1
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
2
|
Schöckel L, Woischke C, Surendran SA, Michl M, Schiergens T, Hölscher A, Glass F, Kreissl P, Klauschen F, Günther M, Ormanns S, Neumann J. PPARG activation promotes the proliferation of colorectal cancer cell lines and enhances the antiproliferative effect of 5-fluorouracil. BMC Cancer 2024; 24:234. [PMID: 38378472 PMCID: PMC10877928 DOI: 10.1186/s12885-024-11985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPARG) is a member of the nuclear receptor family. It is involved in the regulation of adipogenesis, lipid metabolism, insulin sensitivity, vascular homeostasis and inflammation. In addition, PPARG agonists, known as thiazolidinediones, are well established in the treatment of type 2 diabetes mellitus. PPARGs role in cancer is a matter of debate, as pro- and anti-tumour properties have been described in various tumour entities. Currently, the specific role of PPARG in patients with colorectal cancer (CRC) is not fully understood. MATERIAL AND METHODS The prognostic impact of PPARG expression was investigated by immunohistochemistry in a case-control study using a matched pair selection of CRC tumours (n = 246) with either distant metastases to the liver (n = 82), lung (n = 82) or without distant metastases (n = 82). Its effect on proliferation as well as the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU) was examined after activation, inhibition, and transient gene knockdown of PPARG in the CRC cell lines SW403 and HT29. RESULTS High PPARG expression was significantly associated with pulmonary metastasis (p = 0.019). Patients without distant metastases had a significantly longer overall survival with low PPARG expression in their tumours compared to patients with high PPARG expression (p = 0.045). In the pulmonary metastasis cohort instead, a trend towards longer survival was observed for patients with high PPARG expression in their tumour (p = 0.059). Activation of PPARG by pioglitazone and rosiglitazone resulted in a significant dose-dependent increase in proliferation of CRC cell lines. Inhibition of PPARG by its specific inhibitor GW9662 and siRNA-mediated knockdown of PPARG significantly decreased proliferation. Activating PPARG significantly increased the CRC cell lines sensitivity to 5-FU while its inhibition decreased it. CONCLUSION The prognostic effect of PPARG expression depends on the metastasis localization in advanced CRC patients. Activation of PPARG increased malignancy associated traits such as proliferation in CRC cell lines but also increases sensitivity towards the chemotherapeutic agent 5-FU. Based on this finding, a combination therapy of PPARG agonists and 5-FU-based chemotherapy constitutes a promising strategy which should be further investigated.
Collapse
Affiliation(s)
- Leah Schöckel
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Christine Woischke
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Sai Agash Surendran
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Marlies Michl
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Schiergens
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
| | - Michael Günther
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
- Innpath Institute for Pathology GmbH, Tirol Kliniken, Innsbruck, Austria
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
- Innpath Institute for Pathology GmbH, Tirol Kliniken, Innsbruck, Austria
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany.
| |
Collapse
|
3
|
Purnama A, Lukman K, Rudiman R, Prasetyo D, Fuadah Y, Nugraha P, Candrawinata VS. The prognostic value of COX-2 in predicting metastasis of patients with colorectal cancer: A systematic review and meta analysis. Heliyon 2023; 9:e21051. [PMID: 37876424 PMCID: PMC10590949 DOI: 10.1016/j.heliyon.2023.e21051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction COX-2 is overexpressed in colorectal tumour tissue relative to the healthy colonic mucosa, thus we investigated the prognostic significance of COX-2 in determining the metastasis of patients with colorectal cancer. Methods PubMed, EMBASE, and Cochrane Library were searched using the following terms colorectal cancer, colon cancer, rectal cancer, colorectal carcinoma, Cyclooxygenase-2, and prognosis to identify articles providing information on the prognostic importance of COX-2 in adult patients with metastatic colorectal cancer. Review papers, non-research letters, comments, case reports, animal studies, original research with sample sizes of fewer than 20, case reports and series, non-English language articles, and pediatric studies (those under the age of 17) were excluded. The Newcastle Ottawa Scale (NOS) was used to assess the credibility of the included studies. The full texts were evaluated and this study complied with the terms of the local protocol and the Helsinki Declaration. Results Eight relevant studies were included in this review involving 937 patients. The meta-analysis revealed that COX-2 expression is associated with lymph node invasion (RR 1.85 [1.21, 2.83], P = 0.005, I2 = 88 %) and liver metastasis (RR 4.90 [1.12, 21.57], P = 0.04, I2 = 42 %), but not with venous dissemination (RR 1.48 [0.72, 3.03], P = 0.28, I2 = 87 %). Conclusion COX-2 expression is associated with lymph node invasion in colorectal cancer but further studies are required to determine the prognostic significance of COX-2 expression in determining metastasis status for colorectal cancer patients.
Collapse
Affiliation(s)
- Andriana Purnama
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Kiki Lukman
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Reno Rudiman
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Dwi Prasetyo
- Division of Pediatric Gastroenterology, Department of Pediatric, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Yoni Fuadah
- Department of Forensic and Medicolegal, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Prapanca Nugraha
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | | |
Collapse
|
4
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
5
|
Gomaa W, Al-Maghrabi H, Al-Maghrabi J. The prognostic significance of immunostaining of Wnt signalling pathway molecules, E-cadherin and β-catenin in colorectal carcinomacolorectal carcinoma. Arab J Gastroenterol 2021; 22:137-145. [PMID: 34088623 DOI: 10.1016/j.ajg.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND STUDY AIMS Colorectal carcinoma (CRC) is associated with high morbidity and mortality. The E-cadherin-catenin complex is crucial in the development and progression of carcinomas. This study was conducted to evaluate the relation between E-cadherin and β-catenin immunostaining and CRC outcome. PATIENTS AND METHODS Tissue microarrays were constructed from CRC, nodal metastases, adenomas, and normal mucosa. E-cadherin and β-catenin immunostaining was performed, and results were analyzed. RESULTS For E-cadherin, the membranous fraction (MF) was higher in normal mucosa, adenoma, CRC, and nodal metastasis than the cytoplasmic fraction (CF), but no difference in nodal metastasis was observed. A low MF in CRC was associated with disease relapse. For β-catenin, high MF and CF in normal mucosa, adenoma, CRC, and nodal metastasis were observed, whereas the nuclear fraction (NF) was high only in CRC. In CRC, a high CF was associated with nodal metastasis and the incidence of relapse and predicted nodal metastasis. A high NF could predict distance metastasis. A high CF in CRC was associated with favorable disease-free survival and overall survival. CONCLUSION Reduced E-cadherin and β-catenin immunostaining in CRC is related to prognostic factors. The Wnt/β-catenin pathway may play a crucial role in CRC progression and help identify the high risk of adverse outcomes and indicate close follow-up.
Collapse
Affiliation(s)
- Wafaey Gomaa
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pathology, Faculty of Medicine, Minia University, Al-Minia, Egypt
| | - Haneen Al-Maghrabi
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pathology, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Tang H, Zheng J, Bai X, Yue KL, Liang JH, Li DY, Wang LP, Wang JL, Guo Q. Forkhead Box Q1 Is Critical to Angiogenesis and Macrophage Recruitment of Colorectal Cancer. Front Oncol 2020; 10:564298. [PMID: 33330033 PMCID: PMC7734287 DOI: 10.3389/fonc.2020.564298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis and the tumor microenvironment (TME) play important roles in tumorigenesis. Forkhead box Q1 (FOXQ1) is a well-established oncogene in multiple tumors, including colorectal cancer (CRC); however, whether FOXQ1 contributes to angiogenesis and TME modification in CRC remains largely uncharacterized. Here, we demonstrate an essential role of FOXQ1-induced angiogenesis and macrophage recruitment in CRC that is related to its ability to promote the migration of endothelial cells and macrophages through activation of the EGF/PDGF pathway and the Twist1/CCL2 axis. We also provide evidence showing that the clinical significance between FOXQ1, Twist1, CCL2, and macrophage infiltration is associated with reduced 8-year survival in CRC patients. Our findings suggest FOXQ1 plays critical roles in the malignancy and progression of CRC, Therefore, FOXQ1 may serve as a therapeutic target for inhibiting angiogenesis and reducing macrophage recruitment in CRC.
Collapse
Affiliation(s)
- Hui Tang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ji Zheng
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Genetic Testing Center, Qingdao Women and Children’s Hospital, Qingdao, China
| | - Xuan Bai
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ke-Lin Yue
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Jian-Hua Liang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Dan-Yang Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Lin-Ping Wang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Jin-Li Wang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Qiang Guo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Landscape of transcriptome variations uncovering known and novel driver events in colorectal carcinoma. Sci Rep 2020; 10:432. [PMID: 31949199 PMCID: PMC6965099 DOI: 10.1038/s41598-019-57311-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
We focused on an integrated view of genomic changes in Colorectal cancer (CRC) and distant normal colon tissue (NTC) to test the effectiveness of expression profiling on identification of molecular targets. We performed transcriptome on 16 primary coupled CRC and NTC tissues. We identified pathways and networks related to pathophysiology of CRC and selected potential therapeutic targets. CRC cells have multiple ways to reprogram its transcriptome: a functional enrichment analysis in 285 genes, 25% mutated, showed that they control the major cellular processes known to promote tumorigenesis. Among the genes showing alternative splicing, cell cycle related genes were upregulated (CCND1, CDC25B, MCM2, MCM3), while genes involved in fatty acid metabolism (ACAAA2, ACADS, ACAT1, ACOX, CPT1A, HMGCS2) were downregulated. Overall 148 genes showed differential splicing identifying 17 new isoforms. Most of them are involved in the pathogenesis of CRC, although the functions of these variants remain unknown. We identified 2 in-frame fusion events, KRT19-KRT18 and EEF1A1-HSP90AB1, encoding for chemical proteins in two CRC patients. We draw a functional interactome map involving integrated multiple genomic features in CRC. Finally, we underline that two functional cell programs are prevalently deregulated and absolutely crucial to determinate and sustain CRC phenotype.
