1
|
de Souza MC, Agneis MLG, das Neves KA, de Almeida MR, Feltran GDS, Souza Cruz EM, Schoffen JPF, Chuffa LGDA, Seiva FRF. Melatonin Improves Lipid Homeostasis, Mitochondrial Biogenesis, and Antioxidant Defenses in the Liver of Prediabetic Rats. Int J Mol Sci 2025; 26:4652. [PMID: 40429795 PMCID: PMC12111231 DOI: 10.3390/ijms26104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Type 2 diabetes mellitus represents a major global health burden and is often preceded by a prediabetic state characterized by insulin resistance and metabolic dysfunction. Mitochondrial alterations, oxidative stress, and disturbances in lipid metabolism are central to the prediabetes pathophysiology. Melatonin, a pleiotropic indolamine, is known to regulate metabolic and mitochondrial processes; however, its therapeutic potential in prediabetes remains poorly understood. This study investigated the effects of melatonin on energy metabolism, oxidative stress, and mitochondrial function in a rat model of prediabetes induced by chronic sucrose intake and low-dose streptozotocin administration. Following prediabetes induction, animals were treated with melatonin (20 mg/kg) for four weeks. Biochemical analyses were conducted to evaluate glucose and lipid metabolism, and mitochondrial function was assessed via gene expression, enzymatic activity, and oxidative stress markers. Additionally, hepatic mitochondrial dynamics were examined by quantifying key regulators genes associated with biogenesis, fusion, and fission. Prediabetic animals exhibited dyslipidemia, hepatic lipid accumulation, increased fat depots, and impaired glucose metabolism. Melatonin significantly reduced serum glucose, triglycerides, and total cholesterol levels, while enhancing the hepatic high-density lipoprotein content. It also stimulated β-oxidation by upregulating hydroxyacyl-CoA dehydrogenase and citrate synthase activity. Mitochondrial dysfunction in prediabetic animals was evidenced by the reduced expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and mitochondrial transcription factor A, both of which were markedly upregulated by melatonin. The indolamine also modulated mithocondrial dynamics by regulating fusion and fission markers, including mitosuin 1 and 2, optic atrophy protein, and dynamin-related protein. Additionally, melatonin mitigated oxidative stress by enhancing the activity of superoxide dismutase and catalase while reducing lipid peroxidation. These findings highlight melatonin's protective role in prediabetes by improving lipid and energy metabolism, alleviating oxidative stress, and restoring mitochondrial homeostasis. This study provides novel insights into the therapeutic potential of melatonin in addressing metabolic disorders, particularly in mitigating mitochondrial dysfunction associated with prediabetes.
Collapse
Affiliation(s)
- Milena Cremer de Souza
- Department of Parasitology, Immunology and General Pathology, State University of Londrina (UEL), Londrina 86057-970, Paraná, Brazil
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Botucatu 18618-693, São Paulo, Brazil
| | - Maria Luisa Gonçalves Agneis
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Botucatu 18618-693, São Paulo, Brazil
| | - Karoliny Alves das Neves
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Botucatu 18618-693, São Paulo, Brazil
| | - Matheus Ribas de Almeida
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Botucatu 18618-693, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Botucatu 18618-693, São Paulo, Brazil
| | - Ellen Mayara Souza Cruz
- Department of Parasitology, Immunology and General Pathology, State University of Londrina (UEL), Londrina 86057-970, Paraná, Brazil
| | - João Paulo Ferreira Schoffen
- Center of Biological Sciences, State University of Northern Paraná (UENP), Bandeirantes 86360-000, Paraná, Brazil
| | | | | |
Collapse
|
2
|
Ortiz-Placín C, Salido GM, González A. Melatonin Interplay in Physiology and Disease-The Fountain of Eternal Youth Revisited. Biomolecules 2025; 15:682. [PMID: 40427575 PMCID: PMC12109172 DOI: 10.3390/biom15050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone associated with the regulation of biological rhythms. The indoleamine is secreted by the pineal gland during the night, following a circadian rhythm. The highest plasmatic levels are reached during the night, whereas the lowest levels are achieved during the day. In addition to the pineal gland, other organs and tissues also produce melatonin, like, for example, the retina, Harderian glands, gut, ovaries, testes, skin, leukocytes, or bone marrow. The list of organs is extensive, including the cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, carotid body, placenta, and endometrium. At all these locations, the availability of melatonin is intended for local use. Interestingly, a decline of the circadian amplitude of the melatonin secretion occurs in old subjects in comparison to that found in younger subjects. Moreover, genetic and environmental factors are the primary causes of diseases, and oxidative stress is a key contributor to most pathologies. Numerous studies exist that show interesting effects of melatonin in different models of disease. Impairment in its secretion might have deleterious consequences for cellular physiology. In this regard, melatonin is a natural compound that is a carrier of a not yet completely known potential that deserves consideration. Thus, melatonin has emerged as a helpful ally that could be considered as a guard with powerful tools to orchestrate homeostasis in the body, majorly based on its antioxidant effects. In this review, we provide an overview of the widespread actions of melatonin against diseases preferentially affecting the elderly.
Collapse
Affiliation(s)
| | | | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003 Caceres, Spain; (C.O.-P.); (G.M.S.)
| |
Collapse
|
3
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2025; 77:315-332. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Hakimi Naeini S, Rajabi-Maham H, Hosseini A, Azizi V. Neuroprotective impact of glycitin on memory impairment in a pentylenetetrazol-induced chronic epileptic rat model: insights into hippocampal histology, oxidative stress, and inflammation. J Nat Med 2025; 79:59-72. [PMID: 39365539 DOI: 10.1007/s11418-024-01846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Epilepsy, characterized by recurrent seizures, often accompanies neurocognitive impairments and is associated with increased oxidative stress and inflammation. This study investigates the possible neuroprotective properties of glycitin, a soy isoflavone, on memory impairment, its impact on oxidative stress responses, and inflammatory gene expression in a chronic epileptic rat model induced by pentylenetetrazol (PTZ). Glycitin was administered at varying doses to evaluate its potential neuroprotective impact on memory, oxidative stress, and inflammation in this model. Behavioural assessments, memory retention and recall capabilities, histopathological examinations, measurements of oxidative stress biomarkers, and molecular assessments were employed for comprehensive evaluation. The results demonstrated that glycitin significantly improved memory impairment and reduced oxidative stress in epileptic rats. Additionally, glycitin treatment decreased the expression of tumor necrosis factor-α (TNF-α) and nuclear factor kappa B (NF-κB), indicating its potential to modulate the inflammatory response associated with epilepsy. These observations underscore the potential of glycitin as a therapeutic candidate for mitigating memory impairments linked to chronic epilepsy due to its antioxidant and anti-inflammatory properties, offering insights into novel avenues for the development of targeted interventions aimed at preserving cognitive function and ameliorating oxidative damage and inflammation in epileptic conditions.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Afzal A. Melatonin as a multifunctional modulator: emerging insights into its role in health, reproductive efficiency, and productive performance in livestock. Front Physiol 2024; 15:1501334. [PMID: 39703668 PMCID: PMC11655511 DOI: 10.3389/fphys.2024.1501334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Melatonin, a pleiotropic hormone plays a vital role in enhancing livestock performance not only by regulating circadian rhythms but also by exhibiting antioxidant, immunomodulatory, and metabolic regulatory effects that collectively improve resilience, fertility, and productivity. Melatonin's synthesis is predominantly influenced by light exposure, with increased production in darkness; however, factors such as diet and health status further modulate its levels. By helping animals adapt to environmental stressors, melatonin boosts immune responses, mitigates chronic illnesses, and optimizes production efficiency. Its regulatory influence extends to the hypothalamic-pituitary-gonadal (HPG) axis, enhancing hormone secretion, synchronizing estrous cycles, and improving embryo viability. This results in improved reproductive outcomes through the protection of gametes, increased sperm motility, and enhanced oocyte quality, all of which benefit the fertilization process. Additionally, melatonin positively impacts productive performance, promoting muscle growth, development, and optimizing milk yield and composition through its interaction with metabolic and endocrine systems. As ongoing research continues to uncover its broader physiological effects, melatonin supplementation emerges as a promising approach to improving livestock welfare, productivity, and sustainability in modern animal husbandry.
Collapse
Affiliation(s)
- Ali Afzal
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- School of Zoology, Minhaj University Lahore, Lahore, Pakistan
| |
Collapse
|
7
|
da Silva JGM, de Melo IMF, Alves ÉR, de Oliveira GM, da Silva AA, Pinto FCM, Aguiar JLDA, Araújo DN, Teixeira VW, Teixeira ÁAC. Melatonin associated with bacterial cellulose-based hydrogel improves healing of skin wounds in diabetic rats. Acta Cir Bras 2024; 39:e399024. [PMID: 39476070 PMCID: PMC11506694 DOI: 10.1590/acb399024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/21/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE To describe the effects of melatonin associated with bacterial cellulose-based hydrogel on healing of skin wounds in diabetic rats. METHODS Streptozotocin was used to induce diabetes in Wistar rats. After wound induction, animals were randomly divided into groups GC, GDCC, GDCB, and GDMCB. Animals were evaluated in days 3, 7, and 14 for the following variables: glycemic levels, histopathological and histochemical analyses, healing rate, morphometry and C-reactive protein. RESULTS There was no change in glycemic levels in the diabetic animals as a result of the treatments; histopathological analyses showed better healing in GDCB and GDMCB groups, as well as histochemistry; at day 14, the highest healing rate was observed in animals from the GDMCB group, reaching almost 100%; morphometry revealed a significant increase of fibroblasts and reduction of macrophages and blood vessels in lesions treated with bacterial cellulose associated or not with melatonin when compared to the other experimental groups. There was also an increase in C-reactive protein in GDCC group at day 14. CONCLUSION Bacterial cellulose-based dressings associated with systemic melatonin showed beneficial results in experimentally induced wounds in diabetic rats, favoring the healing process.
