toxicity. Cimetidine showed an additive protective effect against cisplatin toxicity in sensory MET-deficient hair cells. However, in the apical turn, cimetidine, benzamil, or genetic ablation of sensory MET channels showed limited protective effects, implying the presence of other entry routes for cisplatin to enter the hair cells in the apical turn. Systemic administration of cimetidine failed to protect cochlear hair cells from ototoxicity caused by systemically administered cisplatin. Notably, outer hair cells in MET-deficient mice exhibited no apparent deterioration after systemic administration of cisplatin, whereas the outer hair cells in wild-type mice showed remarkable deterioration. The susceptibility of mouse cochlear hair cells to cisplatin ototoxicity largely depends on the sensory MET channel both ex vivo and in vivo. This result justifies the development of new pharmaceuticals, such as a specific antagonists for sensory MET channels or custom-designed cisplatin analogs which are impermeable to sensory MET channels.
Collapse
MESH Headings
- Cisplatin/toxicity
- Animals
- Ototoxicity/prevention & control
- Ototoxicity/metabolism
- Ototoxicity/physiopathology
- Mechanotransduction, Cellular/drug effects
- Organic Cation Transporter 2/metabolism
- Organic Cation Transporter 2/genetics
- Organic Cation Transporter 2/antagonists & inhibitors
- Cimetidine/pharmacology
- Antineoplastic Agents/toxicity
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/metabolism
- Mice, Inbred C57BL
- Mice
- Membrane Proteins
Collapse
Affiliation(s)
- Ayako Maruyama
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshiyuki Kawashima
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Yoko Fukunaga
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayane Makabe
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ayako Nishio
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takeshi Tsutsumi
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
8
|
Liu Z, Zhang H, Hong G, Bi X, Hu J, Zhang T, An Y, Guo N, Dong F, Xiao Y, Li W, Zhao X, Chu B, Guo S, Zhang X, Chai R, Fu X. Inhibition of Gpx4-mediated ferroptosis alleviates cisplatin-induced hearing loss in C57BL/6 mice. Mol Ther 2024; 32:1387-1406. [PMID: 38414247 PMCID: PMC11081921 DOI: 10.1016/j.ymthe.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.
Collapse
MESH Headings
- Animals
- Cisplatin/adverse effects
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Mice
- Hearing Loss/chemically induced
- Hearing Loss/genetics
- Hearing Loss/metabolism
- Mice, Knockout
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Mice, Inbred C57BL
- Disease Models, Animal
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Reactive Oxygen Species/metabolism
- Lipid Peroxidation/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Ototoxicity/etiology
- Ototoxicity/metabolism
- Antineoplastic Agents/adverse effects
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Ziyi Liu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hanbing Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong 250012, China
| | - Guodong Hong
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuli Bi
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jun Hu
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tiancheng Zhang
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Na Guo
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengyue Dong
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxu Zhao
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250102, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohan Zhang
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Renjie Chai
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Southeast University Shenzhen Research Institute, Shenzhen, Guangdong 518063, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
9
|
Wu Y, Zhang J, Liu Q, Miao Z, Chai R, Chen W. Development of Chinese herbal medicine for sensorineural hearing loss. Acta Pharm Sin B 2024; 14:455-467. [PMID: 38322328 PMCID: PMC10840432 DOI: 10.1016/j.apsb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
According to the World Health Organization's world report on hearing, nearly 2.5 billion people worldwide will suffer from hearing loss by 2050, which may contribute to a severe impact on individual life quality and national economies. Sensorineural hearing loss (SNHL) occurs commonly as a result of noise exposure, aging, and ototoxic drugs, and is pathologically characterized by the impairment of mechanosensory hair cells of the inner ear, which is mainly triggered by reactive oxygen species accumulation, inflammation, and mitochondrial dysfunction. Though recent advances have been made in understanding the ability of cochlear repair and regeneration, there are still no effective therapeutic drugs for SNHL. Chinese herbal medicine which is widely distributed and easily accessible in China has demonstrated a unique curative effect against SNHL with higher safety and lower cost compared with Western medicine. Herein we present trends in research for Chinese herbal medicine for the treatment of SNHL, and elucidate their molecular mechanisms of action, to pave the way for further research and development of novel effective drugs in this field.
Collapse
Affiliation(s)
- Yunhao Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jingwen Zhang
- Department of Otolaryngology-Head and Neck, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiuping Liu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Zhuang Miao
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100085, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Wenyong Chen
- Department of Otolaryngology-Head and Neck, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
10
|
Hsieh CY, Tsai CY, Chou YF, Hsu CJ, Wu HP, Wu CC. Otoprotection against aminoglycoside- and cisplatin-induced ototoxicity focusing on the upstream drug uptake pathway. J Chin Med Assoc 2024; 87:17-24. [PMID: 37962398 DOI: 10.1097/jcma.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Aminoglycoside- and cisplatin-induced ototoxicity, which is a significant issue owing to the widespread use of these drugs in clinical practice, involves the entry of aminoglycosides and cisplatin into the endolymph and hair cells via specific channels or transporters, followed by reactive oxygen species (ROS) generation and hair cells apoptosis. Current strategies focalize primarily on interference with downstream ROS effects; however, recent evidence has demonstrated that inhibiting the uptake of aminoglycosides and cisplatin by hair cells is another promising strategy for tackling the upstream drug uptake pathway. With advances in structural biology, the conformations of certain aminoglycoside and cisplatin channels and transporters, such as the mechanoelectrical transduction channel and organic cation transporter-2, have been largely elucidated. These channels and transporters may become potential targets for the introduction of new otoprotective strategies. This review focuses on the strategies for inhibiting ototoxic drugs uptake by auditory hair cells and provides potential targets for recent developments in the field of otoprotection. Molecular dynamics (MD) simulations of these proteins could help identify the molecules that inhibit the uptake of aminoglycosides and cisplatin by hair cells. Integrating upstream drug uptake pathway targets and MD simulations may help dissect molecular mechanisms and develop novel otoprotective strategies for aminoglycoside- and cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Fan Chou
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| |
Collapse
|
11
|
Al-Bataineh WM, Alzoubi KH, Khabour OF, Mahasneh A, Al Momany EM. Vitamin B12 Protects against Genotoxicity Induced by Cisplatin. Curr Cancer Drug Targets 2024; 24:1169-1176. [PMID: 38299397 DOI: 10.2174/0115680096284684240110044954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Cisplatin is an effective synthetic chemotherapeutic drug used for cancer treatment. Vitamin B12 has been shown to possess anti-genotoxic activity. This study aimed to investigate the effect of vitamin B12 on chromosomal damage induced by cisplatin. METHODS The level of sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) were measured in cultured human blood lymphocytes treated with cisplatin and/or vitamin B12. RESULTS The results showed a significantly elevated frequency of CAs and SCEs of cisplatin-treated cultures compared to the control (P < 0.05). The CAs and SCEs induced by cisplatin were significantly lowered by pretreatment of cell cultures with vitamin B12. In addition, cisplatin caused a slight reduction in the mitotic index (MI), while vitamin B12 did not modulate the effect of cisplatin on MI. CONCLUSION Vitamin B12 can protect human lymphocytes against genotoxicity associated with cisplatin.
Collapse
Affiliation(s)
- Wejdan M Al-Bataineh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Amjad Mahasneh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| | - Enaam M Al Momany
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. box 330127, Zarqa 13133, Jordan
| |
Collapse
|
12
|
Tian J, Mu Y, Ma L. Chemerin/CMKLR1 pathway exacerbates cisplatin-induced spiral ganglion neuron injury. Toxicol Res 2024; 40:73-81. [PMID: 38223664 PMCID: PMC10786799 DOI: 10.1007/s43188-023-00205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 01/16/2024] Open
Abstract
This study investigated whether chemerin/chemokine-like receptor 1 (CMKLR1) pathway participate in cisplatin-induced spiral ganglion neuron (SGN) damage. Middle cochlear turn was collected from C57BL/6 mice and the SGNs were cultured. Cisplatin, 2-(anaphthoyl) ethyltrimethylammonium iodide (α-NETA), or recombinant mouse chemerin was added into the medium for the treatment. Relative mRNA and protein expression was determined by RT-PCR, ELISA and Western blot, respectively. In cultured mouse cochlear SGNs, the treatment of cisplatin enhanced the secretion of chemerin and CMKLR1. Recombinant chemerin promoted but α-NETA inhibited chemerin/CMKLR1 pathway in cisplatin stimulated SGNs. Cisplatin-induced apoptosis and inflammation response in SGNs were enhanced by recombinant chemerin while inhibited by α-NETA. Recombinant chemerin promoted but α-NETA inhibited NF-κB signal in cisplatin stimulated SGNs. In conclusion, chemerin/CMKLR1 pathway regulated apoptosis and inflammation response in cisplatin-induced SGN injury through NF-κB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00205-0.