Collapse
|
8
|
Pyo JS, Kim EK. Clinicopathological significance and prognostic implication of nuclear factor-κB activation in colorectal cancer. Pathol Res Pract 2019; 215:152469. [PMID: 31201065 DOI: 10.1016/j.prp.2019.152469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the present study was to evaluate the clinicopathological significance of phosphorylated nuclear factor-κB (pNF-κB) expression, and its impact on epithelial-mesenchymal transition and angiogenesis in colorectal cancer (CRC). METHODS We carried out immunohistochemistry of pNF-κB on 261 human CRC tissues, and evaluated nuclear expression, regardless of cytoplasmic expression. We also investigated the correlation between pNF-κB expression and clinicopathological characteristics, survival, and epithelial-mesenchymal transition and angiogenesis-related markers in CRC. RESULTS pNF-κB was expressed in the nuclei of 164 of the 261 CRC tissues (62.8%). Furthermore, pNF-κB was significantly correlated with frequent perineural invasion, lymph node metastasis, and higher pTNM stage. However, there was no significant correlation between pNF-κB expression and other clinicopathological parameters. Among the epithelial-mesenchymal transition markers examined, SNAIL expression was significantly correlated with pNF-κB expression (P = 0.001) but E-cadherin expression was not. CRC with pNF-κB expression had significantly higher SIRT1 expression levels and hypoxia-inducible factor-1α expression levels than CRC without pNF-κB expression (P < 0.001 and P < 0.001, respectively). However, there was no correlation between the expression levels of pNF-κB and VEGF. pNF-κB expression was significantly correlated with worse overall and recurrence-free survival rates (P < 0.001 and P < 0.001, respectively). CONCLUSION pNF-κB expression was significantly correlated with aggressive tumor behaviors and worse survival rates. Furthermore, pNF-κB expression may affect tumor invasion and progression through SNAIL-related epithelial-mesenchymal transition and SIRT1- and hypoxia-inducible factor-1α-induced angiogenesis.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Eun Kyung Kim
- Department of Pathology, Eulji Hospital, Eulji University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
PPAR α Enhances Cancer Cell Chemotherapy Sensitivity by Autophagy Induction. JOURNAL OF ONCOLOGY 2018; 2018:6458537. [PMID: 30519260 PMCID: PMC6241347 DOI: 10.1155/2018/6458537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Accepted: 10/28/2018] [Indexed: 12/23/2022]
Abstract
PPARα (peroxisome-proliferator-activated receptor α) plays a critical role in regulation of inflammation and cancer, while the regulatory mechanism of PPARα on cancer cell autophagy is still unclear. Here we found that PPARα enhanced autophagy in HEK293T, SW480, and Hela cell lines, which was independent of PPARα transcription activity. PPARα induced antiapoptotic Bcl2 protein degradation resulting in release of the Beclin-1/VPS34 complex. Consistently, silenced PPARα reversed this event. PPARα-induced autophagy significantly inhibited tumor growth and enhanced SW480 cancer cell sensitivity to chemotherapy drugs. Moreover, PPARα agonist increased SW480 cancer cell chemotherapy sensitivity. These findings revealed a novel mechanism of PPARα/Bcl2/autophagy pathway suppressed tumor progression and enhanced chemotherapy sensitivity, which is a potential drug target for cancer treatment.
Collapse
|
10
|
Molecular and Immunohistochemical Markers with Prognostic and Predictive Significance in Liver Metastases from Colorectal Carcinoma. Int J Mol Sci 2018; 19:ijms19103014. [PMID: 30282914 PMCID: PMC6213422 DOI: 10.3390/ijms19103014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Despite the significant recent achievements in the diagnosis and treatment of colorectal cancer (CRC), the prognosis of these patients has currently plateaued. During the past few years, the opportunity to consider multiple treatment modalities (including surgery and other locoregional treatments, systemic therapy, and targeted therapy) led to the research of novel prognostic and predictive biomarkers in CRC liver metastases (CRCLM) patients. In this review, we seek to describe the current state of knowledge of CRCLM biomarkers and to outline impending clinical perspectives, in particular focusing on the cutting-edge tools available for their characterization.
Collapse
|
11
|
Gutting T, Burgermeister E, Härtel N, Ebert MP. Checkpoints and beyond - Immunotherapy in colorectal cancer. Semin Cancer Biol 2018; 55:78-89. [PMID: 29716829 DOI: 10.1016/j.semcancer.2018.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Immunotherapy is the latest revolution in cancer therapy. It continues to show impressive results in malignancies like melanoma and others. At least so far, effects are modest in colorectal cancer (CRC) and only a subset of patients benefits from already approved checkpoint inhibitors. In this review, we discuss major hurdles of immunotherapy like the immunosuppressive niche and low immunogenicity of CRC next to current achievements of checkpoint inhibitors, interleukin treatment and adoptive cell transfer (dendritic cells/cytokine induced killer cells, tumor infiltrating lymphocytes, chimeric antigen receptor cells, T cell receptor transfer) in pre-clinical models and clinical trials. We intensively examine approaches to overcome low immunogenicity by combination of different therapies and address future strategies of therapy as well as the need of predictive factors in this emerging field of precision medicine.
Collapse
Affiliation(s)
- Tobias Gutting
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nicolai Härtel
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Heilig-Geist Hospital Bensheim, Rodensteinstraße 94, 64625 Bensheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
12
|
Vallée A, Lecarpentier Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front Immunol 2018; 9:745. [PMID: 29706964 PMCID: PMC5908886 DOI: 10.3389/fimmu.2018.00745] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammation and oxidative stress are common and co-substantial pathological processes accompanying, promoting, and even initiating numerous cancers. The canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) generally work in opposition. If one of them is upregulated, the other one is downregulated and vice versa. WNT/β-catenin signaling is upregulated in inflammatory processes and oxidative stress and in many cancers, although there are some exceptions for cancers. The opposite is observed with PPARγ, which is generally downregulated during inflammation and oxidative stress and in many cancers. This helps to explain in part the opposite and unidirectional profile of the canonical WNT/β-catenin signaling and PPARγ in these three frequent and morbid processes that potentiate each other and create a vicious circle. Many intracellular pathways commonly involved downstream will help maintain and amplify inflammation, oxidative stress, and cancer. Thus, many WNT/β-catenin target genes such as c-Myc, cyclin D1, and HIF-1α are involved in the development of cancers. Nuclear factor-kappaB (NFκB) can activate many inflammatory factors such as TNF-α, TGF-β, interleukin-6 (IL-6), IL-8, MMP, vascular endothelial growth factor, COX2, Bcl2, and inducible nitric oxide synthase. These factors are often associated with cancerous processes and may even promote them. Reactive oxygen species (ROS), generated by cellular alterations, stimulate the production of inflammatory factors such as NFκB, signal transducer and activator transcription, activator protein-1, and HIF-α. NFκB inhibits glycogen synthase kinase-3β (GSK-3β) and therefore activates the canonical WNT pathway. ROS activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling in many cancers. PI3K/Akt also inhibits GSK-3β. Many gene mutations of the canonical WNT/β-catenin pathway giving rise to cancers have been reported (CTNNB1, AXIN, APC). Conversely, a significant reduction in the expression of PPARγ has been observed in many cancers. Moreover, PPARγ agonists promote cell cycle arrest, cell differentiation, and apoptosis and reduce inflammation, angiogenesis, oxidative stress, cell proliferation, invasion, and cell migration. All these complex and opposing interactions between the canonical WNT/β-catenin pathway and PPARγ appear to be fairly common in inflammation, oxidative stress, and cancers.
Collapse
Affiliation(s)
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
13
|
Zhang S, Wang Z, Shan J, Yu X, Li L, Lei R, Lin D, Guan S, Wang X. Nuclear expression and/or reduced membranous expression of β-catenin correlate with poor prognosis in colorectal carcinoma: A meta-analysis. Medicine (Baltimore) 2016; 95:e5546. [PMID: 27930552 PMCID: PMC5266024 DOI: 10.1097/md.0000000000005546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The differential subcellular localizations of β-catenin (including membrane, cytoplasm, and nucleus) play different roles in the progression of colorectal cancer (CRC). However, the correlation between each subcellular localization of β-catenin and the prognosis of CRC patients remains undetermined. METHODS Systematic strategies were applied to search for eligible published studies in the PubMed, Embase, and Web of Science databases. The correlation between each subcellular localizations of β-catenin expression and patients' clinicopathological features or prognosis was analyzed. RESULTS Finally, this meta-analysis, including 6238 cases from 34 studies, revealed that β-catenin overexpression in the nucleus (HR: 1.50[95% CI: 1.08-2.10]) or reduced expression of β-catenin in the membrane (HR: 1.33[95% CI: 1.15-1.54]) significantly correlated with lower 5-year overall survival (OS). Conversely, overexpression of β-catenin in the cytoplasm (HR: 1.00[95% CI: 0.85-1.18]) did not show significant association with 5-year OS. CONCLUSION This study suggested that β-catenin overexpression in the nucleus or reduced expression in the membrane, but not its overexpression in cytoplasm, could serve as a valuable prognostic predictor for CRC. However, additional large and well-designed prospective studies are required to verify our results.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Oncology and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Wang
- Department of Oncology and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinlan Shan
- Department of Oncology and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuyan Yu
- Department of Oncology and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Li
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Rui Lei
- Department of Plastic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Daozhe Lin
- Department of surgical oncology, Third Affiliate Hospital of Wenzhou Medical University, Wenzhou
| | - Siqi Guan
- Department of Reproductive, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaochen Wang
- Department of Oncology and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Commonalities in the Association between PPARG and Vitamin D Related with Obesity and Carcinogenesis. PPAR Res 2016; 2016:2308249. [PMID: 27579030 PMCID: PMC4992792 DOI: 10.1155/2016/2308249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
The PPAR nuclear receptor family has acquired great relevance in the last decade, which is formed by three different isoforms (PPARα, PPARβ/δ, and PPAR ϒ). Those nuclear receptors are members of the steroid receptor superfamily which take part in essential metabolic and life-sustaining actions. Specifically, PPARG has been implicated in the regulation of processes concerning metabolism, inflammation, atherosclerosis, cell differentiation, and proliferation. Thus, a considerable amount of literature has emerged in the last ten years linking PPARG signalling with metabolic conditions such as obesity and diabetes, cardiovascular disease, and, more recently, cancer. This review paper, at crossroads of basic sciences, preclinical, and clinical data, intends to analyse the last research concerning PPARG signalling in obesity and cancer. Afterwards, possible links between four interrelated actors will be established: PPARG, the vitamin D/VDR system, obesity, and cancer, opening up the door to further investigation and new hypothesis in this fascinating area of research.
