1
|
Nakashima T, Matsumoto R, Tanoue K, Nakayama C, Sameshima K, Hozaka Y, Arigami T, Matsushita D, Shimonosono M, Tsuruda Y, Sasaki K, Mataki Y, Ohtsuka T. RBBP8 Is a Prognostic Biomarker Associated With Response to Immune Checkpoint Inhibitors in Advanced Gastric Cancer. J Immunother 2025; 48:147-158. [PMID: 40033813 DOI: 10.1097/cji.0000000000000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
The current biomarkers for immune checkpoint inhibitor (ICI) therapy have several limitations, and new ones are being explored. Retinoblastoma-binding protein 8 (RBBP8) is associated with tumor-infiltrating immune cells (TIIC) and immune checkpoint molecules. Therefore, RBBP8 may serve as a novel biomarker for ICI therapy. Thus, in this study, we investigated the relationship between RBBP8 expression and the tumor immune environment in 58 patients with pathologic T3-4 gastric cancer who underwent radical gastrectomy. Immunohistochemistry of primary tumor specimens was performed to evaluate RBBP8, TIIC, and programmed cell death ligand 1 expression. Kaplan-Meier survival and prognostic factor analyses were also performed using Cox proportional hazards regression models. Patients were divided into RBBP8 high (HG, n=29) and low (LG, n=29) expression groups, using the median RBBP8 expression as the cutoff. The LG had a significantly worse overall survival rate than the HG (log-rank test, P =0.029). Furthermore, the overall survival rate of patients in LG who were treated with ICI (n=7) was worse than that of those in HG (n=9; log-rank P =0.005). Multivariate analysis identified extensive lymph node metastasis and low RBBP8 expression as independent prognostic factors. The HG and LG showed no significant difference in the number of TIICs; however, there was a difference in the number ratios of CD4+/CD8+ ( P =0.012) and CD4+/CD3+ cells ( P <0.001). Therefore, RBBP8 expression in patients with advanced gastric cancer is a prognostic marker that affects the proportion of CD4+ T-cell infiltration and may also be a biomarker for predicting ICI treatment response.
Collapse
Affiliation(s)
- Taiki Nakashima
- Department of Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
de la Fouchardière C, Cammarota A, Svrcek M, Alsina M, Fleitas-Kanonnikoff T, Lordick Obermannová R, Wagner AD, Yap Wei Ting D, Enea D, Petrillo A, Smyth EC. How do I treat dMMR/MSI gastro-oesophageal adenocarcinoma in 2025? A position paper from the EORTC-GITCG gastro-esophageal task force. Cancer Treat Rev 2025; 134:102890. [PMID: 39933210 DOI: 10.1016/j.ctrv.2025.102890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
In less than a decade, immune checkpoint inhibitors (ICIs) have transformed the management of mismatch repair-deficient (dMMR) and microsatellite instability-high (MSI) cancers. However, beyond colorectal cancer (CRC), much of the evidence is mostly derived from non-randomized phase II studies or post-hoc analyses of broader clinical trials. dMMR/MSI tumours represent a specific subgroup of gastro-esophageal adenocarcinomas (GEA), accounting for approximately 9 % of cases, with a higher prevalence in early-stage compared to advanced-stage disease and older female patients. These tumours are predominantly sporadic, often linked to MLH1 promoter methylation, and rarely exhibit HER2 overexpression/ERBB2 amplification or other oncogenic drivers. The treatment landscape for early stage dMMR/MSI GEA is likely to change substantially soon, as ICIs have shown high pathological complete response (pCR) rates in small phase II trials, raising questions on optimisation of neoadjuvant therapy, and paving the way for organ preservation. The standard of treatment for untreated patients with advanced dMMR/MSI GEA is chemotherapy + ICI irrespectively of PDL-1 status. However, the role of chemotherapy-free regimen consisting of CTLA-4 plus PD-1 inhibitors remains undetermined. This review addresses these and other emerging questions, offering expert opinions and insights into the future therapeutic landscape for dMMR/MSI GEA.
Collapse
Affiliation(s)
- Christelle de la Fouchardière
- Institut PAOLI-CALMETTES, 232 Boulevard Sainte-Marguerite 13009, Marseille, France; Unicancer GI (UCGI) Group, Paris, France; EORTC-GITC Group, Brussels, Belgium.
| | - Antonella Cammarota
- EORTC-GITC Group, Brussels, Belgium; Hepatobiliary Immunopathology Lab, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Magali Svrcek
- Sorbonne Université, AP-HP, Saint-Antoine Hospital, Department of Pathology, France; LIMICS, UMRS 1142, Campus des Cordeliers 75006, Paris, France
| | - Maria Alsina
- EORTC-GITC Group, Brussels, Belgium; Hospital Universitario de Navarra, Navarrabiomed - IdiSNA, c. de Irunlarrea 3 31008, Pamplona, Spain
| | - Tania Fleitas-Kanonnikoff
- EORTC-GITC Group, Brussels, Belgium; Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Radka Lordick Obermannová
- EORTC-GITC Group, Brussels, Belgium; Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of Medicine, Masaryk University, Czech Republic
| | - Anna Dorothea Wagner
- EORTC-GITC Group, Brussels, Belgium; Anna Dorothea Wagner, Department of Oncology, Division of Medical Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | | | - Diana Enea
- Sorbonne Université, AP-HP, Saint-Antoine Hospital, Department of Pathology, France
| | - Angelica Petrillo
- EORTC-GITC Group, Brussels, Belgium; Medical Oncology Unit, Ospedale del Mare, Naples, Italy
| | - Elizabeth C Smyth
- EORTC-GITC Group, Brussels, Belgium; Oxford NIHRBiomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
3
|
Zhang N, Li C, Zhao Z, Jiang B, Wang W, Sun F, Zhang Y, Zhu Y. Immune microenvironment features underlying the superior efficacy of neoadjuvant immunochemotherapy over chemotherapy in local advanced gastric cancer. Front Immunol 2025; 16:1497004. [PMID: 39931056 PMCID: PMC11808021 DOI: 10.3389/fimmu.2025.1497004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Background The therapeutic efficacy of neoadjuvant immunotherapy combined with chemotherapy (Io+Chemo) is superior than chemotherapy alone (Chemo). However, the mechanism of Io+Chemo superiority remains to be further elucidated. Methods The study included 128 patients with resectable stage II-III gastric cancer, in which 63 were given neoadjuvant Io+Chemo, and 65 Chemo alone. Patients given Io+Chemo were treated with 2-4 cycles of PD-(L)1 inhibitor (Pembrolizumab, Sintililimab or Nivolumab) with S-1 and oxaliplatin (SOX) or capecitabine and oxaliplatin (XELOX) before surgical resection. Patients given Chemo were treated with 2-4 cycles of SOX or XELOX before surgical resection. Tumor tissues were evaluated for tumor-infiltrating immune cells (TIICs) using immunohistochemistry and QuPath software quantitative analysis, for detecting T, B, NK, plasma cells, and macrophages. The relationship between TIICs and different neoadjuvant treatment regimens and pathological responses was also explored. Results Compared with Chemo, Io+Chemo induced higher rates of pathological complete response (33.3 vs. 9.2%, p=0.001) and major pathological response (MPR) (49.2 vs. 30.8%, p=0.033). Compared with Chemo group, density of CD4+(1904.8 vs. 1530), CD8+(1982.9 vs. 1124.4), CD20+(1115.6 vs. 574), CD38+(1580.4 vs. 1128), CD138+(1237.2 vs. 496.4), and CD56+ (596.8 vs. 159) cells was increased 24.5%, 76.4%, 94.4%, 40.1%, and 149.2% respectively, whereas CD163+ macrophages (994.4 vs. 1706) was decreased 41.7% in Io+Chemo group. Conclusions Our study favors neoadjuvant Io+Chemo over Chemo and reveals Io+Chemo can induce the formation of an immune-activated microenvironment that make Io+Chemo superior to Chemo.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Chunyu Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Biying Jiang
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Fujing Sun
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Yong Zhang
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| |
Collapse
|
4
|
Doke R, Lokhande R, Chande K, Vinchurkar K, Prajapati BG. Recent advances in therapeutic strategies of Erdheim-Chester disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03769-2. [PMID: 39836251 DOI: 10.1007/s00210-024-03769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Erdheim-Chester disease (ECD) is a rare form of non-LCH characterized by excessive accumulation of histiocytes in various tissues, leading to significant morbidity. The estimated prevalence of ECD is low, with fewer than 1000 cases reported globally, yet it presents considerable clinical challenges due to its heterogeneous manifestations, which include bone pain, cardiovascular complications, and neurological symptoms. Traditional treatment approaches, primarily involving corticosteroids and chemotherapy, have limitations, including inconsistent responses and significant side effects. Recent advances in understanding the pathogenesis of ECD, particularly the role of the BRAF V600E mutation, have led to the exploration of novel therapeutic strategies, such as targeted BRAF inhibitors, MEK and mTOR inhibitors, and other immunotherapies, which offer promise in improving patient outcomes. The review further explores clinical manifestations, and radiographic features of Erdheim-Chester disease, and discusses treatment strategies, current clinical studies in the field of ECD. By integrating these aspects, this review aims to provide a thorough understanding of ECD and its evolving treatment landscape, ultimately contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Rohit Doke
- Jaihind College of Pharmacy, Vadgaon Sahani, Pune, Maharashtra, 412401, India
| | - Rahul Lokhande
- Samarth Institute of Pharmacy, Belhe, Pune, Maharashtra, 412410, India
| | - Kalyani Chande
- Dr. DY Patil College of Pharmacy Akurdi, Pune, Maharashtra, 411044, India
| | - Kuldeep Vinchurkar
- Sandip Foundation's Sandip Institute of Pharmaceutical Sciences (SIPS), Nashik, Maharashtra, 422213, India.
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, 384012, Mahesana, Gujarat, India.
| |
Collapse
|
5
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Maruyama S, Imamura Y, Toihata T, Haraguchi I, Takamatsu M, Yamashita M, Nakashima Y, Oki E, Taguchi K, Yamamoto M, Mine S, Okamura A, Kanamori J, Nunobe S, Sano T, Kitano S, Noda T, Watanabe M. FOXP3+/CD8+ ratio associated with aggressive behavior in RUNX3-methylated diffuse esophagogastric junction tumor. Cancer Sci 2025; 116:178-191. [PMID: 39440906 PMCID: PMC11711055 DOI: 10.1111/cas.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
The tumor immune microenvironment is increasingly becoming a key consideration in developing treatment regimens for aggressive cancers, with evidence that regulatory T cells (Tregs) attenuate the antitumor response by interrupting cytotoxic T cells (CD8+). Here, we hypothesized the prognostic relevance of the proportions of Tregs (marked by forkhead box protein 3 [FOXP3]) and CD8+ cells in diffuse, non-Epstein-Barr virus (EBV)/non-microsatellite instability (MSI)-high gastroesophageal adenocarcinomas (GEAs), which are clinically characterized as more aggressive, immunologically inactive tumors as compared with their intestinal counterparts. Cell-count ratios of FOXP3+/CD8+ expression were calculated at the intratumoral region and invasive margin discretely on digital images from 303 chemo-naive non-EBV/non-MSI-high esophagogastric junction (EGJ) adenocarcinomas. A significant modifying prognostic effect of tumor histology was observed between 5-year EGJ cancer-specific survival and the FOXP3+/CD8+ ratio at the invasive margin in pStage I-III tumors (p for interaction = 0.022; hazard ratio [HR] = 8.47 and 95% confidence interval [CI], 2.04-35.19 for high ratio [vs. low] for diffuse; HR = 1.57 and 95% CI, 0.88-2.83 for high ratio [vs. low] for intestinal). A high FOXP3+/CD8+ ratio at the invasive margin was associated with RUNX3 methylation (p = 0.035) and poor prognosis in RUNX3-methylated diffuse histological subtype (5-year EGJ cancer-specific survival, 52.3% for high and 100% for low, p = 0.015). Multiomics data from The Cancer Genome Atlas linked CCL28 with RUNX3-suppressed diffuse histological subtypes of non-EBV/non-MSI-high GEA. Our data suggest that a high FOXP3+/CD8+ ratio at the invasive margin might indicate tumor immune escape via CCL28, particularly in the RUNX3-methylated diffuse histological subtype.