Collapse
Affiliation(s)
- Jaiurte Gomes Martins da Silva
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
- Universidade Federal de Alagoas – Maceió (AL) – Brazil
| | - Ismaela Maria Ferreira de Melo
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
| | - Érique Ricardo Alves
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
| | - Glícia Maria de Oliveira
- Universidade Federal de Pernambuco – Department of Biochemistry – Graduate Program in Therapeutic Innovation – Recife (PE) – Brazil
| | - Anderson Arnaldo da Silva
- Universidade Federal de Pernambuco – Graduate Program in Biosciences and Biotechnology in Health – Recife (PE) – Brazil
| | | | | | | | - Valéria Wanderley Teixeira
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
| | - Álvaro Aguiar Coelho Teixeira
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
| |
Collapse
|
8
|
Nath A, Ghosh S, Bandyopadhyay D. Role of melatonin in mitigation of insulin resistance and ensuing diabetic cardiomyopathy. Life Sci 2024; 355:122993. [PMID: 39154810 DOI: 10.1016/j.lfs.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.
Collapse
Affiliation(s)
- Anupama Nath
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
9
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
10
|
Kırmızı D, Sehirli AÖ, Sayiner S, Orhan K, Sebai A, Aksoy U. Effects of melatonin against experimentally induced apical periodontitis in rats. AUST ENDOD J 2024; 50:218-226. [PMID: 38509787 DOI: 10.1111/aej.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Apical periodontitis is an inflammatory condition resulting from microbial invasion in the root canal system, causing periapical tissue destruction and bone resorption. This study investigated melatonin's effects, known for its antioxidant and anti-inflammatory properties, on experimentally induced apical periodontitis in rats. Three groups of rats were studied: control, apical periodontitis and apical periodontitis with melatonin treatment. Proinflammatory cytokines and enzyme levels in blood serum were measured, and micro-CT analysis assessed bone resorption. Results showed significantly elevated cytokines and enzyme levels in the apical periodontitis group compared to the control. However, in the melatonin-treated group, these levels were significantly reduced (p < 0.01-0.001). Micro-CT analysis indicated decreased periapical resorption cavity volume and surface area with melatonin treatment. This suggests that systemic melatonin administration can mitigate inflammation and reduce bone resorption in experimentally induced apical periodontitis in rats, potentially holding promise for human endodontic disease treatment pending further research.
Collapse
Affiliation(s)
- D Kırmızı
- Department of Endodontics, Faculty of Dentistry, Near East University, Nicosia, Mersin, Turkey
| | - A Ö Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Nicosia, Mersin, Turkey
| | - S Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Nicosia, Mersin, Turkey
| | - K Orhan
- Department of Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara, Turkey
| | - A Sebai
- Department of Endodontics, Faculty of Dentistry, Near East University, Nicosia, Mersin, Turkey
| | - U Aksoy
- Department of Endodontics, Faculty of Dentistry, Near East University, Nicosia, Mersin, Turkey
| |
Collapse
|
11
|
Adamska O, Wnuk A, Kamińska A, Poniatowska M, Maciąg B, Kamiński M, Stolarczyk A, Matin M, Atanasov AG, Łapiński M, Jóźwik A. Melatonin supplementation counteracts fiber loss in knee ligaments of diabetes-induced rats. Front Pharmacol 2024; 15:1399719. [PMID: 39135805 PMCID: PMC11317382 DOI: 10.3389/fphar.2024.1399719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent metabolic disease. The clinical impact of sustained hyperglycemia on ligament healing has not been well characterized. Diabetes is a known cause of macro-, microvascular, and diabetic ulcer healing difficulties among tissues. Therefore, we aimed to investigate the healing potential occurring in injured and healthy ligaments among diabetic and healthy individuals using a rat model. We hypothesize that DM may contribute to altering the knee medial collateral ligament (MCL), thus its morphology, biochemical fitness, and functionality. The study cohort consisted of 40 rats. The animals were randomized into four equal groups. Groups I and II (20 rats) received saline subcutaneously and served as controls. Groups III and IV (20 rats) were injected with a single dose of streptozotocin (STZ). All animals underwent surgery to cut the left tibial collateral ligament in the hind limb and suture it. The access site was sutured to create inflammation and study the regenerative capacities of animals with normal carbohydrate metabolism and pharmacologically induced diabetes. Each animal then underwent sham surgery to access and suture the right tibial collateral ligament in the hind limb without ligament intervention. After the animals had undergone surgeries, groups II and IV were given melatonin supplementation for 4 weeks. Rats with DM presented with more fibrosis and calcification of the MCL and decreased healing potential. Treatment with melatonin in diabetic rats mitigated alterations and improved the antioxidant status of ligaments from the diabetic group.
Collapse
Affiliation(s)
- Olga Adamska
- Department of Ophthalmology, Collegium Medicum, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | - Artur Wnuk
- Hospital in Ostrow Mazowiecka, Ostrów Mazowiecka, Poland
| | - Agnieszka Kamińska
- Department of Ophthalmology, Collegium Medicum, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | - Małgorzata Poniatowska
- Department of Nuclear Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bartosz Maciąg
- Orthopedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Artur Stolarczyk
- Orthopedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| | - Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Marcin Łapiński
- Orthopedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| |
Collapse
|
12
|
Abdallah N, Amer ME, Amer MA, El-Missiry MA, Othman AI. Melatonin mitigated methotrexate-induced hepatotoxicity through interrelated biological processes. Mol Biol Rep 2024; 51:833. [PMID: 39039363 DOI: 10.1007/s11033-024-09792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Hepatotoxicity associated with methotrexate (MTX) is mainly due to disruption of redox balance and development of oxidative injury to hepatocytes. Melatonin (MLT) is a potent antioxidant and regulates wide range of biological functions, processes and utilized as adjuvant for number of medical applications. The current study investigated the mitigating effect of MLT on the MTX-induced hepatotoxicity. METHODS AND RESULTS Adult male rats received MLT (25 mg/kg, orally) for seven days flowed by single injection of MTX (20 mg/kg, ip) then treat with MLT continued for additional 7 days. The present result showed MLT treatment mitigated histopathological changes in the liver that associated with normalization of ALT and AST activity as well as bilirubin, albumin and alfa-fetoprotein levels in serum of MLT + MTX-treated rat to comparable control level. MLT treatment significantly reduced MDA content and myeloperoxidase activity while enhanced the activity of superoxide dismutase, catalase and glutathione content in the liver indicating the empowerment of the antioxidant status. Amelioration of MLT-induced oxidative stress resulted in a reduction in the inflammatory response due to antioxidant restoration and inhibited apoptosis indicated by downregulation of caspase-3 expression. The replenishment of antioxidant content powers the defense system of the hepatocytes. As a result, apoptosis is reduced which might be due to the ability of MLT protect DNA integrity thus maintaining hepatocyte functions and structure. Consequently, liver histology was protected. CONCLUSIONS In summary, MLT modulates liver function and structure by orchestrating linked processes, including redox balance, inflammatory response, suppression of caspase-3, and DNA damage.
Collapse
Affiliation(s)
- Noura Abdallah
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maher A Amer
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Azza I Othman
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
13
|
Zhang Y, Wang M, Li P, Lv G, Yao J, Zhao L. Hypoglycemic Effect of Polysaccharides from Physalis alkekengi L. in Type 2 Diabetes Mellitus Mice. BIOLOGY 2024; 13:496. [PMID: 39056690 PMCID: PMC11274298 DOI: 10.3390/biology13070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disease that adversely impacts patient health. In this study, a T2DM model was established in ICR mice through the administration of a high-sugar and high-fat diet combined with the intraperitoneal injection of streptozotocin to explore the hypoglycemic effect of polysaccharides from Physalis alkekengi L. After six weeks of treatment, the mice in the high-dosage group (800 mg/kg bw) displayed significant improvements in terms of fasting blood glucose concentration, glucose tolerance, serum insulin level, insulin resistance, and weight loss (p < 0.05). The polysaccharides also significantly regulated blood lipid levels by reducing the serum contents of total triglycerides, total cholesterol, and low-density lipoproteins and increasing the serum content of high-density lipoproteins (p < 0.05). Furthermore, they significantly enhanced the hepatic and pancreatic antioxidant capacities, as determined by measuring the catalase and superoxide dismutase activities and the total antioxidant capacity (p < 0.05). The results of immunohistochemistry showed that the P. alkekengi polysaccharides can increase the expression of GPR43 in mice colon epithelial cells, thereby promoting the secretion of glucagon-like peptide-1. In summary, P. alkekengi polysaccharides can help to regulate blood glucose levels in T2DM mice and alleviate the decline in the antioxidant capacities of the liver and pancreas, thus protecting these organs from damage.
