1
|
Pluetrattanabha N, Direksunthorn T, Ahmad I, Jyothi SR, Shit D, Singh AK, Chauhan AS. Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value. Arch Dermatol Res 2025; 317:258. [PMID: 39820618 DOI: 10.1007/s00403-025-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers. As a critical inflammatory mechanism, it contributes to the development of melanoma. These mechanisms may be triggered via various internal and external stimuli, causing the induction of specific enzymes such as caspase-1, caspase-11, or caspase-8. This, in turn, leads to the release of interleukin (IL)-1β and IL-18 and cell death by apoptosis and pyroptosis. Proper inflammasome stimulation is crucial for the host to deal with invading pathogens or tissue injury. However, inappropriate inflammasome stimulation can result in unregulated tissue reactions, thus easing many diseases, including melanoma. Hence, keeping a delicate equilibrium between the stimulation and prohibition of inflammasomes is crucial, necessitating meticulous control of the assembly and functional aspects of inflammasomes. This review examines the latest advancements in inflammasome studies, specifically focusing on the molecular processes that control inflammasome formation, signalling, and modulation in melanoma.
Collapse
Affiliation(s)
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, JAIN (Deemed to be University) School of Sciences, Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Vanbockstael M, Bataillon G, Morisseau M, Ferron G, Attal J, Meresse T, Tournier E, Tanguy Le Gac Y, Pages C, Martinez A. The prognostic value of tumor-infiltrating lymphocytes in vulvovaginal melanoma. Int J Gynecol Cancer 2024; 34:1853-1860. [PMID: 39566931 DOI: 10.1136/ijgc-2024-005359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/27/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE To assess the relation between immune microenvironment, survival, and clinicopathological characteristics. METHODS This study was a retrospective, single-center, observational study. Patients with a vulvovaginal melanoma and available archived material were included. All cases underwent pathology review, tumor-infiltrating lymphocyte quantification, and next-generation sequencing analysis, when feasible. Clinical data included demographic, treatment, and prognostic data. RESULTS Forty-two patients were selected during the study period, but 13 were finally excluded owing to unavailable formalin-fixed, paraffin-embedded material or unknown follow-up data. Twelve of 19 cases (63.2%) had at least one genetic mutation, 3/18 (16.7%) had BRAF, 3/18 (16.7%) had c-KIT mutation, and 4/17 (23.5%) had NRAS mutations. High stromal tumor-infiltrating lymphocytes were identified in 13/28 patients (46.4%), and brisk tumor-infiltrating lymphocytes in 17/28 patients (60.7%). A density of stromal tumor-infiltrating lymphocytes >40% and brisk distribution were the single clinicopathologic factor associated with increased disease-free survival. CONCLUSION The study showed that brisk tumor-infiltrating lymphocytes and stromal tumor-infiltrating lymphocytes were a marker for disease progression, and for response to immunotherapy strategies. To validate these findings on a larger scale, further research is warranted through a multicenter study with a larger cohort and additional genetic and translational analysis.
Collapse
Affiliation(s)
| | - Guillaume Bataillon
- Department of Anatomopathology, Toulouse University Cancer Institute, Toulouse, France
| | - Mathilde Morisseau
- Department of Biostatistics and Health Data Science Unit, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Gwenael Ferron
- Department of Surgical Oncology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Justine Attal
- Department of Radiotherapy, Institut Universitaire du Cancer, Toulouse, France
| | - Thomas Meresse
- Department of Plastic and Reconstructive Surgery, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Emilie Tournier
- Department of Pathology, Institut Universitaire du Cancer, Toulouse, France
| | | | - Cécile Pages
- Department of Dermatology, Institut Universitaire du Cancer, Toulouse, France
| | - Alejandra Martinez
- Department of Surgical Oncology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| |
Collapse
|
3
|
Giuliani G, Stewart W, Li Z, Jayaprakash C, Das J. Spatial organization and stochastic fluctuations of immune cells impact clinical responsiveness to immunotherapy in melanoma patients. PNAS NEXUS 2024; 3:pgae539. [PMID: 39677361 PMCID: PMC11642613 DOI: 10.1093/pnasnexus/pgae539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
High-dimensional, spatial single-cell technologies, such as CyTOF imaging mass cytometry (IMC), provide detailed information regarding locations of a large variety of cancer and immune cells in microscopic scales in tumor microarray slides obtained from patients prior to immune checkpoint inhibitor (ICI) therapy. An important question is how the initial spatial organization of these cells in the tumor microenvironment (TME) changes with time and regulates tumor growth and eventually outcomes as patients undergo ICI therapy. Utilizing IMC data of melanomas of patients who later underwent ICI therapy, we develop a spatially resolved interacting cell system model that is calibrated against patient response data to address the above question. We find that the tumor fate in these patients is determined by the spatial organization of activated CD8+ T cells, macrophages, and melanoma cells and the interplay between these cells that regulate exhaustion of CD8+ T cells. We find that fencing of tumor cell boundaries by exhausted CD8+ T cells is dynamically generated from the initial conditions that can play a protumor role. Furthermore, we find that specific spatial features such as co-clustering of activated CD8+ T cells and macrophages in the pretreatment samples determine the fate of the tumor progression, despite stochastic fluctuations and changes over the treatment course. Our framework enables the determination of mechanisms of interplay between a key subset of tumor and immune cells in the TME that regulate clinical response to ICIs.