Collapse
Affiliation(s)
- Suguru Maruyama
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikumi Haraguchi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Manabu Takamatsu
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makiko Yamashita
- Advanced Medical Development Center, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Taguchi
- Department of Pathology, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Manabu Yamamoto
- Department of Gastroenterological Surgery, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Shinji Mine
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Akihiko Okamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun Kanamori
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Souya Nunobe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Sano
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigehisa Kitano
- Advanced Medical Development Center, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
7
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
8
|
Park J, Nam SK, Kwak Y, Oh HJ, Kong SH, Park DJ, Lee HJ, Yang HK, Lee HS. Prognostic significance of CD8 and TCF1 double positive T cell subset in microsatellite unstable gastric cancer. Sci Rep 2024; 14:28810. [PMID: 39567670 PMCID: PMC11579470 DOI: 10.1038/s41598-024-80450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Microsatellite instability-high (MSI-H) gastric cancer (GC) exhibits high tumor-infiltrating lymphocyte (TIL) density. Despite the recognized significance of the immune microenvironment in MSI-H GC, our understanding of TIL remains limited. This study aimed to investigate the clinicopathologic and prognostic implications of T cell subsets in MSI-H GC. Single immunohistochemistry (IHC) for CD8, TCF1, and CD103, and double IHC for CD8/TCF1 and CD8/CD103 were performed in 382 surgically resected MSI-H GC samples. Densities of single or double positive immune cells were quantified and correlated with clinicopathologic features and overall survival (OS). TCF1 + cell densities showed weak correlations with CD8 + and CD103 + cell densities, while CD8+/TCF1 + cell density moderately correlated with CD8+/CD103 + cell density (R2 = 0.539, p < 0.001). Single IHC analyses showed no significant associations between CD8+, TCF1+, or CD103 + cell densities and OS (p > 0.05). Notably, elevated CD8+/TCF1 + cell density and a high CD8+/TCF1 + to CD8 + ratio correlated with less aggressive clinicopathologic features and improved OS (p = 0.017 and 0.001, respectively). Multivariable Cox-regression identified CD8+/TCF1 + to CD8 + ratio as an independent prognostic factor (p = 0.028). We demonstrated the prognostic significance of CD8+/TCF1 + to CD8 + ratio using double IHC in a large cohort of MSI-H GC.
Collapse
Affiliation(s)
- Juhyeong Park
- Seoul National University College of Medicine, Seoul, Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Tsai CY, Tai TS, Huang SC, Chen TH, Hsu JT, Yeh CN, Lai YC, Lin G, Yeh TS. Overestimation of clinical N-staging in microsatellite instable gastric cancers is associated with VEGF-C signaling and CD8+ T-cell dynamics. Oncologist 2024:oyae288. [PMID: 39552563 DOI: 10.1093/oncolo/oyae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/26/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Microsatellite instable (MSI) gastric cancers exhibit reduced lymph node (LN) metastasis and improved survival compared to microsatellite stable (MSS) counterparts. However, to our longstanding observation, clinical N-staging (cN) is frequently overestimated in MSI cases. The clinical implications and underlying mechanisms of this discrepancy warrant further investigation. MATERIALS AND METHODS We conducted a comprehensive review of clinicopathological data from a 141 MSI and 1119 MSS gastric cancer patients. Expression of vascular endothelial growth factor-C (VEGF-C) and its receptor VEGFR-3 were assessed using qPCR and immunohistochemistry. High-parameter flow cytometry was employed to analyze subsets of CD8+ T cells within the tumors. RESULTS Multivariate analysis revealed that MSI status was an independent prognostic factor, alongside the LN ratio and AJCC8 pathology staging. MSI gastric cancers exhibited a reduced LN ratio, particularly at advanced T-staging, compared to MSS counterparts, while maintaining an equivalent LN yield. Overestimation of cN by computed tomography preoperatively was frequent in MSI gastric cancers but was more commonly underestimated in MSS counterparts. VEGF-C and VEGFR-3 expression were lower in MSI tumors. MSI gastric cancers showed an increased total number of CD8+ T cells, albeit with a lower proportion of effector memory cells expressing CD45RA (EMRA) and CD8+ CXCR4+ T cells, compared to MSS counterparts. CONCLUSION Frequent overestimation of clinical N-staging in MSI gastric cancers is associated with VEGF-C signaling and CD8+ T-cell dynamics and should be cautiously interpreted, as it might misguide therapeutic options.
Collapse
Affiliation(s)
- Chun-Yi Tsai
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Tzong-Shyuan Tai
- Department of Medical Research and Development, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Shih-Chiang Huang
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Tsung-Hsing Chen
- Department of Gastroenterology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Jun-Te Hsu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ying-Chieh Lai
- Department of Radiology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Gigin Lin
- Department of Radiology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Zheng CW, Yang YM, Yang H. Impact of oxaliplatin and trastuzumab combination therapy on tumor markers and T lymphocyte subsets for advanced gastric cancer. World J Gastrointest Oncol 2024; 16:3905-3912. [PMID: 39350984 PMCID: PMC11438769 DOI: 10.4251/wjgo.v16.i9.3905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Advanced gastric cancer (AGC) remains a challenging malignancy with poor prognosis. The combination of oxaliplatin and trastuzumab has shown promising results in AGC treatment. This study aimed to investigate the effects of oxaliplatin and trastuzumab combination therapy on serum tumor markers and T lymphocyte subsets in patients with AGC and to explore their potential as predictive biomarkers for treatment response. AIM To investigate the impact of oxaliplatin and trastuzumab combination therapy on serum markers and T cell subsets in patients with AGC. METHODS This prospective study enrolled 60 patients with AGC. All patients received oxaliplatin (130 mg/m2, every 3 weeks) and trastuzumab (8 mg/kg loading dose, followed by 6 mg/kg every 3 weeks) for six cycles. Serum carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), and cancer antigen 72-4 (CA72-4) were measured before and after treatment. T-lymphocyte subsets, including CD3+, CD4+, CD8+, and CD4+ /CD8+ ratios, were also evaluated. The clinical response was assessed using the Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS After six cycles of treatment, the CEA, CA19-9, and CA72-4 serum levels significantly decreased compared to baseline levels (P < 0.001). The percentages of CD3+ and CD4+ T lymphocytes increased significantly (P < 0.05), whereas the percentage of CD8+ T lymphocytes decreased (P < 0.05). The CD4+/CD8+ ratio also significantly increased after treatment (P < 0.05). Patients with a higher decrease in serum tumor markers (≥ 50% reduction) and a higher increase in CD4+/CD8+ ratio (≥ 1.5-fold) showed better clinical response rates (P < 0.05). CONCLUSION Oxaliplatin and trastuzumab combination therapy effectively reduced serum tumor marker levels and modulated T lymphocyte subsets in patients with AGC. Combination therapy not only has a direct antitumor effect, but also enhances the immune response in patients with AGC. Serum tumor markers and T lymphocyte subsets may serve as potential predictive biomarkers for treatment response in patients with AGC receiving combination therapy.
Collapse
Affiliation(s)
- Cheng-Wan Zheng
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yun-Mo Yang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Hui Yang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
11
|
Ooki A, Osumi H, Yoshino K, Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer 2024; 27:907-931. [PMID: 38922524 PMCID: PMC11335850 DOI: 10.1007/s10120-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Gastric cancer (GC) is a common malignancy that presents challenges in patient care worldwide. The mismatch repair (MMR) system is a highly conserved DNA repair mechanism that protects genome integrity during replication. Deficient MMR (dMMR) results in an increased accumulation of genetic errors in microsatellite sequences, leading to the development of a microsatellite instability-high (MSI-H) phenotype. Most MSI-H/dMMR GCs arise sporadically, mainly due to MutL homolog 1 (MLH1) epigenetic silencing. Unlike microsatellite-stable (MSS)/proficient MMR (pMMR) GCs, MSI-H/dMMR GCs are relatively rare and represent a distinct subtype with genomic instability, a high somatic mutational burden, favorable immunogenicity, different responses to treatment, and prognosis. dMMR/MSI-H status is a robust predictive biomarker for treatment with immune checkpoint inhibitors (ICIs) due to high neoantigen load, prominent tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PD-L1) overexpression. However, a subset of MSI-H/dMMR GC patients does not benefit from immunotherapy, highlighting the need for further research into predictive biomarkers and resistance mechanisms. This review provides a comprehensive overview of the clinical, molecular, immunogenic, and therapeutic aspects of MSI-H/dMMR GC, with a focus on the impact of ICIs in immunotherapy and their potential as neoadjuvant therapies. Understanding the complexity and diversity of the molecular and immunological profiles of MSI-H/dMMR GC will drive the development of more effective therapeutic strategies and molecular targets for future precision medicine.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Koichiro Yoshino
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
12
|
Cai X, Lin W, Wu F, Song G, Qian Z, Wang Y. RARB associated with MSI, affects progression and prognosis of gastric cancer. BMC Gastroenterol 2024; 24:285. [PMID: 39179979 PMCID: PMC11342619 DOI: 10.1186/s12876-024-03339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
Microsatellite instability (MSI) has been widely acknowledged as an important factor regulating tumor intrinsic biological behavior and affecting the survival of gastric cancer patients. Here, we firstly identified the RARB as a gene associated with MSI gastric cancer. RARB was downregulated in human gastric cancer tissues compared to paired paracancerous tissues, Knockdown of RARB accelerated the proliferation, invasion and migration of cancer cells in vitro. Mechanismly, RARB knockdown promoted epithelial-mesenchymal transition (EMT) process of gastric cancer. However, RARBLow patients exhibited better survival compared to RARBHigh patients. Further study revealed that RARB expression was inversely correlated with MSI status and immune infiltrates in vivo. Thus, RARB may be a potential target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xufan Cai
- Graduate School, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Wenfa Lin
- Graduate School, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Hangzhou, Zhejiang, China
| | - Fang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guangyuan Song
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenyuan Qian
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yu Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Wang Z, Guo F, Fu G, Zhao Z, Kang N, Hou X, Zheng X. Predictive and prognostic value of aurora kinase A combined with tumor-infiltrating lymphocytes in medullary thyroid carcinoma. Front Oncol 2024; 14:1379420. [PMID: 38903715 PMCID: PMC11187078 DOI: 10.3389/fonc.2024.1379420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background Aurora kinase A (AURKA) and tumor-infiltrating lymphocytes (TILs) are both known to play an essential role in tumorigenesis. However, the expression and prognostic value of the AURKA and TILs in medullary thyroid carcinoma (MTC) have not yet been investigated. Patients and methods Surgical specimens and clinical data of 137 patients diagnosed with MTC were collected. AURKA expression and TILs infiltration were quantified by immunohistochemistry and hematoxylin-eosin staining. Subsequently, the prognostic value of AURKA expression and TIL infiltration in MTC was evaluated. Results AURKA was highly expressed in patients with multifocal tumor, cervical lymph node metastasis, and an advanced TNM stage, indicating a high probability of recurrence. AURKA further exhibited a positive correlation with TILs (R = 0.44, P < 0.001). High expression of AURKA combined with a low numbers of TILs (AURKAhigh/TILslow) was identified as an independent prognostic factor for biochemical recurrence (odds ratio: 4.57, 95% confidence interval: 1.54-14.66, P < 0.01) and recurrence-free survival (hazard ratio: 3.64, 95% confidence interval: 1.52-8.71, P < 0.001). The combination of AURKA and TILs apparently improves the prognostic value for biochemical recurrence (area under the curve: 0.751) and structural recurrence (area under the curve: 0.836) of MTC. Notably, AURKAhigh/TILslow demonstrated a high value for prediction of distant or unresectable locoregional recurrence, with an overall accuracy of 86.9%. Conclusion AURKAhigh is associated with the MTC malignancy. The combination of AURKAhigh/TILslow was identified as novel independent prognostic marker in MTC, predicting incurable disease recurrence with high accuracy.