Collapse
Affiliation(s)
- Yun Zhang
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Minghao Wang
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Peng Li
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Ge Lv
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Jing Yao
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Lin Zhao
- Quality & Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| |
Collapse
|
14
|
Hekal HA, Amer ME, Amer M, El-Missiry MA, Othman AI. Selenium suppressed growth of Ehrlich solid tumor and improved health of tumor-bearing mice. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:672-682. [PMID: 38591238 DOI: 10.1002/jez.2815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Selenium (Se) is an important micronutritional biomolecule in cancer therapy. The current work evaluated the anticancer effect of Se and its ability to improve health of mice with solid Ehrlich carcinoma implanted subcutaneously. Four groups of five female BALB/c mice each were assembled. Ehrlich tumor cells were engrafted into two of them, either with or without Se therapy. The other groups served as control groups, either with or without Se treatment. Se treatment resulted in a notable decrease in both tumor volume and animal body mass in tumor-bearing mice. Treatment with Se markedly increased oxidative stress in tumor while ameliorating oxidative stress in sera of tumors-bearing mice. Similarly, treatment with Se resulted in downregulation of inflammatory cytokines (TNF-α and IL-6) while increasing IL-10 in serum of tumor-bearing mice. Conversely, selenium increased TNF- α and IL-6 and decreased IL-10 in tumor suggesting disruption of tumor immunity. The increased oxidative stress and inflammation in tumor tissue dysregulated cell cycle phases with increase apoptotic tumor cells population in G0/G1 phase. This is supported by the increased levels apoptotic regulating proteins (Bax and caspase-3 and P-53) while decreasing Bcl-2 in the tumor tissue. Treatment with Se also resulted in increased comet parameters indicating DNA damage of tumor cells. Histopathological examination revealed a significant decrease in a number of neoplastic cells within tumor of mice that treated with Se. In conclusion, these findings suggest that Se therapy significantly suppressed solid tumor proliferation and growth while mitigating the health status of tumor-bearing mice.
Collapse
Affiliation(s)
- Heba A Hekal
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maher Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Azza I Othman
- Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Fayazi F, Kheirouri S, Alizadeh M. Exploring effects of melatonin supplementation on insulin resistance: An updated systematic review of animal and human studies. Diabetes Metab Syndr 2024; 18:103073. [PMID: 39096757 DOI: 10.1016/j.dsx.2024.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Insulin resistance (IR), defined as an impaired response to insulin stimulation of target tissues, is a substantial determinant of many metabolic disorders. This study aimed to update the findings of the previous systematic review evidence regarding the effect of melatonin on factors related to IR, including hyperinsulinemia, hyperglycemia, homeostasis model assessment of insulin resistance (HOMA-IR), and quantitative insulin sensitivity check index (QUICKI). METHODS We systematically reviewed the evidence on the impact of melatonin supplementation on IR indices, fasting insulin, and fasting plasma glucose. PubMed, ScienceDirect, SCOPUS, and Google Scholar databases were searched until March 2024. RESULTS We identified 6114 potentially relevant articles during the search. Eighteen animal studies and 15 randomized clinical trials met the inclusion criteria. The results indicated that melatonin supplementation reduced fasting plasma glucose (FPG, 14 out of 29 studies), fasting insulin (22 out of 28 studies), HOMA-IR (28 out of 33 studies), and increased QUICKI (7 out of 7 studies). According to RCT studies, melatonin treatment at a dosage of 10 mg reduced HOMA-IR levels in individuals with various health conditions. CONCLUSION According to most evidence, melatonin supplementation may decrease fasting insulin and HOMA-IR and increase QUICKI but may not affect FPG.
Collapse
Affiliation(s)
- Fakhrosadat Fayazi
- Student Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Alizadeh
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Joukar S, Rajizadeh MA, Bejeshk MA, Alavi SS, Bagheri F, Rami M, Khoramipour K. ATP releasing channels and the ameliorative effects of high intensity interval training on diabetic heart: a multifaceted analysis. Sci Rep 2024; 14:7113. [PMID: 38532054 DOI: 10.1038/s41598-024-57818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Type 2 diabetes (T2D) can cause severe cardiac complications at functional, histologic and molecular levels. These pathological complications could be mediated by ATP-releasing channels such as Panx1 and ATP receptors, in particular P2X7. The aim of our study was to investigate the effect of high-intensity interval training (HIIT) on T2D-induced cardiac complications at the functional, histopathological and molecular levels, with a particular focus on ATP-releasing channels. 48 male Wistar rats at the age of 8 weeks were randomly allocated into four groups: control (Con), Diabetes (T2D), Training (TR), and Diabetes + Training (T2D + TR). T2D was induced by a high-fat diet plus a low dose (35 mg/kg) of STZ administration. Rats in the TR and T2D + TR groups underwent an 8-weeks training program involving intervals ranging from 80 to 100% of their maximum running speed (Vmax), with 4-10 intervals per session. Protein expression of Interleukin 1β (IL1β), Interleukin 10 (IL-10), Pannexin 1 (Panx1), P2X7R (purinergic P2X receptor 7), NLRP1 (NLR Family Pyrin Domain Containing 1), BAX, and Bcl2 were measured in the heart tissue. Additionally, we assessed heart function, histopathological changes, as well as insulin resistance using the homeostasis model assessment of insulin resistance (HOMA-IR). In contrast to the T2D group, HIIT led to increased protein expression of Bcl2 and IL-10 in the heart. It also resulted in improvements in systolic and diastolic blood pressures, heart rate, ± dp/dt (maximum and minimum changes in left ventricular pressure), while reducing protein expression of IL-1β, Panx1, P2X7R, NLRP1, and BAX levels in the heart. Furthermore, left ventricular diastolic pressure (LVDP) was reduced (P ≤ 0.05). Moreover, heart lesion scores increased with T2D but decreased with HIIT, along with a reduction in fibrosis percentage (P ≤ 0.05). The results of this study suggest that the cardioprotective effects of HIIT on the diabetic heart may be mediated by the modulation of ATP-releasing channels. This modulation may lead to a reduction in inflammation and apoptosis, improve cardiac function, and attenuate cardiac injury and fibrosis.
Collapse
Affiliation(s)
- Siyavash Joukar
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical Faculty, Kerman, Iran
| | - Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
17
|
Luo D, Gao X, Zhu X, Xu J, Gao P, Zou J, Fan Q, Xu Y, Liu T. Biomarker screening using integrated bioinformatics for the development of "normal-impaired glucose intolerance-type 2 diabetes mellitus". Sci Rep 2024; 14:4558. [PMID: 38402348 PMCID: PMC10894242 DOI: 10.1038/s41598-024-55199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive disease. We utilized bioinformatics analysis and experimental research to identify biomarkers indicative of the progression of T2DM, aiming for early detection of the disease and timely clinical intervention. Integrating Mfuzz analysis with differential expression analysis, we identified 76 genes associated with the progression of T2DM, which were primarily enriched in signaling pathways such as apoptosis, p53 signaling, and necroptosis. Subsequently, using various analytical methods, including machine learning, we further narrowed down the hub genes to STK17A and CCT5. Based on the hub genes, we calculated the risk score for samples and interestingly found that the score correlated with multiple programmed cell death (PCD) pathways. Animal experiments revealed that the diabetes model exhibited higher levels of MDA and LDH, with lower expression of SOD, accompanied by islet cell apoptosis. In conclusion, our study suggests that during the progression of diabetes, STK17A and CCT5 may contribute to the advancement of the disease by regulating oxidative stress, programmed cell death pathways, and critical signaling pathways such as p53 and MAPK, thereby promoting the death of islet cells. This provides substantial evidence in support of further disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Dongqiang Luo
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xiaolu Gao
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xianqiong Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiongbo Xu
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Pengfei Gao
- Yunkang School of Medicine and Health, Nanfang College Guangzhou, Guangzhou, 510000, China
| | - Jiayi Zou
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qiaoming Fan
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Ying Xu
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Tian Liu
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China.
| |
Collapse
|
18
|
El-Sayed SF, Abdelhamid AM, ZeinElabdeen SG, El-Wafaey DI, Moursi SMM. Melatonin enhances captopril mediated cardioprotective effects and improves mitochondrial dynamics in male Wistar rats with chronic heart failure. Sci Rep 2024; 14:575. [PMID: 38182706 PMCID: PMC10770053 DOI: 10.1038/s41598-023-50730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024] Open
Abstract
Mitochondrial dysfunction is a recent emerging research scope that proved to be involved in many cardiovascular diseases culminating in chronic heart failure (CHF), which remains one of the primary causes of morbidity and mortality. This study investigated the added cardio-protective effects of exogenous melatonin administration to conventional captopril therapy in isoproterenol (ISO) exposed rats with CHF. Five groups of Wistar rats were recruited; (I): Control group, (II): (ISO group), (III): (ISO + captopril group), (IV): (ISO + melatonin group) and (V): (ISO + melatonin/captopril group). Cardiac function parameters and some oxidant, inflammatory and fibrotic markers were investigated. Moreover; mRNA expression of mitochondrial mitophagy [parkin & PTEN induced kinase 1 (PINK1)], biogenesis [Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)], fusion [mitofusin 2 (Mfn2)] and fission [dynamin-related protein 1 (DRP-1)] parameters in rat's myocardium were evaluated. Rats' myocardium was histo-pathologically and immunohistochemically evaluated for Beclin1 and Sirt3 expression. The present study revealed that captopril and melatonin ameliorated cardiac injury, oxidative stress biomarkers, and pro-inflammatory cytokines in ISO-exposed rats. These protective effects could be attributed to mitochondrial dynamic proteins control (i.e. enhanced the mRNA expression of parkin, PINK1, PGC-1α and Mfn2, while reduced DRP-1 mRNA expression). Also, Beclin1 and Sirt3 cardiac immunoreactivity were improved. Combined captopril and melatonin therapy showed a better response than either agent alone. Melatonin enhanced myocardial mitochondrial dynamics and Sirt3 expression in CHF rats and may represent a promising upcoming therapy added to conventional heart failure treatment.