Collapse
|
15
|
Däster S, Eppenberger-Castori S, Hirt C, Soysal SD, Delko T, Nebiker CA, Weixler B, Amicarella F, Iezzi G, Governa V, Padovan E, Mele V, Sconocchia G, Heberer M, Terracciano L, Kettelhack C, Oertli D, Spagnoli GC, von Holzen U, Tornillo L, Droeser RA. Absence of myeloperoxidase and CD8 positive cells in colorectal cancer infiltrates identifies patients with severe prognosis. Oncoimmunology 2015; 4:e1050574. [PMID: 26587320 PMCID: PMC4635694 DOI: 10.1080/2162402x.2015.1050574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) infiltration by cells expressing myeloperoxidase (MPO) or CD8 positive T lymphocytes has been shown to be independently associated with favorable prognosis. We explored the relationship occurring between CD8+ and MPO+ cell CRC infiltration, its impact on clinical-pathological features and its prognostic significance in a tissue microarray (TMA) including 1,162 CRC. We observed that CRC showing high MPO+ cell infiltration are characterized by a prognosis as favorable as that of cancers with high CD8+ T cell infiltration. However, MPO+ and CD8+ CRC infiltrating cells did not synergize in determining a more favorable outcome, as compared with cancers showing MPOhigh/CD8low or MPOlow/CD8high infiltrates. Most importantly, we identified a subgroup of CRC with MPOlow/CD8low tumor infiltration characterized by a particularly severe prognosis. Intriguingly, although MPO+ and CD8+ cells did not co-localize in CRC infiltrates, an increased expression of TIA-1 and granzyme-B was detectable in T cells infiltrating CRC with high MPO+ cell density.
Collapse
Affiliation(s)
- Silvio Däster
- Department of Surgery; University Hospital Basel; Basel, Switzerland
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | | | - Christian Hirt
- Department of Surgery; University Hospital Basel; Basel, Switzerland
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Savas D Soysal
- Department of Surgery; University Hospital Basel; Basel, Switzerland
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Tarik Delko
- Department of Surgery; University Hospital Basel; Basel, Switzerland
| | - Christian A Nebiker
- Department of Surgery; University Hospital Basel; Basel, Switzerland
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Benjamin Weixler
- Department of Surgery; University Hospital Basel; Basel, Switzerland
| | - Francesca Amicarella
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Giandomenica Iezzi
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Valeria Governa
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Elisabetta Padovan
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Valentina Mele
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, Department of Biomedicine; National Research Council, Rome, Italy
| | - Michael Heberer
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology; University Hospital Basel; Basel, Switzerland
| | | | - Daniel Oertli
- Department of Surgery; University Hospital Basel; Basel, Switzerland
| | - Giulio C Spagnoli
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| | - Urs von Holzen
- Department of Surgery; University Hospital Basel; Basel, Switzerland
- Indiana University School of Medicine South Bend, Indiana University Health Goshen Center for Cancer Care, Goshen, IN, USA
| | - Luigi Tornillo
- Institute of Pathology; University Hospital Basel; Basel, Switzerland
| | - Raoul A Droeser
- Department of Surgery; University Hospital Basel; Basel, Switzerland
- Institute of Surgical Research and Hospital Management, Department of Biomedicine; University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Wu D, Wu P, Zhao L, Huang L, Zhang Z, Zhao S, Huang J. NF-κB Expression and Outcomes in Solid Tumors: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 2015; 94:e1687. [PMID: 26448015 PMCID: PMC4616757 DOI: 10.1097/md.0000000000001687] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor-kappaB (NF-κB) is a key inflammatory transcription factor expressed frequently in tumors. Numerous studies have investigated the correlation between NF-κB expression and prognosis in solid tumors, but the conclusions are still in contradiction. Here, we conduct a meta-analysis to explore the overall association of NF-κB overexpression and survival in human solid tumors. Pubmed and EBSCO databases were searched for studies evaluating expression of NF-κB (as measured by immunohistochemistry) and overall survival (OS) and disease-free survival (DFS) in solid tumors. Published data were extracted and computed into odds ratios (ORs) for death at 3, 5, and 10 years. Data were pooled using the Mantel-Haenszel random-effect model. All statistical tests were two-sided. Forty-four studies with a total of 4418 patients were included in this meta-analysis. NF-κB overexpression was associated with worse OS at 3 years (OR = 3.40, 95% confidence interval [CI] = 2.41-4.79, P < 0.00001), 5 years (OR = 2.72, 95% CI = 1.92-3.85, P < 0.00001), and 10 years (OR = 2.63, 95% CI = .34-5.16, P = 0.005) of solid tumors. Results for 3- and 5-year DFS were similar. NF-κB expression was associated with poor 3-year OS in both Tumor, Lymph Node, Metastasis stage I-II (OR = 9.11, 95% CI = 2.90-28.68, P = 0.0002) and III-IV (OR = 2.59, 95% CI = 1.61-4.15, P < 0.0001). There is no correlation between cellular localization of NF-kB overexpression and OS of solid tumors. Among the tumor types, NF-κB was associated with worse 3 year-OS of colorectal cancer (OR = 2.70, 95% CI = 1.64-4.46, P < 0.0001), esophageal carcinoma (OR = 6.00, 95% CI = 3.29-10.94, P < 0.0001) and worse 5 year-OS of colorectal cancer (OR = 2.72, 95% CI = 1.92-3.85, P < 0.00001), esophageal carcinoma (OR = 5.96, 95% CI = 3.48-10.18, P = 0.03), and nonsmall cell lung cancer (OR = 1.69, 95% CI = 1.20-2.38, P = 0.002). Expression of NF-κB is associated with worse survival in most solid tumors irrespective of NF-κB localization.
Collapse
Affiliation(s)
- Dang Wu
- From the Department of Radiation Oncology (DW); Department of Surgical Oncology (SZ, JH); Department of Thoracic Surgery (PW, LZ, LH); Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences) (DW, PW, ZZ, SZ, JH); and Department of Gynaecology and Obstetrics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (ZZ)
| | | | | | | | | | | | | |
Collapse
|
17
|
Kwon KA, Yun J, Oh SY, Seo BG, Lee S, Lee JH, Kim SH, Choi HJ, Roh MS, Kim HJ. Clinical Significance of Peroxisome Proliferator-Activated Receptor γ and TRAP220 in Patients with Operable Colorectal Cancer. Cancer Res Treat 2015; 48:198-207. [PMID: 26130665 PMCID: PMC4720060 DOI: 10.4143/crt.2015.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/30/2015] [Indexed: 11/21/2022] Open
Abstract
Purpose The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that regulates expression of mediators of lipid metabolism and the inflammatory response. Thyroid hormone receptor-associated proteins 220 (TRAP220) is an essential component of the TRAP/Mediator complex. The objective of this study was to clarify whether PPARγ or TRAP220 are significant prognostic markers in resectable colorectal cancer (CRC). Materials and Methods A total of 399 patients who underwent curative resection for CRC were enrolled. We investigated the presence of PPARγ and TARP220 in CRC tissues and adjacent normal tissues by immunohistochemistry. Correlation between the expression of these factors and clinicopathologic features and survival was investigated. Results Median age of the patients was 63 years (range, 22 to 87 years), and median follow-up duration 61.1 months (range, 2 to 114 months). PPARγ and TRAP220 expression showed significant correlation with depth of invasion (p=0.013 and p=0.001, respectively). Expression of TRAP220 also showed association with lymph node metastasis and TNM stage (p=0.001). Compared with patients with TRAP220 negative tumors, patients with TRAP220 positive tumors had longer 5-year disease-free survival (DFS) tendency (p=0.051). Patients who were PPARγ positive combined with TRAP220 positive had a better 5-year DFS (64.8% vs. 79.3%, p=0.013). In multivariate analysis expression of both PPARγ and TRAP220 significantly affected DFS (hazard ratio, 0.620; 95% confidence interval, 0.379 to 0.997; p=0.048). Conclusion TRAP220 may be a valuable marker for nodal metastasis and TNM stage. Tumor co-expression of PPARγ and TRAP220 represents a biomarker for good prognosis in CRC patients.
Collapse
Affiliation(s)
- Kyung A Kwon
- Division of Hematology-Oncology, Department of Internal Medicine, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Jeanho Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Korea
| | - Sung Yong Oh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Bong-Gun Seo
- Division of Hematology-Oncology, Department of Internal Medicine, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Suee Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ji-Hyun Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sung-Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Hong Jo Choi
- Department of Surgery, Dong-A University College of Medicine, Busan, Korea
| | - Mee Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
| | - Hyo-Jin Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
18
|
Jankova L, Dent OF, Molloy MP, Chan C, Chapuis PH, Howell VM, Clarke SJ. Reporting in studies of protein biomarkers of prognosis in colorectal cancer in relation to the REMARK guidelines. Proteomics Clin Appl 2015; 9:1078-86. [PMID: 25755195 DOI: 10.1002/prca.201400177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 12/28/2022]
Abstract
PURPOSE The REMARK guidelines give authors comprehensive and specific advice on the complete and transparent reporting of studies of prognostic tumor markers. The aim of this study was to use the REMARK guidelines to evaluate the quality of reporting in a sample of studies assessing tissue-based protein markers for survival after resection of colorectal cancer. EXPERIMENTAL DESIGN Eighty pertinent articles were scored according to their conformity to 26 items derived from the REMARK criteria. RESULTS Overall, on a scale of adequacy of reporting that potentially ranged from 26 to 78, the median for these studies was 60 (interquartile range 54-64) and several criteria were adequately covered in a large proportion of studies. However, others were either not dealt with or inadequately covered, including description of the study design (35%), definition of survival endpoints (48%), adjuvant therapy (54%), follow-up procedures and time (59%), neoadjuvant therapy (63%), inclusion/exclusion criteria (73%), multivariable modeling methods and results (74%), and discussion of study limitations (85%). CONCLUSIONS AND CLINICAL RELEVANCE Inadequacies in presentation militate against comparability among protein marker studies and undermine the generalizability of their findings. The quality of reporting could be improved if journal editors were to require authors to ensure that their work satisfied the REMARK criteria.