Collapse
Affiliation(s)
- Zhongyu Wang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Fengli Guo
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Guiming Fu
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Thyroid-otolaryngology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zewei Zhao
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ning Kang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
14
|
Bos J, Groen-van Schooten TS, Brugman CP, Jamaludin FS, van Laarhoven HWM, Derks S. The tumor immune composition of mismatch repair deficient and Epstein-Barr virus-positive gastric cancer: A systematic review. Cancer Treat Rev 2024; 127:102737. [PMID: 38669788 DOI: 10.1016/j.ctrv.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.
Collapse
Affiliation(s)
- J Bos
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - T S Groen-van Schooten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - C P Brugman
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - F S Jamaludin
- Amsterdam UMC Location University of Amsterdam, Medical Library AMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
16
|
Hu W, Zhao Y, Ji H, Chen A, Xu Q, Liu Y, Zhang Z, Liu A. Nomogram based on dual-energy CT-derived extracellular volume fraction for the prediction of microsatellite instability status in gastric cancer. Front Oncol 2024; 14:1370031. [PMID: 38854729 PMCID: PMC11156999 DOI: 10.3389/fonc.2024.1370031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose To develop and validate a nomogram based on extracellular volume (ECV) fraction derived from dual-energy CT (DECT) for preoperatively predicting microsatellite instability (MSI) status in gastric cancer (GC). Materials and methods A total of 123 patients with GCs who underwent contrast-enhanced abdominal DECT scans were retrospectively enrolled. Patients were divided into MSI (n=41) and microsatellite stability (MSS, n=82) groups according to postoperative immunohistochemistry staining, then randomly assigned to the training (n=86) and validation cohorts (n=37). We extracted clinicopathological characteristics, CT imaging features, iodine concentrations (ICs), and normalized IC values against the aorta (nICs) in three enhanced phases. The ECV fraction derived from the iodine density map at the equilibrium phase was calculated. Univariate and multivariable logistic regression analyses were used to identify independent risk predictors for MSI status. Then, a nomogram was established, and its performance was evaluated by ROC analysis and Delong test. Its calibration performance and clinical utility were assessed by calibration curve and decision curve analysis, respectively. Results The ECV fraction, tumor location, and Borrmann type were independent predictors of MSI status (all P < 0.05) and were used to establish the nomogram. The nomogram yielded higher AUCs of 0.826 (0.729-0.899) and 0.833 (0.675-0.935) in training and validation cohorts than single variables (P<0.05), with good calibration and clinical utility. Conclusions The nomogram based on DECT-derived ECV fraction has the potential as a noninvasive biomarker to predict MSI status in GC patients.
Collapse
Affiliation(s)
- Wenjun Hu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| | - Hongying Ji
- Department of Pathology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Anliang Chen
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| | - Qihao Xu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yijun Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ziming Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, Liaoning, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| |
Collapse
|
17
|
Li Y, Zhang C, Jiang A, Lin A, Liu Z, Cheng X, Wang W, Cheng Q, Zhang J, Wei T, Luo P. Potential anti-tumor effects of regulatory T cells in the tumor microenvironment: a review. J Transl Med 2024; 22:293. [PMID: 38509593 PMCID: PMC10953261 DOI: 10.1186/s12967-024-05104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) expressing the transcription factor FoxP3 are essential for maintaining immunological balance and are a significant component of the immunosuppressive tumor microenvironment (TME). Single-cell RNA sequencing (ScRNA-seq) technology has shown that Tregs exhibit significant plasticity and functional diversity in various tumors within the TME. This results in Tregs playing a dual role in the TME, which is not always centered around supporting tumor progression as typically believed. Abundant data confirms the anti-tumor activities of Tregs and their correlation with enhanced patient prognosis in specific types of malignancies. In this review, we summarize the potential anti-tumor actions of Tregs, including suppressing tumor-promoting inflammatory responses and boosting anti-tumor immunity. In addition, this study outlines the spatial and temporal variations in Tregs function to emphasize that their predictive significance in malignancies may change. It is essential to comprehend the functional diversity and potential anti-tumor effects of Tregs to improve tumor therapy strategies.
Collapse
Affiliation(s)
- Yu Li
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Lin
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road. Nangang District, Harbin, Heilongiiang, China
| | - Wanting Wang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ting Wei
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Wang X, Liu X, Dai H, Jia J. Association of lymphocyte subsets with the efficacy and prognosis of PD‑1 inhibitor therapy in advanced gastric cancer: results from a monocentric retrospective study. BMC Gastroenterol 2024; 24:113. [PMID: 38491354 PMCID: PMC10943815 DOI: 10.1186/s12876-024-03168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/09/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE This retrospective study aimed to investigate the changes in peripheral blood lymphocyte subsets before and after immunotherapy in patients with advanced gastric cancer and their relationship n with the therapeutic efficacy and clinical prognosis. METHODS Peripheral blood lymphocyte subsets, including CD4 + T cells, CD8 + T cells, CD4+/CD8 + ratio, NK cells, Treg cells, and B cells, were collected from 195 patients with advanced gastric cancer who were admitted to the First Hospital of Shanxi Medical University with immunotherapy from January 2020 to October 2021, at the time of diagnosis of advanced gastric cancer, before immunotherapy and after 3 cycles of immunotherapy. T-tests were used to examine the factors influencing the patients' peripheral blood lymphocyte subsets and the changes after immunotherapy. To examine the relationship between lymphocyte subsets and treatment outcomes, ROC curves were plotted using a logistic regression. Kaplan-Meier curve was drawn, and the Log Rank test was carried out to compare the differences in PFS between the different groups. Cox proportional hazards regression model was used to analyze the factors affecting PFS after calibration of other variables. RESULTS The proportion of peripheral blood lymphocyte subsets in patients with advanced gastric cancer was affected by age and PD-L1 level. Compared to the baseline, the treatment effective group had higher proportions of CD4 + T cells, a higher CD4+/CD8 + ratio, NK cells and Treg cells, and lower proportions of CD8 + T cells and B cells in the peripheral blood after three cycles of immunotherapy. In the treatment-naive group, there were no significant differences in the lymphocyte subsets. With cut-off values of 30.60% and 18.00%, baseline CD4 + T cell and NK cell ratios were independent predictors of immunotherapy efficacy and PFS. Treg cell ratio, gender, PD-L1 levels, and MMR status all predicted PFS independently. CONCLUSION The proportion of peripheral blood lymphocyte subsets was modified in patients who responded to PD-1 inhibitors. Different lymphocyte subpopulation levels can be used as biomarkers to predict immunotherapy efficacy and clinical prognosis in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Xinyan Wang
- The First Clinical Medical College of Shanxi Medical University, No.56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
- Department of Oncology, The First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoling Liu
- Department of Special Medical, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Huwei Dai
- The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
19
|
Pereira MA, Ramos MFKP, Cardili L, de Moraes RDR, Dias AR, Szor DJ, Zilberstein B, Alves VAF, de Mello ES, Ribeiro U. Prognostic implications of tumor-infiltrating lymphocytes within the tumor microenvironment in gastric cancer. J Gastrointest Surg 2024; 28:151-157. [PMID: 38445936 DOI: 10.1016/j.gassur.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) play a regulatory role in the tumor-associated immune response and are important in the prognosis and treatment response of several cancers. However, because of its heterogeneity, the prognostic value of TILs in gastric cancer (GC) is still controversial. Thus, this study aimed to investigate the association between the density of TILs and patients' outcomes in GC. METHODS Patients with gastric adenocarcinoma who underwent curative intent gastrectomy were retrospectively investigated. The groups for analysis were determined on the basis of TIL intensity and percentage of CD3+ T-cell infiltration by immunohistochemical. Furthermore, Epstein-Barr virus (EBV), microsatellite instability (MSI), T-cell ratio of CD4 to CD8, and programmed death protein ligand 1 (PD-L1) status were evaluated. RESULTS A total of 345 patients were enrolled: 124 patients with GCs (35.9%) were classified as the low-CD3+ TIL group, and 221 patients with GCs (64.1%) were classified as the high-CD3+ TIL group. Poorly differentiated histology (P = .014), EBV-positive status (P < .001), PD-L1-positive status (P = .001), and CD4 < CD8 (P < .001) were associated with high-CD3+ GC. There was no difference regarding MSI status, the degree of tumor invasion (pT), the presence of lymph node metastasis, and pTNM stage between low- and high-CD3+ groups. In survival analysis, the high-CD3+ group had better disease-free survival and overall survival rates than had the low-CD3+ group (P = .055 and P = .041, respectively). In the multivariate analysis, total gastrectomy, lymph node metastasis, advanced pT stage, and low CD3+ levels were independent factors related to worse survival. CONCLUSION High CD3+ TILs levels were significantly associated with improved survival and could serve as prognostic biomarkers in GC. In addition, CD3+ T-cell infiltration was related to both EBV-positive and PD-L1-positive GC and may assist in the investigation of targets in immunotherapy.
Collapse
Affiliation(s)
- Marina Alessandra Pereira
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil.
| | - Marcus Fernando Kodama Pertille Ramos
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo Cardili
- Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Dyer Rodrigues de Moraes
- Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - André Roncon Dias
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Jose Szor
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Zilberstein
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Venancio Avancini Ferreira Alves
- Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Evandro Sobroza de Mello
- Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Ulysses Ribeiro
- Department of Gastroenterology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas of the University of São Paulo, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Negura I, Pavel-Tanasa M, Danciu M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy. Cancer Treat Rev 2023; 120:102629. [PMID: 37769435 DOI: 10.1016/j.ctrv.2023.102629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Gastric cancer (GC) is a highly aggressive malignancy that remains a significant contributor to cancer-related mortality worldwide, despite a decline in incidence in recent years. Early-stage GC poses a diagnostic challenge due to its asymptomatic nature, leading to poor prognoses for most patients. Conventional treatment approaches, including chemotherapy and surgery, have shown limited efficacy in improving outcomes for GC patients. The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy, yielding durable responses across various malignancies. However, the clinical benefits of ICIs in GC have been modest, underscoring the need for a comprehensive understanding of immune cell functions within the GC tumor microenvironment (TME). Regulatory T cells (Tregs), a subset of T lymphocytes, play a pivotal role in GC development and progression and serve as prognostic biomarkers for GC patients. This review aims to elucidate the multifaceted roles of Tregs in the pathogenesis, progression, and prognosis of gastric cancer, and establish their actual and future potential as therapeutic targets. By providing insights into the intricate interplay between Tregs and the TME, this review strives to stimulate further investigation and facilitate the development of targeted Treg-based therapeutic strategies for GC.