Collapse
Affiliation(s)
- Sherein F El-Sayed
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Suzan M M Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Aluwong T, Sumanu VO, Abdulsalam RA, Emmanuel DS, Ezekiel NG, Aliyu MB, Ayo JO, Ukwenu JO, Yaro JD, Ogbuagu NE. Melatonin and probiotic administration ameliorated hyperglycaemia, oxidative stress, and enhanced cytoprotective effect on beta-cells of diabetic rats. J Diabetes Metab Disord 2023; 22:1537-1549. [PMID: 37975141 PMCID: PMC10638259 DOI: 10.1007/s40200-023-01284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/16/2023] [Indexed: 11/19/2023]
Abstract
Objective The study aimed at investigating the effects of administering melatonin and a probiotic to streptozotocin-induced diabetic rats on hyperglycaemia, oxidative stress biomarkers and beta-cells. Design Type 1 diabetes was induced in 5 months-old male Wistar rats by single intraperitoneal (i.p.) administration of freshly-prepared STZ (60 mg/kg body weight). Six groups of 10 rats were used and treated once daily for six weeks; (1) Healthy control: normal saline only; (2) Pre-treated with Melatonin (MEL); (3) Diabetic control; (4) Diabetic + Treated with MEL; (5) Diabetic + Treated with Probiotic (Prob); (6) Diabetic + Treated with MEL + Prob. Blood glucose, body weight, activities of antioxidant enzymes and malondialdehyde concentration in serum and tissues, reduced glutathione and immunohistochemical assay. Data obtained were expressed as mean ± standard error of the mean (Mean ± SEM) and subjected to ANOVA followed by Tukey's post hoc test. Results Melatonin + Probiotic significantly decreased blood glucose concentrations in diabetic treated rats, compared to the diabetic control rats. MEL + Probiotic increased (p < 0.05) superoxide dismutase activity in serum and liver of diabetic rats. MEL + Probiotic reduced (p < 0.05) malondialdehyde concentration in the serum, liver and kidneys, respectively. MEL + Probiotic treated diabetic rats displayed islets with much greater content of insulin. Conclusion Melatonin + Probiotic combination was more effective in mitigating hyperglycaemia, oxidative stress, and exerted cytoprotective effect on the beta-cells.
Collapse
Affiliation(s)
- Tagang Aluwong
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Victory Osirimade Sumanu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | - David Smith Emmanuel
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Nanyil Gunshin Ezekiel
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Muhammad Bello Aliyu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Olusegun Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | - Jigo Dangude Yaro
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - Ngozi Ejum Ogbuagu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
20
|
Roberts FL, Cataldo LR, Fex M. Monoamines' role in islet cell function and type 2 diabetes risk. Trends Mol Med 2023; 29:1045-1058. [PMID: 37722934 DOI: 10.1016/j.molmed.2023.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
The two monoamines serotonin and melatonin have recently been highlighted as potent regulators of islet hormone secretion and overall glucose homeostasis in the body. In fact, dysregulated signaling of both amines are implicated in β-cell dysfunction and development of type 2 diabetes mellitus (T2DM). Serotonin is a key player in β-cell physiology and plays a role in expansion of β-cell mass. Melatonin regulates circadian rhythm and nutrient metabolism and reduces insulin release in human and rodent islets in vitro. Herein, we focus on the role of serotonin and melatonin in islet physiology and the pathophysiology of T2DM. This includes effects on hormone secretion, receptor expression, genetic variants influencing β-cell function, melatonin treatment, and compounds that alter serotonin availability and signaling.
Collapse
Affiliation(s)
- Fiona Louise Roberts
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden
| | - Luis Rodrigo Cataldo
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden; The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Malin Fex
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden.
| |
Collapse
|
21
|
Liu C, Zeng H, Jiang R, Wang K, Ouyang J, Wen S, Peng L, Xu H, Huang J, Liu Z. Effects of Mulberry Leaf Fu Tea on the Intestines and Intestinal Flora of Goto-Kakizaki Type 2 Diabetic Rats. Foods 2023; 12:4006. [PMID: 37959125 PMCID: PMC10648540 DOI: 10.3390/foods12214006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus is a disease caused by hyperglycemia, an imbalance in the intestinal flora and disruption of the endocrine system. At present, it is primarily controlled through drug treatment and an improved diet. Mulberry leaf and fu brick tea were considered to have excellent hypoglycemic effects. This study used mulberry leaves and fu brick tea as raw materials to develop a dietary regulator that can assist in the prevention and alleviation of diabetes. The experiment used the Goto-Kakizaki (GK) rat model to investigate the hypoglycemic effect of mulberry leaf fu tea (MFT) and its influence on the intestinal flora of diabetic rats through methods including ELISA, tissue section observation and 16S RNA microbial sequencing. The results showed that, compared with the GK group, the intervention of mulberry leaf fu tea significantly reduced the activities of α-glucosidase (p < 0.05) and α-amylase (p < 0.05) in the duodenum of GK diabetic rats. The height of the duodenal villi was significantly reduced (p < 0.001), leading to decreased intestinal sugar absorption. At the same time, MFT alleviates the imbalance of intestinal flora caused by high blood sugar, promotes the growth of beneficial bacteria (Lactobacillus, Bifidobacterium, etc.), and inhibits the reproduction of harmful bacteria (Blautia, Klebsiella, Helicobacter, Alistipes, etc.). MFT helps reduce the secretion of toxic substances (lipopolysaccharide, p < 0.001), decreases oxidative stress and inflammation, mitigates organ damage, and improves symptoms of diabetes. Finally, the random blood glucose value of GK rats dropped from 22.79 mmol/L to 14.06 mmol/L. In summary, mulberry leaf fu tea can lower sugar absorption in diabetic rats, reduce the body's oxidative stress and inflammatory response, regulate intestinal flora, and reduce blood sugar levels in GK rats. It is hinted that mulberry leaf fu tea could be used as a functional drink to help prevent the occurrence of diabetes.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ronggang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Liyuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Hao Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
22
|
Elbanan ME, Amer ME, El-Missiry MA, Othman AI, Shabana SM. Melatonin protected against kidney impairment induced by 5-fluorouracil in mice. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:777-787. [PMID: 37395484 DOI: 10.1002/jez.2728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The utility of 5-fluorouracil (5-FU) as a successful chemotherapeutic drug for several cancers is limited by the induction of kidney injury and dysfunction due to redox imbalance, inflammation, and apoptosis. Meanwhile, melatonin (MLT) is a potent antioxidant and anti-inflammatory natural compound with a wide safety range. The current study aimed to investigate MLT's protective effect against 5-FU-induced kidney impairment. Male mice were given multiple doses of 5-FU at 25 and 100 mg/kg, as well as MLT at 20 mg/kg. MLT treatment alleviated the toxic effect of 5-FU by normalizing blood urea and creatinine levels and preserving the histological structure, indicating MLT's nephroprotective ability. This is accompanied by body weight maintenance, an increase in survival percentage, and preserved hematological parameters in comparison to the 5-FU-treated mice. MLT's renoprotective effect was explained by improvements in C-reactive protein, IL-6, and caspase-3 in kidney tissue, indicating MLT's anti-inflammatory and antiapoptotic ability. Furthermore, MLT inhibited 5-FU-induced lipid peroxidation by maintaining the activity of superoxide dismutase and catalase, as well as glutathione levels in kidney tissue from mice treated with both doses of 5-FU. The current findings show that MLT has a novel protective effect against 5-FU-induced renal injury and renal impairment.