Collapse
Affiliation(s)
- Lucy Jankova
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Owen F Dent
- Department of Colorectal Surgery, Concord Hospital, The University of Sydney, Sydney, NSW, Australia.,Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Charles Chan
- Department of Anatomical Pathology, Concord Hospital, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Pierre H Chapuis
- Department of Colorectal Surgery, Concord Hospital, The University of Sydney, Sydney, NSW, Australia.,Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen J Clarke
- Department of Medical Oncology, Royal North Shore Hospital, The University of Sydney, Sydney, NSW, Australia.,Discipline of Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Chemotherapy and chemoprevention by thiazolidinediones. BIOMED RESEARCH INTERNATIONAL 2015; 2015:845340. [PMID: 25866814 PMCID: PMC4383438 DOI: 10.1155/2015/845340] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
Abstract
Thiazolidinediones (TZDs) are synthetic ligands of Peroxisome-Proliferator-Activated Receptor gamma (PPARγ). Troglitazone, rosiglitazone, and pioglitazone have been approved for treatment of diabetes mellitus type II. All three compounds, together with the first TZD ciglitazone, also showed an antitumor effect in preclinical studies and a beneficial effect in some clinical trials. This review summarizes hypotheses on the role of PPARγ in tumors, on cellular targets of TZDs, antitumor effects of monotherapy and of TZDs in combination with other compounds, with a focus on their role in the treatment of differentiated thyroid carcinoma. The results of chemopreventive effects of TZDs are also considered. Existing data suggest that the action of TZDs is highly complex and that actions do not correlate with cellular PPARγ expression status. Effects are cell-, species-, and compound-specific and concentration-dependent. Data from human trials suggest the efficacy of TZDs as monotherapy in prostate cancer and glioma and as chemopreventive agent in colon, lung, and breast cancer. TZDs in combination with other therapies might increase antitumor effects in thyroid cancer, soft tissue sarcoma, and melanoma.
Collapse
|
20
|
Balzi M, Ringressi MN, Faraoni P, Booth C, Taddei A, Boni L, Bechi P. B-cell lymphoma 2 and β-catenin expression in colorectal cancer and their prognostic role following surgery. Mol Med Rep 2015; 12:553-60. [PMID: 25738398 DOI: 10.3892/mmr.2015.3385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
The prognosis of colorectal cancer depends on the stage of the disease. However, even within the same stage there may be different outcomes in terms of recurrence and survival. Therefore, it is clear that as well as pathological stage, novel biomarkers that are capable of improving risk stratification and therapeutic decision-making are required. The present study aimed to evaluate the potential roles of two previously proposed biomarkers of tumour status: B-cell lymphoma 2 (Bcl-2) and β-catenin. A total of 412 patients undergoing surgery for primary colorectal cancer were studied. Tumour specimens of the patients were collected, fixed and processed for immunohistochemical detection of Bcl-2 and β-catenin. The data were then analyzed in relation to disease-free survival and overall survival. Pathological stage was the only variable that was significantly correlated with both disease-free and overall survival. The expression levels of neither Bcl-2 nor β-catenin were able to accurately predict prognosis. However, there was a clear association between nuclear β-catenin expression levels and disease-free survival in the three tumour stages. There was an increased hazard ratio in stage I and II nuclear β-catenin positive tumours, whereas there was a marked decrease in risk in stage III positive tumours. A similar effect was also observed with regards to overall survival, however this finding was not significant. The results of the present study suggest that conventional pathological tumour staging is the only accurate prognostic method. Neither Bcl-2 or β-catenin were shown to be useful biomarkers for the prognosis of colorectal cancer. However, the heterogeneous behaviour of nuclear β-catenin expression in the various tumour stages may indicate a possible role in predicting the response of patients to chemotherapy. Therefore, nuclear β-catenin expression may be a biomarker for the prediction of improved responses to chemotherapy.
Collapse
Affiliation(s)
- Manuela Balzi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence 50139, Italy
| | - Maria Novella Ringressi
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy
| | - Paola Faraoni
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence 50139, Italy
| | - Catherine Booth
- Epistem Limited, Incubator Building, Manchester M13 9XX, United Kingdom
| | - Antonio Taddei
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy
| | - Luca Boni
- Clinical Trials Coordinating Center, Careggi Hospital and Tumour Institute of Tuscany, Florence 50134, Italy
| | - Paolo Bechi
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
21
|
Hedbrant A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line. Int J Oncol 2014; 46:37-46. [PMID: 25310018 PMCID: PMC4238731 DOI: 10.3892/ijo.2014.2696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022] Open
Abstract
Resistance of tumor cells to chemotherapy, such as 5-fluorouracil (5-FU), is an obstacle for successful treatment of cancer. As a follow-up of a previous study we have investigated the effect of conditioned media (CM) from macrophages of M1 or M2 phenotypes on 5-FU cytotoxicity on the colon cancer cell lines HT-29 and CACO-2. HT-29 cells, but not CACO-2 cells, having been treated with a combination of M1 CM and 5-FU recovered their cell growth to a much larger extent compared to cells having been treated with 5-FU alone when further cultured for 7 days in fresh media. M1 CM treatment of HT-29, but not CACO-2 cells, induced cell cycle arrest in the G0/G1 and G2/M phases. 5-FU treatment induced accumulation of cells in S-phase in both HT-29 and CACO-2 cells. This accumulation of cells in S-phase was attenuated by combined M1 CM and 5-FU treatment in HT-29 cells, but not in CACO-2 cells. The mRNA expression of cell cycle regulatory proteins and 5-FU metabolic enzymes were analyzed in an attempt to find possible mechanisms for the M1 CM induced attenuation of 5-FU cytotoxicity in HT-29. Thymidylate synthetase (TS) and thymidine phosphorylase (TP) were found to be substantially downregulated and upregulated, respectively, in HT-29 cells treated with M1 CM, making them unlikely as mediators of reduced 5-FU cytotoxicity. Among cell cycle regulating proteins, p21 was induced in HT-29 cells, but not in CACO-2 cells, in response to M1 CM treatment. However, small interfering RNA (siRNA) knockdown of p21 had no effect on the M1 CM induced cell cycle arrest seen in HT-29 and neither did it change the growth recovery after combined treatment of HT-29 cells with M1 CM and 5-FU. In conclusion, treatment of HT-29 cells with M1 CM reduces the cytotoxic effect of 5-FU and this is mediated by a M1 CM induced cell cycle arrest in the G0/G1 and G2/M phases. So far, we lack an explanation why this action is absent in the CACO-2 cells. The current findings may be important for optimization of chemotherapy in colon cancer.
Collapse
Affiliation(s)
| | - Ann Erlandsson
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Dick Delbro
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
22
|
Cho SJ, Kook MC, Lee JH, Shin JY, Park J, Bae YK, Choi IJ, Ryu KW, Kim YW. Peroxisome proliferator-activated receptor γ upregulates galectin-9 and predicts prognosis in intestinal-type gastric cancer. Int J Cancer 2014; 136:810-20. [PMID: 24976296 DOI: 10.1002/ijc.29056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/13/2014] [Indexed: 12/23/2022]
Abstract
The importance of PPARγ (peroxisome proliferator-activated receptor γ) in gastric cancer (GC) is unclear. We investigated the role of PPARγ in GC cell lines and an animal model, and its prognostic significance of PPARγ in GC patients. We controlled PPARγ and galectin-9 expression by using siRNAs and lentiviral constructs. Interaction between PPARγ and galectin-9 was evaluated using luciferase and chromatin immunoprecipitation assays. PPARγ expression in GCs was determined by immunohistochemical staining of tissue microarrays and survival analysis was done. Overexpression of PPARγ was accompanied by increased galectin-9. Enhanced PPARγ or galectin-9 expression increased E-cadherin expression; decreased expression of N-cadherin, fibronectin, snail, twist and slug and reduced cell invasion and migration. PPARγ bound to the galectin-9 promoter region. Galectin-9 activity increased in PPARγ-overexpressing cells but decreased in PPARγ siRNA-treated cells. In a zebrafish xenograft model, the number of migrated cancer cells and number of fish with AGS cells in the tail vein were reduced in PPARγ-overexpressing GC cells. PPARγ was expressed in 462 of the 688 patients (69.2%) with GC. In 306 patients with intestinal-type GC, those with PPARγ-positive tumors had lower overall and cancer-specific mortalities than those with PPARγ-negative tumors. PPARγ expression was an independent prognostic factor for overall and GC-specific mortality in patients with intestinal-type GC (adjusted hazard ratio, 0.42; 95% CI, 0.22-0.81). PPARγ inhibits cell invasion, migration and epithelial-mesenchymal transition through upregulation of galectin-9 in vitro and in vivo.
Collapse
Affiliation(s)
- Soo-Jeong Cho
- Center for Gastric Cancer, National Cancer Center, Gyeonggi, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sabatino L, Pancione M, Votino C, Colangelo T, Lupo A, Novellino E, Lavecchia A, Colantuoni V. Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World J Gastroenterol 2014; 20:7137-7151. [PMID: 24966585 PMCID: PMC4064060 DOI: 10.3748/wjg.v20.i23.7137] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/15/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple lines of evidence indicate that Wnt/β-catenin signaling plays a fundamental role in colorectal cancer (CRC) initiation and progression. Recent genome-wide data have confirmed that in CRC this pathway is one of the most frequently modified by genetic or epigenetic alterations affecting almost 90% of Wnt/β-catenin gene members. A major challenge is thus learning how the corrupted coordination of this pathway is tied to other signalings to enhance cell growth. Peroxisome proliferator activated receptor γ (PPARγ) is emerging as a growth-limiting and differentiation-promoting factor. In tumorigenesis it exerts a tumor suppressor role and is potentially linked with the Wnt/β-catenin pathway. Based on these results, the identification of new selective PPARγ modulators with inhibitory effects on the Wnt/β-catenin pathway is becoming an interesting perspective. Should, in fact, these molecules display such properties, new research avenues would be opened aimed at developing new molecular targeted drugs. Herein, we review the basic principles and present new hypotheses underlying the crosstalk between Wnt/β-catenin and PPARγ signaling. Furthermore, we discuss the advances in our understanding as to how their altered regulation can culminate in colon cancer and the efforts aimed at designing novel PPARγ agonists endowed with Wnt/β-catenin inhibitory effects to be used as therapeutic and/or preventive agents.