Collapse
Affiliation(s)
- Jie Tian
- Department of Otology, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zhangdian District, Zibo, 255036 Shandong China
| | - Ying Mu
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036 Shandong China
| | - Lili Ma
- Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036 Shandong China
| |
Collapse
|
13
|
Sung CYW, Hayase N, Yuen PS, Lee J, Fernandez K, Hu X, Cheng H, Star RA, Warchol ME, Cunningham LL. Macrophage Depletion Protects Against Cisplatin-Induced Ototoxicity and Nephrotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567274. [PMID: 38014097 PMCID: PMC10680818 DOI: 10.1101/2023.11.16.567274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cisplatin is a widely used and highly effective anti-cancer drug with significant side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced ototoxicity and nephrotoxicity, we used PLX3397, an FDA-approved inhibitor of the colony-stimulating factor 1 receptor (CSF1R), to eliminate tissue-resident macrophages during the course of cisplatin administration. Mice treated with cisplatin alone (cisplatin/vehicle) had significant hearing loss (ototoxicity) as well as kidney injury (nephrotoxicity). Macrophage ablation using PLX3397 resulted in significantly reduced hearing loss measured by auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE). Sensory hair cells in the cochlea were protected against cisplatin-induced death in mice treated with PLX3397. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis as well as reduced plasma blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together our data indicate that ablation of tissue-resident macrophages represents a novel strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Mark E. Warchol
- Washington University, Department of Otolaryngology, School of Medicine, Saint Louis, MO
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Jeon H, Song IS, Park JG, Lee H, Han E, Park S, Lee Y, Song CM, Hur W, Lee IG, Choi J. Protective effects of esomeprazole against cisplatin-induced ototoxicity: an in vitro and in vivo study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106573. [PMID: 37210931 DOI: 10.1016/j.aquatox.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In this study, we aimed to identify novel compounds that could afford protection against cisplatin-induced ototoxicity by employing both cell- and zebrafish (Danio rerio)-based screening platforms. We screened 923 US Food and Drug Administration-approved drugs to identify potential compounds exhibiting protective effects against cisplatin-induced ototoxicity in HEI-OC1 cells (auditory hair cell line). The screening strategy identified esomeprazole and dexlansoprazole as the primary hit compounds. Subsequently, we examined the effects of these compounds on cell viability and apoptosis. Our results revealed that esomeprazole and dexlansoprazole inhibited organic cation transporter 2 (OCT2), thus providing in vitro evidence that these compounds could ameliorate cisplatin-induced ototoxicity by directly inhibiting OCT2-mediated cisplatin transport. In vivo, the protective effects were validated using zebrafish; esomeprazole was found to decrease cisplatin-induced hair cell damage in neuromasts. Furthermore, the esomeprazole-treated group showed a significantly lower number of TUNEL-positive cells than the cisplatin-treated group. Collectively, our findings revealed that esomeprazole exerts a protective effect against cisplatin-induced hair cell damage in both HEI-OC1 cells and a zebrafish model.
Collapse
Affiliation(s)
- Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - In Sik Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyejin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yunkyoung Lee
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
| | - Chi-Man Song
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Wooyoung Hur
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea.
| |
Collapse
|
15
|
Waissbluth S, Martínez AD, Figueroa-Cares C, Sánchez HA, Maass JC. MATE1 expression in the cochlea and its potential involvement in cisplatin cellular uptake and ototoxicity. Acta Otolaryngol 2023; 143:242-249. [PMID: 36943799 DOI: 10.1080/00016489.2023.2184864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Cisplatin appears to enter the cochlear cells through the organic cation transporter 2 (OCT2). There is recent evidence that multidrug and toxin extrusion protein 1 (MATE1) is involved in cisplatin-induced nephrotoxicity. Its presence and role in the ear are unknown. AIMS/OBJECTIVES Evaluate the presence and localization of MATE1, and determine the localization of OCT2, in the cochlea. Evaluate cisplatin uptake with regard to MATE1 and OCT2 expression. MATERIAL AND METHODS Murine cochlear explants and paraffin-embedded cochleae were evaluated with immunohistochemistry for OCT2 and MATE1. Explant cultures were also treated with Texas Red cisplatin to determine their cellular uptake. RESULTS MATE1 is present in the cochlea. Most intense labeling of MATE1 and OCT2 was seen in the outer hair cells (OHCs) and pillar cells, respectively. Both transporters were observed in the spiral ganglion neurons and stria vascularis. Expression levels of OCT2 and MATE1 decreased following cisplatin exposure. Texas Red cisplatin staining was strong in OHCs and pillar cells. CONCLUSIONS AND SIGNIFICANCE To the best of our knowledge, this is the first study demonstrating the presence and localization of MATE1 in the cochlea. OCT2 labeling was seen in pillar cells. Consistently, OHCs and pillar cells uptake Texas Red cisplatin.
Collapse
Affiliation(s)
- Sofia Waissbluth
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Helmuth A Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Maass
- Department of Otolaryngology, Hospital Clínico Universidad de Chile and Interdisciplinary Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Surgery, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
16
|
Hsieh CY, Lin JN, Kang TY, Wen YH, Yu SH, Wu CC, Wu HP. Otoprotective Effects of Fucoidan Reduce Cisplatin-Induced Ototoxicity in Mouse Cochlear UB/OC-2 Cells. Int J Mol Sci 2023; 24:ijms24043561. [PMID: 36834972 PMCID: PMC9959567 DOI: 10.3390/ijms24043561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Cisplatin is a widely used standard chemotherapy for various cancers. However, cisplatin treatment is associated with severe ototoxicity. Fucoidan is a complex sulfated polysaccharide mainly derived from brown seaweeds, and it shows multiple bioactivities such as antimicrobial, anti-inflammatory, anticancer, and antioxidant activities. Despite evidence of the antioxidant effects of fucoidan, research on its otoprotective effects remains limited. Therefore, the present study investigated the otoprotective effects of fucoidan in vitro using the mouse cochlear cell line UB/OC-2 to develop new strategies to attenuate cisplatin-induced ototoxicity. We quantified the cell membrane potential and analyzed regulators and cascade proteins in the apoptotic pathway. Mouse cochlear UB/OC-2 cells were pre-treated with fucoidan before cisplatin exposure. The effects on cochlear hair cell viability, mitochondrial function, and apoptosis-related proteins were determined via flow cytometry, Western blot analysis, and fluorescence staining. Fucoidan treatment reduced cisplatin-induced intracellular reactive oxygen species production, stabilized mitochondrial membrane potential, inhibited mitochondrial dysfunction, and successfully protected hair cells from apoptosis. Furthermore, fucoidan exerted antioxidant effects against oxidative stress by regulating the Nrf2 pathway. Therefore, we suggest that fucoidan may represent a potential therapeutic agent for developing a new otoprotective strategy.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Ting-Ya Kang
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970473, Taiwan
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan 710302, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300195, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Protective Effect of Natural Antioxidants on Reducing Cisplatin-Induced Nephrotoxicity. DISEASE MARKERS 2022; 2022:1612348. [PMID: 36419843 PMCID: PMC9678481 DOI: 10.1155/2022/1612348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The clinical application of cisplatin is limited by its adverse events, of which nephrotoxicity is the most commonly observed. In a cisplatin-induced pathological response, oxidative stress is one of the upstream reactions which inflicts different degrees of damages to the intracellular material components. Reactive oxygen species (ROS) are also one of the early signaling molecules that subsequently undergo a series of pathological reactions, such as apoptosis and necrosis. This review summarizes the mechanism of intracellular ROS generation induced by cisplatin, mainly from the consumption of endogenous antioxidants, destruction of antioxidant enzymes, induction of mitochondrial crosstalk between the endoplasmic reticulum by ROS and Ca2+, and destruction of the cytochrome P450 (CYP) system in the endoplasmic reticulum, all of which result in excessive accumulation of intracellular ROS and oxidative stress. In addition, studies demonstrated that natural antioxidants can protect against the cisplatin-induced nephrotoxicity, by reducing or even eliminating excess free radicals and also affecting other nonredox pathways. Therefore, this review on the one hand provides theoretical support for the research and clinical application of natural antioxidants and on the other hand provides a new entry point for the detailed mechanism of cisplatin nephrotoxicity, which may lay a solid foundation for the future clinical use of cisplatin.