Collapse
Affiliation(s)
- Mona E Elbanan
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Azza I Othman
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sameh M Shabana
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
23
|
Alsharif KF, Hamad AA, Alblihd MA, Ali FAZ, Mohammed SA, Theyab A, Al-Amer OM, Almuqati MS, Almalki AA, Albarakati AJA, Alzahrani KJ, Albrakati A, Albarakati MH, Abass D, Lokman MS, Elmahallawy EK. Melatonin downregulates the increased hepatic alpha-fetoprotein expression and restores pancreatic beta cells in a streptozotocin-induced diabetic rat model: a clinical, biochemical, immunohistochemical, and descriptive histopathological study. Front Vet Sci 2023; 10:1214533. [PMID: 37655263 PMCID: PMC10467430 DOI: 10.3389/fvets.2023.1214533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
Background Diabetes mellitus (DM) is a chronic metabolic disorder. Hepatopathy is one of the serious effects of DM Melatonin (MT) is a potent endogenous antioxidant that can control insulin output. However, little information is available about the potential association between melatonin and hepatic alpha-fetoprotein expression in diabetes. Objective This study was conducted to assess the influence of MT on diabetes-related hepatic injuries and to determine how β-cells of the pancreas in diabetic rats respond to MT administration. Materials and methods Forty rats were assigned to four groups at random (ten animals per group). Group I served as a normal control group. Group II was induced with DM, and a single dose of freshly prepared streptozotocin (45 mg/kg body weight) was intraperitoneally injected. In Group III, rats received 10 mg/kg/day of intraperitoneal melatonin (IP MT) intraperitoneally over a period of 4 weeks. In Group IV (DM + MT), following the induction of diabetes, rats received MT (the same as in Group III). Fasting blood sugar, glycosylated hemoglobin (HbA1c), and serum insulin levels were assessed at the end of the experimental period. Serum liver function tests were performed. The pancreas and liver were examined histopathologically and immunohistochemically for insulin and alpha-fetoprotein (AFP) antibodies, respectively. Results MT was found to significantly modulate the raised blood glucose, HbA1c, and insulin levels induced by diabetes, as well as the decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Furthermore, MT attenuated diabetic degenerative changes in the pancreas and the hepatic histological structure, increased the β-cell percentage area, and decreased AFP expression in the liver tissue. It attenuated diabetes-induced hepatic injury by restoring pancreatic β-cells; its antioxidant effect also reduced hepatocyte injury. Conclusion Collectively, the present study confirmed the potential benefits of MT in downregulating the increased hepatic alpha-fetoprotein expression and in restoring pancreatic β-cells in a streptozotocin-induced diabetic rat model, suggesting its promising role in the treatment of diabetes.
Collapse
Affiliation(s)
- Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
| | - Asmaa A. Hamad
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohamed A. Alblihd
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | | | - Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Osama M. Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Malik Saad Almuqati
- Department of Laboratory, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Jameel A. Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | | | - Doaa Abass
- Zoology Department, Faculty of Sciences, Sohag University, Sohag, Egypt
| | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
24
|
Agbonifo-Chijiokwu E, Nwangwa KE, Oyovwi MO, Ben-Azu B, Naiho AO, Emojevwe V, Ohwin EP, Ehiwarior AP, Ojugbeli ET, Nwabuoku SU, Moke EG, Oghenetega BO. Underlying biochemical effects of intermittent fasting, exercise and honey on streptozotocin-induced liver damage in rats. J Diabetes Metab Disord 2023; 22:515-527. [PMID: 37255765 PMCID: PMC10225416 DOI: 10.1007/s40200-022-01173-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Purpose Derangements of liver transcriptional factors and enzymes have important implications in diabetes-induced related complications. Hence, this study which consists of two experimental phases was aimed at evaluating the possible underlying molecular mechanisms of intermittent fasting (IF), exercise starvation and honey in streptozotocin (STZ)-mediated liver damage in diabetic rats. Methods The diabetic rats were treated orally with distilled water (0.5 ml/kg), IF, starvation and honey at 1 g/kg body weight in the non-diabetic phase for four (4) weeks. After STZ injections, four (4) weeks of IF, exercise, starvation, and honey therapy were used as interventions prior to a biochemical evaluation of the liver. Results IF and exercise greatly decreased liver transcription factor (resistin, SREBP-1c), inflammatory cytokines/enzyme (TNF-α, IL-6, IL-1ß, MPO) as well as oxidative and nitrergic stress with correspondence increased liver PPAR-γ, IL-10, SOD, CAT and GSH in diabetic rats unlike starvation and honey regimen relative to diabetic controls. Furthermore, IF and exercise significantly improved hepatic glycogen synthase and decreased glycogen phosphorylase in diabetic rats compared to the diabetic control group, but starvation and honey therapy had no such influence. IF and exercise strategically reduces STZ-induced liver metabolic disorder via through modulation of liver transcriptional factors and inhibition of pro-inflammatory cytokines, oxido-nitrergic and adipokine signaling pathway.
Collapse
Affiliation(s)
- Ejime Agbonifo-Chijiokwu
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Kingsley E. Nwangwa
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Mega O. Oyovwi
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
- Department of Hunan Physiology, Achievers University, Owo, Ondo State Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Alexander O. Naiho
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State Nigeria
| | - Ejiro Peggy Ohwin
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Azuka Prosper Ehiwarior
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Evelyn Tarela Ojugbeli
- Department of Medical Biochemistry, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Shalom Udoka Nwabuoku
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Emuesiri Goodies Moke
- Department of Pharmacology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Bright O. Oghenetega
- Department of Physiology, Faculty of Basic Medical Science, Babcock University, Illisan-Romo, Ogun State Nigeria
| |
Collapse
|
25
|
Luo H, Liu R, Lang Y, Zhao J, Zhuang C, Wang J, Liang C, Zhang J. Melatonin alleviated fluoride-induced impairment of spermatogenesis and sperm maturation process via Interleukin-17A. Food Chem Toxicol 2023:113867. [PMID: 37269891 DOI: 10.1016/j.fct.2023.113867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Fluoride-induced male reproductive failure is a major environmental and human health concern, but interventions are still lacking. Melatonin (MLT) has potential functions in regulating testicular damage and interleukin-17 (IL-17) production. This study aims to explore whether MLT can mitigate fluoride-induced male reproductive toxicity through IL-17A, and screen the potential targets. So the wild type and IL-17A knockout mice were employed and treated with sodium fluoride (100 mg/L) by drinking water and MLT (10 mg/kg.BW, intraperitoneal injection per two days starting from week 16) for 18 weeks. Bone F- concentrations, grade of dental damage, sperm quality, spermatogenic cells counts, histological morphology of testis and epididymis, and the mRNA expression of spermatogenesis and maturation, classical pyroptosis related and immune factor genes were detected respectively. The results revealed that MLT supplementations alleviated fluoride-induced impairment of spermatogenesis and maturation process, protecting the morphology of testis and epididymis through IL-17A pathway, and Tesk1 and Pten were identified as candidate targets from 29 regulation genes. Taken together, this study demonstrated a new physiological role for MLT in the protection against fluoride-induced reproductive injury and possible regulation mechanisms, which providing a useful therapeutic strategy for male reproductive function failure caused by fluoride or other environmental pollutants.
Collapse
Affiliation(s)
- Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jinhui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
26
|
Sarkar S, Das A, Mitra A, Ghosh S, Chattopadhyay S, Bandyopadhyay D. An integrated strategy to explore the potential role of melatonin against copper-induced adrenaline toxicity in rat cardiomyocytes: Insights into oxidative stress, inflammation, and apoptosis. Int Immunopharmacol 2023; 120:110301. [PMID: 37224648 DOI: 10.1016/j.intimp.2023.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
AIMS Circumstantial anxiety as well as chronic stress may stimulate the release of stress hormones including catecholamines. Adrenaline toxicity has been implicated in many cardiovascular conditions. Considering previous literature that suggests the oxidative potential of the adrenaline-copper entity, we have investigated its potential nocuous role in isolated adult rat cardiomyocytes, the underlying molecular mechanism, and its possible protection by melatonin. MAIN METHODS Given the mechanistic congruity of adrenaline-copper (AC) with the well-established H2O2-copper-ascorbate (HCA) system of free radical generation, we have used the latter as a representative model to study the cytotoxic nature of AC. We further investigated the cardioprotective efficacy of melatonin in both the stress models through scanning electron microscopy, immunofluorescence, flow cytometry, and western blot analysis. KEY FINDINGS Results show that melatonin significantly protects AC-treated cardiomyocytes from ROS-mediated membrane damage, disruption of mitochondrial membrane potential, antioxidant imbalance, and distortion of cellular morphology. Melatonin protects cardiomyocytes from inflammation by downregulating pro-inflammatory mediators viz., COX-2, NF-κB, TNF-α, and upregulating anti-inflammatory IL-10. Melatonin significantly ameliorated cardiomyocyte apoptosis in AC and HCA-treated cells as evidenced by decreased BAX/BCL-2 ratio and subsequent suppression of caspase-9 and caspase-3 levels. The isothermal calorimetric study revealed that melatonin inhibits the binding of adrenaline bitartrate with copper in solution, which fairly explains the rescue potential of melatonin against AC-mediated toxicity in cardiomyocytes. SIGNIFICANCE Findings suggest that the multipronged strategy of melatonin that includes its antioxidant, anti-inflammatory, anti-apoptotic, and overall cardioprotective ability may substantiate its potential therapeutic efficacy against adrenaline-copper-induced damage and death of adult rat cardiomyocytes.
Collapse
Affiliation(s)
- Swaimanti Sarkar
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
27
|
Hohor S, Mandanach C, Maftei A, Zugravu CA, Oțelea MR. Impaired Melatonin Secretion, Oxidative Stress and Metabolic Syndrome in Night Shift Work. Antioxidants (Basel) 2023; 12:antiox12040959. [PMID: 37107334 PMCID: PMC10135726 DOI: 10.3390/antiox12040959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome has been associated in many studies with working in shifts. Even if the mechanistic details are not fully understood, forced sleep deprivation and exposure to light, as happens during night shifts, or irregular schedules with late or very early onset of the working program, lead to a sleep-wake rhythm misalignment, metabolic dysregulation and oxidative stress. The cyclic melatonin secretion is regulated by the hypothalamic suprachiasmatic nuclei and light exposure. At a central level, melatonin promotes sleep and inhibits wake-signals. Beside this role, melatonin acts as an antioxidant and influences the functionality of the cardiovascular system and of different metabolic processes. This review presents data about the influence of night shifts on melatonin secretion and oxidative stress. Assembling data from epidemiological, experimental and clinical studies contributes to a better understanding of the pathological links between chronodisruption and the metabolic syndrome related to working in shifts.