Collapse
Affiliation(s)
- Giuseppe Giuliani
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Garutti M, Bruno R, Polesel J, Pizzichetta MA, Puglisi F. Role of tumor-infiltrating lymphocytes in melanoma prognosis and treatment strategies: A systematic review and meta-analysis. Heliyon 2024; 10:e32433. [PMID: 39183829 PMCID: PMC11341338 DOI: 10.1016/j.heliyon.2024.e32433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 08/27/2024] Open
Abstract
Purpose Numerous studies underscore the relevance of tumor-infiltrating-lymphocytes (TILs) as important prognostic factors for melanoma. This meta-analysis aims to provide a comprehensive literature overview elucidating their role in predicting patient outcomes, specifically investigating the association between TIL density and prognosis. Methods From an initial pool of 6094 records, 16 met the eligibility criteria, encompassing a collective cohort of 16021 patients. Data on TIL counts, clinical characteristics, and survival metrics (5-year overall survival [5yOS], 10-year overall survival [10yOS], and 5-year melanoma-specific survival [5yMSS]) were extracted from each study and expressed as proportions. Results were graphically presented using forest plots, reporting the estimates from individual studies, summary estimates, and corresponding 95 % confidence intervals (CI). Results Analysis revealed a statistically significant difference in 5yOS concerning subgroup differences However, 10yOS and 5yMSS did not exhibit statistical significance. Nonetheless, a consistent trend emerged indicating a higher survival rate corresponding to increased immune cell density, ranging from absent TILs to brisk levels. Conclusions TILs present potential as a readily applicable prognostic factor. Yet, further investigations into their density and phenotypic subpopulation characteristics could enhance our understanding of their predictive value in tailoring optimal patient-specific therapies.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, 33081, Aviano, Italy
| | - Rachele Bruno
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Antonietta Pizzichetta
- CRO Aviano, National Cancer Institute, IRCCS, 33081, Aviano, Italy
- Department of Dermatology, University of Trieste, 34123, Trieste, Italy
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, 33081, Aviano, Italy
- Department of Medicine, University of Udine, 33100, Udine, Italy
| |
Collapse
|
5
|
Vargas GM, Shafique N, Xu X, Karakousis G. Tumor-infiltrating lymphocytes as a prognostic and predictive factor for Melanoma. Expert Rev Mol Diagn 2024; 24:299-310. [PMID: 38314660 PMCID: PMC11134288 DOI: 10.1080/14737159.2024.2312102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
INTRODUCTION Tumor-infiltrating lymphocytes (TILs) have been investigated as prognostic factors in melanoma. Recent advancements in assessing the tumor microenvironment in the setting of more widespread use of immune checkpoint blockade have reignited interest in identifying predictive biomarkers. This review examines the function and significance of TILs in cutaneous melanoma, evaluating their potential as prognostic and predictive markers. AREAS COVERED A literature search was conducted on papers covering tumor infiltrating lymphocytes in cutaneous melanoma available online in PubMed and Web of Science from inception to 1 December 2023, supplemented by citation searching. This article encompasses the assessment of TILs, the role of TILs in the immune microenvironment, TILs as a prognostic factor, TILs as a predictive factor for immunotherapy response, and clinical applications of TILs in the treatment of cutaneous melanoma. EXPERT OPINION Tumor-infiltrating lymphocytes play a heterogeneous role in cutaneous melanoma. While they have historically been associated with improved survival, their status as independent prognostic or predictive factors remains uncertain. Novel methods of TIL assessment, such as determination of TIL subtypes and molecular signaling, demonstrate potential for predicting therapeutic response. Further, while their clinical utility in risk-stratification in melanoma treatment shows promise, a lack of consensus data hinders standardized application.
Collapse
Affiliation(s)
| | - Neha Shafique
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos Karakousis
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Femel J, Hill C, Illa Bochaca I, Booth JL, Asnaashari TG, Steele MM, Moshiri AS, Do H, Zhong J, Osman I, Leachman SA, Tsujikawa T, White KP, Chang YH, Lund AW. Quantitative multiplex immunohistochemistry reveals inter-patient lymphovascular and immune heterogeneity in primary cutaneous melanoma. Front Immunol 2024; 15:1328602. [PMID: 38361951 PMCID: PMC10867179 DOI: 10.3389/fimmu.2024.1328602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Quantitative, multiplexed imaging is revealing complex spatial relationships between phenotypically diverse tumor infiltrating leukocyte populations and their prognostic implications. The underlying mechanisms and tissue structures that determine leukocyte distribution within and around tumor nests, however, remain poorly understood. While presumed players in metastatic dissemination, new preclinical data demonstrates that blood and lymphatic vessels (lymphovasculature) also dictate leukocyte trafficking within tumor microenvironments and thereby impact anti-tumor immunity. Here we interrogate these relationships in primary human cutaneous melanoma. Methods We established a quantitative, multiplexed imaging platform to simultaneously detect immune infiltrates and tumor-associated vessels in formalin-fixed paraffin embedded patient samples. We performed a discovery, retrospective analysis of 28 treatment-naïve, primary cutaneous melanomas. Results Here we find that the lymphvasculature and immune infiltrate is heterogenous across patients in treatment naïve, primary melanoma. We categorized five lymphovascular subtypes that differ by functionality and morphology and mapped their localization in and around primary tumors. Interestingly, the localization of specific vessel subtypes, but not overall vessel density, significantly associated with the presence of lymphoid aggregates, regional progression, and intratumoral T cell infiltrates. Discussion We describe a quantitative platform to enable simultaneous lymphovascular and immune infiltrate analysis and map their spatial relationships in primary melanoma. Our data indicate that tumor-associated vessels exist in different states and that their localization may determine potential for metastasis or immune infiltration. This platform will support future efforts to map tumor-associated lymphovascular evolution across stage, assess its prognostic value, and stratify patients for adjuvant therapy.