Collapse
|
18
|
Ferah Okkay I, Okkay U, Aydin IC, Bayram C, Ertugrul MS, Mendil AS, Hacimuftuoglu A. Centella asiatica extract protects against cisplatin-induced hepatotoxicity via targeting oxidative stress, inflammation, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33774-33784. [PMID: 35029831 DOI: 10.1007/s11356-022-18626-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
This study was designed to investigate the protective effects of Centella asiatica (CA) on cisplatin-induced hepatotoxicity and to clarify the underlying mechanism by biochemical, molecular, immunohistochemical, and histopathological analyses. Rats were pre-treated with two doses of CA (100 and 200 mg/kg, p.o.) for 14 consecutive days. Then, on the 15th day, hepatotoxicity was induced by a single cisplatin injection (10 mg/kg i.p.). On the 18th day, the rats were euthanized. CA effectively alleviated cisplatin-induced hepatic injury via reduction in AST, ALT, and ALP enzymes and a decrease in oxidative stress (decreased MDA and ROS, and increased SOD, CAT, and GSH). CA also mitigated the inflammatory damage by the inhibition of TNF-α, IL-1β, and NF-κB. The liver expression of caspase-3 and Bax was downregulated, while Bcl-2 was upregulated. Moreover, immunohistochemical results confirmed the recovery with CA by downregulation of iNOS and 8-OHdG expression. These results showed that with its antioxidant, anti-inflammatory, and anti-apoptotic activities, CA could help alleviate the hepatotoxic effects of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25100, Erzurum, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ismail Cagri Aydin
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Muhammed Sait Ertugrul
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
19
|
Chen SQ, Hu BF, Yang YR, He Y, Yue L, Guo D, Wu TN, Feng XW, Li Q, Zhang W, Wen JG. The protective effect of rabeprazole on cisplatin-induced apoptosis and necroptosis of renal proximal tubular cells. Biochem Biophys Res Commun 2022; 612:91-98. [PMID: 35512462 DOI: 10.1016/j.bbrc.2022.04.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022]
Abstract
Nephrotoxicity is a major adverse reaction of cisplatin-based chemotherapy. Organic cation transporter 2 (OCT2) which is located on the basement membrane of human proximal renal tubules is responsible for the renal accumulation of cisplatin and its nephrotoxicity. This study aimed to investigate the protective effect of PPIs to CP-induced nephrotoxicity. Three kinds of PPIs including lansoprazole, omeprazole and rabeprazole (Rab) were co-administrated with CP to mice. In addition, OCT2-overexpressed HEK293, HK-2 and A549 cells were co-incubated with CP and PPIs. The results showed that PPIs can attenuate CP-induced increase of CRE, BUN and histological damage of kidney. Among the three PPIs, Rab was found with a superior protective effect. It significantly reduced the accumulation of CP in OCT2-overexpressed HEK293 cells and in the renal cortex tissues of mice, but not in HK-2 cells. Moreover, Rab reduced the expression levels of cleaved-caspase-3, RIPK1, RIPK3, MLKL and p-MLKL and the apoptosis rate of renal tubular cells induced by CP in vivo, but not in HK-2 cells. However, Rab increased the viability of CP-treated cells in a concentration-dependent manner and attenuated CP-induced apoptosis and necroptosis in OCT2 over-expressed HEK293 cells. Finally, we demonstrated that Rab have no influence on the antitumor effect of CP. In conclusion, Rab attenuate CP-induced nephrotoxicity mainly through inhibiting OCT2-mediated CP uptake, without interfering with its anti-tumor property of inducing apoptosis and necroptosis.
Collapse
Affiliation(s)
- Shi-Qing Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Bing-Feng Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Lin Yue
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Dong Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya Medical School, Central South University, Hunan, 410007, China
| | - Ting-Ni Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Wen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya Medical School, Central South University, Hunan, 410007, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya Medical School, Central South University, Hunan, 410007, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Tsvetkova D, Ivanova S. Application of Approved Cisplatin Derivatives in Combination Therapy against Different Cancer Diseases. Molecules 2022; 27:2466. [PMID: 35458666 PMCID: PMC9031877 DOI: 10.3390/molecules27082466] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/03/2023] Open
Abstract
The problems with anticancer therapy are resistance and toxicity. From 3000 Cisplatin derivatives tested as antitumor agents, most of them have been rejected, due to toxicity. The aim of current study is the comparison of therapeutic combinations of the currently applied in clinical practice: Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin, Lobaplatin, Heptaplatin, and Satraplatin. The literature data show that the strategies for the development of platinum anticancer agents and bypassing of resistance to Cisplatin derivatives and their toxicity are: combination therapy, Pt IV prodrugs, the targeted nanocarriers. The very important strategy for the improvement of the antitumor effect against different cancers is synergistic combination of Cisplatin derivatives with: (1) anticancer agents-Fluorouracil, Gemcitabine, Cytarabine, Fludarabine, Pemetrexed, Ifosfamide, Irinotecan, Topotecan, Etoposide, Amrubicin, Doxorubicin, Epirubicin, Vinorelbine, Docetaxel, Paclitaxel, Nab-Paclitaxel; (2) modulators of resistant mechanisms; (3) signaling protein inhibitors-Erlotinib; Bortezomib; Everolimus; (4) and immunotherapeutic drugs-Atezolizumab, Avelumab, Bevacizumab, Cemiplimab, Cetuximab, Durvalumab, Erlotinib, Imatinib, Necitumumab, Nimotuzumab, Nivolumab, Onartuzumab, Panitumumab, Pembrolizumab, Rilotumumab, Trastuzumab, Tremelimumab, and Sintilimab. An important approach for overcoming the drug resistance and reduction of toxicity of Cisplatin derivatives is the application of nanocarriers (polymers and liposomes), which provide improved targeted delivery, increased intracellular penetration, selective accumulation in tumor tissue, and enhanced therapeutic efficacy. The advantages of combination therapy are maximum removal of tumor cells in different phases; prevention of resistance; inhibition of the adaptation of tumor cells and their mutations; and reduction of toxicity.
Collapse
Affiliation(s)
- Dobrina Tsvetkova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, Dunav Str. 2, 1000 Sofia, Bulgaria
| | - Stefka Ivanova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Medical University-Pleven, Kliment Ohridski Str. 1, 5800 Pleven, Bulgaria;
| |
Collapse
|
21
|
Febles NK, Bauer MA, Ding B, Zhu X, Gallant ND, Frisina RD. A combinatorial approach to protect sensory tissue against cisplatin-induced ototoxicity. Hear Res 2022; 415:108430. [PMID: 35051751 PMCID: PMC8810742 DOI: 10.1016/j.heares.2022.108430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
Sensorineural Hearing Loss (SNHL) is a highly prevalent disorder involving permanent damage or loss to the inner ear's mechano-sensory hair cells and nerve fibers. Major contributing causes are ototoxic drugs, loud noises, and aging. Drug-induced hearing loss (DIHL), affects over 25% of patients treated with common therapeutics such as aminoglycoside antibiotics, loop diuretics or chemotherapeutics. A commonly used chemotherapeutic agent, cisplatin, is very effective for treating malignant tumors, but results in a majority of patients experiencing irreversible hearing loss and/or tinnitus. Additionally, since there is currently no FDA-approved treatments for SNHL, attenuation of ototoxicity is a major area of investigation in oncology, otolaryngology and hearing research. Several potential otoprotective agents have been investigated at the clinical trial stage, but none have progressed to a full FDA-approval. In this study, we investigated a combinatorial approach comprised of an antioxidant, a p53 inhibitor and a neurotrophin, as a multifactorial otoprotective treatment for cisplatin exposure. In vitro, HEI-OC1 cells, an immortalized organ of Corti epithelial cell line, pre-treated with this biotherapeutic cocktail had significantly reduced cisplatin-induced cell death, DNA fragmentation, and apoptotic activation. In an ex vivo study, rat pup D2-D3 organ of Corti explants, significant protection against cisplatin-based hair cell and neuronal loss was achieved by delivery of the same combinatorial pretreatment. Interestingly, the hair cell protection was localized to the basal and middle regions of the organ of Corti. Together, these findings highlight a novel approach to attenuate cisplatin ototoxicity and potentially prevent DIHL by addressing biological mechanisms of cisplatin ototoxicity.
Collapse
Affiliation(s)
- Nicole K Febles
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Mark A Bauer
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Bo Ding
- Department of Communicative Sciences and Disorders, University of South Florida, Tampa, FL 33602, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Xiaoxia Zhu
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Nathan D Gallant
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33602, USA.
| | - Robert D Frisina
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Department of Communicative Sciences and Disorders, University of South Florida, Tampa, FL 33602, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA.
| |
Collapse
|
22
|
Simon J, Horstmann Née Gruschka C, Mix A, Stammler A, Oldengott J, Bögge H, Glaser T. Evaluation of the binding mode of a cytotoxic dinuclear nickel complex to two neighboring phosphates of the DNA backbone. Dalton Trans 2022; 51:2863-2875. [PMID: 35098951 DOI: 10.1039/d1dt03813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol-ligands has been designed to bind covalently to two neighboring phosphate diester groups in the backbone of DNA. The dinuclear CuII and NiII complexes bind to DNA resulting in the inhibition of DNA synthesis in PCR experiments and in a cytotoxicity that is stronger for human cancer cells than for human stem cells of the same proliferation rate. These experiments support but cannot prove that the dinuclear complexes bind as intended to two neighboring phosphate ester groups of the DNA backbone. Here, we evaluate the potential binding mode of the cytotoxic dinuclear NiII complex using simple phosphate diester models (dimethyl phosphate and diphenyl phosphate). Depending on the reaction conditions, the phosphate diesters bind to the NiII ions in a bridging or in a terminal coordination mode. The latter occurs by substitution of two coordinated acetates by the phosphate diesters. This reaction has been followed by NMR spectroscopy, which demonstrates that the substitution of acetate by phosphate is thermodynamically strongly favored, while the exchange with excess phosphate is fast on the NMR time scale. The molecular structure of the NiII complex with two coordinated diphenyl phosphates served as a model for the computational evaluation of the binding to the DNA backbone. This combined experimental and computational study suggests a monodentate coordination mode of the DNA phosphate diesters to the NiII ions that is assisted by hydrogen bonds with water ligands.