Collapse
Affiliation(s)
- Ion Negura
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania.
| | - Mihai Danciu
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
21
|
Yamamoto Y, Masuda G, Kushiyama S, Maruo K, Tsujio G, Sera T, Sugimoto A, Nishimura S, Kuroda K, Togano S, Okuno T, Ohira M, Yashiro M. Establishment of a gastric cancer cell line with high microsatellite instability, OCUM-13, derived from Borrmann type-2 primary tumor. Cancer Med 2023; 12:6016-6022. [PMID: 36324252 PMCID: PMC10028156 DOI: 10.1002/cam4.5403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) with microsatellite instability (MSI) has been reported to be sensitive to immunotherapy, however some of GC cases with MSI remain resistant to immunotherapy. Cancer cell lines showing MSI might be useful for the analysis of mechanisms of immunotherapy, while only a few GC cell lines with MSI are available so far. In this study, we established a unique GC cell line with MSI, OCUM-13, from a primary GC with abundant tumor-infiltrating lymphocytes. MSI assay indicated that OCUM-13 cells as well as the primary tumor showed a band shift in more than 3 of 5 microsatellite loci, suggesting that OCUM-13 did have high MSI. The subcutaneous inoculation of OCUM-13 cells into mice performed tumor formation. Insulin-like growth factor 1 receptor inhibitor decreased the growth of OCUM-13 cells. The newly established cell line with MSI, OCUM-13, might be useful for the analysis of cancer therapy for GC with MSI.
Collapse
Affiliation(s)
- Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Koji Maruo
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Okuno
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
22
|
Zhang Y, Yang Y, Chen Y, Lin W, Chen X, Liu J, Huang Y, Wang H, Teng L. PD-L1: Biological mechanism, function, and immunotherapy in gastric cancer. Front Immunol 2022; 13:1060497. [PMID: 36505487 PMCID: PMC9729722 DOI: 10.3389/fimmu.2022.1060497] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is one of the main causes of cancer incidence rate and mortality worldwide. As the main breakthrough direction, the application of immune checkpoint inhibitors makes patients with GC have better prognosis, where PD-L1/PD-1 inhibitors in immunotherapy have good anti-tumor immune efficacy. Further understanding of the regulatory mechanism of PD-L1 in GC may bring substantial progress to the immunotherapy. In this review, we provide information on the endogenous and exogenous regulatory mechanisms of PD-L1 and its biological functions combined with current clinical trials of PD-L1/PD-1 inhibitors in GC. The malignant biological phenotypes caused by PD-L1 and the corresponding clinical combined treatment scheme have been reported. Identifying the biomarkers of the potential efficacy of immunotherapy and specifying the clinical immunotherapy scheme in combination with molecular characteristics of patients may maximize clinical benefits and better prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
24
|
Sukri A, Hanafiah A, Kosai NR. The Roles of Immune Cells in Gastric Cancer: Anti-Cancer or Pro-Cancer? Cancers (Basel) 2022; 14:cancers14163922. [PMID: 36010915 PMCID: PMC9406374 DOI: 10.3390/cancers14163922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Gastric cancer is still one of the leading causes of death caused by cancer in developing countries. The emerging role of immunotherapy in cancer treatment has led to more research to elucidate the roles of essential immune cells in gastric cancer prognosis. We reviewed the roles of immune cells including T cells, B cells, dendritic cells, macrophages and natural killer cells in gastric cancer. Although the studies conducted on the roles of immune cells in gastric cancer pathogenesis produced conflicting results, understanding the roles of immune cells in gastric cancer will help us to harness them for application in immunotherapy for better prognosis and management of gastric cancer patients. Abstract Despite the fact that the incidence of gastric cancer has declined over the last decade, it is still the world’s leading cause of cancer-related death. The diagnosis of early gastric cancer is difficult, as symptoms of this cancer only manifest at a late stage of cancer progression. Thus, the prognosis of gastric cancer is poor, and the current treatment for improving patients’ outcomes involves the application of surgery and chemotherapy. Immunotherapy is one of the most recent therapies for gastric cancer, whereby the immune system of the host is programmed to combat cancer cells, and the therapy differs based upon the patient’s immune system. However, an understanding of the role of immune cells, namely the cell-mediated immune response and the humoral immune response, is pertinent for applications of immunotherapy. The roles of immune cells in the prognosis of gastric cancer have yielded conflicting results. This review discusses the roles of immune cells in gastric cancer pathogenesis, specifically, T cells, B cells, macrophages, natural killer cells, and dendritic cells, as well as the evidence presented thus far. Understanding how cancer cells interact with immune cells is of paramount importance in designing treatment options for gastric cancer immunotherapy.
Collapse
Affiliation(s)
- Asif Sukri
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Shah Alam 43200, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence:
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
25
|
Wang GJ, Huangfu LT, Gao XY, Gan XJ, Xing XF, Ji JF. A Novel Classification and Scoring Method Based on Immune-Related Transcription Factor Regulation Patterns in Gastric Cancer. Front Oncol 2022; 12:887244. [PMID: 35656510 PMCID: PMC9152319 DOI: 10.3389/fonc.2022.887244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Transcription factors (TFs) play a crucial role in tumorigenesis and anti-tumor immunity. However, the potential role of large-scale transcription factor regulation patterns in the progression in gastric cancer (GC) is unknown. Methods We comprehensively assessed the relevance of immune-related TF (IRTF) regulation patterns in anti-tumor immunity and immunotherapy in 1,136 gastric cancer (GC) patients, and evaluated the IRTF score based on IRTF regulation patterns using random forests. Results Two distinct IRTF regulation patterns were identified, which demonstrating the distinct characteristics in clinical phenotypes, tumor immune microenvironment (TIME), immunogenicity and prognosis in GC. Subsequently, the IRTF score was established to quantify the IRTF regulation pattern for each GC patient. Analysis of large conventional therapy cohorts showed low IRTF score was associated with a better prognosis. In addition, analysis of multiple immunotherapy cohorts showed low IRTF score was also linked to enhanced response to immunotherapy. Conclusion TF regulation patterns were found to play an important role in the complex immune regulatory relationships in GC. Evaluation of the IRTF regulation patterns in patients will enhance our understanding of immune specificities, and thus, provide effective strategies for personalized therapy.
Collapse
Affiliation(s)
- Gang-Jian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China
| | - Long-Tao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China
| | - Xiang-Yu Gao
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, China
| | - Xue-Jun Gan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
26
|
Ma M, Sun J, Liu Z, Ouyang S, Zhang Z, Zeng Z, Li J, Kang W. The Immune Microenvironment in Gastric Cancer: Prognostic Prediction. Front Oncol 2022; 12:836389. [PMID: 35574386 PMCID: PMC9096124 DOI: 10.3389/fonc.2022.836389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Although therapeutic methods have been developed, gastric cancer (GC) still leads to high rates of mortality and morbidity and is the fourth leading cause of cancer-associated death and the fifth most common cancer worldwide. To understand the factors associated with the prognostic prediction of GC and to discover efficient therapeutic targets, previous studies on tumour pathogenesis have mainly focused on the cancer cells themselves; in recent years, a large number of studies have shown that cancer invasion and metastasis are the results of coevolution between cancer cells and the microenvironment. It seems that studies on the tumour microenvironment could help in prognostic prediction and identify potential targets for treating GC. In this review, we mainly introduce the research progress for prognostic prediction and the immune microenvironment in GC in recent years, focusing on cancer-associated fibroblasts (CAFs), tumour-associated macrophages (TAMs), and tumour-infiltrating lymphocytes (TILs) in GC, and discuss the possibility of new therapeutic targets for GC.
Collapse
Affiliation(s)
- Mingwei Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jie Li
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Weiming Kang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
27
|
Lagumdzic E, Pernold C, Viano M, Olgiati S, Schmitt MW, Mair KH, Saalmüller A. Transcriptome Profiling of Porcine Naïve, Intermediate and Terminally Differentiated CD8 + T Cells. Front Immunol 2022; 13:849922. [PMID: 35265090 PMCID: PMC8900158 DOI: 10.3389/fimmu.2022.849922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The pig has the potential to become a leading research model for human diseases, pharmacological and transplantation studies. Since there are many similarities between humans and pigs, especially concerning anatomy, physiology and metabolism, there is necessity for a better understanding of the porcine immune system. In adaptive immunity, cytotoxic T lymphocytes (CTLs) are essential for host defense. However, most data on CTLs come from studies in mice, non-human primates and humans, while detailed information about porcine CD8+ CTLs is still sparse. Aim of this study was to analyze transcriptomes of three subsets of porcine CD8β+ T-cell subsets by using next-generation sequencing technology. Specifically, we described transcriptional profiles of subsets defined by their CD11a/CD27 expression pattern, postulated as naïve (CD8β+CD27+CD11alow), intermediate differentiated (CD8β+CD27dimCD11a+), and terminally differentiated cells (CD8β+CD27-CD11ahigh). Cells were analyzed in ex vivo condition as well as upon in vitro stimulation with concanavalin A (ConA) and PMA/ionomycin. Our analyses show that the highest number of differentially expressed genes was identified between naïve and terminally differentiated CD8+ T-cell subsets, underlining their difference in gene expression signature and respective differentiation stages. Moreover, genes related to early (IL7-R, CCR7, SELL, TCF7, LEF1, BACH2, SATB1, ZEB1 and BCL2) and late (KLRG1, TBX21, PRDM1, CX3CR1, ZEB2, ZNF683, BATF, EZH2 and ID2) stages of CD8+ T-cell differentiation were highly expressed in the naïve and terminally differentiated CD8+ T-cell subsets, respectively. Intermediate differentiated CD8+ T-cell subsets shared a more comparable gene expression profile associated with later stages of T-cell differentiation. Genes associated with cytolytic activity (GNLY, PRF1, GZMB, FASL, IFNG and TNF) were highly expressed in terminally and intermediate differentiated CD8+ T-cell subsets, while naïve CD8+ T cells lacked expression even after in vitro stimulation. Overall, PMA/ionomycin stimulation induced much stronger upregulation of genes compared to stimulation with ConA. Taken together, we provided comprehensive results showing transcriptional profiles of three differentiation stages of porcine CD8+ T-cell subsets. In addition, our study provides a powerful toolbox for the identification of candidate markers to characterize porcine immune cell subsets in more detail.
Collapse
Affiliation(s)
- Emil Lagumdzic
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Clara Pernold
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Marta Viano
- Istituto di Ricerche Biomediche "A. Marxer" RBM S.p.A., Torino, Italy
| | - Simone Olgiati
- Istituto di Ricerche Biomediche "A. Marxer" RBM S.p.A., Torino, Italy
| | - Michael W Schmitt
- Merck Healthcare KGaA, Chemical & Preclinical Safety, Darmstadt, Germany
| | - Kerstin H Mair
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
28
|
Characteristics of immunophenotypes and immunological in tumor microenvironment and analysis of immune implication of CXCR4 in gastric cancer. Sci Rep 2022; 12:5720. [PMID: 35388021 PMCID: PMC8986874 DOI: 10.1038/s41598-022-08622-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
The formation of gastric cancer (GC) is a complicated process involving multiple factors and multiple steps. The tumor–immune microenvironment is essential for the growth of GC and affects the prognosis of patients. We performed multiple machine learning algorithms to identify immunophenotypes and immunological characteristics in GC patients’ information from the TCGA database and extracted immune genes relevance of the GC immune microenvironment. C-X-C motif chemokine receptor 4 (CXCR4), belongs to the C-X-C chemokine receptor family, which can promote the invasion and migration of tumor cells. CXCR4 expression is significantly correlated to metastasis and the worse prognosis. In this work, we assessed the condition of immune cells and identified the connection between CXCR4 and GC immune microenvironment, as well as the signaling pathways that mediate the immune responses involved in CXCR4. The work showed the risk scores generated by CXCR4-related immunomodulators could distinguish risk groups consisting of differential expression genes and could use for the personalized prognosis prediction. The findings suggested that CXCR4 is involved in tumor immunity of GC, and CXCR4 is considered as a potential prognostic biomarker and immunotherapy target of GC. The prognostic immune markers from CXCR4-associated immunomodulators can independently predict the overall survival of GC.