Collapse
Affiliation(s)
- Julia Femel
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Cameron Hill
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Irineu Illa Bochaca
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Jamie L. Booth
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Tina G. Asnaashari
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
| | - Maria M. Steele
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Ata S. Moshiri
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Hyungrok Do
- Department of Population Health, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Judy Zhong
- Department of Population Health, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Iman Osman
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Sancy A. Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Takahiro Tsujikawa
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kevin P. White
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Young H. Chang
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Amanda W. Lund
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Davis L, Miller RE, Wong YNS. The Landscape of Adoptive Cellular Therapies in Ovarian Cancer. Cancers (Basel) 2023; 15:4814. [PMID: 37835509 PMCID: PMC10571827 DOI: 10.3390/cancers15194814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancers are typically poorly immunogenic and have demonstrated disappointing responses to immune checkpoint inhibitor (ICI) therapy. Adoptive cellular therapy (ACT) offers an alternative method of harnessing the immune system that has shown promise, especially with the success of chimeric antigen receptor T-cell (CAR-T) therapy in haematologic malignancies. So far, ACT has led to modest results in the treatment of solid organ malignancies. This review explores the possibility of ACT as an effective alternative or additional treatment to current standards of care in ovarian cancer. We will highlight the potential of ACTs, such as CAR-T, T-cell receptor therapy (TCR-T), tumour-infiltrating lymphocytes (TILs) and cell-based vaccines, whilst also discussing their challenges. We will present clinical studies for these approaches in the treatment of immunologically 'cold' ovarian cancer and consider the rationale for future research.
Collapse
Affiliation(s)
- Lucy Davis
- Royal Free Hospital, London NW3 2QG, UK;
| | - Rowan E Miller
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
- Department of Medical Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Yien Ning Sophia Wong
- Royal Free Hospital, London NW3 2QG, UK;
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
| |
Collapse
|
8
|
Qayoom H, Sofi S, Mir MA. Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol Res 2023; 71:588-599. [PMID: 37004645 DOI: 10.1007/s12026-023-09376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023]
Abstract
The immune system plays a vital role in suppressing tumor cell progression. The tumor microenvironment augmented with significant levels of tumor-infiltrating lymphocytes has been widely investigated and it is suggested that tumor-infiltrating lymphocytes have shown a significant role in the prognosis of cancer patients. Compared to ordinary non-infiltrating lymphocytes, tumor-infiltrating lymphocytes (TILs) are a significant population of lymphocytes that infiltrate tumor tissue and have a higher level of specific immunological reactivity against tumor cells. They serve as an effective immunological defense against various malignancies. TILs are a diverse group of immune cells that are divided into immune subsets based on the pathological and physiological impact they have on the immune system. TILs mainly consist of B-cells, T-cells, or natural killer cells with diverse phenotypic and functional properties. TILs are known to be superior to other immune cells in that they can recognize a wide range of heterogeneous tumor antigens by producing many clones of T cell receptors (TCRs), outperforming treatments like TCR-T cell and CAR-T therapy. With the introduction of genetic engineering technologies, tumor-infiltrating lymphocytes (TILs) have become a ground-breaking therapeutic option for malignancies, but because of the hindrances opposed by the immune microenvironment and the mutation of antigens, the development of TILs as therapeutic has been hindered. By giving some insight into the many variables, such as the various barriers inhibiting its usage as a potential therapeutic agent, we have examined various aspects of TILs in this work.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Osher N, Kang J, Krishnan S, Rao A, Baladandayuthapani V. SPARTIN: a Bayesian method for the quantification and characterization of cell type interactions in spatial pathology data. Front Genet 2023; 14:1175603. [PMID: 37274781 PMCID: PMC10232864 DOI: 10.3389/fgene.2023.1175603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction: The acquisition of high-resolution digital pathology imaging data has sparked the development of methods to extract context-specific features from such complex data. In the context of cancer, this has led to increased exploration of the tumor microenvironment with respect to the presence and spatial composition of immune cells. Spatial statistical modeling of the immune microenvironment may yield insights into the role played by the immune system in the natural development of cancer as well as downstream therapeutic interventions. Methods: In this paper, we present SPatial Analysis of paRtitioned Tumor-Immune imagiNg (SPARTIN), a Bayesian method for the spatial quantification of immune cell infiltration from pathology images. SPARTIN uses Bayesian point processes to characterize a novel measure of local tumor-immune cell interaction, Cell Type Interaction Probability (CTIP). CTIP allows rigorous incorporation of uncertainty and is highly interpretable, both within and across biopsies, and can be used to assess associations with genomic and clinical features. Results: Through simulations, we show SPARTIN can accurately distinguish various patterns of cellular interactions as compared to existing methods. Using SPARTIN, we characterized the local spatial immune cell infiltration within and across 335 melanoma biopsies and evaluated their association with genomic, phenotypic, and clinical outcomes. We found that CTIP was significantly (negatively) associated with deconvolved immune cell prevalence scores including CD8+ T-Cells and Natural Killer cells. Furthermore, average CTIP scores differed significantly across previously established transcriptomic classes and significantly associated with survival outcomes. Discussion: SPARTIN provides a general framework for investigating spatial cellular interactions in high-resolution digital histopathology imaging data and its associations with patient level characteristics. The results of our analysis have potential implications relevant to both treatment and prognosis in the context of Skin Cutaneous Melanoma. The R-package for SPARTIN is available at https://github.com/bayesrx/SPARTIN along with a visualization tool for the images and results at: https://nateosher.github.io/SPARTIN.