Collapse
Affiliation(s)
- Jasmin Simon
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Claudia Horstmann Née Gruschka
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Andreas Mix
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
23
|
Li J, Liu C, Kaefer S, Youssef M, Zhao B. The Mechanotransduction Channel and Organic Cation Transporter Are Critical for Cisplatin Ototoxicity in Murine Hair Cells. Front Mol Neurosci 2022; 15:835448. [PMID: 35221917 PMCID: PMC8866953 DOI: 10.3389/fnmol.2022.835448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is one of the most widely used chemotherapeutic drugs across the world. However, the serious ototoxic effects, leading to permanent hair cell death and hearing loss, significantly limit the utility of cisplatin. In zebrafish, the functional mechanotransduction channel is required for cisplatin ototoxicity. However, it is still unclear the extent to which the mechanotransduction channel is involved in cisplatin uptake and ototoxicity in mammalian hair cells. Herein, we show that genetically disrupting mechanotransduction in mouse partially protects hair cells from cisplatin-induced hair cell death. Using a fluorescent-dye conjugated cisplatin, we monitored cisplatin uptake in cochlear explants and found that functional mechanotransduction is required for the uptake of cisplatin in murine hair cells. In addition, cimetidine, an inhibitor of the organic cation transporter, also partially protects hair cells from cisplatin ototoxicity. Notably, the otoprotective effects of cimetidine do not require mechanotransduction. These findings suggest that both the mechanotransduction channel and the organic cation transporter are critical for cisplatin ototoxicity in murine hair cells.
Collapse
|
24
|
Ivanova S. Comparative assessment of clinical trials, indications, pharmacokinetic parameters and side effects of approved platinum drugs. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e78813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Platinum complexes are among the most commonly applied anticancer agents. The aim of current work is collection, analysing and comparative estimation of clinical trials and pharmacological indications of currently approved for application platinum detivatives: Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin (Japan), Lobaplatin (China), Heptaplatin (North Korea), and Satraplatin. The other aim of the study includes the summarizing of the hystoric data for the stages of the developlement of these drugs, and the comparison of pharmacokimetic parameters, side effecs and the dose-liniting factors of the drugs. The observational study on pharmacokinetic parameters shows that protein binding decreases in order: 95% (Cisplatn); 90% (Oxaliplatin); 50% (Nedaplatin); low (Carboplatin). For every of Cisplatin, Carboplatin, Oxaliplatin have been reported more than 1000 clinical trials; for Lobaplatin, Nedaplatin, Satraplatin - about 10 trials. The differenses in dose-limiting effects are: neuro-, nephro-, ototoxicity (Cisplatin); neurotoxicity (Oxaliplatin); nephrotoxicity (Heptaplatin); myelosuppression: thrombocytopenia, neutropenia, leukopenia (Carboplatin, Nedaplatin, Satraplatin).
Collapse
|
25
|
Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2021; 62:50-73. [PMID: 34758363 DOI: 10.1016/j.mito.2021.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia.
| |
Collapse
|
26
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
The disruption and hyperpermeability of blood-labyrinth barrier mediates cisplatin-induced ototoxicity. Toxicol Lett 2021; 354:56-64. [PMID: 34757176 DOI: 10.1016/j.toxlet.2021.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
The ototoxic mechanisms of cisplatin on the organ of Corti and spiral ganglion neurons have been extensively studied, while few studies have been focused on the stria vascularis (SV). Herein, we verified the functional and morphological impairment in SV induced by a single injection of cisplatin (12 mg/kg, I.P.), represented by a reduction in Endocochlear Potentials (EP) and strial atrophy, and explored underlying mechanisms. Our results revealed increased extravasation of chromatic tracers (Evans blue dye and FITC-dextran) around microvessels after cisplatin exposure. The increased vascular permeability could be attributed to changes of pericytes (PCs) and perivascular-resident macrophage-like melanocytes (PVM/Ms) in number or morphology, as well as the enhanced level of HIF-1α and downstream VEGF. This capillary leakage led to a high accumulation of cisplatin in the perivascular space in SV, and disrupted the integrity of blood-labyrinth barrier (BLB). Also, tight junction (ZO-1) loosening and Na+, K+-ATPase damage was considered to be other critical contributors of BLB breakdown, which resulted in EP drop and consequent hearing loss. This study explored the role of stria vascularis in cisplatin-induced ototoxicity in terms of BLB hyperpermeability and pointed to a novel therapeutic target for the prevention of cisplatin-related hearing loss.
Collapse
|
28
|
Steyger PS. Mechanisms of Aminoglycoside- and Cisplatin-Induced Ototoxicity. Am J Audiol 2021; 30:887-900. [PMID: 34415784 PMCID: PMC9126111 DOI: 10.1044/2021_aja-21-00006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose This review article summarizes our current understanding of the mechanisms underlying acquired hearing loss from hospital-prescribed medications that affects as many as 1 million people each year in Western Europe and North America. Yet, there are currently no federally approved drugs to prevent or treat the debilitating and permanent hearing loss caused by the life-saving platinum-based anticancer drugs or the bactericidal aminoglycoside antibiotics. Hearing loss has long-term impacts on quality-of-life measures, especially in young children and older adults. This review article also highlights some of the current knowledge gaps regarding iatrogenic causes of hearing loss. Conclusion Further research is urgently needed to further refine clinical practice and better ameliorate iatrogenic drug-induced hearing loss.
Collapse
Affiliation(s)
- Peter S. Steyger
- Translational Hearing Center, Creighton University, Omaha, NE
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
29
|
Zheng Y, Li Y, Liu X, Sun H, Liang G, Hu J, Li L, Xing W. Multicentre Comparison of the Toxicity and Effectiveness of Lobaplatin-Based Versus Cisplatin-Based Adjuvant Chemotherapy in Oesophageal Carcinoma. Front Oncol 2021; 11:668140. [PMID: 34589419 PMCID: PMC8474464 DOI: 10.3389/fonc.2021.668140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives Lobaplatin (LBP), a third-generation cisplatin derivative has shown promising activity and few side effects in oesophageal squamous cell carcinoma (ESCC) in previous reports. We compared LBP plus docetaxel with cisplatin plus docetaxel as adjuvant chemotherapy in ESCC patients to determine the effects on overall survival (OS) and toxicity. Methods A multicentre retrospective study was performed using propensity score matching (PSM) with the Medicine-LinkDoc database. Patients diagnosed with stage II-III ESCC treated with adjuvant chemotherapy (cisplatin plus docetaxel or LBP plus docetaxel) between January 2013 and December 2016 were selected from 6 centres in China. Results There were 733 eligible ESCC patients. After PSM (1:1 ratio), 458 patients remained. The 5-year OS rates of the cisplatin and LBP groups were 25.9% and 23.6%, respectively (P=0.457). Leukopenia (grade III-IV/I-II/0: 2.62%/34.5%/59.39% versus 5.24%/43.23%/45.85%; P=0.0176), neutropenia (grade III-IV/I-II/0: 6.55%/37.56%/51.09% versus 4.37%/53.28%/36.34%; P=0.0015), nephrotoxicity (grade I-II/0: 13.97%/76.86% versus 26.64%/65.94%; P<0.001) and gastrointestinal symptoms (grade III-IV/I-II/0: 2.18%/54.59%/32.31% versus 6.55%/65.07%/20.88%; P=0.0011) were more frequent in the cisplatin group. Conclusions Compared with cisplatin plus docetaxel, LBP plus docetaxel provided the same survival benefits but lower side effects of myelosuppression and gastrointestinal symptoms. LBP plus docetaxel might be a choice for adjuvant chemotherapy in ESCC. Clinical Trial Registration Lobaplatin or Cisplatin in Adjuvant Chemotherapy for Oesophageal Carcinoma, identifier NCT03413436.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianben Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Haibo Sun
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Guanghui Liang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jiajia Hu
- Department of Statistics, LinkDoc Technology Co., Ltd., Beijing, China
| | - Liping Li
- Department of Statistics, LinkDoc Technology Co., Ltd., Beijing, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Prayuenyong P, Baguley DM, Kros CJ, Steyger PS. Preferential Cochleotoxicity of Cisplatin. Front Neurosci 2021; 15:695268. [PMID: 34381329 PMCID: PMC8350121 DOI: 10.3389/fnins.2021.695268] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cisplatin-induced ototoxicity in humans is more predominant in the cochlea than in the vestibule. Neither definite nor substantial vestibular dysfunction after cisplatin treatment has been consistently reported in the current literature. Inner ear hair cells seem to have intrinsic characteristics that make them susceptible to direct exposure to cisplatin. The existing literature suggests, however, that cisplatin might have different patterns of drug trafficking across the blood-labyrinth-barrier, or different degrees of cisplatin uptake to the hair cells in the cochlear and vestibular compartments. This review proposes an explanation for the preferential cochleotoxicity of cisplatin based on current evidence as well as the anatomy and physiology of the inner ear. The endocochlear potential, generated by the stria vascularis, acting as the driving force for hair cell mechanoelectrical transduction might also augment cisplatin entry into cochlear hair cells. Better understanding of the stria vascularis might shed new light on cochleotoxic mechanisms and inform the development of otoprotective interventions to moderate cisplatin associated ototoxicity.