Collapse
|
29
|
Yan B, Xiong J, Ye Q, Xue T, Xiang J, Xu M, Li F, Wen W. Correlation and prognostic implications of intratumor and tumor draining lymph node Foxp3 + T regulatory cells in colorectal cancer. BMC Gastroenterol 2022; 22:122. [PMID: 35296257 PMCID: PMC8925044 DOI: 10.1186/s12876-022-02205-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prognostic value of intratumor T regulatory cells (Tregs) in colorectal cancer (CRC) was previously reported, but the role of these cells in tumor draining lymph nodes (TDLNs) was less addressed. METHODS A total of 150 CRC stages I-IV were retrospectively enrolled. Intratumor and TDLN Tregs were examined by immunohistochemical assay. The association of these cells was estimated by Pearson correlation. Survival analyses of subgroups were conducted by Kaplan-Meier curves, and the log-rank test and risk factors for survival were tested by the Cox proportional hazard model. RESULTS High accumulation of Tregs in tumors was significant in patients with younger age and good histological grade, where enrichment of these cells in TDLNs was more apparent in those with node-negative disease and early TNM stage disease, both of which were more common in early T stage cases. A significant correlation of intratumoral and TDLN Tregs was detected. Patients with higher intratumoral Tregs displayed significantly better PFS and OS than those with lower Tregs. However, no such differences were found, but a similar prognostic prediction trend was found for these cells in TDLNs. Finally, intratumoral Tregs were an independent prognostic factor for both PFS (HR = 0.97, 95% CI 0.95-0.99, P < 0.01) and OS (HR = 0.98, 95% CI 0.95-1.00, P = 0.04) in the patients. CONCLUSIONS Higher intratumor Tregs were associated with better survival in CRC. Although no such role was found for these cells in TDLNs, the positive correlation and similar prognostic prediction trend with their intratumoral counterparts may indicate a parallelized function of these cells in CRC.
Collapse
Affiliation(s)
- Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jianmei Xiong
- Department of Neurology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Tianhui Xue
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Mingyue Xu
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Fang Li
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China.
| | - Wei Wen
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China.
| |
Collapse
|
30
|
Na HY, Park Y, Nam SK, Koh J, Kwak Y, Ahn SH, Park DJ, Kim HH, Lee KS, Lee HS. Prognostic significance of natural killer cell-associated markers in gastric cancer: quantitative analysis using multiplex immunohistochemistry. J Transl Med 2021; 19:529. [PMID: 34952595 PMCID: PMC8710020 DOI: 10.1186/s12967-021-03203-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). METHODS We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. RESULTS Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. CONCLUSIONS Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.
Collapse
Affiliation(s)
- Hee Young Na
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yujun Park
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
31
|
Harada H, Nie Y, Araki I, Soeno T, Chuman M, Washio M, Sakuraya M, Ushiku H, Niihara M, Hosoda K, Kumamoto Y, Naitoh T, Sangai T, Hiki N, Yamashita K. Haploinsufficiency by minute MutL homolog 1 promoter DNA methylation may represent unique phenotypes of microsatellite instability-gastric carcinogenesis. PLoS One 2021; 16:e0260303. [PMID: 34936649 PMCID: PMC8694418 DOI: 10.1371/journal.pone.0260303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022] Open
Abstract
Promoter DNA methylation of MutL homolog 1 (MLH1) is considered to play a causative role in microsatellite instability (MSI) carcinogenesis in primary gastric cancer, and a high MSI status is associated with treatment sensitivity to human cancers. Nevertheless, clinicopathological analysis is defective for MLH1 methylation status in a quantitative manner. We newly developed quantitative methylation specific PCR using a TaqMan probe and applied it to 138 patients with primary gastric cancer who underwent gastrectomy in addition to basic molecular features such as MSI, Epstein Barr virus, and other DNA methylation status. (1) In primary gastric cancer, median methylation value was 0.055, ranging from 0 to 124.3. First, MLH1 hypermethylation was strongly correlated with MSI-High/MSI-Low status and suppressed immunostaining (P < 0.0001). (2) The MLH1 hypermethylation was associated with advanced age (P = 0.0048), antral location (P = 0.0486), synchronous multiple gastric cancer (P = 0.0001), and differentiated histology (P = 0.028). (3) Log-rank plot analysis identified the most relevant cut-off value (0.23) to reflect gentle phenotypes in MLH1 hypermethylation cases (P = 0.0019), especially in advanced gastric cancer (P = 0.0132), which are designated as haploinsufficiency of MSI (MSI-haplo) phenotype in this study. (4) In synchronous multiple gastric cancer, MLH1 hypermethylation was not necessarily confirmed as field cancerization. (5) MSI-haplo defined by MLH1 methylation status represented distinct prognostic phenotype even after molecular classifications. MLH1 hypermethylation designated as MSI-haplo may represent unique prognostic phenotype during gastric carcinogenesis.
Collapse
Affiliation(s)
- Hiroki Harada
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Nie
- Department of General, Pediatric and Hepatobiliary-Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ippeita Araki
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Soeno
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Motohiro Chuman
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Marie Washio
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mikiko Sakuraya
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Niihara
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kei Hosoda
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of General, Pediatric and Hepatobiliary-Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naoki Hiki
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Upper-gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
32
|
Pereira MA, de Castria TB, Ramos MFKP, Dias AR, Cardili L, de Moraes RDR, Zilberstein B, Nahas SC, Ribeiro U, de Mello ES. Cytotoxic T-lymphocyte-associated protein 4 in gastric cancer: Prognosis and association with PD-L1 expression. J Surg Oncol 2021; 124:1040-1050. [PMID: 34255356 DOI: 10.1002/jso.26604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is one of the most studied immune checkpoint in gastric cancer (GC). However, the prognostic role of CTLA-4 expression in GC is poorly described. This study aimed to evaluate CTLA-4 expression in GC and its impact on survival, including patients treated with standard platinum-based chemotherapy (CMT), and association with PD-L1 expression. METHODS All GC patients who underwent D2-gastrectomy were investigated retrospectively. Tumor samples were examined for CTLA-4 and PD-L1 by immunohistochemistry. Tumor-infiltrating inflammatory cells, including CD4 + and CD8 + , were also examined. RESULTS Among the 284 GC patients included, 159 (56%) were CTLA-4 positive and the remaining 125 (44%) were classified as negative. CTLA-4 positive GC was associated with increased inflammatory cell infiltration (p < 0.001), high CD8 + T cells (p = 0.016) and PD-L1 expression (p = 0.026). Considering GC referred for treatment, CTLA-4 negative patients who received CMT had a significant improvement in disease-free survival compared to untreated CLTA-4 negative (p = 0.028). In multivariate analysis, GC positive for both CTLA-4 and PD-L1 had a prognostic impact on survival. CONCLUSION CTLA-4 positive was associated with PD-L1 expression and a high tumor-infiltrating CD8 + T cells. Accordingly, positivity for both CTLA-4 and PD-L1 was an independent factor associated to better survival in GC patients.
Collapse
Affiliation(s)
- Marina Alessandra Pereira
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tiago Biachi de Castria
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marcus Fernando Kodama Pertille Ramos
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - André Roncon Dias
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Cardili
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rafael Dyer Rodrigues de Moraes
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Zilberstein
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sergio Carlos Nahas
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ulysses Ribeiro
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Evandro Sobroza de Mello
- Department of Gastroenterology, Department of Pathology, Faculdade de Medicina, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
33
|
Guan WL, Ma Y, Cui YH, Liu TS, Zhang YQ, Zhou ZW, Xu JY, Yang LQ, Li JY, Sun YT, Xu RH, Wang FH, Qiu MZ. The Impact of Mismatch Repair Status on Prognosis of Patients With Gastric Cancer: A Multicenter Analysis. Front Oncol 2021; 11:712760. [PMID: 34900669 PMCID: PMC8655239 DOI: 10.3389/fonc.2021.712760] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The clinical role of deficient DNA mismatch repair (dMMR)/microsatellite instability-high (MSI-H) in gastric cancer (GC) is still controversial. We aimed to analyze the relationship between dMMR/MSI-H and clinicopathological features along with survival. METHODS Patients who were diagnosed with GC at the three big cancer centers in China from 2015 to 2020 were evaluated retrospectively. MMR/MSI status was assessed using immunohistochemistry/PCR. Clinical and pathological data were collected from the medical record system. RESULTS A total of 196 patients with dMMR/MSI-H status were enrolled for analysis. The prevalence of MSI-H/dMMR in GC was 6.6%. Another 694 proficient MMR (pMMR) GC patients were enrolled for comparison. Compared with pMMR patients, dMMR/MSI-H patients were associated with older age, female predominance, distal location in the stomach, earlier TNM stage, intestinal subtype, better differentiation, and more negative HER2 status. The median overall survival (OS) of the dMMR/MSI-H group was better than that of the pMMR/microsatellite stability (MSS) group (not reached vs. 53.9 months, p = 0.014). Adjuvant chemotherapy had no impact in both disease-free survival (DFS) and OS of dMMR/MSI-H patients (p = 0.135 and 0.818, respectively). dMMR/MSI-H patients had poorer response and progression-free survival (PFS) of first-line chemotherapy, though they were statistically significant (p = 0.361 and 0.124, respectively). CONCLUSIONS dMMR/MSI-H GC patients have specific clinicopathological characteristics and better prognosis than pMMR patients.
Collapse
Affiliation(s)
- Wen-Long Guan
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue-Hong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tian-Shu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Qiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhi-Wei Zhou
- Department of Gastric Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-Ying Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Qiong Yang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia-Yu Li
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-Ting Sun
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
34
|
Mungenast F, Fernando A, Nica R, Boghiu B, Lungu B, Batra J, Ecker RC. Next-Generation Digital Histopathology of the Tumor Microenvironment. Genes (Basel) 2021; 12:538. [PMID: 33917241 PMCID: PMC8068063 DOI: 10.3390/genes12040538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Progress in cancer research is substantially dependent on innovative technologies that permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting from somatic mutations and post-translational modifications. In view of a large number of genes, multiplied by differential splicing as well as post-translational protein modifications, the ability to identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue environment, has become a prerequisite for understanding tumorigenesis and cancer progression. The need for quantitative analyses has led to a renaissance of optical instruments and imaging techniques. With the emergence of precision medicine, automated analysis of a constantly increasing number of cellular markers and their measurement in spatial context have become increasingly necessary to understand the molecular mechanisms that lead to different pathways of disease progression in individual patients. In this review, we summarize the joint effort that academia and industry have undertaken to establish methods and protocols for molecular profiling and immunophenotyping of cancer tissues for next-generation digital histopathology-which is characterized by the use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods for machine and deep learning.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Achala Fernando
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Bogdan Boghiu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Bianca Lungu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Jyotsna Batra
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Rupert C. Ecker
- TissueGnostics GmbH, 1020 Vienna, Austria;
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
35
|
Puliga E, Corso S, Pietrantonio F, Giordano S. Microsatellite instability in Gastric Cancer: Between lights and shadows. Cancer Treat Rev 2021; 95:102175. [PMID: 33721595 DOI: 10.1016/j.ctrv.2021.102175] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) represents an important contributor to the global burden of cancer, being one of the most common and deadly malignancies worldwide. According to TCGA and ACRG classifications, the microsatellite instable (MSI) group represents a significant subset of GCs and is currently in the limelight of many researches due to its favorable survival outcome in resectable stages compared to microsatellite stable tumors. MSI GCs hypermutated phenotype triggers immunosurveillance, making this molecular subgroup a promising candidate for immune checkpoint inhibitors treatment. Conversely, conflicting outcomes have been reported in chemotherapy settings. Due to the clinical relevance of these observations, in this review we report and discuss the molecular, pathological, prognostic, and predictive features of MSI gastric tumors.