Collapse
Affiliation(s)
- Nathaniel Osher
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Santhoshi Krishnan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Arvind Rao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Veerabhadran Baladandayuthapani
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Ibrahim YS, Amin AH, Jawhar ZH, Alghamdi MA, Al-Awsi GRL, Shbeer AM, Al-Ghamdi HS, Gabr GA, Ramírez-Coronel AA, Almulla AF. "To be or not to Be": Regulatory T cells in melanoma. Int Immunopharmacol 2023; 118:110093. [PMID: 37023699 DOI: 10.1016/j.intimp.2023.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
In spite of progresses in the therapy of different malignancies, melanoma still remains as one of lethal types of skin tumor. Melanoma is almost easily treatable by surgery alone with higher overall survival rates when it is diagnosed at early stages. However, survival rates are decreased remarkably upon survival if the tumor is progressed to advanced metastatic stages. Immunotherapeutics have been prosperous in the development of anti-tumor responses in patients with melanoma through promotion of the tumor-specific effector T cells in vivo; nonetheless, suitable clinical outcomes have not been satisfactory. One of the underlying causes of the unfavorable clinical outcomes might stem from adverse effects of regulatory T (Treg) cell, which is a prominent mechanism of tumor cells to escape from tumor-specific immune responses. Evidence shows that a poor prognosis and low survival rate in patients with melanoma can be attributed to a higher Treg cell number and function in these subjects. As a result, to promote melanoma-specific anti-tumor responses, depletion of Treg cells appears to be a promising approach; even though the clinical efficacy of different approaches to attain appropriate Treg cell depletion has been inconsistent. Here in this review, the main purpose is to assess the role of Treg cells in the initiation and perpetuation of melanoma and to discuss effective strategies for Treg cell modulation with the aim of melanoma therapy.
Collapse
Affiliation(s)
- Yousif Saleh Ibrahim
- Department of Medical Laboratory Techniques, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad A Alghamdi
- Internal Medicine Department, Faculty of Medicine, Albaha University, Saudi Arabia
| | | | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Hasan S Al-Ghamdi
- Internal Medicine Department, Division of Dermatology, Faculty of Medicine, Albaha University, Albaha City, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt.
| | - Andrés Alexis Ramírez-Coronel
- Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; National University of Education, Azogues, Ecuador; CES University, Colombia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
11
|
Regression in cutaneous melanoma: histological assessment, immune mechanisms and clinical implications. Pathology 2023; 55:227-235. [PMID: 36639333 DOI: 10.1016/j.pathol.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
Tumour regression is an immunologically driven process that results in complete or partial disappearance of tumour cells. This can be observed in histological sections as replacement of tumour cells with fibrosis, angiogenesis, and a variable inflammatory infiltrate. In primary cutaneous melanoma, the prognostic significance of regression has been debated for decades, in part because inconsistent histological criteria are used in prognostication studies. It is broadly accepted that CD8+ T lymphocytes are the primary effectors of the anti-tumour response, but the interplay between melanoma and the immune system is complex, dynamic, and incompletely understood. Sustained progress in unravelling the pathogenesis of melanoma regression has led to the identification of therapeutic targets, culminating in the development of immune checkpoint inhibitors for the management of advanced disease. Modern techniques allow for high-resolution spatial analyses of the tumour microenvironment. Such studies may lead to better understanding of the immune drivers of melanoma regression, thereby facilitating the search for new prognostic and predictive biomarkers to assist clinical decision-making.
Collapse
|
12
|
Kurzhals JK, Klee G, Hagelstein V, Zillikens D, Terheyden P, Langan EA. Disease Recurrence during Adjuvant Immune Checkpoint Inhibitor Treatment in Metastatic Melanoma: Clinical, Laboratory, and Radiological Characteristics in Patients from a Single Tertiary Referral Center. Int J Mol Sci 2022; 23:10723. [PMID: 36142629 PMCID: PMC9505359 DOI: 10.3390/ijms231810723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the dramatic improvements in recurrence-free survival in patients with metastatic melanoma treated with immune checkpoint inhibitors (ICI), a number of patients develop metastases during adjuvant therapy. It is not currently possible to predict which patients are most likely to develop disease recurrence due to a lack of reliable biomarkers. Thus, we retrospectively analyzed the case records of all patients who commenced adjuvant ICI therapy between January 2018 and December 2021 in a single university skin cancer center (n = 46) (i) to determine the rates of disease recurrence, (ii) to examine the utility of established markers, and (iii) to examine whether re-challenge with immunotherapy resulted in clinical response. Twelve out of forty-six (26%) patients developed a relapse on adjuvant immunotherapy in our cohort, and the median time to relapse was 139 days. Adjuvant immunotherapy was continued in three patients. Of the twelve patients who developed recurrence during adjuvant immunotherapy, seven had further disease recurrence within the observation period, with a median time of 112 days after the first progress. There was no significant difference comparing early recurrence (<180 days after initiation) on adjuvant immunotherapy to late recurrence (>180 days after initiation) on adjuvant immunotherapy. Classical tumor markers, including serum lactate dehydrogenase (LDH) and S-100, were unreliable for the detection of disease recurrence. Baseline lymphocyte and eosinophil counts and those during immunotherapy were not associated with disease recurrence. Interestingly, patients with NRAS mutations were disproportionately represented (60%) in the patients who developed disease recurrence, suggesting that these patients should be closely monitored during adjuvant therapy.