Collapse
|
24
|
MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia 2014; 15:1086-99. [PMID: 24027433 DOI: 10.1593/neo.13998] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-130b (miR-130b) is involved in several biologic processes; its role in colorectal tumorigenesis has not been addressed so far. Herein, we demonstrate that miR-130b up-regulation exhibits clinical relevance as it is linked to advanced colorectal cancers (CRCs), poor patients' prognosis, and molecular features of enhanced epithelial-mesenchymal transition (EMT) and angiogenesis. miR-130b high-expressing cells develop large, dedifferentiated, and vascularized tumors in mouse xenografts, features that are reverted by intratumor injection of a specific antisense RNA. In contrast, injection of the corresponding mimic in mouse xenografts from miR-130b low-expressing cells increases tumor growth and angiogenic potential while reduces the epithelial hallmarks. These biologic effects are reproduced in human CRC cell lines. We identify peroxisome proliferator-activated receptor γ (PPARγ) as an miR-130b direct target in CRC in vitro and in vivo. Notably, the effects of PPARγ gain- and loss-of-function phenocopy those due to miR-130b down-regulation or up-regulation, respectively, underscoring their biologic relevance. Furthermore, we provide mechanistic evidences that most of the miR-130b-dependent effects are due to PPARγ suppression that in turn deregulates PTEN, E-cadherin, Snail, and vascular endothelial growth factor, key mediators of cell proliferation, EMT, and angiogenesis. Since higher levels of miR-130b are found in advanced tumor stages (III-IV), we propose a novel role of the miR-130b-PPARγ axis in fostering the progression toward more invasive CRCs. Detection of onco-miR-130b and its association with PPARγ may be useful as a prognostic biomarker. Its targeting in vivo should be evaluated as a novel effective therapeutic tool against CRC.
Collapse
|
25
|
Engström A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol 2013; 44:385-92. [PMID: 24296981 PMCID: PMC3898868 DOI: 10.3892/ijo.2013.2203] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023] Open
Abstract
Solid tumors are infiltrated by stroma cells including macrophages and these cells can affect tumor growth, metastasis and angiogenesis. We have investigated the effects of conditioned media (CM) from different macrophages on the proliferation of the colon cancer cell lines HT-29 and CACO-2. CM from THP-1 macrophages and monocyte-derived human macrophages of the M1 phenotype, but not the M2 phenotype, inhibited proliferation of the tumor cells in a dose-dependent manner. Lipopolysaccaharide and interferon γ was used for differentiation of macrophages towards the M1 phenotype and CM were generated both during differentiation (M1DIFF) and after differentiation (M1). M1 and M1DIFF CM as well as THP-1 macrophage CM resulted in cell cycle arrest in HT-29 cells with a decrease of cells in S phase and an increase in G2/M phase. Treatment of HT-29 cells with M1DIFF, but not M1 or THP-1 macrophage CM, resulted in apoptosis of about 20% of the tumor cells and this was accompanied by lack of recovery of cell growth after removal of CM and subsequent culture in fresh media. A protein array was used to identify cytokines released from M1 and M2 macrophages. Among the cytokines released by M1 macrophages, tumor necrosis factor α and CXCL9 were tested by direct addition to HT-29 cells, but neither affected proliferation. Our results indicate that M1 macrophages inhibit colon cancer cell growth and have the potential of contributing to reducing tumor growth in vivo.
Collapse
Affiliation(s)
| | - Ann Erlandsson
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Dick Delbro
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
26
|
Santin JR, Daufenback Machado I, Rodrigues SFP, Teixeira S, Muscará MN, Lins Galdino S, da Rocha Pitta I, Farsky SHP. Role of an indole-thiazolidine molecule PPAR pan-agonist and COX inhibitor on inflammation and microcirculatory damage in acute gastric lesions. PLoS One 2013; 8:e76894. [PMID: 24124600 PMCID: PMC3790743 DOI: 10.1371/journal.pone.0076894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/27/2013] [Indexed: 01/26/2023] Open
Abstract
The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H+ in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil influx and microcirculatory blood flow mediated by NO.
Collapse
Affiliation(s)
- José Roberto Santin
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Isabel Daufenback Machado
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Stephen F. P. Rodrigues
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Simone Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suely Lins Galdino
- Department of Chemistry, Federal University of Pernambuco, Pernabumbuco, Recife, Brazil
| | - Ivan da Rocha Pitta
- Department of Chemistry, Federal University of Pernambuco, Pernabumbuco, Recife, Brazil
| | - Sandra H. P. Farsky
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
27
|
Lohani K, Shetty S, Sharma P, Govindarajan V, Thomas P, Loggie B. Pseudomyxoma peritonei: inflammatory responses in the peritoneal microenvironment. Ann Surg Oncol 2013; 21:1441-7. [PMID: 24046117 DOI: 10.1245/s10434-013-3261-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pseudomyxoma peritonei (PMP), a peritoneal mucinous neoplasm of appendiceal origin, is associated with inflammation and fibrosis, which is central to its biology. The significance of the microenvironment in PMP has not been well characterized. METHODS Immunoassays were used to measure cytokines and C-reactive protein (CRP). Forty-two cytokines were initially measured in 23 PMP ascites and 10 PMP peritoneal washings. On the basis of these results, matching serum and ascites samples were analyzed for ten relevant cytokines (n = 32) and CRP (n = 28). Immunohistochemistry was performed on formalin-fixed tissue sections. Statistical analysis was by Wilcoxon signed rank test, Mann-Whitney U-test, and bivariate analysis. RESULTS Serum CRP was elevated in PMP and correlated to CRP level in ascites. Interleukin (IL)-6, IL-8 (CXCL8), interferon gamma-induced protein 10 (IP-10), (CXCL10), monocyte chemotactic protein (MCP)-1 (CCL2), and macrophage inflammatory protein (MIP)-1α (CCL3) levels were grossly elevated in ascites but did not correlate with serum levels. Cytokines normally associated with infection or tissue injury (e.g., IL-1, IL-2, interferon gamma) were not elevated. Immunohistochemistry localized IL-6 to stroma, IP-10, and MCP-1 to tumor cells and IL-8 to adipose tissue. There were complex interactions among cytokines. IL-6, in particular, had many significant correlations in ascites. Serum IL-8, MIP-1β, and CRP were higher in PMP compared to controls. CONCLUSIONS The pattern of cytokines in PMP is distinct from infection- or injury-associated inflammation. The results support peritoneal synthesis for cytokines. CRP, IL-8, and MIP-1β are potential serum markers for PMP. IL-6 appears to play a central role in PMP biology. This study provides new details about PMP tumor biology and identifies possible therapeutic targets.
Collapse
Affiliation(s)
- Kush Lohani
- Department of Surgery, Creighton University Medical Center, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
28
|
Pagnotta SM, Laudanna C, Pancione M, Sabatino L, Votino C, Remo A, Cerulo L, Zoppoli P, Manfrin E, Colantuoni V, Ceccarelli M. Ensemble of gene signatures identifies novel biomarkers in colorectal cancer activated through PPARγ and TNFα signaling. PLoS One 2013; 8:e72638. [PMID: 24133572 PMCID: PMC3795784 DOI: 10.1371/journal.pone.0072638] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022] Open
Abstract
We describe a novel bioinformatic and translational pathology approach, gene Signature Finder Algorithm (gSFA) to identify biomarkers associated with Colorectal Cancer (CRC) survival. Here a robust set of CRC markers is selected by an ensemble method. By using a dataset of 232 gene expression profiles, gSFA discovers 16 highly significant small gene signatures. Analysis of dichotomies generated by the signatures results in a set of 133 samples stably classified in good prognosis group and 56 samples in poor prognosis group, whereas 43 remain unreliably classified. AKAP12, DCBLD2, NT5E and SPON1 are particularly represented in the signatures and selected for validation in vivo on two independent patients cohorts comprising 140 tumor tissues and 60 matched normal tissues. Their expression and regulatory programs are investigated in vitro. We show that the coupled expression of NT5E and DCBLD2 robustly stratifies our patients in two groups (one of which with 100% survival at five years). We show that NT5E is a target of the TNF-α signaling in vitro; the tumor suppressor PPARγ acts as a novel NT5E antagonist that positively and concomitantly regulates DCBLD2 in a cancer cell context-dependent manner.
Collapse
Affiliation(s)
| | - Carmelo Laudanna
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Carolina Votino
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Andrea Remo
- Department of Pathology, Hospital "Mater Salutis”, Legnano, Italy
| | - Luigi Cerulo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Italy
| | - Pietro Zoppoli
- Institute for Cancer Genetics, Columbia University, New York, United States of America
| | - Erminia Manfrin
- Department of Surgery and Oncology, University of Verona, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- * E-mail: (MC); (VC)
| | - Michele Ceccarelli
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Italy
- * E-mail: (MC); (VC)
| |
Collapse
|
29
|
Kunzmann AT, Murray LJ, Cardwell CR, McShane CM, McMenamin UC, Cantwell MM. PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: a systematic review. Cancer Epidemiol Biomarkers Prev 2013; 22:1490-7. [PMID: 23810915 DOI: 10.1158/1055-9965.epi-13-0263] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Studies have examined whether tumor expression of PTGS2 (also known as COX-2), an enzyme inhibited by nonsteroidal anti-inflammatory drugs such as aspirin, is associated with prognosis in patients with colorectal cancer. However, results to date have been mixed. METHODS Using terms for PTGS2 and colorectal cancer, the Medline, Embase, and Web of Science databases were systematically searched for studies published, in any language, until December 2011. Random effects meta-analyses were used to calculate pooled HRs [95% confidence intervals (CI)] for the association between PTGS2 expression and tumor recurrence, colorectal cancer-specific survival, and overall survival. RESULTS In total, 29 studies, which had prognostic data on 5,648 patients, met the inclusion criteria. PTGS2-positive patients were at an increased risk of tumor recurrence (n = 9 studies; HR, 2.79; 95% CI, 1.76-4.41; P < 0.001) and had poorer colorectal cancer-specific survival (n = 7; HR, 1.36; 95% CI, 1.02-1.82; P = 0.04). However, there was funnel plot asymmetry, possibly due to publication bias, for the association with cancer-specific survival but less so for recurrence. PTGS2 expression was not associated with overall survival [(n = 16; pooled unadjusted HR, 1.30; 95% CI, 0.94-1.79; P = 0.11) and (n = 9; pooled adjusted HR, 1.02; 95% CI, 0.72-1.45; P = 0.91)]. CONCLUSIONS PTGS2 expression was associated with an increased risk of tumor recurrence and poorer colorectal cancer-specific survival but not overall survival among patients with colorectal cancer. However, confounding by tumor characteristics such as tumor stage seems likely. IMPACT There is insufficient evidence to recommend PTGS2 expression as a prognostic marker in patients with colorectal cancer. Furthermore, studies providing adjusted results are required.