Collapse
Affiliation(s)
- Pattarawadee Prayuenyong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David M Baguley
- Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Nottingham Audiology Services, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Corné J Kros
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Peter S Steyger
- Translational Hearing Center, Biomedical Sciences, Creighton University, Omaha, NE, United States
| |
Collapse
|
31
|
Liu Y, Wu H, Zhang F, Yang J, He J. Resveratrol upregulates miR-455-5p to antagonize cisplatin ototoxicity via modulating the PTEN-PI3K-AKT axis. Biochem Cell Biol 2021; 99:385-395. [PMID: 34077275 DOI: 10.1139/bcb-2020-0459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Resveratrol is a non-flavonoid polyphenol compound that exists in many plants, and is considered an antitoxin. This study explores the effects from the regulation of miR-455-5p by resveratrol on cisplatin-induced ototoxicity via the PTEN-PI3K-AKT signaling pathway. For this, House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were transfected with miR-455-5p inhibitor and treated with cisplatin and resveratrol, then cell proliferation, apoptosis, and oxidative stress were evaluated. A mouse model of hearing loss was established, and these mice were treated with cisplatin, resveratrol, or cisplatin combined with resveratrol, by intraperitoneal injection. The auditory brainstem response (ABR) threshold was measured, and hair cells were examined using immunofluorescence staining. The expression levels of miR-455-5p, PTEN, and PI3K/Akt proteins were examined. The results from our in-vitro experiments indicate that resveratrol promoted viability and reduced apoptosis and oxidative stress in cisplatin-induced HEI-OC1 cells. Resveratrol upregulated miR-455-5p, downregulated PTEN, and activated the PI3K-Akt axis. These effects of resveratrol were reversed by knock-down of miR-455-5p. The results from our in-vivo experiments indicate that resveratrol protected hearing and inhibited the hair-cell injury caused by cisplatin ototoxicity. Resveratrol also upregulated miR-455-5p, downregulated PTEN, and activated the PTEN-PI3K-Akt axis in cochlear tissues from cisplatin-treated mice. These results indicate that resveratrol upregulates miR-455-5p to target PTEN and activate the PI3K-Akt signaling pathway to counteract cisplatin ototoxicity.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Hui Wu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Fan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Jun Yang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Jingchun He
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| |
Collapse
|
32
|
Wang CQ, Zheng XT, Chen XF, Jiang H, Huang J, Jiang Y, Hu SS, Huang XR, Liu SY, Gong QH, Feng JH, Xiao X, Li XF, Xiao Z. The Optimal Adjuvant Strategy of Aidi Injection With Gemcitabine and Cisplatin in Advanced Non-small Cell Lung Cancer: A Meta-analysis of 70 Randomized Controlled Trials. Front Pharmacol 2021; 12:582447. [PMID: 34122057 PMCID: PMC8194277 DOI: 10.3389/fphar.2021.582447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction: Aidi injection (Aidi) is composed of cantharidin, astragaloside, ginsenoside, and elentheroside E. As an important adjuvant therapy, Aidi in combination with gemcitabine and cisplatin (GP) is often used in the treatment of non-small cell lung cancer (NSCLC). Objectives: We performed a new evaluation to demonstrate the clinical efficacy and safety of the Aidi and GP combination and further explored an optimal strategy for achieving an ideal response and safety level in advanced NSCLC. Methodology: We collected all the related trials from Chinese and English-language databases, analyzed their methodological bias risk using the Cochrane evaluation Handbook for Systematic Reviews of Interventions Version 5.1.0, extracted all the data using a predefined data extraction form, pooled the data using a series of meta-analyses, and finally summarized the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Results: We included 70 trials with 5,509 patients. Compared with GP alone, the Aidi and GP combination showed a significant improvement in the objective response rate (ORR) [1.82 (1.62-2.04)], disease control rate (DCR) [2.29 (1.97-2.67)], and quality of life (QOL) [3.03 (2.55-3.60)] and a low incidence of hematotoxicity and gastrointestinal and hepatorenal toxicity. Aidi might be more suitable for patients who are first-treated, elderly, or patients with a Karnofsky Performance Status (KPS) score ≥ 60 or anticipated survival time (AST) ≥3 months. An Aidi (50 ml/day, 7-14 days/cycle for one to two cycles), gemcitabine (1000 mg/m2), and cisplatin (20-30 mg/m2, 40-50 mg/m2, or 60-80 mg/m2) might be an optimal regimen for realizing an ideal response and safety level. Most results were robust and of moderate quality. Conclusion: Current evidence indicates that Aidi's value in adjuvant chemotherapy may be broad-spectrum, not just for some regimens. The Aidi and GP combination may show a good short-term response, antitumor immunity, and safety level in patients with NSCLC. Aidi (50 ml/day, 7-14 days/cycle for one and two cycles) with GEM (1000 mg/m2) and DDP (20-30 mg/m2 or 40-50 mg/m2) may be an optimal regimen for realizing an ideal goal in patients who are first-treatment, elderly, or have a KPS score ≥ 60 or AST≥3 months.
Collapse
Affiliation(s)
- Cheng-Qiong Wang
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao-Tian Zheng
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao-Fan Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hong Jiang
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Huang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan Jiang
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Management, Zunyi Medical University, Zunyi, China
| | - Shan-Shan Hu
- GCP Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao-Rong Huang
- GCP Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shi-Yu Liu
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi-Hai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ji-Hong Feng
- Department of Oncology, Lishui People’s Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xue Xiao
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao-Fei Li
- Special Key Laboratory of Special Antitumor Drugs of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zheng Xiao
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Management, Zunyi Medical University, Zunyi, China
| |
Collapse
|
33
|
Thermodynamic Evaluation of the Interactions between Anticancer Pt(II) Complexes and Model Proteins. Molecules 2021; 26:molecules26082376. [PMID: 33921819 PMCID: PMC8072931 DOI: 10.3390/molecules26082376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
In this work, we have analysed the binding of the Pt(II) complexes ([PtCl(4′-phenyl-2,2′:6′,2″-terpyridine)](CF3SO3) (1), [PtI(4′-phenyl-2,2′:6′,2″-terpyridine)](CF3SO3) (2) and [PtCl(1,3-di(2-pyridyl)benzene) (3)] with selected model proteins (hen egg-white lysozyme, HEWL, and ribonuclease A, RNase A). Platinum coordination compounds are intensively studied to develop improved anticancer agents. In this regard, a critical issue is the possible role of Pt-protein interactions in their mechanisms of action. Multiple techniques such as differential scanning calorimetry (DSC), electrospray ionization mass spectrometry (ESI-MS) and UV-Vis absorbance titrations were used to enlighten the details of the binding to the different biosubstrates. On the one hand, it may be concluded that the affinity of 3 for the proteins is low. On the other hand, 1 and 2 strongly bind them, but with major binding mode differences when switching from HEWL to RNase A. Both 1 and 2 bind to HEWL with a non-specific (DSC) and non-covalent (ESI-MS) binding mode, dominated by a 1:1 binding stoichiometry (UV-Vis). ESI-MS data indicate a protein-driven chloride loss that does not convert into a covalent bond, likely due to the unfavourable complexes’ geometries and steric hindrance. This result, together with the significant changes of the absorbance profiles of the complex upon interaction, suggest an electrostatic binding mode supported by some stacking interaction of the aromatic ligand. Very differently, in the case of RNase A, slow formation of covalent adducts occurs (DSC, ESI-MS). The reactivity is higher for the iodo-compound 2, in agreement with iodine lability higher than chlorine.