Collapse
Affiliation(s)
- Jonas K. Kurzhals
- Department of Dermatology, University of Lübeck, 23552 Lübeck, Germany
| | - Gina Klee
- Department of Dermatology, University of Lübeck, 23552 Lübeck, Germany
| | | | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, 23552 Lübeck, Germany
| | - Patrick Terheyden
- Department of Dermatology, University of Lübeck, 23552 Lübeck, Germany
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, 23552 Lübeck, Germany
- Dermatological Sciences, University of Manchester, Manchester M13 9PR, UK
| |
Collapse
|
13
|
Rohaan M, Gomez-Eerland R, van den Berg J, Geukes Foppen M, van Zon M, Raud B, Jedema I, Scheij S, de Boer R, Bakker N, van den Broek D, Pronk L, Grijpink-Ongering L, Sari A, Kessels R, van den Haak M, Mallo H, Karger M, van de Wiel B, Zuur C, Duinkerken C, Lalezari F, van Thienen J, Wilgenhof S, Blank C, Beijnen J, Nuijen B, Schumacher T, Haanen J. MART-1 TCR gene-modified peripheral blood T cells for the treatment of metastatic melanoma: a phase I/IIa clinical trial. IMMUNO-ONCOLOGY AND TECHNOLOGY 2022; 15:100089. [PMID: 35865122 PMCID: PMC9293760 DOI: 10.1016/j.iotech.2022.100089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- M.W. Rohaan
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R. Gomez-Eerland
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J.H. van den Berg
- Biotherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M.H. Geukes Foppen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M. van Zon
- Biotherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B. Raud
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - I. Jedema
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S. Scheij
- Biotherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R. de Boer
- Biotherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N.A.M. Bakker
- Biotherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D. van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L.M. Pronk
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - A. Sari
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R. Kessels
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M. van den Haak
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H.A. Mallo
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M. Karger
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B.A. van de Wiel
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C.L. Zuur
- Department of Head and Neck Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C.W. Duinkerken
- Department of Head and Neck Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - F. Lalezari
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J.V. van Thienen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S. Wilgenhof
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C.U. Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J.H. Beijnen
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B. Nuijen
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T.N. Schumacher
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - J.B.A.G. Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Correspondence to: Prof. John B. A. G. Haanen, Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands. Tel: 0031-205126979; Fax: 0031-205122572
| |
Collapse
|
14
|
Straker RJ, Krupp K, Sharon CE, Thaler AS, Kelly NJ, Chu EY, Elder DE, Xu X, Miura JT, Karakousis GC. Prognostic Significance of Primary Tumor-Infiltrating Lymphocytes in a Contemporary Melanoma Cohort. Ann Surg Oncol 2022; 29:5207-5216. [PMID: 35301610 PMCID: PMC9704356 DOI: 10.1245/s10434-022-11478-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The prognostic impact of tumor-infiltrating lymphocytes (TILs) on outcomes and treatment efficacy for patients with melanoma in the contemporary era remains poorly characterized. METHODS Consecutive patients who underwent wide excision and sentinel lymph node biopsy for cutaneous melanoma 1 mm thick or thicker at a single institution were identified (2006-2019). The patients were stratified based on primary tumor TIL status as brisk (bTILs), non-brisk (nbTILs), or absent (aTILs). Associations between patient factors and outcomes were analyzed using multivariable analysis. RESULTS Of the 1017 patients evaluated, 846 (83.2 %) had primary TILs [nbTILs (n = 759, 89.7 %) and bTILs (n = 87, 10.3 %)]. In the multivariable analysis, the patients with any type of TILs had higher rates of regression [odds ratio (OR), 1.86; p = 0.016], lower rates of acral lentiginous histology (OR, 0.22; p < 0.001), and lower rates of SLN positivity (OR, 0.64; p = 0.042) than those without TILs. The multivariable analysis found no association between disease-specific survival and bTILs [hazard ratio (HR), 1.04; p = 0.927] or nbTILs (HR, 0.89; p = 0.683). An association was found between bTILs and recurrence-free survival (RFS) advantage [bTILs (HR 0.46; p = 0.047), nbTILs (HR 0.71; p = 0.088)], with 5-year RFS rates of 84 % for bTILs, 71.8 % for nbTILs, and 68.4 % for aTILs (p = 0.044). For the 114 immune checkpoint blockade (ICB)-naïve patients who experienced a recurrence treated with ICB therapy, no association was observed between progression-free survival and bTILs (HR, 0.64; p = 0.482) or nbTILs (HR, 0.58; p = 0.176). CONCLUSIONS The prognostic significance of primary TILs in the contemporary melanoma era appears complex. Further studies characterizing the phenotype of TILs and their association with regional metastasis and responsiveness to ICB therapy are warranted.