Collapse
Affiliation(s)
- Andrew T Kunzmann
- Centre of Excellence for Public Health North Ireland, Queen's University Belfast, Belfast, Northern Ireland.
| | | | | | | | | | | |
Collapse
|
30
|
Alfano M, Graziano F, Genovese L, Poli G. Macrophage Polarization at the Crossroad Between HIV-1 Infection and Cancer Development. Arterioscler Thromb Vasc Biol 2013; 33:1145-52. [DOI: 10.1161/atvbaha.112.300171] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mononuclear phagocytes play a fundamental role in the tissue homeostasis and innate defenses against viruses and other microbial pathogens. In addition, they are likely involved in several steps of cancer development. Circulating monocytes and tissue macrophages are target cells of viral infections, including human cytomegalovirus, human herpes virus 8, and the HIV, and alterations of their functional and phenotypic properties are likely involved in many tissue-degenerative diseases, including atherosclerosis and cancer. Different tissue microenvironments as well as their pathological alterations can profoundly affect the polarization state of macrophages toward the extreme phenotypes conventionally termed M1 and M2. Thus, targeting disease-associated macrophages is considered a potential approach particularly in the context of cancer-associated tumor-associated macrophages, supporting malignant cell growth and progression toward a metastatic phenotype. Of note is the fact that tumor-associated macrophages isolated from established tumors display phenotypic and functional features similar to those of in vitro–derived M2-polarized cells. Concerning HIV-1 infection, viral eradication strategies in the context of combination antiretroviral therapy should also consider the possibility to deplete, at least transiently, certain mononuclear phagocytes subsets, although the possibility of distinguishing those that are either infected or pathogenically altered remains a goal of future research. In the present review, we will focus on the recent literature concerning the role of human macrophage polarization in viral infections and cancer.
Collapse
Affiliation(s)
- Massimo Alfano
- From the AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy (M.A., F.G., L.G., G.P.); and Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy (F.G., L.G., G.P.)
| | - Francesca Graziano
- From the AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy (M.A., F.G., L.G., G.P.); and Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy (F.G., L.G., G.P.)
| | - Luca Genovese
- From the AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy (M.A., F.G., L.G., G.P.); and Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy (F.G., L.G., G.P.)
| | - Guido Poli
- From the AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy (M.A., F.G., L.G., G.P.); and Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy (F.G., L.G., G.P.)
| |
Collapse
|
31
|
Droeser RA, Hirt C, Eppenberger-Castori S, Zlobec I, Viehl CT, Frey DM, Nebiker CA, Rosso R, Zuber M, Amicarella F, Iezzi G, Sconocchia G, Heberer M, Lugli A, Tornillo L, Oertli D, Terracciano L, Spagnoli GC. High myeloperoxidase positive cell infiltration in colorectal cancer is an independent favorable prognostic factor. PLoS One 2013; 8:e64814. [PMID: 23734221 PMCID: PMC3667167 DOI: 10.1371/journal.pone.0064814] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/17/2013] [Indexed: 01/11/2023] Open
Abstract
Background Colorectal cancer (CRC) infiltration by adaptive immune system cells correlates with favorable prognosis. The role of the innate immune system is still debated. Here we addressed the prognostic impact of CRC infiltration by neutrophil granulocytes (NG). Methods A TMA including healthy mucosa and clinically annotated CRC specimens (n = 1491) was stained with MPO and CD15 specific antibodies. MPO+ and CD15+ positive immune cells were counted by three independent observers. Phenotypic profiles of CRC infiltrating MPO+ and CD15+ cells were validated by flow cytometry on cell suspensions derived from enzymatically digested surgical specimens. Survival analysis was performed by splitting randomized data in training and validation subsets. Results MPO+ and CD15+ cell infiltration were significantly correlated (p<0.0001; r = 0.76). However, only high density of MPO+ cell infiltration was associated with significantly improved survival in training (P = 0.038) and validation (P = 0.002) sets. In multivariate analysis including T and N stage, vascular invasion, tumor border configuration and microsatellite instability status, MPO+ cell infiltration proved an independent prognostic marker overall (P = 0.004; HR = 0.65; CI:±0.15) and in both training (P = 0.048) and validation (P = 0.036) sets. Flow-cytometry analysis of CRC cell suspensions derived from clinical specimens showed that while MPO+ cells were largely CD15+/CD66b+, sizeable percentages of CD15+ and CD66b+ cells were MPO−. Conclusions High density MPO+ cell infiltration is a novel independent favorable prognostic factor in CRC.
Collapse
Affiliation(s)
- Raoul A Droeser
- Department of Surgery, University Hospital Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen Z, He X, Jia M, Liu Y, Qu D, Wu D, Wu P, Ni C, Zhang Z, Ye J, Xu J, Huang J. β-catenin overexpression in the nucleus predicts progress disease and unfavourable survival in colorectal cancer: a meta-analysis. PLoS One 2013; 8:e63854. [PMID: 23717499 PMCID: PMC3663842 DOI: 10.1371/journal.pone.0063854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/06/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND β-catenin plays a key role in the progression of colorectal cancer (CRC). However, its prognostic significance for patients with CRC remains controversial. METHODOLOGY Identical search strategies were used to search relevant literatures in the PubMed, Embase and Web of Science databases. The correlation between β-catenin expression and clinicopathological features and prognosis was analyzed. PRINCIPAL FINDINGS A total of 18 studies met the inclusion criteria, which comprised 3665 cases. Meta-analysis suggested that β-catenin overexpression in the nucleus was significantly associated with disease free survival (DFS) (n = 541 in 3 studies; HR = 1.87, 95% CI: 1.28-2.71; Z = 3.26; P = 0.001) and overall survival (OS) for CRC patients (n = 2630 in 10 studies; HR = 1.55, 95% CI: 1.12-2.14; Z = 2.62; P = 0.009). However, there was no significant association between β-catenin expression in the cytoplasm and OS (n = 1327 in 3 studies; HR = 1.04, 95% CI: 0.88-1.24, Z = 0.46, P = 0.643). The combined odds ratio (OR) of β-catenin in the nucleus indicated that β-catenin overexpression was associated with advanced stage CRC (n = 950 in 7 studies; OR = 0.71, 95% CI: 0.53-0.94; Z = 2.35; P = 0.019) and metastasis of CRC (n = 628 in 5 studies; OR = 0.49, 95% CI: 0.25-0.96, Z = 2.06, P = 0.039). β-catenin overexpression in the nucleus had no correlation with the tumor site (colon or rectum), differentiation grade, lymph node status or depth of invasion. The pooled ORs were 1.09 (95% CI: 0.41-2.91, Z = 0.18, P = 0.856), 1.27(95% CI: 0.76-2.10, Z = 0.92, P = 0.357), 0.71(95% CI: 0.46-1.09, Z = 1.58, P = 0.115) and 0.82(95% CI: 0.4-1.68, Z = 0.53, P = 0.594). CONCLUSIONS This study showed that β-catenin overexpression in the nucleus, rather than in the cytoplasm, appeared to be associated with progress disease and a worse prognosis for CRC patients.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Xin He
- Department of Hematology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Jia
- Department of Endocrinology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Liu
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dihong Qu
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dang Wu
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Pin Wu
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Ni
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ye
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghong Xu
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Jung WY, Kim YH, Ryu YJ, Kim BH, Shin BK, Kim A, Kim HK. Acyl-CoA thioesterase 8 is a specific protein related to nodal metastasis and prognosis of lung adenocarcinoma. Pathol Res Pract 2013; 209:276-83. [DOI: 10.1016/j.prp.2013.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/23/2013] [Accepted: 02/07/2013] [Indexed: 01/18/2023]
|
34
|
Peng L, Zhou Y, Wang Y, Mou H, Zhao Q. Prognostic significance of COX-2 immunohistochemical expression in colorectal cancer: a meta-analysis of the literature. PLoS One 2013; 8:e58891. [PMID: 23527044 PMCID: PMC3604072 DOI: 10.1371/journal.pone.0058891] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/07/2013] [Indexed: 12/15/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2) is believed to be an important enzyme in the pathogenesis of colorectal cancer (CRC). Correlations between the expression of COX-2 with tumor growth and distant metastasis have become an issue; thus, attention has been paid to COX-2 as a prognostic factor. Various studies examined the relationship between COX-2 immunohistochemistry (IHC) overexpression with the clinical outcome in patients with colorectal cancer, but yielded conflicting results. The prognostic significance of COX-2 overexpression in colorectal cancer remains controversial. Methods Electronic databases updated to October 2012 were searched to find relevant studies. A meta-analysis was conducted with eligible studies which quantitatively evaluated the relationship between COX-2 overexpression and survival of patients with colorectal cancer. Survival data were aggregated and quantitatively analyzed. Results We performed a meta-analysis of 23 studies (n = 4567 patients) that evaluated the correlation between COX-2 overexpression detected by IHC and survival in patients with colorectal cancer. Combined hazard ratios suggested that COX-2 overexpression had an unfavorable impact on overall survival (OS) (HR [hazard ratio] = 1.193, 95% CI [confidence interval]: 1.02 ∼ 1.37), but not disease free survival (DFS) (HR = 1.25, 95% CI: 0.99 ∼ 1.50) in patients with colorectal cancer. Conclusions Cox-2 overexpression in colorectal cancer detected by IHC appears to have slightly worse overall survival. However, the prognostic value of COX-2 on survival in colorectal cancer still needs further large-scale prospective trials to be clarified.
Collapse
Affiliation(s)
- Ling Peng
- Department of Thoracic Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yun Zhou
- Zhejiang Food and Drug Administration, Hangzhou, China
| | - Yina Wang
- Department of Thoracic Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Mou
- Department of Thoracic Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Zhao
- Department of Thoracic Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
35
|
Santin JR, Uchôa FDT, Lima MDCA, Rabello MM, Machado ID, Hernandes MZ, Amato AA, Milton FA, Webb P, Neves FDAR, Galdino SL, Pitta IR, Farsky SHP. Chemical synthesis, docking studies and biological effects of a pan peroxisome proliferator-activated receptor agonist and cyclooxygenase inhibitor. Eur J Pharm Sci 2013; 48:689-97. [PMID: 23305993 DOI: 10.1016/j.ejps.2012.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/10/2012] [Accepted: 12/21/2012] [Indexed: 12/18/2022]
Abstract
The compound (5Z)-5-[(5-bromo-1H-indol-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione (LYSO-7) was synthesised in order to obtain a new type of anti-inflammatory drug, designed with hybrid features to inhibit cyclooxygenase (COX) and also to activate peroxisome proliferator-activated receptor (PPAR). Results obtained from docking (in silico) studies corroborated with experimental data, showing the potential affinity between the studied ligand and targets. The specificity of LYSO-7 for COX-enzymes was detected by the inhibition of COX-1 and COX-2 activities by 30% and 20%, respectively. In transactivation reporter gene assays LYSO-07 showed a pan partial agonist effect on the three PPAR subtypes (PPARγ, PPARα and PPARβ/δ). The agonist action on PPARγ was also observed by a pharmacological approach, as the reduction in the Escherichia coli lipopolysaccharide (LPS)-induced interleukin 1 beta (IL-1β) secretion and nitric oxide (NO) production by mouse neutrophils was blocked by GW9962, a specific PPARγ antagonist. Additionally, the in vivo effect was measured by reduced carrageenan-induced neutrophil influx into the subcutaneous tissue of mice. Taken together, these data show that LYSO-7 displays a potent in vivo anti-inflammatory effect during the innate acute response, which is dependent on its associated COX inhibitory activities and PPAR activation.