Collapse
Affiliation(s)
- Elisabetta Puliga
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
36
|
Yun S, Koh J, Nam SK, Kwak Y, Ahn SH, Do Park J, Kim HH, Kim WH, Lee HS. Immunoscore is a strong predictor of survival in the prognosis of stage II/III gastric cancer patients following 5-FU-based adjuvant chemotherapy. Cancer Immunol Immunother 2021; 70:431-441. [PMID: 32785776 PMCID: PMC10991343 DOI: 10.1007/s00262-020-02694-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/04/2020] [Indexed: 12/25/2022]
Abstract
The prognostic impact of Immunoscore (IS) in gastric cancer (GC) patients treated with adjuvant chemotherapy remains unelucidated. We evaluated the CD3 + , CD8 + , and Foxp3 + T-lymphocyte densities in tumor centers and invasive margin regions of 389 patients with surgically resected stage II/III GC who received 5-FU-based adjuvant chemotherapy and investigated the impact of IS on survival. In univariate analysis, high CD3 + , CD8 + , and Foxp3 + T-lymphocyte densities in the invasive margin were correlated with better prognosis (all P < 0.05). Patients with high IS had significantly longer disease-free survival (DFS; P < 0.001) and overall survival (OS; P < 0.001). In multivariate analysis, IS demonstrated a powerful prognostic impact on patient outcome [DFS, hazard ratio (HR) = 0.465; 95% confidence interval (CI), 0.306-0.707, P < 0.001; OS, HR = 0.478; 95% CI, 0.308-0.743, P = 0.001]. Additionally, although all EBV-positive cases had high IS, IS was similar in both microsatellite instability (MSI)-high and microsatellite stable (MSS)/MSI-low groups (83.3% and 80.5%, respectively). Subgroup analysis according to MSI status revealed that high IS patients had significant DFS and OS benefits in both MSS/MSI-low (DFS, HR = 0.527, 95% CI, 0.341-0.816, P = 0.004; OS, HR = 0.528, 95% CI, 0.334-0.837, P = 0.007) and MSI-high (DFS, HR = 0.166, 95% CI, 0.033-0.826, P = 0.028; OS, HR = 0.177, 95% CI, 0.036-0.883, P = 0.035) groups. Thus, the assessment of immune cell infiltration based on IS may provide a strong indicator of survival in stage II/III GC patients with curative resection following 5-FU-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Sumi Yun
- Department of Diagnostic Pathology, Samkwang Medical Laboratories, Seoul, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundang-gu, Gyeonggi-do, Seongnam-si, 463-707, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joong Do Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundang-gu, Gyeonggi-do, Seongnam-si, 463-707, Republic of Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Rocha S, Basto AP, Ijsselsteijn ME, Teles SP, Azevedo MM, Gonçalves G, Gullo I, Almeida GM, Maqueda JJ, Oliveira MI, Carneiro F, Barata JT, Graça L, de Miranda NFCC, Carvalho J, Oliveira C. Immunophenotype of Gastric Tumors Unveils a Pleiotropic Role of Regulatory T Cells in Tumor Development. Cancers (Basel) 2021; 13:cancers13030421. [PMID: 33498681 PMCID: PMC7865950 DOI: 10.3390/cancers13030421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/26/2023] Open
Abstract
Gastric cancer (GC) patients display increased regulatory T cell (Tregs) numbers in peripheral blood and among tumor-infiltrating lymphocytes. Nevertheless, the role of Tregs in GC progression remains controversial. Here, we sought to explore the impact of Tregs in GCs with distinct histology, and whether Tregs can directly influence tumor cell behavior and GC development. We performed a comprehensive immunophenotyping of 82 human GC cases, through an integrated analysis of multispectral immunofluorescence detection of T cells markers and patient clinicopathological data. Moreover, we developed 3D in vitro co-cultures with Tregs and tumor cells that were followed by high-throughput and light-sheet imaging, and their biological features studied with conventional/imaging flow cytometry and Western blotting. We showed that Tregs located at the tumor nest were frequent in intestinal-type GCs but did not associate with increased levels of effector T cells. Our in vitro results suggested that Tregs preferentially infiltrated intestinal-type GC spheroids, induced the expression of IL2Rα and activation of MAPK signaling pathway in tumor cells, and promoted spheroid growth. Accumulation of Tregs in intestinal-type GCs was increased at early stages of the stomach wall invasion and in the absence of vascular and perineural invasion. In this study, we proposed a non-immunosuppressive mechanism through which Tregs might directly modulate GC cells and thereby promote tumor growth. Our findings hold insightful implications for therapeutic strategies targeting intestinal-type GCs and other tumors with similar immune context.
Collapse
Affiliation(s)
- Sara Rocha
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Doctoral Program on Cellular and Molecular Biotechnology Applied to Health Sciences, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Afonso P Basto
- iMM—Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.P.B.); (J.T.B.); (L.G.)
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Marieke E Ijsselsteijn
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.E.I.); (N.F.C.C.d.M.)
| | - Sara P Teles
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
| | - Maria M Azevedo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
| | - Gilza Gonçalves
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
| | - Irene Gullo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Gabriela M Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
| | - Joaquín J Maqueda
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
| | - Marta I Oliveira
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;
| | - Fátima Carneiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - João T Barata
- iMM—Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.P.B.); (J.T.B.); (L.G.)
| | - Luís Graça
- iMM—Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.P.B.); (J.T.B.); (L.G.)
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.E.I.); (N.F.C.C.d.M.)
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
| | - Carla Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
- Correspondence: ; Tel.: +351-225-570-785
| |
Collapse
|
38
|
The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13020210. [PMID: 33430105 PMCID: PMC7827203 DOI: 10.3390/cancers13020210] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Immunotherapy improved the therapeutic landscape for patients with advanced cancer diseases. However, many patients do not benefit from immunotherapy. The bidirectional crosstalk between myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) contributes to immune evasion, limiting the success of immunotherapy by checkpoint inhibitors. This review aims to outline the current knowledge of the role and the immunosuppressive properties of MDSC and Treg within the tumor microenvironment (TME). Furthermore, we will discuss the importance of the functional crosstalk between MDSC and Treg for immunosuppression, issuing particularly the role of cell adhesion molecules. Lastly, we will depict the impact of this interaction for cancer research and discuss several strategies aimed to target these pathways for tumor therapy. Abstract Immune checkpoint inhibitors (ICI) have led to profound and durable tumor regression in some patients with metastatic cancer diseases. However, many patients still do not derive benefit from immunotherapy. Here, the accumulation of immunosuppressive cell populations within the tumor microenvironment (TME), such as myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), and regulatory T cells (Treg), contributes to the development of immune resistance. MDSC and Treg expand systematically in tumor patients and inhibit T cell activation and T effector cell function. Numerous studies have shown that the immunosuppressive mechanisms exerted by those inhibitory cell populations comprise soluble immunomodulatory mediators and receptor interactions. The latter are also required for the crosstalk of MDSC and Treg, raising questions about the relevance of cell–cell contacts for the establishment of their inhibitory properties. This review aims to outline the current knowledge on the crosstalk between these two cell populations, issuing particularly the potential role of cell adhesion molecules. In this regard, we further discuss the relevance of β2 integrins, which are essential for the differentiation and function of leukocytes as well as for MDSC–Treg interaction. Lastly, we aim to describe the impact of such bidirectional crosstalk for basic and applied cancer research and discuss how the targeting of these pathways might pave the way for future approaches in immunotherapy.
Collapse
|
39
|
Neumeyer S, Hua X, Seibold P, Jansen L, Benner A, Burwinkel B, Halama N, Berndt SI, Phipps AI, Sakoda LC, Schoen RE, Slattery ML, Chan AT, Gala M, Joshi AD, Ogino S, Song M, Herpel E, Bläker H, Kloor M, Scherer D, Ulrich A, Ulrich CM, Win AK, Figueiredo JC, Hopper JL, Macrae F, Milne RL, Giles GG, Buchanan DD, Peters U, Hoffmeister M, Brenner H, Newcomb PA, Chang-Claude J. Genetic Variants in the Regulatory T cell-Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiol Biomarkers Prev 2020; 29:2719-2728. [PMID: 33008876 PMCID: PMC7976673 DOI: 10.1158/1055-9965.epi-20-0714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High numbers of lymphocytes in tumor tissue, including T regulatory cells (Treg), have been associated with better colorectal cancer survival. Tregs, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and therefore variants in genes related to Treg differentiation and function could be associated with colorectal cancer prognosis. METHODS In a prospective German cohort of 3,593 colorectal cancer patients, we assessed the association of 771 single-nucleotide polymorphisms (SNP) in 58 Treg-related genes with overall and colorectal cancer-specific survival using Cox regression models. Effect modification by microsatellite instability (MSI) status was also investigated because tumors with MSI show greater lymphocytic infiltration and have been associated with better prognosis. Replication of significant results was attempted in 2,047 colorectal cancer patients of the International Survival Analysis in Colorectal Cancer Consortium (ISACC). RESULTS A significant association of the TGFBR3 SNP rs7524066 with more favorable colorectal cancer-specific survival [hazard ratio (HR) per minor allele: 0.83; 95% confidence interval (CI), 0.74-0.94; P value: 0.0033] was replicated in ISACC (HR: 0.82; 95% CI, 0.68-0.98; P value: 0.03). Suggestive evidence for association was found with two IL7 SNPs, rs16906568 and rs7845577. Thirteen SNPs with differential associations with overall survival according to MSI in the discovery analysis were not confirmed. CONCLUSIONS Common genetic variation in the Treg pathway implicating genes such as TGFBR3 and IL7 was shown to be associated with prognosis of colorectal cancer patients. IMPACT The implicated genes warrant further investigation.
Collapse
Affiliation(s)
- Sonja Neumeyer
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xinwei Hua
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, Heidelberg, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Epidemiology Department, University of Washington, Seattle, Washington
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Esther Herpel
- NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University of Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Aung K Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles California
| | - John L Hopper
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Victoria, Australia
| | - Finlay Macrae
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Victoria, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Polly A Newcomb
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
40
|
Nasr R, Shamseddine A, Mukherji D, Nassar F, Temraz S. The Crosstalk between Microbiome and Immune Response in Gastric Cancer. Int J Mol Sci 2020; 21:ijms21186586. [PMID: 32916853 PMCID: PMC7556019 DOI: 10.3390/ijms21186586] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the end result of a complex interplay between host genetics, environmental factors, and microbial factors. The link between gut microbiome and gastric cancer has been attributed to persistent activation of the host's immune system by gut microbiota. The end result of this dysregulated interaction between host epithelium and microbes is a state of chronic inflammation. Gut bacteria can promote anti-tumor immune responses through several mechanisms. These include triggering T-cell responses to bacterial antigens that can cross-react with tumor antigens or cause tumor-specific antigen recognition; engagement of pattern recognition receptors that mediate pro-immune or anti-inflammatory effects or via small metabolites that mediate systemic effects on the host. Here we review the role of the gut microbiome including H. pylori and non-H. pylori gastric bacteria, the immune response, and immunotherapy using checkpoint inhibitors. We also review the evidence for cross talk between the gut microbiome and immune response in gastric cancer.