Collapse
Affiliation(s)
- Richard J Straker
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Hospital of the University of Pennsylvania, 4 Maloney, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Katharine Krupp
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cimarron E Sharon
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra S Thaler
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas J Kelly
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Miura
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos C Karakousis
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Adams R, Coumbe JEM, Coumbe BGT, Thomas J, Willsmore Z, Dimitrievska M, Yasuzawa-Parker M, Hoyle M, Ingar S, Geh J, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN. BRAF inhibitors and their immunological effects in malignant melanoma. Expert Rev Clin Immunol 2022; 18:347-362. [PMID: 35195495 DOI: 10.1080/1744666x.2022.2044796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The treatment of cutaneous melanoma has been revolutionised by the development of small molecule inhibitors targeting the MAPK pathway, including inhibitors of BRAF (BRAFi) and MEK (MEKi), and immune checkpoint blockade antibodies, occurring in tandem. Despite these advances, the 5-year survival rate for patients with advanced melanoma remains only around 50%. Although not designed to alter immune responses within the tumour microenvironment (TME), MAPK pathway inhibitors (MAPKi) exert a range of effects on the host immune compartment which may offer opportunities for therapeutic interventions. AREAS COVERED We review the effects of MAPKi especially BRAFi, on the TME, focussing on alterations in inflammatory cytokine secretion, the recruitment of immune cells and their functions, both during response to BRAFi treatment and as resistance develops. We outline potential combinations of MAPKi with established and experimental treatments. EXPERT OPINION MAPKi in combination or in sequence with established treatments such as checkpoint inhibitors, anti-angiogenic agents, or new therapies such as adoptive cell therapies, may augment their immunological effects, reverse tumour-associated immune suppression and offer the prospect of longer-lived clinical responses. Refining therapeutic tools at our disposal and embracing "old friends" in the melanoma treatment arsenal, alongside new target identification, may improve the chances of therapeutic success.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jack E M Coumbe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Ben G T Coumbe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jennifer Thomas
- The Royal Marsden, Downs Road, Sutton, Surrey, United Kingdom
| | - Zena Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Marija Dimitrievska
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Monica Yasuzawa-Parker
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Maximilian Hoyle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Suhaylah Ingar
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jenny Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophie Papa
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom.,ImmunoEngineering, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London SE1 9RT, United Kingdom
| |
Collapse
|
16
|
The prognostic significant of tumor budding, tumor stroma ratio and tumor-infiltrating lymphocytes in gallbladder adenocarcinoma. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1033380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Reduced Interleukin-17-Expressing Cells in Cutaneous Melanoma. Biomedicines 2021; 9:biomedicines9121930. [PMID: 34944746 PMCID: PMC8698827 DOI: 10.3390/biomedicines9121930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/27/2022] Open
Abstract
Characterization of tumor associated lymphocytes (TILs) in tumor lesions is important to obtain a clear definition of their prognostic value and address novel therapeutic opportunities. In this work, we examined the presence of T helper (Th)17 lymphocytes in cutaneous melanoma. We performed an immunohistochemical analysis of a small cohort of primary melanomas, retrospectively selected. Thereafter, we isolated TILs from seven freshly surgically removed melanomas and from three basal cell carcinomas (BCC), as a comparison with a non-melanoma skin cancer known to retain a high amount of Th17 cells. In both studies, we found that, differently from BCC, melanoma samples showed a lower percentage of Th17 lymphocytes. Additionally, TIL clones could not be induced to differentiate towards the Th17 phenotype in vitro. The presence or absence of Th17 cells did not correlate with any patient characteristics. We only observed a lower amount of Th17 cells in samples from woman donors. We found a tendency towards an association between expression by melanoma cells of placenta growth factor, angiogenic factors able to induce Th17 differentiation, and presence of Th17 lymphocytes. Taken together, our data indicate the necessity of a deeper analysis of Th17 lymphocytes in cutaneous melanoma before correlating them with prognosis or proposing Th17-cell based therapeutic approaches.
Collapse
|
18
|
Zablocka T, Nikolajeva A, Kreismane M, Pjanova D, Isajevs S. Addressing the importance of melanoma tumor-infiltrating lymphocytes in disease progression and clinicopathological characteristics. Mol Clin Oncol 2021; 15:255. [PMID: 34671473 PMCID: PMC8521388 DOI: 10.3892/mco.2021.2417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) in primary cutaneous melanoma are considered to represent the host's antitumor immunological response; however, whether there are associations between TIL grade and histopathological characteristics and disease survival remains controversial. BRAF mutational status has been established as a routine screening method in advanced malignant melanoma, and worse prognosis rates have been demonstrated in patients harboring BRAF mutations. However, the general impact of BRAF mutational status on survival and histopathological characteristics is still debated. The aim of the present study was to compare the value of the assessment of TIL grade in stages I-II nodular and superficial spreading melanoma and BRAF mutational status, and its influence on clinicopathological characteristics. Altogether, 85 patients at stage IA-IIC who underwent melanoma surgical treatment at the Riga East University Hospital between 2012 and 2017 were retrospectively enrolled in the study. The histopathological characteristics were assessed according to the current World Health Organization and The American Joint Committee on Cancer 8th edition guidelines. The current study showed that patients with melanoma with high TIL grade had significantly better progression-free survival than patients with low TIL grade (hazard ratio, 4.9; 95% CI, 2.3-11.2; P<0.0001). BRAF mutations were observed in 52 patients (61.2%). BRAF mutational status in melanoma was associated with Clark invasion level (P=0.045), patient age (P=0.02) and TIL (P=0.04). The assessment of TIL grade in stage I-II melanoma demonstrated prognostic significance value and may help improve risk assessment in the future.