Collapse
|
34
|
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021; 13:303-328. [PMID: 33776489 PMCID: PMC7987268 DOI: 10.2147/jep.s267383] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Felicite K Noubissi
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Paresh Ray
- Department of Chemistry and Biochemistry, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
35
|
Wang D, Shi S, Ren T, Zhang Y, Guo P, Wang J, Wang W. U0126 pretreatment inhibits cisplatin-induced apoptosis and autophagy in HEI-OC1 cells and cochlear hair cells. Toxicol Appl Pharmacol 2021; 415:115447. [PMID: 33577918 DOI: 10.1016/j.taap.2021.115447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Deafness is the most common sensory disorder in the world. Ototoxic drugs are common inducing factors of sensorineural hearing loss, and cochlear hair cell (HC) damage is the main concern of the present studies. Cisplatin is a widely used, highly effective antitumor drug, but some patients have experienced irreversible hearing loss as a result of its application. This hearing loss is closely related to HC apoptosis and autophagy. U0126 is a specific inhibitor of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signaling pathway and has neuroprotective effects. For example, the neuroprotective effect of U0126 on ischemic stroke has been widely recognized. In neural cells, U0126 can prevent death due to excess glutamate, dopamine, or zinc ions. However, no studies of U0126 and ototoxic drug-induced injury have been reported to date. In the present study, we found that U0126 pretreatment significantly reduced the apoptosis and autophagy of HCs in auditory House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and cochlear HCs. In addition, U0126 reduced the cisplatin-induced production of reactive oxygen species as well as the cisplatin-induced decrease in the mitochondrial membrane potential. These findings suggest that U0126 may be a potential therapeutic candidate for the prevention of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dan Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Suming Shi
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Tongli Ren
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Yanping Zhang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Ping Guo
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Jiali Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Wuqing Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China.
| |
Collapse
|
36
|
Cortés Fuentes IA, Burotto M, Retamal MA, Frelinghuysen M, Caglevic C, Gormaz JG. Potential use of n-3 PUFAs to prevent oxidative stress-derived ototoxicity caused by platinum-based chemotherapy. Free Radic Biol Med 2020; 160:263-276. [PMID: 32827639 DOI: 10.1016/j.freeradbiomed.2020.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Platinum-based compounds are widely used for the treatment of different malignancies due to their high effectiveness. Unfortunately, platinum-based treatment may lead to ototoxicity, an often-irreversible side effect without a known effective treatment and prevention plan. Platinum-based compound-related ototoxicity results mainly from the production of toxic levels of reactive oxygen species (ROS) rather than DNA-adduct formation, which has led to test strategies based on direct ROS scavengers to ameliorate hearing loss. However, favorable clinical results have been associated with several complications, including potential interactions with chemotherapy efficacy. To understand the contribution of the different cytotoxic mechanisms of platinum analogues on malignant cells and auditory cells, the particular susceptibility and response of both kinds of cells to molecules that potentially interfere with these mechanisms, is fundamental to develop innovative strategies to prevent ototoxicity without affecting antineoplastic effects. The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) have been tried in different clinical settings, including with cancer patients. Nevertheless, their use to decrease cisplatin-induced ototoxicity has not been explored to date. In this hypothesis paper, we address the mechanisms of platinum compounds-derived ototoxicity, focusing on the differences between the effects of these compounds in neoplastic versus auditory cells. We discuss the basis for a strategic use of n-3 PUFAs to potentially protect auditory cells from platinum-derived injury without affecting neoplastic cells and chemotherapy efficacy.
Collapse
Affiliation(s)
- Ignacio A Cortés Fuentes
- Otorhinolaryngology Service, Hospital Barros Luco-Trudeau, San Miguel, Santiago, Chile; Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mauricio Burotto
- Oncology Department, Clínica Universidad de Los Andes, Santiago, Chile; Bradford Hill, Clinical Research Center, Santiago, Chile
| | - Mauricio A Retamal
- Universidad Del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile.
| | | | - Christian Caglevic
- Cancer Research Department, Fundación Arturo López Pérez, Santiago, Chile
| | - Juan G Gormaz
- Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
37
|
Intratympanic Diltiazem-Chitosan Hydrogel as an Otoprotectant Against Cisplatin-Induced Ototoxicity in a Mouse Model. Otol Neurotol 2020; 41:115-122. [PMID: 31746818 DOI: 10.1097/mao.0000000000002417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HYPOTHESIS Local administration of the calcium-channel blocker (CCB), diltiazem, via intratympanic (IT) chitosan-glycerophosphate (CGP) hydrogel will protect against cisplatin-induced ototoxicity. BACKGROUND Cisplatin induces calcium-mediated apoptosis of cochlear outer hair cells (OHCs). Previous work demonstrated otoprotection and reduced auditory brainstem response (ABR) threshold shifts in a cisplatin-induced ototoxicity mouse model treated with multiple doses of IT diltiazem given in solution. Here, we evaluated the role of a single dose of IT CGP-diltiazem as a novel otoprotectant against cisplatin-induced ototoxicity. METHODS Baseline pure-tone and click-evoked ABRs were performed in control (IT CGP-saline, n = 13) and treatment (IT CGP-diltiazem 2 mg/kg, n = 9) groups of female CBA/J mice. A single dose of IT CGP hydrogel was administered just before intraperitoneal injection of cisplatin (14 mg/kg). On Day 7 posttreatment, ABRs were performed and cochleae were harvested. Hair cells were quantified using anti-myosin VIIa immunostaining and inner hair cell ribbon synapses were quantified using Ctbp2 immunostaining. RESULTS There was a statistically significant effect of treatment on click- and tone-evoked ABRs between groups. The mean threshold shifts were significantly reduced in both click- and tone-evoked ABRs on Day 7 in IT CGP-diltiazem treated mice compared with CGP-saline control mice. There were no significant differences in OHC counting between groups, but there appears to be an otoprotection against loss of synapses in the apical turn from IT CGP-diltiazem treated mice (p < 0.05). CONCLUSIONS This preliminary work suggests that IT CGP-diltiazem reduces ABR threshold shifts with possible mechanisms of protecting ribbon synapses in the setting of cisplatin-induced ototoxicity. More work is necessary to determine the mechanism underlying this otoprotection.
Collapse
|
38
|
Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol 2020; 11:999. [PMID: 32719605 PMCID: PMC7350523 DOI: 10.3389/fphar.2020.00999] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is widely used for the treatment of a number of solid malignant tumors. However, ototoxicity induced by cisplatin is an obstacle to effective treatment of tumors. The basis for this toxicity has not been fully elucidated. It is generally accepted that hearing loss is due to excessive production of reactive oxygen species by cells of the cochlea. In addition, recent data suggest that inflammation may trigger inner ear cell death through endoplasmic reticulum stress, autophagy, and necroptosis, which induce apoptosis. Strategies have been extensively explored by which to prevent, alleviate, and treat cisplatin-induced ototoxicity, which minimize interference with antitumor activity. Of these strategies, none have been approved by the Federal Drug Administration, although several preclinical studies have been promising. This review highlights recent strategies that reduce cisplatin-induced ototoxicity. The focus of this review is to identify candidate agents as novel molecular targets, drug administration routes, delivery systems, and dosage schedules. Animal models of cisplatin ototoxicity are described that have been used to evaluate drug efficacy and side effect prevention. Finally, clinical reports of otoprotection in patients treated with cisplatin are highlighted. For the future, high-quality studies are required to provide reliable data regarding the safety and effectiveness of pharmacological interventions that reduce cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Wen Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| |
Collapse
|
39
|
Xiao Z, Jiang Y, Wang CQ, Hu SS, Huang XR, Chen XF, Huang J, Shan LJ, Tang YH, Wang YH, Gong QH, Feng JH, Xiao X, Li XF. Clinical efficacy and safety of aidi injection combination with vinorelbine and cisplatin for advanced non-small-cell lung carcinoma: A systematic review and meta-analysis of 54 randomized controlled trials. Pharmacol Res 2020; 153:104637. [PMID: 31935454 DOI: 10.1016/j.phrs.2020.104637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
The Aidi injection contains multiple active ingredients, including astragaloside (Re, Rb1, and Rg1), ginsenoside, cantharidin, elentheroside E, and syringin, and it is administered with vinorelbine and cisplatin (NP) to treat non-small-cell lung carcinoma (NSCLC). In this study, we performed a systematic review and meta-analysis to determine the clinical efficacy and safety of the Aidi injection with NP, and the optimal threshold and treatment regimen to produce the desired responses. We collected all studies regarding the Aidi injection with NP for NSCLC from Chinese and English databases (up to April 2019). Risk of methodological bias was evaluated for each study. Data for analysis were extracted using a standard data extraction form. Evidence quality was assessed following the Grading of Recommendations Assessment, Development and Evaluation approach. We included 54 trials containing 4,053 patients for analysis. Combining the Aidi injection with NP significantly increased the objective response rate (odds ratio [OR], 1.32; confidence interval [CI], 1.23, 1.42), disease control rate (OR, 1.14; CI, 1.11, 1.18), and quality of life (OR, 1.80; CI, 1.61, 1.98), with decreased risks of myelosuppression, neutropenia, thrombocytopenia, anemia, gastrointestinal reaction, and liver dysfunction. For patients with a Karnofsky Performance Status score of ≥60, the Aidi injection (50 mL/day, two weeks/cycle, with two to three cycles) treatment with vinorelbine (25 mg/m2) and cisplatin (30-35 mg/m2 or 40-50 mg/m2) might be the optimal regimen for producing the desired tumor response and achieving a good safety level. Most results were robust, and their quality was moderate. The results suggest that administration of the Aidi injection and concomitant NP is beneficial to NSCLC, and provide evidence for the optimal threshold and treatment regimen that may improve tumor response with a good safety level.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-Based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; School of Management, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| | - Yuan Jiang
- Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-Based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; School of Management, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Cheng-Qiong Wang
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-Based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Shan-Shan Hu
- GCP Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xiao-Rong Huang
- GCP Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xiao-Fan Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jun Huang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Li-Jing Shan
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Yu-Hong Tang
- School of Management, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Yu-He Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Qi-Hai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Ji-Hong Feng
- Department of Oncology, Medical College of Taizhou University Affiliated Taizhou Municipal Hospital, Taizhou 318000, Zhejiang, China
| | - Xue Xiao
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-Based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China.