Collapse
Affiliation(s)
- Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon;
| | - Ali Shamseddine
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (A.S.); (D.M.); (F.N.)
| | - Deborah Mukherji
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (A.S.); (D.M.); (F.N.)
| | - Farah Nassar
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (A.S.); (D.M.); (F.N.)
| | - Sally Temraz
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (A.S.); (D.M.); (F.N.)
- Correspondence: ; Tel.: +961-137-4374
| |
Collapse
|
41
|
Heo YJ, Lee T, Byeon SJ, Kim EJ, Shin HC, Kim B, Kang SY, Ha SY, Kim KM. Digital image analysis in pathologist-selected regions of interest predicts survival more accurately than whole-slide analysis: a direct comparison study in 153 gastric carcinomas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:42-51. [PMID: 32885920 PMCID: PMC7737754 DOI: 10.1002/cjp2.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Automatic quantification of biomarkers such as tumor‐infiltrating lymphocytes and PD‐L1 is one of the most studied topics in digital pathology image analysis (DIA). However, direct comparison between the DIA of a whole‐slide image (WSI) and that of regions of interest (ROIs) chosen by pathologists has not been performed. In this study, we aimed to compare the prognostic value of tumor microenvironment markers CD8 and PD‐L1, measured by DIA of WSIs and ROIs. We selected 153 primary gastric cancer tissues and stained them with CD8 and PD‐L1. All IHC slides were scanned at ×200 magnification and ratios of CD8 and PD‐L1 were measured in WSIs and ROIs from the invasive front, within the tumor, and the mucosa. Patients with high CD8 and PD‐L1 ratios showed more favorable outcomes compared to those with low ratios. Pathologist‐aided DIA predicted the survival of patients more accurately than WSI analysis (CD8, p = 0.025 versus p = 0.068; PD‐L1, p = 0.008 versus p = 0.2). Although a high density of CD8+ T cells at the invasive front correlated best with patient survival, CD8 ratio in the mucosa could also predict patient outcome. In conclusion, CD8 and PD‐L1 ratios measured by pathologist‐aided DIA predicted survival more accurately than WSI analyses and ROIs at the invasive front correlated best with patient outcome.
Collapse
Affiliation(s)
- You Jeong Heo
- The Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Taebum Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Pathology, Chonnam National University Medical School, Hwasun Hospital, Hwasun-gun, Republic of Korea
| | - Sun-Ju Byeon
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Eun Ji Kim
- Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeong Chan Shin
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Binnari Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyoung-Mee Kim
- The Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
42
|
Pérez-Romero K, Rodríguez RM, Amedei A, Barceló-Coblijn G, Lopez DH. Immune Landscape in Tumor Microenvironment: Implications for Biomarker Development and Immunotherapy. Int J Mol Sci 2020; 21:5521. [PMID: 32752264 PMCID: PMC7432816 DOI: 10.3390/ijms21155521] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Integration of the tumor microenvironment as a fundamental part of the tumorigenic process has undoubtedly revolutionized our understanding of cancer biology. Increasing evidence indicates that neoplastic cells establish a dependency relationship with normal resident cells in the affected tissue and, furthermore, develop the ability to recruit new accessory cells that aid tumor development. In addition to normal stromal and tumor cells, this tumor ecosystem includes an infiltrated immune component that establishes complex interactions that have a critical effect during the natural history of the tumor. The process by which immune cells modulate tumor progression is known as immunoediting, a dynamic process that creates a selective pressure that finally leads to the generation of immune-resistant cells and the inability of the immune system to eradicate the tumor. In this context, the cellular and functional characterization of the immune compartment within the tumor microenvironment will help to understand tumor progression and, ultimately, will serve to create novel prognostic tools and improve patient stratification for cancer treatment. Here we review the impact of the immune system on tumor development, focusing particularly on its clinical implications and the current technologies used to analyze immune cell diversity within the tumor.
Collapse
Affiliation(s)
- Karim Pérez-Romero
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (K.P.-R.); (G.B.-C.)
| | - Ramón M. Rodríguez
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (K.P.-R.); (G.B.-C.)
| | - Daniel H. Lopez
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (K.P.-R.); (G.B.-C.)
| |
Collapse
|
43
|
Tsai C, Lin T, Huang S, Hsu J, Yeh C, Chen T, Chiu C, Chen J, Yeh T. Is Adjuvant Chemotherapy Necessary for Patients with Deficient Mismatch Repair Gastric Cancer?-Autophagy Inhibition Matches the Mismatched. Oncologist 2020; 25:e1021-e1030. [PMID: 32058649 PMCID: PMC7356708 DOI: 10.1634/theoncologist.2019-0419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The use of microsatellite instability (MSI) and mismatch repair (MMR) as predictive biomarkers for fluorouracil-based adjuvant chemotherapy in colorectal cancer has been a paradigm shift. However, whether this applies to gastric cancer is questionable. Furthermore, we herein investigated whether and how autophagy plays a role in MSI-relevant chemoresistance. MATERIALS AND METHODS A total of 929 patients with deficient MMR (dMMR) and proficient MMR (pMMR) gastric cancers who underwent curative-intent gastrectomy were enrolled. We compared clinicopathological variables and survival among dMMR and pMMR cohorts and tested the responses of MSI-high and microsatellite stable (MSS) gastric cancer cell lines to 5-fluorouracil (5-FU) with or without chloroquine, an autophagy inhibitor. RESULTS We identified an 8.9% prevalence of dMMR cases (83 out of 929) in our cohort. This was associated with old age, tumor site at the distal stomach, an intestinal phenotype, fewer nodal metastasis, and early pathological stages. MMR was an independent prognostic factor after multivariate adjustment. Overall survival (OS) of dMMR patients was better than that of the pMMR patients but was only applicable to stage III patients. There was no difference in OS between dMMR patients treated with or without adjuvant chemotherapy, although the latter showed more medical morbidities. The MSI-high gastric cancer cell lines, versus the MSS counterparts, displayed increased resistance to 5-FU and increased autophagy. Interestingly, autophagy inhibition abrogated the chemoresistance. CONCLUSION Our data show that fluorouracil-based adjuvant chemotherapy does not work for dMMR cases, if not worse. Autophagy inhibition and/or immune checkpoint inhibition might be promising alternative strategies for gastric cancer treatment. IMPLICATIONS FOR PRACTICE The use of microsatellite instability (MSI) and mismatch repair (MMR) as predictive biomarkers for adjuvant chemotherapy in colorectal cancer has caused a paradigm shift in cancer therapy, although its implications in gastric cancer are still questionable. The data obtained in the current study indicate that MSI-MMR is an independent prognostic factor for gastric cancer. Standard fluorouracil-based adjuvant chemotherapy did not work for deficient MMR cases, and was likely worse. Instead, strategies like autophagy inhibition and/or immune checkpoint inhibition should be taken into consideration in the future.
Collapse
Affiliation(s)
- Chun‐Yi Tsai
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Tien‐An Lin
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Shih‐Chiang Huang
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Jun‐Te Hsu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Chun‐Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Tse‐Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Cheng‐Tang Chiu
- Department of Gastroenterology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Jen‐Shi Chen
- Medical Oncology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Ta‐Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of MedicineTaoyuanTaiwan
| |
Collapse
|
44
|
Zhu X, Xie X, Zhao Q, Zhang L, Li C, Zhao D. Potential Prognostic Value and Mechanism of Stromal-Immune Signature in Tumor Microenvironment for Stomach Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4673153. [PMID: 32685487 PMCID: PMC7335387 DOI: 10.1155/2020/4673153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Stomach adenocarcinoma (STAD) is one of the most common malignancies. But the molecular mechanism is unknown. In this study, we downloaded the transcriptional profiles and clinical data of 344 STAD and 30 normal samples from The Cancer Genome Atlas (TCGA) database. Stromal and immune scores of STAD were calculated by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, and association of stromal/immune scores with tumor differentiation/T/N/M stage and survival was investigated. The differentially expressed genes (DEGs) between high and low score groups (based on media) were identified, and prognostic genes over-/underexpressed in both STAD and stromal/immune signature were retrieved. Furthermore, proportions of 22 infiltrating immune cells for the cohort from TCGA were estimated by the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm, and association of 22 immune cells with tumor differentiation/T/N/M stage and survival was investigated. Next, coexpression analysis of 22 immune cells and intersection genes over-/underexpressed in both STAD and stromal signature was conducted. We found high stromal and immune scores and macrophage infiltration predicting poor tumor differentiation and severe local invasion, obtained a list of prognostic genes based on stromal-immune signature, and explored the interaction of collagen, chemokines such as CXCL9, CXCL10, and CXCL11, and macrophage through coexpression analysis and may provide novel prognostic biomarkers and immunotherapeutic targets for STAD.
Collapse
Affiliation(s)
- Xinying Zhu
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
- Department of Gastroenterology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Xiaoli Xie
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
| | - Qingchao Zhao
- Department of Gastroenterology, Second Hospital of Baoding, Baoding, 071051 Hebei Province, China
| | - Lixian Zhang
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
| | - Changjuan Li
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
| | - Dongqiang Zhao
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei Province, China
| |
Collapse
|
45
|
Choi E, Chang MS, Byeon SJ, Jin H, Jung KC, Kim H, Lee KL, Kim W, Park JH, Kim KH, Kim JS, Choi IS, Han DS, Ahn HS, Heo SC. Prognostic perspectives of PD-L1 combined with tumor-infiltrating lymphocytes, Epstein-Barr virus, and microsatellite instability in gastric carcinomas. Diagn Pathol 2020; 15:69. [PMID: 32498695 PMCID: PMC7271517 DOI: 10.1186/s13000-020-00979-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background The prognostic potential of PD-L1 is currently unclear in gastric carcinomas, although the immune checkpoint PD-1/PD-L1 inhibitors have produced promising results in clinical trials. Methods We explored the prognostic implications of programmed death ligand 1 (PD-L1) in 514 consecutive surgically-resected gastric carcinomas. Overall survival and recurrence-free survival were evaluated. Immunohistochemistry for PD-L1, CD8, FOXP3, and PD-1, and molecular grouping by in situ hybridization for Epstein-Barr virus (EBV)-encoded small RNAs and multiplex PCR for microsatellite instability (MSI) markers were performed. Additionally, to explore the function inherent to PD-L1, PD-L1-specific siRNA transfection, cell proliferation, invasion, migration and apoptosis assays were conducted in five gastric carcinoma cell lines. Results PD-L1(+) tumor and immune cells were observed in 101 (20%) and 244 patients (47%), respectively. “Tumoral PD-L1(+)/immune cell PD-L1(-)/CD8+/low tumor-infiltrating lymphocytes (TILs),” and more advanced-stage tumors were associated with unfavorable clinical outcomes in the entire cohort through multivariate analysis. Furthermore, tumoral PD-L1(+)/FOXP3+/low TILs were associated with worse clinical outcomes in EBV-positive and MSI-high carcinomas. Tumoral PD-L1(+) alone was an adverse prognostic factor in EBV-positive carcinomas, but not in MSI-high carcinomas, whereas PD-L1(+) immune cells or FOXP3+/high TILs alone were correlated with a favorable prognosis. PD-L1 knockdown in gastric carcinoma cells suppressed cell proliferation, invasion and migration, and increased apoptosis, which were all statistically significant in two EBV(+) cell lines, but not all in three EBV(−) cell lines. Conclusions The prognostic impact of PD-L1 may depend on the tumor microenvironment, and statuses of EBV and MSI, although PD-L1 innately promotes cancer cell survival in cell-based assays. The combination of “tumoral PD-L1/immune cell PD-L1/CD8+ TILs” may serve as an independent prognostic factor. Tumoral PD-L1(+)/immune cell PD-L1(−)/CD8+/low TILs showing a worse prognosis may be beneficial for combinatorial therapies of anti-PD-L1/PD-1 and anti-cytotoxic T-lymphocyte associated antigen 4 (CTLA4) that would promote effector T cells, thus attack the tumor.