Collapse
Affiliation(s)
- Tatjana Zablocka
- Department of Pathology, Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
- Riga East University Hospital, Centre of Pathology, LV-1038 Riga, Latvia
- Pauls Stradins Clinical University Hospital, Institute of Pathology, LV-1002 Riga, Latvia
- Department of Microbiology and Pathology, Hospital of Traumatology and Orthopaedics, LV-1005 Riga, Latvia
| | - Anna Nikolajeva
- Department of Pathology, Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Madara Kreismane
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Sergejs Isajevs
- Department of Pathology, Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
- Riga East University Hospital, Centre of Pathology, LV-1038 Riga, Latvia
- Department of Microbiology and Pathology, Hospital of Traumatology and Orthopaedics, LV-1005 Riga, Latvia
| |
Collapse
|
19
|
Adams R, Moser B, Karagiannis SN, Lacy KE. Chemokine Pathways in Cutaneous Melanoma: Their Modulation by Cancer and Exploitation by the Clinician. Cancers (Basel) 2021; 13:cancers13225625. [PMID: 34830780 PMCID: PMC8615762 DOI: 10.3390/cancers13225625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence of cutaneous malignant melanoma is rising globally and is projected to continue to rise. Advances in immunotherapy over the last decade have demonstrated that manipulation of the immune cell compartment of tumours is a valuable weapon in the arsenal against cancer; however, limitations to treatment still exist. Cutaneous melanoma lesions feature a dense cell infiltrate, coordinated by chemokines, which control the positioning of all immune cells. Melanomas are able to use chemokine pathways to preferentially recruit cells, which aid their growth, survival, invasion and metastasis, and which enhance their ability to evade anticancer immune responses. Aside from this, chemokine signalling can directly influence angiogenesis, invasion, lymph node, and distal metastases, including epithelial to mesenchymal transition-like processes and transendothelial migration. Understanding the interplay of chemokines, cancer cells, and immune cells may uncover future avenues for melanoma therapy, namely: identifying biomarkers for patient stratification, augmenting the effect of current and emerging therapies, and designing specific treatments to target chemokine pathways, with the aim to reduce melanoma pathogenicity, metastatic potential, and enhance immune cell-mediated cancer killing. The chemokine network may provide selective and specific targets that, if included in current therapeutic regimens, harbour potential to improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
| | - Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4YS, UK;
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Guy’s Cancer Centre, Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| |
Collapse
|
20
|
Meireson A, Ferdinande L, Haspeslagh M, Hennart B, Allorge D, Ost P, Sundahl N, Spaas M, Demeyer A, Brochez L. Clinical Relevance of Serum Kyn/Trp Ratio and Basal and IFNγ-Upregulated IDO1 Expression in Peripheral Monocytes in Early Stage Melanoma. Front Immunol 2021; 12:736498. [PMID: 34557196 PMCID: PMC8453201 DOI: 10.3389/fimmu.2021.736498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/19/2021] [Indexed: 01/15/2023] Open
Abstract
Immune escape is an early phenomenon in cancer development/progression. Indoleamine 2,3-dioxygenase 1 (IDO1) is a normal endogenous mechanism of acquired peripheral immune tolerance and may therefore be tumor-promoting. This study investigated the clinical relevance of IDO1 expression by immune cells in the lymph nodes and blood and of the serum kynurenine/tryptophan (Kyn/Trp) ratio in 65 systemic treatment naïve stage I-III melanoma patients. Blood samples were collected within the first year of diagnosis. Patients had a median follow-up of 61 months. High basal IDO1 expression in peripheral monocytes and low IFNγ-induced IDO1 upregulation correlated with worse outcome independent from disease stage. Interestingly studied factors were not interrelated. During follow-up, the risk of relapse was 9% (2/22) in the subgroup with high IFNγ-induced IDO1 upregulation in monocytes. In contrast, if IDO1 upregulation was low, relapse occurred in 30% (3/10) of patients with low basal IDO1 expression in monocytes and in 61.5% (8/13) in the subgroup with high basal IDO1 expression in monocytes (Log-Rank test, p=0.008). This study reveals some immune features in the blood of early stage melanoma that may be of relevance for disease outcome. These may offer a target for sub-stratification and early intervention.
Collapse
Affiliation(s)
- Annabel Meireson
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Dermatology Research Unit, Ghent University Hospital, Ghent, Belgium
| | | | - Marc Haspeslagh
- Dermatology Research Unit, Ghent University Hospital, Ghent, Belgium.,Dermpat, Ghent, Belgium
| | - Benjamin Hennart
- Le Centre Hospitalier Universitaire de Lille (CHU), Unité Fonctionnelle de Toxicologie, Lille, France.,Université de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Lille, France
| | - Delphine Allorge
- Le Centre Hospitalier Universitaire de Lille (CHU), Unité Fonctionnelle de Toxicologie, Lille, France.,Université de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Lille, France
| | - Piet Ost
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Nora Sundahl
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Mathieu Spaas
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Annelies Demeyer
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Dermatology Research Unit, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Dermatology Research Unit, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
21
|
Proteomic Implications of Tumoral Infiltrating Lymphocytes in Melanoma: PD-L1, CD4 and CD8 - Short Review. ARS MEDICA TOMITANA 2021. [DOI: 10.2478/arsm-2020-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Melanoma is a tumor developed by malignancy of melanocytes, being one of the most lethal cancers. Usually, it is associated with exposure to ultraviolet radiations, being most common in the skin, but can also be located extracutaneously as in the digestive tract, leptomeninges or uvea. Histopathologically it presents a phase of radial growth and a vertical one, often accompanied by an intra and peritumoral inflammatory infiltrate. Immunohistochemically, the confirmation of the diagnosis of melanoma should be accompanied by the assessment of proteomic markers of lymphocytic infiltrate such as PD-L1, CD4 and CD8. Those have a role in evaluating the prognosis and a possible prediction of the immunotherapeutic response.
Collapse
|
22
|
Abstract
Despite the ability of immune-based interventions to dramatically increase the survival of patients with melanoma, a significant subset fail to benefit from this treatment, underscoring the need for accurate means to identify the patient population likely to respond to immunotherapy. Understanding how melanoma evades natural or manipulated immune responses could provide the information needed to identify such resistant individuals. Efforts to address this challenge are hampered by the vast immune diversity characterizing tumor microenvironments that remain largely understudied. It is thus important to more clearly elucidate the complex interactions that take place between the tumor microenvironment and host immune system.