Collapse
Affiliation(s)
- José Roberto Santin
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Heller ER, Gor A, Wang D, Hu Q, Lucchese A, Kanduc D, Katdare M, Liu S, Sinha AA. Molecular signatures of basal cell carcinoma susceptibility and pathogenesis: a genomic approach. Int J Oncol 2012; 42:583-96. [PMID: 23229765 DOI: 10.3892/ijo.2012.1725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/22/2012] [Indexed: 11/06/2022] Open
Abstract
Gene expression profiling can be useful for phenotypic classification, investigation of functional pathways, and to facilitate the search for disease risk genes through the integration of transcriptional data with available genomic information. To enhance our understanding of the genetic and molecular basis of basal cell carcinoma (BCC) we performed global gene expression analysis to generate a disease-associated transcriptional profile. A gene signature composed of 331 differentially expressed genes (DEGs) was generated from comparing 4 lesional and 4 site-matched control samples using Affymetrix Human Genome U95A microarrays. Hierarchical clustering based on the obtained gene signature separated the samples into their corresponding phenotype. Pathway analysis identified several significantly overrepresented pathways including PPAR-γ signaling, TGF-β signaling and lipid metabolism, as well as confirmed the importance of SHH and p53 in the pathogenesis of BCC. Comparison of our microarray data with previous microarray studies revealed 13 DEGs overlapping in 3 studies. Several of these overlapping genes function in lipid metabolism or are components of the extracellular matrix, suggesting the importance of these and related pathways in BCC pathogenesis. BCC-associated DEGs were mapped to previously reported BCC susceptibility loci including 1p36, 1q42, 5p13.3, 5p15 and 12q11-13. Our analysis also revealed transcriptional 'hot spots' on chromosome 5 which help to confirm (5p13 and 5p15) and suggest novel (5q11.2-14.3, 5q22.1-23.3 and 5q31-35.3) disease susceptibility loci/regions. Integrating microarray analyses with reported genetic information helps to confirm and suggest novel disease susceptibility loci/regions. Identification of these specific genomic and/or transcriptional targets may lead to novel diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Elizabeth Rose Heller
- Department of Dermatology, State University of New York at Buffalo and Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kantola T, Klintrup K, Väyrynen JP, Vornanen J, Bloigu R, Karhu T, Herzig KH, Näpänkangas J, Mäkelä J, Karttunen TJ, Tuomisto A, Mäkinen MJ. Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma. Br J Cancer 2012; 107:1729-36. [PMID: 23059742 PMCID: PMC3493870 DOI: 10.1038/bjc.2012.456] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Inflammation contributes to the pathogenesis of colorectal cancer (CRC), and cytokine levels are altered during colorectal carcinogenesis. Methods: The serum levels of 13 cytokines and their relation to clinical and pathological parameters, and systemic inflammatory response (mGPS, CRP and neutrophil–lymphocyte ratio), were analysed from a prospective series of 148 CRC patients and 86 healthy age- and sex-matched controls. Results: CRC patients had higher serum platelet-derived growth factor, interleukin (IL)-6, IL-7, and IL-8 levels and lower monocyte chemotactic protein-1 (MCP-1) levels than the controls. A logistic regression model for discriminating the patients from the controls – including the five most predictive cytokines (high IL-8, high IL-6, low MCP-1, low IL-1ra, and low IP-10) – yielded an area under curve value of 0.890 in receiver operating characteristics analysis. Serum cytokines showed distinct correlation with other markers of systemic inflammatory response, and advanced CRCs were associated with higher levels of IL-8, IL-1ra, and IL-6. A metastasised disease was accompanied by an orientation towards Th2 cytokine milieu. Conclusion: CRC is associated with extensive alterations in serum cytokine environment, highlighting the importance of studying relative cytokine level alterations. Serum cytokine profile shows promise in separating CRC patients from healthy controls but its clinical value is yet to be confirmed.
Collapse
Affiliation(s)
- T Kantola
- Department of Pathology, University of Oulu, POB 5000, Oulu FI-90014, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fucci A, Colangelo T, Votino C, Pancione M, Sabatino L, Colantuoni V. The role of peroxisome proliferator-activated receptors in the esophageal, gastric, and colorectal cancer. PPAR Res 2012; 2012:242498. [PMID: 22991505 PMCID: PMC3444044 DOI: 10.1155/2012/242498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022] Open
Abstract
Tumors of the gastrointestinal tract are among the most frequent human malignancies and account for approximately 30% of cancer-related deaths worldwide. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control diverse cellular functions such as proliferation, differentiation, and cell death. Owing to their involvement in so many processes, they play crucial roles also in the development and physiology of the gastrointestinal tract. Consistently, PPARs deregulation has been implicated in several pathophysiological conditions, including chronic inflammation and cancer development. This paper summarizes the current knowledge on the role that the various PPAR isoforms play in the pathogenesis of the esophageal, gastric, and intestinal cancer. Elucidation of the molecular mechanisms underlying PPARs' signaling pathways will provide insights into their possible use as predictive biomarkers in the initial stages of the process. In addition, this understanding will provide the basis for new molecular targets in cancer therapy and chemoprevention.
Collapse
Affiliation(s)
- Alessandra Fucci
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Tommaso Colangelo
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Carolina Votino
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Massimo Pancione
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Lina Sabatino
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Vittorio Colantuoni
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
39
|
PPARG Epigenetic Deregulation and Its Role in Colorectal Tumorigenesis. PPAR Res 2012; 2012:687492. [PMID: 22848209 PMCID: PMC3405724 DOI: 10.1155/2012/687492] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/21/2012] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) plays critical roles in lipid storage, glucose metabolism, energy homeostasis, adipocyte differentiation, inflammation, and cancer. Its function in colon carcinogenesis has largely been debated; accumulating evidence, however, supports a role as tumor suppressor through modulation of crucial pathways in cell differentiation, apoptosis, and metastatic dissemination. Epigenetics adds a further layer of complexity to gene regulation in several biological processes. In cancer, the relationship with epigenetic modifications has provided important insights into the underlying molecular mechanisms. These studies have highlighted how epigenetic modifications influence PPARG gene expression in colorectal tumorigenesis. In this paper, we take a comprehensive look at the current understanding of the relationship between PPARγ and cancer development. The role that epigenetic mechanisms play is also addressed disclosing novel crosstalks between PPARG signaling and the epigenetic machinery and suggesting how this dysregulation may contribute to colon cancer development.
Collapse
|
40
|
Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy. Clin Dev Immunol 2011; 2011:565187. [PMID: 22162712 PMCID: PMC3227419 DOI: 10.1155/2011/565187] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 01/02/2023]
Abstract
Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.
Collapse
|
41
|
Investigation of β-catenin and E-cadherin Expression in Dukes B2 Stage Colorectal Cancer with Tissue Microarray Method. Is It a Marker of Metastatic Potential in Rectal Cancer? Pathol Oncol Res 2011; 18:429-37. [DOI: 10.1007/s12253-011-9463-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/14/2011] [Indexed: 01/20/2023]
|
42
|
Deschoolmeester V, Baay M, Lardon F, Pauwels P, Peeters M. Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. CANCER MICROENVIRONMENT 2011; 4:377-92. [PMID: 21618031 DOI: 10.1007/s12307-011-0068-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/19/2011] [Indexed: 12/14/2022]
Abstract
There is growing evidence that both local and systemic inflammatory responses play an important role in the progression of a variety of solid tumors. Colorectal cancer (CRC) results from the cumulative effect of sequential genetic alterations, leading to the expression of tumor-associated antigens possibly inducing a cellular anti-tumor immune response. It is well recognized that cytotoxic lymphocytes (CTLs) constitute one of the most important effector mechanisms of anti-tumor-immunity. However, their potential prognostic influence in CRC remains controversial. In addition, other key players like natural killer cells, tumor associated macrophages and regulatory T cells play an important role in the immune attack against CRC and need further investigation. This review will mainly focus on the role of the adaptive immune system in CRC and particularly in regard to microsatellite instability.
Collapse
Affiliation(s)
- Vanessa Deschoolmeester
- Laboratory of Cancer Research and Clinical Oncology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium,
| | | | | | | | | |
Collapse
|
43
|
Sarkar S, Swiercz R, Kantara C, Hajjar KA, Singh P. Annexin A2 mediates up-regulation of NF-κB, β-catenin, and stem cell in response to progastrin in mice and HEK-293 cells. Gastroenterology 2011; 140:583-595.e4. [PMID: 20826156 PMCID: PMC3031715 DOI: 10.1053/j.gastro.2010.08.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/26/2010] [Accepted: 08/26/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Prograstrin induces proliferation in colon crypts by activating p65nuclear factor-κB (NF-κB) (p65) and β-catenin. We investigated whether Annexin A2 (AnxA2), a progastrin receptor, activates NF-κB and β-catenin in vivo. METHODS ANXA2-null (ANXA2(-/-)) and wild-type (ANXA2(+/+)) mice were studied, along with clones of progastrin-responsive HEK-293 cells that stably expressed full-length progastrin (HEK-mGAS) or an empty vector (HEK-C). Small interfering RNA was used to down-regulate AnxA2, p65NF-κB, and β-catenin in cells. RESULTS Proliferation and activation of p65 and β-catenin increased significantly in HEK-mGAS compared with HEK-C clones. HEK-mGAS cells had a 2- to 4-fold increase in relative levels of c-Myc, cyclooxygenase (COX)-2, CyclinD1, double cortin CAM kinase-like 1 (DCAMKL+1), and CD44, compared with HEK-C clones. Down-regulation of AnxA2 in HEK-mGAS clones reduced activation of NF-κB and β-catenin, as well as levels of DCAMKL+1. Surprisingly, down-regulation of β-catenin had no effect on activation of p65NF-κB, whereas down-regulation of p65 significantly reduced activation of β-catenin in HEK-mGAS clones. Loss of either p65 or β-catenin significantly reduced proliferation of HEK-mGAS clones, indicating that both factors are required for the proliferative effects of progastrin. Lengths of colon crypts and levels of p65, β-catenin, DCAMKL+1, and CD44 were significantly higher in ANXA2(+/+) mice compared with either ANXA2(-/-) mice given progastrin or ANXA2(+/+) and ANXA2(-/-) mice given saline. CONCLUSIONS AnxA2 expression is required for the biologic effects of progastrin in vivo and in vitro and mediates the stimulatory effect of progastrin on p65NF-κ, β-catenin, and the putative stem cell markers DCAMKL+1 and CD44. AnxA2 might therefore mediate the hyperproliferative and cocarcinogenic effects of progastrin.