| | - Xiao-Fei Li
- Special Key Laboratory of Special Antitumor Drugs of Guizhou Province, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| |
Collapse
|
40
|
Anderson JT, Huang KM, Lustberg MB, Sparreboom A, Hu S. Solute Carrier Transportome in Chemotherapy-Induced Adverse Drug Reactions. Rev Physiol Biochem Pharmacol 2020; 183:177-215. [PMID: 32761456 DOI: 10.1007/112_2020_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics. These proteins are highly expressed in the gastrointestinal tract and eliminating organs such as the liver and kidney, and are considered to be of particular importance in governing drug absorption and elimination. Many of the same transporters are also expressed in a wide variety of organs targeted by clinically important anticancer drugs, directly affect cellular sensitivity to these agents, and indirectly influence treatment-related side effects. Furthermore, targeted intervention strategies involving the use of transport inhibitors have been recently developed, and have provided promising lead candidates for combinatorial therapies associated with decreased toxicity. Gaining a better understanding of the complex interplay between transporter-mediated on-target and off-target drug disposition will help guide the further development of these novel treatment strategies to prevent drug accumulation in toxicity-associated organs, and improve the safety of currently available treatment modalities. In this report, we provide an update on this rapidly emerging field with particular emphasis on anticancer drugs belonging to the classes of taxanes, platinum derivatives, nucleoside analogs, and anthracyclines.
Collapse
Affiliation(s)
- Jason T Anderson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
41
|
Understanding of ROS-Inducing Strategy in Anticancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5381692. [PMID: 31929855 PMCID: PMC6939418 DOI: 10.1155/2019/5381692] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Redox homeostasis is essential for the maintenance of diverse cellular processes. Cancer cells have higher levels of reactive oxygen species (ROS) than normal cells as a result of hypermetabolism, but the redox balance is maintained in cancer cells due to their marked antioxidant capacity. Recently, anticancer therapies that induce oxidative stress by increasing ROS and/or inhibiting antioxidant processes have received significant attention. The acceleration of accumulative ROS disrupts redox homeostasis and causes severe damage in cancer cells. In this review, we describe ROS-inducing cancer therapy and the anticancer mechanism employed by prooxidative agents. To understand the comprehensive biological response to certain prooxidative anticancer drugs such as 2-methoxyestradiol, buthionine sulfoximine, cisplatin, doxorubicin, imexon, and motexafin gadolinium, we propose and visualize the drug-gene, drug-cell process, and drug-disease interactions involved in oxidative stress induction and antioxidant process inhibition as well as specific side effects of these drugs using pathway analysis with a big data-based text-mining approach. Our review will be helpful to improve the therapeutic effects of anticancer drugs by providing information about biological changes that occur in response to prooxidants. For future directions, there is still a need for pharmacogenomic studies on prooxidative agents as well as the molecular mechanisms underlying the effects of the prooxidants and/or antioxidant-inhibitor agents for effective anticancer therapy through selective killing of cancer cells.
Collapse
|
42
|
Nan B, Gu X, Huang X. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4291-4303. [PMID: 31908415 PMCID: PMC6927222 DOI: 10.2147/dddt.s212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Emerging evidence of significant hearing loss occurring shortly after cisplatin administration in cancer patients has stimulated research into the causes and treatment of this side effect. Although the aetiology of cisplatin-induced hearing loss (CIHL) remains unknown, an increasing body of research suggests that it is associated with excessive generation of intracellular reactive oxygen species (ROS) in the cochlea. Astaxanthin, a xanthophyll carotenoid, has powerful anti-oxidant, anti-inflammatory, and anti-apoptotic properties based on its unique cell membrane function, diverse biological activities, and ability to permeate the blood-brain barrier. In this review, we summarize the role of ROS in CIHL and the effect of astaxanthin on inhibiting ROS production. We focus on investigating the mechanism of action of astaxanthin in suppressing excessive production of ROS.
Collapse
Affiliation(s)
- Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, Wenzhou Medical University, Affiliated Hospital 2, Wenzhou 325000, People's Republic of China.,Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| | - Xi Gu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| |
Collapse
|
43
|
Wang L, Wu W, Zhu X, Ng W, Gong C, Yao C, Ni Z, Yan X, Fang C, Zhu S. The Ancient Chinese Decoction Yu-Ping-Feng Suppresses Orthotopic Lewis Lung Cancer Tumor Growth Through Increasing M1 Macrophage Polarization and CD4 + T Cell Cytotoxicity. Front Pharmacol 2019; 10:1333. [PMID: 31780946 PMCID: PMC6857089 DOI: 10.3389/fphar.2019.01333] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The tumor microenvironment (TME) has a deep influence on cancer progression and has become into a new target for cancer treatment. In our previous study, we found that Yu-Ping-Feng (YPF), an ancient Chinese herbal decoction, significantly inhibited the Lewis lung cancer (LLC) tumor growth in a subcutaneous xenograft tumor model, and prolonged the survival of tumor-bearing mice. But the regulation of Yu-Ping-Feng on tumor microenvironment is unknown. Methods: To access the effect of Yu-Ping-Feng on non-small cell lung cancer, an orthotopic luciferase stably expressed Lewis lung cancer tumor model was established on C57BL/6 mice, and then the survival and the tumor growth were evaluated. To address the tumor microenvironment immune regulation, the percentages of CD4+ T cells, CD8+ T cells, natural killer cells (NK), regulatory T cells (Treg), macrophages, and myeloid-derived suppressor cells (MDSC) in spleens and tumor tissues, the macrophage polarization and CD4+ T cell cytotocixity were analyzed by flow cytometry, biophotonic cell killing activity assay, real-time PCR and western-blot. Results: Yu-Ping-Feng significantly prolonged orthotopic lung tumor-bearing mouse survival, and increased the percentages of CD4+ T cell and M1 macrophages and the cytotoxicity of CD4+ T cells. Yu-Ping-Feng significantly enhanced macrophage-mediated lysis of LLC in a concentration-dependent manner, and had no effect on CD4+ T cell-mediated lysis of LLC, but significantly increased CD4+ T cell-mediated lysis after co-incubated with macrophages. In addition, Yu-Ping-Feng induced M1 macrophage polarization through promoting the phosphorylation of STAT1. Conclusion: Yu-Ping-Feng induced M1 macrophages polarization, and then activated CD4+ T lymphocytes, resulting in killing of LLC cells. Yu-Ping-Feng was a potent regulator of M1 macrophage polarization and might have a promising application in tumor immunotherapy.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbin Wu
- Experiment Animal Center, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowen Zhu
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanyi Ng
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyuan Gong
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Yao
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongya Ni
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewei Yan
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Fang
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
45
|
Monroe JD, Hodzic D, Millay MH, Patty BG, Smith ME. Anti-Cancer and Ototoxicity Characteristics of the Curcuminoids, CLEFMA and EF24, in Combination with Cisplatin. Molecules 2019; 24:molecules24213889. [PMID: 31671767 PMCID: PMC6864451 DOI: 10.3390/molecules24213889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigated whether the curcuminoids, CLEFMA and EF24, improved cisplatin efficacy and reduced cisplatin ototoxicity. We used the lung cancer cell line, A549, to determine the effects of the curcuminoids and cisplatin on cell viability and several apoptotic signaling mechanisms. Cellular viability was measured using the MTT assay. A scratch assay was used to measure cell migration and fluorescent spectrophotometry to measure reactive oxygen species (ROS) production. Western blots and luminescence assays were used to measure the expression and activity of apoptosis-inducing factor (AIF), caspases-3/7, -8, -9, and -12, c-Jun N-terminal kinases (JNK), mitogen-activated protein kinase (MAPK), and proto-oncogene tyrosine-protein kinase (Src). A zebrafish model was used to evaluate auditory effects. Cisplatin, the curcuminoids, and their combinations had similar effects on cell viability (IC50 values: 2-16 μM) and AIF, caspase-12, JNK, MAPK, and Src expression, while caspase-3/7, -8, and -9 activity was unchanged or decreased. Cisplatin increased ROS yield (1.2-fold), and curcuminoid and combination treatments reduced ROS (0.75-0.85-fold). Combination treatments reduced A549 migration (0.51-0.53-fold). Both curcuminoids reduced auditory threshold shifts induced by cisplatin. In summary, cisplatin and the curcuminoids might cause cell death through AIF and caspase-12. The curcuminoids may potentiate cisplatin's effect against A549 migration, but may counteract cisplatin's effect to increase ROS production. The curcuminoids might also prevent cisplatin ototoxicity.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Denis Hodzic
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Matthew H Millay
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Blaine G Patty
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Michael E Smith
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| |
Collapse
|
46
|
Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chem Res Toxicol 2019; 32:1469-1486. [PMID: 31353895 DOI: 10.1021/acs.chemrestox.9b00204] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cisplatin is one of the most widely used chemotherapeutic agents for various solid tumors in the clinic due to its high efficacy and broad spectrum. The antineoplastic activity of cisplatin is mainly due to its ability to cross-link with DNA, thus blocking transcription and replication. Unfortunately, the clinical use of cisplatin is limited by its severe, dose-dependent toxic side effects. There are approximately 40 specific toxicities of cisplatin, among which nephrotoxicity is the most common one. Other common side effects include ototoxicity, neurotoxicity, gastrointestinal toxicity, hematological toxicity, cardiotoxicity, and hepatotoxicity. These side effects together reduce the life quality of patients and require lowering the dosage of the drug, even stopping administration, thus weakening the treatment effect. Few effective measures exist clinically against these side effects because the exact mechanisms of various side effects from cisplatin remain still unclear. Therefore, substantial effort has been made to explore the complicated biochemical processes involved in the toxicology of cisplatin, aiming to identify effective ways to reduce or eradicate its toxicity. This review summarizes and reviews the updated advances in the toxicological research of cisplatin. We anticipate to provide insights into the understanding of the mechanisms underlying the side effects of cisplatin and designing comprehensive therapeutic strategies involving cisplatin.