Collapse
Affiliation(s)
- Euno Choi
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| | - Sun-Ju Byeon
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Heejin Jin
- Medical Research Collaborating Center, Department of Biostatistics, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Hyun Park
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Hwan Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Sil Choi
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Han
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong Ahn
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
46
|
Kim HI, Kim SY, Yu JE, Shin SJ, Roh YH, Cheong JH, Hyung WJ, Noh SH, Park CG, Lee HJ. Contrasting Prognostic Effects of Tumor-Infiltrating Lymphocyte Density in Cardia and Non-cardia Gastric Adenocarcinomas. J Gastric Cancer 2020; 20:190-201. [PMID: 32596002 PMCID: PMC7311218 DOI: 10.5230/jgc.2020.20.e21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study sought to investigate the prognostic significance of tumor-infiltrating lymphocytes (TILs) in relation to tumor location within the stomach. MATERIALS AND METHODS The densities and prognostic significance of TIL subsets were evaluated in 542 gastric cancer patients who underwent gastrectomy. Immunohistochemical staining for CD3, CD4, CD8, forkhead/winged helix transcription factor (Foxp3), and granzyme B was performed. RESULTS Cardia cancer was associated with significantly lower densities of CD8 T-cells and higher densities of Foxp3 and granzyme B T-cells than non-cardia tumors. Multivariate analysis showed that advanced age (hazard ratio [HR], 1.023; 95% confidence interval [CI], 1.006-1.040), advanced T classification (HR, 2.029; 95% CI, 1.106-3.721), lymph node metastasis (HR, 3.319; 95% CI, 1.947-5.658), low CD3 expression (HR, 0.997; 95% CI, 0.994-0.999), and a high Foxp3/CD4 ratio (HR, 1.007; 95% CI, 1.001-1.012) were independent predictors of poor overall survival in cardia cancer patients. In non-cardia cancer patients, total gastrectomy (HR, 2.147; 95% CI, 1.507-3.059), advanced T classification (HR, 2.158; 95% CI, 1.425-3.266), lymph node metastasis (HR, 1.854; 95% CI, 1.250-2.750), and a low Foxp3/CD4 ratio (HR, 0.978; 95% CI, 0.959-0.997) were poor prognostic factors for survival. CONCLUSIONS The densities and prognostic effects of TILs differed in relation to the location of tumors within the stomach. The contrasting prognostic effects of Foxp3/CD4 ratio in cardia and non-cardia gastric cancer patients suggests that clinicians ought to consider tumor location when determining treatment strategies.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Yong Kim
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Eun Yu
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
| | - Woo Jin Hyung
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Wang Y, Wang S, Zhu C, Cao H, Zhang Z, Zhao E. The Association Between Immune Characteristic and Clinical Pathology in Chinese Patients with Adenocarcinoma of Esophagogastric Junction. Cancer Manag Res 2020; 12:3259-3269. [PMID: 32494190 PMCID: PMC7231767 DOI: 10.2147/cmar.s235722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Adenocarcinoma of the esophagogastric junction (AEG) patient immune characteristics were analyzed in this study, and these features were compared with patient clinical pathology and prognosis. Patients and Methods The clinicopathological data and prognostic information of 96 AEG patients who were admitted to Ren Ji Hospital between December 2008 and December 2015 were collected. PD-1/PD-L1, Tim-3/Gal-9, and CD3/CD8/Foxp3 expression in these patients, as well as the correlation of the expression of these molecules with clinicopathological data and survival time, were analyzed. Comparisons of count data were performed using the chi-square test or Fisher’s exact test. The survival rate and survival curves were calculated and drawn, respectively, with the Kaplan–Meier method, and the Log rank test was used for survival analysis. Results The positive rate for PD-L1 and Gal-9 in these AEG patients was 30.21% and 31.25%, respectively. Tim-3 positivity had a close relationship with patient Siewert type. CD8+ T cell infiltration and patient TNM stage, as well as CD3+CD8+ T cell infiltration and patient Lauren type, had a close relationship based on analysis of the correlation between immune factor expression and clinicopathological data. The group with high CD8+ T cell infiltration had an improved survival rate, while the combined analysis of Tim-3 and Gal-9 expression showed that the double-positive group had a significantly poorer prognosis than groups with other Tim-3 and Gal-9 expression patterns. The PD-L1 expression level had a close relationship with T cell infiltration in AEG patients, especially CD3+ and CD8+ T cell infiltration. Conclusion Tim-3 expression was higher in patients with Siewert type I tumors than in patients with tumors of other Siewert types. Patients with high CD8+ T cell infiltration had a better prognosis than patients with low CD8+ T cell infiltration, and CD8+ T cell infiltration was closely related to AEG patient TNM stage. The Tim-3 and Gal-9 double-positive group showed poor prognosis, and immune therapy could be recommended for these AEG patients.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shuchang Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Enhao Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
48
|
Wang M, Huang YK, Kong JC, Sun Y, Tantalo DG, Yeang HXA, Ying L, Yan F, Xu D, Halse H, Di Costanzo N, Gordon IR, Mitchell C, Mackay LK, Busuttil RA, Neeson PJ, Boussioutas A. High-dimensional analyses reveal a distinct role of T-cell subsets in the immune microenvironment of gastric cancer. Clin Transl Immunology 2020; 9:e1127. [PMID: 32377339 PMCID: PMC7200219 DOI: 10.1002/cti2.1127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives To facilitate disease prognosis and improve precise immunotherapy of gastric cancer (GC) patients, a comprehensive study integrating immune cellular and molecular analyses on tumor tissues and peripheral blood was performed. Methods The association of GC patients' outcomes and the immune context of their tumors was explored using multiplex immunohistochemistry (mIHC) and transcriptome profiling. Potential immune dysfunction mechanism/s in the tumors on the systemic level was further examined using mass cytometry (CyTOF) in complementary peripheral blood from selected patients. GC cohorts with mIHC and gene expression profiling data were also used as validation cohorts. Results Increased CD4+FOXP3+ T-cell density in the GC tumor correlated with prolonged survival. Interestingly, CD4+FOXP3+ T cells had a close interaction with CD8+ T cells rather than tumor cells. High densities of CD4+FOXP3+ T cells and CD8+ T cells (High-High) independently predicted prolonged patient survival. Furthermore, the interferon-gamma (IFN-γ) gene signature and PDL1 expression were up-regulated in this group. Importantly, a subgroup of genomically stable (GS) tumors and tumors with chromosomal instability (CIN) within this High-High group also had excellent survival. The High-High GS/CIN tumors were coupled with increased frequencies of Tbet+CD4+ T cells and central memory CD4+ T cells in the peripheral blood. Conclusion These novel findings identify the combination of CD8+ T cells and FOXP3+CD4+ T cells as a significant prognostic marker for GC patients, which also could potentially be targeted and applied in the combination therapy with immune checkpoint blockades in precision medicine.
Collapse
Affiliation(s)
- Minyu Wang
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia.,Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Yu-Kuan Huang
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Joseph Ch Kong
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Yu Sun
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia
| | - Daniela G Tantalo
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Han Xian Aw Yeang
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton VIC Australia
| | - Feng Yan
- Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne VIC Australia
| | - Dakang Xu
- Faculty of Medical Laboratory Science Ruijin Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Heloise Halse
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Natasha Di Costanzo
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Ian R Gordon
- Statistical Consulting Centre School of Mathematics and Statistics The University of Melbourne Melbourne VIC Australia
| | - Catherine Mitchell
- Department of Pathology Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity University of Melbourne Melbourne VIC Australia
| | - Rita A Busuttil
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia.,Department of Pathology The University of Melbourne Melbourne VIC Australia
| | - Alex Boussioutas
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
49
|
Differential prognostic impact of CD8 + T cells based on human leucocyte antigen I and PD-L1 expression in microsatellite-unstable gastric cancer. Br J Cancer 2020; 122:1399-1408. [PMID: 32203213 PMCID: PMC7189244 DOI: 10.1038/s41416-020-0793-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The aim of the study was to determine the human leucocyte antigen class-I (HLA-I), programmed death-ligand 1 (PD-L1) expression and tumour-infiltrating lymphocytes (TILs) of microsatellite instability-high gastric cancer. METHODS The HLA-I expression type was determined by immunohistochemistry of HLA-A, HLA-B, HLA-C and β2-microglobulin in the centre of the tumour (CT) and in the invasive margin (IM) of samples from 293 patients (total loss vs. preserved type). PD-L1 expression and TIL density was examined immunohistochemically. HLA-I genotyping was also performed. RESULTS The expression loss of the HLA-I molecules was significantly associated with low TIL density. According to survival analyses, the HLA-I expression type and PD-L1 positivity were not independent prognostic factors. The TIL density had no prognostic implication when survival analysis was performed for the whole patient group; however, high CD8+ TIL infiltration was significantly associated with good prognosis in only HLA-I-preserved-type/PD-L1-positive group (p = 0.034). The homozygosity of the HLA-I allele was more frequently observed in the total loss type group. CONCLUSIONS We confirmed differential prognostic implication of CD8+ TILs according to the HLA-I and PD-L1 expression. Determination of the HLA-I expression could be helpful to select patients who would benefit from anti-PD-1/PD-L1 therapy.
Collapse
|
50
|
Ji L, Qian W, Gui L, Ji Z, Yin P, Lin GN, Wang Y, Ma B, Gao WQ. Blockade of β-Catenin-Induced CCL28 Suppresses Gastric Cancer Progression via Inhibition of Treg Cell Infiltration. Cancer Res 2020; 80:2004-2016. [PMID: 32156780 DOI: 10.1158/0008-5472.can-19-3074] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/07/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022]
Abstract
Dysregulation of Wnt/β-catenin signaling is frequently observed in human gastric cancer. Elucidation of the tumor immune microenvironment is essential for understanding tumorigenesis and for the development of immunotherapeutic strategies. However, it remains unclear how β-catenin signaling regulates the tumor immune microenvironment in the stomach. Here, we identify CCL28 as a direct transcriptional target gene of β-catenin/T-cell factor (TCF). Protein levels of β-catenin and CCL28 positively correlated in human gastric adenocarcinoma. β-Catenin-activated CCL28 recruited regulatory T (Treg) cells in a transwell migration assay. In a clinically relevant mouse gastric cancer model established by Helicobacter (H.) felis infection and N-methyl-N-nitrosourea (MNU) treatment, inhibition of β-catenin/TCF activity by a pharmacologic inhibitor iCRT14 suppressed CCL28 expression and Treg cell infiltration in the stomach. Moreover, an anti-CCL28 antibody attenuated Treg cell infiltration and tumor progression in H. felis/MNU mouse models. Diphtheria toxin-induced Treg cell ablation restrained gastric cancer progression in H. felis/MNU-treated DEREG (Foxp3-DTR) mice, clarifying the tumor-promoting role of Treg cells. Thus, the β-catenin-CCL28-Treg cell axis may serve as an important mechanism for immunosuppression of the stomach tumor microenvironment. Our findings reveal an immunoregulatory role of β-catenin signaling in stomach tumors and highlight the therapeutic potential of CCL28 blockade for the treatment of gastric cancer. SIGNIFICANCE: These findings demonstrate an immunosuppressive role of tumor-intrinsic β-catenin signaling and the therapeutic potential of CCL28 blockade in gastric cancer.
Collapse
Affiliation(s)
- Lu Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Gui
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Pan Yin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guan Ning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Ma
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|