Collapse
Affiliation(s)
- Shubhashish Sarkar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rafal Swiercz
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Carla Kantara
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Katherine A Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
44
|
Pancione M, Sabatino L, Fucci A, Carafa V, Nebbioso A, Forte N, Febbraro A, Parente D, Ambrosino C, Normanno N, Altucci L, Colantuoni V. Epigenetic silencing of peroxisome proliferator-activated receptor γ is a biomarker for colorectal cancer progression and adverse patients' outcome. PLoS One 2010; 5:e14229. [PMID: 21151932 PMCID: PMC2997072 DOI: 10.1371/journal.pone.0014229] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/09/2010] [Indexed: 12/17/2022] Open
Abstract
The relationship between peroxisome proliferator-activated receptor γ (PPARG) expression and epigenetic changes occurring in colorectal-cancer pathogenesis is largely unknown. We investigated whether PPARG is epigenetically regulated in colorectal cancer (CRC) progression. PPARG expression was assessed in CRC tissues and paired normal mucosa by western blot and immunohistochemistry and related to patients' clinicopathological parameters and survival. PPARG promoter methylation was analyzed by methylation-specific-PCR and bisulphite sequencing. PPARG expression and promoter methylation were similarly examined also in CRC derived cell lines. Chromatin immunoprecipitation in basal conditions and after epigenetic treatment was performed along with knocking-down experiments of putative regulatory factors. Gene expression was monitored by immunoblotting and functional assays of cell proliferation and invasiveness. Methylation on a specific region of the promoter is strongly correlated with PPARG lack of expression in 30% of primary CRCs and with patients' poor prognosis. Remarkably, the same methylation pattern is found in PPARG-negative CRC cell lines. Epigenetic treatment with 5'-aza-2'-deoxycytidine can revert this condition and, in combination with trichostatin A, dramatically re-activates gene transcription and receptor activity. Transcriptional silencing is due to the recruitment of MeCP2, HDAC1 and EZH2 that impart repressive chromatin signatures determining an increased cell proliferative and invasive potential, features that can experimentally be reverted. Our findings provide a novel mechanistic insight into epigenetic silencing of PPARG in CRC that may be relevant as a prognostic marker of tumor progression.
Collapse
Affiliation(s)
- Massimo Pancione
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| | - Lina Sabatino
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| | - Alessandra Fucci
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| | - Vincenzo Carafa
- Department of General Pathology, Second University of Naples, Napoli, Italy
| | - Angela Nebbioso
- Department of General Pathology, Second University of Naples, Napoli, Italy
| | - Nicola Forte
- Departments of Medical Oncology and Clinical Pathology, Fatebenefratelli Hospital, Benevento, Italy
| | - Antonio Febbraro
- Departments of Medical Oncology and Clinical Pathology, Fatebenefratelli Hospital, Benevento, Italy
| | - Domenico Parente
- Departments of Medical Oncology and Clinical Pathology, Fatebenefratelli Hospital, Benevento, Italy
| | - Concetta Ambrosino
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
- Biogem “G. Salvatore” Genetic Research Institute, Ariano Irpino, Italy
| | - Nicola Normanno
- Pharmacogenomic Laboratory, Center for Oncology Research, Mercogliano, Italy
| | - Lucia Altucci
- Department of General Pathology, Second University of Naples, Napoli, Italy
- CNR-IGB, Napoli, Italy
| | - Vittorio Colantuoni
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
- Biogem “G. Salvatore” Genetic Research Institute, Ariano Irpino, Italy
- * E-mail:
| |
Collapse
|
45
|
Erreni M, Mantovani A, Allavena P. Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. CANCER MICROENVIRONMENT 2010; 4:141-54. [PMID: 21909876 DOI: 10.1007/s12307-010-0052-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 08/06/2010] [Indexed: 12/19/2022]
Abstract
Experimental and epidemiological studies indicate a strong link between chronic inflammation and tumor progression. Human colorectal cancer (CRC), a major cause of cancer-related death in Western countries, represents a paradigm for this link. Key features of cancer-related inflammation in CRC are the activation of transcription factors (e.g. NF-κB, STAT3), the expression of inflammatory cytokines and chemokines (e.g. TNFα, IL-6, CCL2, CXCL8) as well as a prominent leukocyte infiltrate. While considerable evidence indicates that the presence of lymphocytes of adaptive immunity may positively influence patient survival and clinical outcome in CRC, the role of tumor-associated macrophages (TAM) and of other lymphoid populations (e.g. Th17, Treg) is still unclear. In this review we will summarize the different and controversial effects that TAM play in CRC-related inflammation and progression of disease. The characterization of the most relevant inflammatory pathways in CRC is instrumental for the identification of new target molecules that could lead to improved diagnosis and treatment.
Collapse
Affiliation(s)
- Marco Erreni
- Department of Immunology and Inflammation, IRCCS Istituto Clinico Humanitas, Via Manzoni, 56, Rozzano, Milan, Italy
| | | | | |
Collapse
|
46
|
Evans NP, Misyak SA, Schmelz EM, Guri AJ, Hontecillas R, Bassaganya-Riera J. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma. J Nutr 2010; 140:515-21. [PMID: 20089779 PMCID: PMC2821885 DOI: 10.3945/jn.109.115642] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARgamma in immune and epithelial cells and PPARgamma-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARgamma in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARgamma-expressing floxed mice but not in the tissue-specific PPARgamma-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARgamma-expressing, but not in the tissue-specific, PPARgamma-null mice. Colonic tumor necrosis factor-alpha mRNA expression was significantly suppressed in CLA-fed, PPARgamma-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARgamma-dependent mechanism.
Collapse
|
47
|
Pancione M, Forte N, Fucci A, Sabatino L, Febbraro A, Di Blasi A, Daniele B, Parente D, Colantuoni V. Prognostic role of beta-catenin and p53 expression in the metastatic progression of sporadic colorectal cancer. Hum Pathol 2010; 41:867-76. [PMID: 20129645 DOI: 10.1016/j.humpath.2009.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 01/22/2023]
Abstract
Beta-catenin and p53 play key roles in tumorigenesis. The relationships between these 2 signaling pathways and their contribution to colorectal cancer metastatic progression have not been completely elucidated. We analyzed 141 cases of primary sporadic colorectal cancer, 45 matched metastases, and 80 samples of normal mucosa by immunohistochemistry on paraffin-embedded specimens. The expression profiles were also related to patients' clinicopathologic features and 5-year survival. In primary tumors, beta-catenin immunoreactivity was nuclear (27%), predominantly membrane/cytosolic (46.0%) or negative (27%). This latter subgroup was strongly related to microsatellite instability, in particular to MLH-1 deficiency. Remarkably, beta-catenin membrane/cytosolic expression in primary tumors was reduced in the corresponding matched metastases. p53 showed a significant increase in immunoreactivity in (66.7%), whereas it was negative in (33.3%) of tumors. When we considered the expression of both genes, the combination of negative beta-catenin and positive p53 nuclear staining (21%) was strongly related to a higher frequency of liver metastases. Such an association was significantly related to a worse prognosis than any other combination. In a multivariate analysis, beta-catenin and distant metastases were independent prognostic markers. We suggest that a combination of low beta-catenin and high p53 expression in primary colorectal cancers may be a prognostic factor in predicting the progression of the disease, the occurrence of metastasis, and a more severe outcome.
Collapse
Affiliation(s)
- Massimo Pancione
- Department of Biological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Capaccio D, Ciccodicola A, Sabatino L, Casamassimi A, Pancione M, Fucci A, Febbraro A, Merlino A, Graziano G, Colantuoni V. A novel germline mutation in peroxisome proliferator-activated receptor gamma gene associated with large intestine polyp formation and dyslipidemia. Biochim Biophys Acta Mol Basis Dis 2010; 1802:572-81. [PMID: 20123124 DOI: 10.1016/j.bbadis.2010.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/07/2010] [Accepted: 01/19/2010] [Indexed: 12/31/2022]
Abstract
We report a novel PPARG germline mutation in a patient affected by colorectal cancer that replaces serine 289 with cysteine in the mature protein (S289C). The mutant has impaired transactivation potential and acts as dominant negative to the wild type receptor. In addition, it no longer restrains cell proliferation both in vitro and in vivo. Interestingly, the S289C mutant poorly activates target genes and interferes with the inflammatory pathway in tumor tissues and proximal normal mucosa. Consistently, only mutation carriers exhibit colonic lesions that can evolve to dysplastic polyps. The proband presented also dyslipidemia, hypertension and overweight, not associated to type 2 diabetes; of note, family members tested positive for the mutation and display only a dyslipidemic profile at variable penetrance with other biochemical parameters in the normal range. Finally, superimposing the mutation to the crystal structure of the ligand binding domain, the new Cys289 becomes so closely positioned to Cys285 to form an S-S bridge. This would reduce the depth of the ligand binding pocket and impede agonist positioning, explaining the biological effects and subcellular distribution of the mutant protein. This is the first PPARG germline mutation associated with dyslipidemia and colonic polyp formation that can progress to full-blown adenocarcinoma.
Collapse
Affiliation(s)
- D Capaccio
- Department of Biological and Environmental Sciences, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Increased Expression of Prohibitin and its Relationship with Poor Prognosis in Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2010; 16:515-22. [DOI: 10.1007/s12253-009-9242-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|