Collapse
Affiliation(s)
- Sorina Hohor
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cristina Mandanach
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Andreea Maftei
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- "Dr. Carol Davila" Central Military Emergency University Hospital, 134 Calea Plevnei, Sector 1, 010242 Bucharest, Romania
| | - Corina Aurelia Zugravu
- Department of Hygiene and Ecology, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Marina Ruxandra Oțelea
- Clinical Department 5, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| |
Collapse
|
28
|
Rahbarghazi A, Alamdari KA, Rahbarghazi R, Salehi-Pourmehr H. Co-administration of exercise training and melatonin on the function of diabetic heart tissue: a systematic review and meta-analysis of rodent models. Diabetol Metab Syndr 2023; 15:67. [PMID: 37005639 PMCID: PMC10067225 DOI: 10.1186/s13098-023-01045-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
PURPOSE Diabetes mellitus (DM), a hyperglycemic condition, occurs due to the failure of insulin secretion and resistance. This study investigated the combined effects of exercise training and melatonin (Mel) on the function of heart tissue in diabetic rodent models. METHODS A systematic search was conducted in Embase, ProQuest, Cochrane library, Clinicaltrial.gov, WHO, Google Scholar, PubMed, Ovid, Scopus, Web of Science, Ongoing Trials Registers, and Conference Proceedings in July 2022 with no limit of date or language. All trials associated with the effect of Mel and exercise in diabetic rodent models were included. Of the 962 relevant publications, 58 studies met our inclusion criteria as follows; Mel and type 1 DM (16 studies), Mel and type 2 DM (6 studies), exercise and type 1 DM (24 studies), and exercise and type 2 DM (12 studies). Meta-analysis of the data was done using the Mantel Haenszel method. RESULTS In most of these studies, antioxidant status and oxidative stress, inflammatory response, apoptosis rate, lipid profiles, and glucose levels were monitored in diabetic heart tissue. According to our findings, both Mel and exercise can improve antioxidant capacity by activating antioxidant enzymes compared to the control diabetic groups (p < 0.05). The levels of pro-inflammatory cytokines, especially TNF-α were reduced in diabetic rodents after being treated with Mel and exercise. Apoptotic changes were diminished in diabetic rodents subjected to the Mel regime and exercise in which p53 levels and the activity of Caspases reached near normal levels (p < 0.05). Based on the data, both Mel and exercise can change the lipid profile in diabetic rodents, especially rats, and close it to near-to-control levels. CONCLUSION These data showed that exercise and Mel can reduce the harmful effects of diabetic conditions on the heart through the regulation of lipid profile, antioxidant capacity, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Afshin Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, Daneshgah Street, Ardabil, 56199-11367 Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Elmahallawy EK, Alsharif KF, Alblihd MA, Hamad AA, Nasreldin N, Alsanie W, Aljoudi AM, Oyouni AAA, Al-Amer OM, Albarakati AJA, Lokman MS, Albrakati A, Ali FAZ. Melatonin ameliorates serobiochemical alterations and restores the cardio-nephro diabetic vascular and cellular alterations in streptozotocin-induced diabetic rats. Front Vet Sci 2023; 10:1089733. [PMID: 37065258 PMCID: PMC10102477 DOI: 10.3389/fvets.2023.1089733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
Melatonin possesses a wide range of pharmacological activities, including antidiabetic properties. Diabetes mellitus (DM) induces several physiopathological changes in body organs, which could be observed lately after systemic failure. In the current study, we aimed to investigate the serobiochemical changes and the histopathological picture in the diabetic heart and the kidney early before chronic complications and highlight the association between hyperglycemia, glomerular alterations, and cardiovascular changes. In addition, the role of melatonin in the treatment of cardio-nephro diabetic vascular and cellular adverse changes in streptozotocin-induced diabetic rats was also studied. A total of 40 mature Wistar albino rats were distributed into five groups; (1) control untreated rats, (2) diabetic mellitus untreated (DM) rats, in which DM was induced by the injection of streptozotocin (STZ), (3) control melatonin-treated (MLT), (4) melatonin-treated diabetic (DM + MLT) rats, in which melatonin was injected (10 mg/kg/day, i.p.) for 4 weeks, and (5) insulin-treated diabetic (DM + INS) rats. The serum biochemical analysis of diabetic STZ rats showed a significant (P < 0.05) increase in the concentrations of blood glucose, total oxidative capacity (TOC), CK-MB, endothelin-1, myoglobin, H-FABP, ALT, AST, urea, and creatinine as compared to control rats. In contrast, there was a significant (P < 0.05) decrease in serum concentration of insulin, total antioxidative capacity (TAC), total nitric oxide (TNO), and total protein level in DM rats vs. the control rats. Significant improvement in the serobiochemical parameters was noticed in both (DM + MLT) and (DM + INS) groups as compared with (DM) rats. The histological examination of the DM group revealed a disorder of myofibers, cardiomyocyte nuclei, and an increase in connective tissue deposits in between cardiac tissues. Severe congestion and dilation of blood capillaries between cardiac muscle fibers were also observed. The nephropathic changes in DM rats revealed various deteriorations in glomeruli and renal tubular cells of the same group. In addition, vascular alterations in the arcuate artery at the corticomedullary junction and interstitial congestion take place. Melatonin administration repaired all these histopathological alterations to near-control levels. The study concluded that melatonin could be an effective therapeutic molecule for restoring serobiochemical and tissue histopathological alterations during diabetes mellitus.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- *Correspondence: Ehab Kotb Elmahallawy
| | - Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Khalaf F. Alsharif
| | - Mohamed A. Alblihd
- Department of Medical Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Asmaa A. Hamad
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama M. Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
30
|
Kuzmenko NV, Tsyrlin VA, Pliss MG. Meta-Analysis of Experimental Studies of Diet-Dependent Effects of Melatonin Monotherapy on Circulatory Levels of Triglycerides, Cholesterol, Glucose and Insulin in Rats. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
31
|
Chen L, Jiang Q, Lu H, Jiang C, Hu W, Yu S, Xiang X, Tan CP, Feng Y, Zhang J, Li M, Shen G. Antidiabetic effect of sciadonic acid on type 2 diabetic mice through activating the PI3K-AKT signaling pathway and altering intestinal flora. Front Nutr 2022; 9:1053348. [PMID: 36618687 PMCID: PMC9816573 DOI: 10.3389/fnut.2022.1053348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia. The aim of this work was to investigate the effect of sciadonic acid (SA) on disorders of glucolipid metabolism and intestinal flora imbalance and to further investigate its potential molecular mechanism of anti-diabetes. The experimental data indicated that SA could alleviate hyperlipidemia, insulin resistance, oxidative stress, the inflammatory response, repair liver function damage, and promote glycogen synthesis caused by T2DM. SA could also activate the PI3K/AKT/GLUT-2 signaling pathway, promote glucose metabolism gene expression, and maintain glucose homeostasis. Furthermore, 16S rRNA analysis revealed that SA could reduce the Firmicutes/Bacteroidota (F/B) ratio; promote norank_f__Muribaculaceae, Allobaculum, Akkermansia, and Eubacterium_siraeum_group proliferation; increase the levels of major short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid; and maintain the homeostasis of the intestinal flora. In conclusion, these results suggested that SA could reshape the structural composition of intestinal microbes, activate the PI3K/AKT/GLUT2 pathway, improve insulin resistance, and decrease blood glucose levels.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Hongling Lu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chenkai Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wenjun Hu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shaofang Yu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia,Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Jianfang Zhang
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China,*Correspondence: Mingqian Li,
| | - Guoxin Shen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China,Guoxin Shen,
| |
Collapse
|
32
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
33
|
Chijiokwu EA, Nwangwa EK, Oyovwi MO, Naiho AO, Emojevwe V, Ohwin EP, Ehiwarior PA, Ojugbeli ET, Nwabuoku US, Oghenetega OB, Ogheneyoma OO. Intermittent fasting and exercise therapy abates STZ-induced diabetotoxicity in rats through modulation of adipocytokines hormone, oxidative glucose metabolic, and glycolytic pathway. Physiol Rep 2022; 10:e15279. [PMID: 36305681 PMCID: PMC9615571 DOI: 10.14814/phy2.15279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetes is a global, costly, and growing public health issue. Intermittent fasting (IF) and exercise therapy have been shown to improve insulin sensitivity (IS) in large studies, although the underlying processes are still unknown. The goal of this study, which included both nondiabetic and diabetic rats, was to look at the mechanisms of intermittent fasting and exercise in the management of diabetotoxicity. The effects of starvation and honey on the oral glucose tolerance test, insulin tolerance test, adipocytokines, oxidative glucose metabolic enzymes, glycolytic enzymes, food intake, and body weight in rats with streptozotocin‐induced diabetes were also investigated. In the nondiabetic phase, rats were administered an oral regimen of distilled water (0.5 ml/rat), honey (1 g/kg body weight), and interventions with IF, and starvation for 4 weeks while in the diabetic phase, after STZ or citrate buffer injections, interventions with IF, exercise, starvation, and honey treatment began for 4 weeks. At all OGTT and ITT points, there was a substantial rise in glucose in the STZ group. Adipocytokines hormone, oxidative glucose metabolic enzymes, glycolytic enzymes, and body weight were all affected by STZ when compared to starvation and honey, however, IF and exercise significantly reduced these alterations. In diabetic rats, intermittent fasting and exercise enhanced serum adipocytokines levels. These findings imply that adipokines modulate glycolytic/nonmitochondrial enzymes and glucose metabolic/mitochondrial dehydrogenase to mediate the antidiabetic effects of intermittent fasting and exercise. Intermittent fasting and exercise therapy abates STZ‐induced diabetotoxicity in rats through modulation of adipocytokines hormone, oxidative glucose metabolic, and glycolytic pathway.