Collapse
Affiliation(s)
- Luyu Qi
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China.,Basic Medical College , Shandong University of Chinese Traditional Medicine , Jinan 250355 , P.R. China
| |
Collapse
|
47
|
Clinical efficacy and safety of synthetic thymic peptides with chemotherapy for non-small cell lung cancer in China: A systematic review and meta-analysis of 27 randomized controlled trials following the PRISMA guidelines. Int Immunopharmacol 2019; 75:105747. [PMID: 31326719 DOI: 10.1016/j.intimp.2019.105747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Synthetic thymic peptides (sTPs) are used with chemotherapy to treat non-small cell lung cancer (NSCLC). In this study, we have performed a systematic review and meta-analysis of published trials to confirm the clinical efficacy and safety of sTPs, and determine the optimal types, usages, and sTP/chemotherapy combinations to produce the desired responses. MATERIALS AND METHODS We collected all studies regarding combined sTP therapy and chemotherapy for NSCLC from the Chinese and English databases (up to October 2018). Bias risk was evaluated for each. Data for meta-analysis was extracted using a pre-designed form. Evidence quality was rated using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS We included 27 randomized controlled trials containing 1925 patients, most with unclear bias risk. Combining sTPs with chemotherapy significantly increased the objective response rate [1.28, (1.13 to 1.45)], disease control rate [1.10, (1.01 to 1.18)], quality of life (QOL) [2.05, (1.62, 2.60)], and 1-year overall survival rate [1.43, (1.15 to 1.78)], with decreased risks of neutropenia, thrombocytopenia, and gastrointestinal reactions. Optimal conditions included treatment in combination with gemcitabine or navelbine and cisplatin, twice a week, with one 3-week cycle. In these conditions, thymosin α1 improved both antitumor immunity and tumor response. Most results had good robustness, and their quality ranged from moderate to very low. CONCLUSIONS The results suggest that treatment with sTPs, especially thymosin α1, and concomitant chemotherapy is beneficial to the patient, and provide evidence for optimal treatment regimens that may increase patient QOL and survival.
Collapse
|
48
|
Yu X, Man R, Li Y, Yang Q, Li H, Yang H, Bai X, Yin H, Li J, Wang H. Paeoniflorin protects spiral ganglion neurons from cisplatin-induced ototoxicity: Possible relation to PINK1/BAD pathway. J Cell Mol Med 2019; 23:5098-5107. [PMID: 31207045 PMCID: PMC6653418 DOI: 10.1111/jcmm.14379] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/24/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to elucidate whether paeoniflorin (PF) exerted an effect on cisplatin‐induced spiral ganglion neuron (SGN) damage, with special attention given to the role of PINK1/BAD pathway in this process. Middle cochlear turn culture and C57BL/6 mice were utilized to identify the character of PF in vitro and in vivo. We found that cisplatin treatment led to SGN damage, in which reactive oxygen species (ROS) generation increased, PINK1 expression decreased, BAD accumulation on mitochondria raised and mitochondrial apoptotic pathway activated. Conversely, we demonstrated that PF pre‐treatment obviously mitigated cisplatin‐induced SGN damage. Mechanistic studies showed that PF could reduce ROS levels, increase PINK1 expression, decrease the BAD accumulation on mitochondria and, thus, alleviate the activated mitochondrial apoptosis in SGNs caused by cisplatin. Overall, the findings from this work reveal the important role of PF and provide another strategy against cisplatin‐induced ototoxicity.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Rongjun Man
- Department of Otolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo, China
| | - Yanan Li
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Qianqian Yang
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Hongrui Li
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Huiming Yang
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Xiaohui Bai
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Haiyan Yin
- Department of Histology and Embryology, College of basic Medicine, Jining Medical University, Jinan, China
| | - Jianfeng Li
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Haibo Wang
- Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
49
|
Rybak LP, Mukherjea D, Ramkumar V. Mechanisms of Cisplatin-Induced Ototoxicity and Prevention. Semin Hear 2019; 40:197-204. [PMID: 31036996 DOI: 10.1055/s-0039-1684048] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cisplatin is a highly effective antineoplastic agent used to treat solid tumors. Unfortunately, the administration of this drug leads to significant side effects, including ototoxicity, nephrotoxicity, and neurotoxicity. This review addresses the mechanisms of cisplatin-induced ototoxicity and various strategies tested to prevent this distressing adverse effect. The molecular pathways underlying cisplatin ototoxicity are still being investigated. Cisplatin enters targeted cells in the cochlea through the action of several transporters. Once it enters the cochlea, cisplatin is retained for months to years. It can cause DNA damage, inhibit protein synthesis, and generate reactive oxygen species that can lead to inflammation and apoptosis of outer hair cells, resulting in permanent hearing loss. Strategies to prevent cisplatin ototoxicity have utilized antioxidants, transport inhibitors, G-protein receptor agonists, and anti-inflammatory agents. There are no FDA-approved drugs to prevent cisplatin ototoxicity. It is critical that potential protective agents do not interfere with the antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Debashree Mukherjea
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
50
|
Liu W, Xu X, Fan Z, Sun G, Han Y, Zhang D, Xu L, Wang M, Wang X, Zhang S, Tang M, Li J, Chai R, Wang H. Wnt Signaling Activates TP53-Induced Glycolysis and Apoptosis Regulator and Protects Against Cisplatin-Induced Spiral Ganglion Neuron Damage in the Mouse Cochlea. Antioxid Redox Signal 2019; 30:1389-1410. [PMID: 29587485 DOI: 10.1089/ars.2017.7288] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Cisplatin can damage spiral ganglion neurons (SGNs) and cause sensorineural hearing loss. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea, but the role of Wnt signaling in protecting SGNs from cisplatin treatment has not yet been elucidated. This study was designed to investigate the neuroprotective effects of Wnt signaling against cisplatin-induced SGN damage. RESULTS First, we found that Wnt signaling was activated in SGNs after cisplatin treatment. Next, we discovered that overexpression (OE) of Wnt signaling in SGNs reduced cisplatin-induced SGN loss by inhibiting caspase-associated apoptosis, thus preventing the loss of SGN function after cisplatin treatment. In contrast, inhibition of Wnt signaling increased apoptosis, made SGNs more vulnerable to cisplatin treatment, and exacerbated hearing loss. TP53-induced glycolysis and apoptosis regulator (TIGAR), which scavenges intracellular reactive oxygen species (ROS), was upregulated in SGNs in response to cisplatin administration. Wnt/β-catenin activation increased TIGAR expression and reduced ROS level, while inhibition of Wnt/β-catenin in SGNs reduced TIGAR expression and increased the ROS level. Moreover, OE of TIGAR reduced ROS and decreased caspase 3 expression, as well as increased the survival of SGNs in Wnt-inhibited SGNs. Finally, antioxidant treatment rescued the more severe SGN loss induced by β-catenin deficiency after cisplatin treatment. Innovation and Conclusion: This study is the first to indicate that Wnt signaling activates TIGAR and protects SGNs against cisplatin-induced damage through the inhibition of oxidative stress and apoptosis in SGNs, and this might offer novel therapeutic targets for the prevention of SGN injury. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Wenwen Liu
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Xiaochen Xu
- 3 Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University , Nanjing, China
| | - Zhaomin Fan
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Gaoying Sun
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Yuechen Han
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Daogong Zhang
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Lei Xu
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Mingming Wang
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Xue Wang
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Shasha Zhang
- 3 Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University , Nanjing, China
| | - Mingliang Tang
- 3 Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University , Nanjing, China
| | - Jianfeng Li
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| | - Renjie Chai
- 3 Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University , Nanjing, China .,4 Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University , Nantong, China .,5 Research Institute of Otolaryngology , Nanjing, China .,6 Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University , Nanjing, China
| | - Haibo Wang
- 1 Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Otology , Jinan, China
| |
Collapse
|