Collapse
Affiliation(s)
- Ejime A. Chijiokwu
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Eze K. Nwangwa
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Mega O. Oyovwi
- 524172Department of Human PhysiologyAchievers UniversityOwoOndo StateNigeria
| | - Alexander O. Naiho
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Victor Emojevwe
- Department of PhysiologyUniversity of Medical SciencesOndoOndo StateNigeria
| | - Ejiro P. Ohwin
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Prosper A. Ehiwarior
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Evelyn T. Ojugbeli
- Department of Medical BiochemistryFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Udoka S. Nwabuoku
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Onome B. Oghenetega
- Department of PhysiologyFaculty of Basic Medical ScienceBabcock UniversityIlisan‐RomoOgun StateNigeria
| | - Ofulue O. Ogheneyoma
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| |
Collapse
|
34
|
Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 2022; 21:e13704. [PMID: 36056774 PMCID: PMC9577946 DOI: 10.1111/acel.13704] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
With the aging world population, the prevalence of aging-related disorders is on the rise. Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood. Brain and muscle Arnt-like protein-1 (Bmal1) is an irreplaceable clock gene that governs multiple important physiological processes. Continuous research of Bmal1 in AD and associated aging-related diseases is ongoing, and this review picks relevant studies on a detailed account of its role and mechanisms in these diseases. Oxidative stress and inflammation turned out to be common mechanisms by which Bmal1 deficiency promotes AD and associated aging-related diseases, and other Bmal1-dependent mechanisms remain to be identified. Promising therapeutic strategies involved in the regulation of Bmal1 are provided, including melatonin, natural compounds, metformin, d-Ser2-oxyntomodulin, and other interventions, such as exercise, time-restricted feeding, and adiponectin. The establishment of the signaling pathway network for Bmal1 in aging-related diseases will lead to advances in the comprehension of the molecular and cellular mechanisms, shedding light on novel treatments for aging-related diseases and promoting aging-associated brain health.
Collapse
Affiliation(s)
- Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
35
|
Hosseini A, Samadi M, Baeeri M, Rahimifard M, Haghi-Aminjan H. The neuroprotective effects of melatonin against diabetic neuropathy: A systematic review of non-clinical studies. Front Pharmacol 2022; 13:984499. [PMID: 36120309 PMCID: PMC9470957 DOI: 10.3389/fphar.2022.984499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Backgrounds: Diabetes can cause diabetic neuropathy (DN), a nerve injury. High blood sugar (glucose) levels can harm nerves all over your body. The nerves in your legs and feet are the most commonly affected by DN. The purpose of this study was to conduct a review of melatonin’s potential neuroprotective properties against DN. Method: A full systematic search was conducted in several electronic databases (Scopus, PubMed, and Web of Science) up to March 2022 under the PRISMA guidelines. Forty-seven studies were screened using predefined inclusion and exclusion criteria. Finally, the current systematic review included nine publications that met the inclusion criteria. Result: According to in vivo findings, melatonin treatment reduces DN via inhibition of oxidative stress and inflammatory pathways. However, compared to the diabetes groups alone, melatonin treatment exhibited an anti-oxidant trend. According to other research, DN also significantly produces biochemical alterations in neuron cells/tissues. Additionally, histological alterations in neuron tissue following DN were detected. Conclusion: Nonetheless, in the majority of cases, these diabetes-induced biochemical and histological alterations were reversed when melatonin was administered. It is worth noting that the administration of melatonin ameliorates the neuropathy caused by diabetes. Melatonin exerts these neuroprotective effects via various anti-oxidant, anti-inflammatory, and other mechanisms.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| |
Collapse
|
36
|
Pal S, Haldar C, Verma R. Melatonin attenuates LPS-induced ovarian toxicity via modulation of SIRT-1, PI3K/pAkt, pErk1/2 and NFĸB/COX-2 expressions. Toxicol Appl Pharmacol 2022; 451:116173. [PMID: 35878799 DOI: 10.1016/j.taap.2022.116173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
The association between inflammation and metabolic disturbances leads to various female pathophysiological conditions. Bacterial lipopolysaccharide (LPS), found in the outer membrane of gram-negative bacteria, elicits an oxidative and inflammatory response that profoundly interferes with female reproductive health. We investigated the ameliorative action of melatonin on LPS-induced ovarian pathophysiology in golden hamsters, Mesocricetus auratus. Hamsters were administered with exogenous melatonin (5 mg/kg BW) and LPS (100 μg/kg BW) intraperitoneally for 7 days. LPS treatment impaired ovarian folliculogenesis as evident by histoarchitecture (elevated number of atretic follicles, reduced number of growing follicles and corpus luteum) and steroidogenesis (decreased aromatase/ERα, estradiol and progesterone). On the other hand, LPS administration also perturbed thyroid hormone (T3 and T4) homeostasis, ovarian melatonin receptor (MT-1) expression, antioxidant potential (SOD and catalase) and concomitantly elevated nitro-oxidative stress (decreased SOD, catalase and elevated CRP, TNFα and nitrate/nitrite level) and inflammatory load (NFĸB and COX-2) which culminated into ovarian follicular apoptosis (elevated caspase-3). LPS also disrupted metabolic homeostasis as indicated by hyperinsulinemia with a simultaneous decrease in ovarian IR/GLUT-4 and glucose content. Moreover, LPS treatment decreased expressions of key markers of ovarian physiology (SIRT-1, pErk1/2, PI3K and pAkt). Melatonin co-treatment with LPS improve these detrimental changes proposing melatonin as a potent therapeutic candidate against ovarian dysfunction induced by endotoxin.
Collapse
Affiliation(s)
- Sriparna Pal
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| | - Chandana Haldar
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| | - Rakesh Verma
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| |
Collapse
|
37
|
da Purificação NRC, Garcia VB, Frez FCV, Sehaber CC, Lima KRDA, de Oliveira Lima MF, de Carvalho Vasconcelos R, de Araujo AA, de Araújo Júnior RF, Lacchini S, de Oliveira F, Perles JVCM, Zanoni JN, de Sousa Lopes MLD, Clebis NK. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats. Biomed Pharmacother 2022; 151:113131. [PMID: 35643067 DOI: 10.1016/j.biopha.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
This study aimed to analyze the effects of the quercetin (100 mg/kg), 1% glutamine and 1% α-tocopherol antioxidants in the myocardium of rats with streptozotocin-induced diabetes mellitus. Twenty male rats were subdivided into four groups (n = 5): N (normoglycemic); D (diabetic); NT (normoglycemic treated with antioxidants); and DT (diabetic treated with antioxidants) treated for 60 days. Clinical parameters, oxidative stress markers, inflammatory cytokines, myocardial collagen fibers and immunoexpression of superoxide dismutase 1 (SOD-1), glutathione peroxidase-1 (GPx-1), interleukin-1β (IL-1-β), transforming growth factor-beta (TGF-β), and fibroblast growth factor-2 (FGF-2) were evaluated. Results showed reduced body weight, hyperphagia, polydipsia and hyperglycemic state in groups D and DT. The levels of glutathione (GSH) were higher in NT and DT compared to N (p < 0.01) and D (p < 0.001) groups, respectively. Greater GSH levels were found in DT when compared to N animals (p < 0.001). In DT, there was an increase in IL-10 in relation to N, D and NT (p < 0.05), while GPx-1 expression was similar to N and lower compared to D (p < 0.001). TGF-β expression in DT was greater than N (p < 0.001) group, whereas FGF-2 in DT was higher than in the other groups (p < 0.001). A significant reduction in collagen fibers (type I) was found in DT compared to D (p < 0.05). The associated administration of quercetin, glutamine and α-tocopherol increased the levels of circulating interleukin-10 (IL-10) and GSH, and reduced the number of type I collagen fibers. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats.
Collapse
Affiliation(s)
| | | | | | | | - Kaio Ramon De Aguiar Lima
- Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| | | | | | - Aurigena Antunes de Araujo
- Postgraduate Program in Pharmaceutical Sciences, Postgraduate Program in Dental Sciences, Department of Pharmacology and Biophysical, UFRN, Natal, RN, Brazil.
| | - Raimundo Fernandes de Araújo Júnior
- Postgraduate Program in Health Sciences, Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| | - Silvia Lacchini
- Postgraduate Program in Morphology Science, Departamento of Anatomy, São Paulo University, São Paulo, SP, Brazil
| | - Flávia de Oliveira
- Departament of Biocience, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | - Naianne Kelly Clebis
- Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| |
Collapse
|
38
|
Liu H, Zhang Z, Li J, Liu W, Warda M, Cui B, Abd El-Aty AM. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis. Food Funct 2022; 13:5416-5429. [PMID: 35475434 DOI: 10.1039/d1fo02667d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we assessed the effects of Lycium barbarum oligosaccharides (LBO) on the intestinal microenvironment of a type 2 diabetes (T2D) mouse model through gut microbiome and metabolomics analysis. We set high (300 mg kg-1), medium (200 mg kg-1), and low (100 mg kg-1) doses of LBO for intervention once a day for 4 weeks. The results showed that the intervention effect of the medium-dose group was the most significant. It reduced the symptoms of hyperglycemia, inflammation, insulin resistance, and lipid accumulation in the T2D mouse model. It restored the structure of damaged tissues and cells, such as the pancreas, liver, and kidneys. LBO increased the relative abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, Prevotella, and Akkermansia, and maintained intestinal barrier integrity. The faecal metabolic map showed that the contents of glycogen amino acids, such as proline, serine, and leucine, increased. The contents of cholic, capric, and dodecanoic acid decreased. In summary, we may suggest that LBO can be used as a prebiotic for treating T2D.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, 251200, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
39
|
Anti-Inflammatory Effects of Melatonin in Rats with Induced Type 2 Diabetes Mellitus. Life (Basel) 2022; 12:life12040574. [PMID: 35455066 PMCID: PMC9029934 DOI: 10.3390/life12040574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction: Insulin resistance is associated with a pro-inflammatory state increasing the risk for complications in patients with type 2 diabetes mellitus (T2DM). In addition to its chronobiotic effects, the pineal hormone melatonin is known to exert anti-inflammatory and antioxidant effects. Melatonin was also suggested to affect insulin secretion. The aim of this study was therefore to investigate the effect of melatonin on inflammation in diabetic rats and to study the possible involvement of the melatonin receptor, MT2. Materials and Methods: Male Sprague Dawley rats were randomly divided into four experimental groups (n = 10 per group): (1) control, (2) streptozotocin/nicotinamide induced diabetes type 2 (T2DM), (3) T2DM treated with melatonin (500 µg/kg/day), and (4) T2DM treated with melatonin (500 µg/kg/day for 6 weeks) and the selective MT2 receptor antagonist luzindole (0.25 g/kg/day for 6 weeks). Blood samples were taken for biochemical parameters and various tissue samples (liver, adipose tissue, brain) were removed for immunohistochemistry (IHC), Western blot (WB), and Q-PCR analyses, respectively. Results: Melatonin significantly reduced increased blood levels of liver transaminases (AST, ALT), blood urea nitrogen (BUN), triglyceride, very low-density lipoprotein (VLDL), and cholesterol in diabetic rats with luzindole treatment partly reversing this effect regarding the lipids. Furthermore, the liver and adipose tissues of T2DM rats treated with melatonin showed lower expression of the inflammatory markers IL-1β, IL-6, TNF-α, and NF-κB as compared to the T2DM group without melatonin. The results also showed that the MT2 receptor is at least partly involved in the protective effects of melatonin. Conclusions: Our results suggest that melatonin exerts relevant anti-inflammatory effects on various tissues in type 2 diabetic rats.
Collapse
|
40
|
Amer ME, Amer MA, Othman AI, Elsayed DA, El-Missiry MA, Ammar OA. Silymarin inhibits the progression of Ehrlich solid tumor via targeting molecular pathways of cell death, proliferation, angiogenesis, and metastasis in female mice. Mol Biol Rep 2022; 49:4659-4671. [PMID: 35305227 DOI: 10.1007/s11033-022-07315-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Plant-derived phytochemicals have been reported to exert anticancer activity. This study investigated the antitumor role of silymarin (Silybum marianum) (SMN) and its molecular targets in Ehrlich solid tumor xenografts in vivo. METHODS AND RESULTS Female Swiss albino mice were divided into three groups (of five animals each) that were engrafted with Ehrlich tumor (ET) cells with or without SMN treatment. The 3rd groups treated with DMSO only vehicle control group. A significant reduction in animal body mass and tumor volume/weight were observed in xenografted mice treated with SMN. SMN modulated oxidative stress in tumors while enhancing the antioxidant levels in mouse serum. SMN activated both mitochondrial and death receptor-related apoptosis pathways and induced cell cycle arrest, marked by a significant downregulation of cyclin D1 in SMN-treated tumors. Significant decreases in RNA content and protein expression levels of Ki-67 and proliferating cell nuclear antigen were observed in ET cells. Additionally, SMN downregulated vascular endothelial growth factor and nuclear factor-kappa B levels indicating anti-angiogenesis activity of this agent. SMN upregulated the expression of E-cadherin in tumor tissue suggesting, that SMN has potential ability to inhibit metastasis. Tumor tissue from SMN-treated animals showed a remarkable degeneration and reduction in the neoplastic cell density. CONCLUSIONS The anticancer effect was associated with apparent apoptosis in neoplastic cells with abundance of multifocal necrotic areas. SMN was found to inhibit ET growth via enhancing apoptosis, inhibition of cell division and reduction in angiogenesis in vivo. Hypothetical scheme of SMN antitumor effects (mechanism of signaling) in solid ET in vivo. SMN anticancer effect may be mediated by molecular mediators that affect proliferation, cell cycle activity, apoptotic pathways, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Maggie E Amer
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt.
| | - Maher A Amer
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | - Doaa A Elsayed
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | | | - Omar A Ammar
- Basic Science Department, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
41
|
Huang K, Luo X, Zhong Y, Deng L, Feng J. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect 2022; 10:e00904. [PMID: 35005848 PMCID: PMC8929360 DOI: 10.1002/prp2.904] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiovascular complications and impaired cardiac function are considered to be the main causes of death in diabetic patients worldwide, especially patients with type 2 diabetes mellitus (T2DM). An increasing number of studies have shown that melatonin, as the main product secreted by the pineal gland, plays a vital role in the occurrence and development of diabetes. Melatonin improves myocardial cell metabolism, reduces vascular endothelial cell death, reverses microcirculation disorders, reduces myocardial fibrosis, reduces oxidative and endoplasmic reticulum stress, regulates cell autophagy and apoptosis, and improves mitochondrial function, all of which are the characteristics of diabetic cardiomyopathy (DCM). This review focuses on the role of melatonin in DCM. We also discuss new molecular findings that might facilitate a better understanding of the underlying mechanism. Finally, we propose potential new therapeutic strategies for patients with T2DM.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
42
|
Saeed M, Sharif A, Hassan SU, Akhtar B, Muhammad F, Malik M. Cyperus iria aqueous-ethanol extract ameliorated hyperglycemia, oxidative stress, and regulated inflammatory cytokines in streptozotocin-induced diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4769-4784. [PMID: 34417690 DOI: 10.1007/s11356-021-15917-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Type 2 diabetes mellitus is a complicated metabolic disorder with no definite treatment. Cyperus iria (Cyperaceae) possess several traditional therapeutic uses. According to the folklore tales, the whole plant of Cyperus iria possesses antihyperglycemic activity. The present study was undertaken to investigate whether aqueous-ethanol extract of Cyperus iria can ameliorate the altered activities of carbohydrate metabolism in streptozotocin (STZ)-induced diabetic rats along with appraisal of inflammatory and stress markers involved in endocrine dysfunction. Presence of biophenolics and flavonoids might be responsible for the antidiabetic potential. STZ-induced diabetic rats were treated orally with Cyperus iria extract (125, 250, and 500 mg/kg) for 15 days. Blood samples were collected. Metformin was used as positive control. Significantly higher quantities of phenolic (82.79±0.003 mg/g GAE) and flavonoid (13.61±0.002 mg/g QE) contents were present. Inhibitory concentration (IC50) exhibited an excellent potential for both antioxidant (IC50= 3.22 μg/mL) and alpha amylase (IC50=36.29 μg/mL) inhibitory assays. High-performance liquid chromatography (HPLC) confirmed the existence of myercetin, quercetin, kaempferol, and ferulic acid. Cyperus iria aqueous-ethanol extract exhibits good tolerance against glucose at 90 min in normal rats. Streptozotocin-induced hyperglycemia declined significantly at day 9 (265 mg/dL) along with improvement in inflammatory (TNF-α=15.6± 0.2 g/l, COX-2=357±0.396 U/l, IL-6= 572±0.99 pg/l) and oxidative stress markers (SOD= 163±0.616 and GSH-ST= 95.8±0.44 U/mL) along with biochemical parameters in a dose-dependent manner. Present study suggests that Cyperus iria aqueous-ethanol extract possesses hypoglycemic potential which might be attributed to the decrease in oxidative stress and inflammatory markers.
Collapse
Affiliation(s)
- Myeda Saeed
- Faculty of Pharmacy, Faculty of Allied Healh and Sciences, The University of Lahore, Lahore, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan.
| | - Saeed Ul Hassan
- Imran Idress College of Pharmacy, 3-km Daska Road, Sialkot, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Maryam Malik
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|