Collapse
|
23
|
Yang J, Lian JW, Chin YP(H, Wang L, Lian A, Murphy GF, Zhou L. Assessing the Prognostic Significance of Tumor-Infiltrating Lymphocytes in Patients With Melanoma Using Pathologic Features Identified by Natural Language Processing. JAMA Netw Open 2021; 4:e2126337. [PMID: 34550383 PMCID: PMC8459191 DOI: 10.1001/jamanetworkopen.2021.26337] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Importance Although tumor-infiltrating lymphocytes (TILs) are an important histopathologic characteristic reflecting host immune response in patients with melanoma, their prognostic value remains controversial. Because manual review of medical records is labor intensive, a survival analysis using a large patient cohort with comprehensive clinical and histopathologic characteristics is lacking. Objective To assess the prognostic significance of TILs among patients with cutaneous melanoma using a large cohort established through natural language processing (NLP) algorithms. Design, Setting, and Participants This retrospective cohort study analyzed the medical records of 14 436 patients with cutaneous melanoma at Brigham and Women's Hospital between June 1, 2004, and December 31, 2019. Patients were followed up to death or censored at their last clinical visit. Main Outcome and Measures The primary outcome was overall survival (OS). Survival analysis was conducted using Kaplan-Meier curves, the log-rank test, and Cox proportional hazards regression analysis. Results A total of 14 436 patients with cutaneous melanoma were identified in the institution's pathology information system. Using NLP, we established a study cohort of 2624 patients (1462 men [55.7%]; median age, 61 years [interquartile range, 50-72 years]) who had vertical growth phase melanoma with TIL status scored. Absent TILs were identified in 434 patients (16.5%), nonbrisk TILs in 1916 patients (73.0%), and brisk TILs in 274 patients (10.4%). The 5-year survival rate was 71.0% (95% CI, 65.5%-76.9%) among patients with an absence of TILs, 73.8% (95% CI, 71.1%-76.5%) among patients with nonbrisk TILs, and 85.2% (95% CI, 80.0%-90.7%) among patients with brisk TILs. Brisk TILs were significantly associated with improved OS (adjusted hazard ratio, 0.63; 95% CI, 0.42-0.95; P = .03; 14.2% OS advantage at 5 years), and nonbrisk TILs were not associated with improved OS (adjusted hazard ratio, 0.87; 95% CI, 0.68-1.11; P = .25), compared with the absence of TILs. Conclusions and Relevance This study provides evidence based on a large patient cohort from a single institution that suggests that brisk TILs represent an independent prognostic factor for OS among patients with primary cutaneous melanoma. The study also suggests that NLP is a highly efficient tool to facilitate large-scale analyses that involve free-text clinical data.
Collapse
Affiliation(s)
- Jie Yang
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - John W. Lian
- Harvard Medical School, Boston, Massachusetts
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Yen-Po (Harvey) Chin
- Harvard Medical School, Boston, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Liqin Wang
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Anna Lian
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - George F. Murphy
- Harvard Medical School, Boston, Massachusetts
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Li Zhou
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Wu CF, Wu CY, Chiou RYY, Yang WC, Lin CF, Wang CM, Hou PH, Lin TC, Kuo CY, Chang GR. The Anti-Cancer Effects of a Zotarolimus and 5-Fluorouracil Combination Treatment on A549 Cell-Derived Tumors in BALB/c Nude Mice. Int J Mol Sci 2021; 22:4562. [PMID: 33925400 PMCID: PMC8123799 DOI: 10.3390/ijms22094562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Robin Y.-Y. Chiou
- Department of Food Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan;
| | - Wei-Cheng Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan;
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei City 231405, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| |
Collapse
|
25
|
Verhoeven J, Baelen J, Agrawal M, Agostinis P. Endothelial cell autophagy in homeostasis and cancer. FEBS Lett 2021; 595:1497-1511. [PMID: 33837545 DOI: 10.1002/1873-3468.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Autophagy, the major lysosomal pathway for the degradation and recycling of cytoplasmic materials, is increasingly recognized as a major player in endothelial cell (EC) biology and vascular pathology. Particularly in solid tumors, tumor microenvironmental stress such as hypoxia, nutrient deprivation, inflammatory mediators, and metabolic aberrations stimulates autophagy in tumor-associated blood vessels. Increased autophagy in ECs may serve as a mechanism to alleviate stress and restrict exacerbated inflammatory responses. However, increased autophagy in tumor-associated ECs can re-model metabolic pathways and affect the trafficking and surface availability of key mediators and regulators of the interplay between EC and immune cells. In line with this, heightened EC autophagy is involved in pathological angiogenesis, inflammatory, and immune responses. Here, we review major cellular and molecular mechanisms regulated by autophagy in ECs under physiological conditions and discuss recent evidence implicating EC autophagy in tumor angiogenesis and immunosurveillance.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Jef Baelen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| |
Collapse
|
26
|
Manabe K, Yamasaki O, Nakagawa Y, Miyake T, Udono H, Morizane S. Multifunctionality of CD8 + T cells and PD-L1 expression as a biomarker of anti-PD-1 antibody efficacy in advanced melanoma. J Dermatol 2021; 48:1186-1192. [PMID: 33890340 DOI: 10.1111/1346-8138.15904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 01/04/2023]
Abstract
Anti-programmed cell death protein-1 (PD-1) antibodies have become a standard treatment for advanced melanoma. However, a predictive biomarker for assessing the efficacy of anti-PD-1 antibodies has not been identified. In cancer, CD8+ T cells specific for tumor antigens undergo repeated T-cell receptor stimulation due to the persistence of cancer cells and gradually lose their ability to secrete interleukin 2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). We aimed to evaluate multi-cytokine production and immune exhaustion of peripheral CD8+ T cells in melanoma patients treated with anti-PD-1 antibodies. Twenty-four melanoma patients treated with nivolumab were included. Effector cytokine production (IL-2, TNF-α, and IFN-γ) and expression of an exhaustion marker (PD-1) in patients' CD8+ cells were analyzed with flow cytometry. The relationships between parameters such as the neutrophil-to-lymphocyte ratio (NLR) and clinical response to nivolumab were examined. Immunohistochemistry for programmed death-ligand 1 (PD-L1) expression in tumor cells and tumor-infiltrating lymphocytes (TILs) and analysis of their association with clinical response were performed. The clinical response rate to nivolumab was 29%. Regarding TILs, NLR, and several other parameters, no significant difference was found between responders and non-responders. The responder group showed an increase in the percentage of PD-1+ CD8+ /TNF-α+ IFN-γ+ or PD-1+ CD8+ /IFN-γ+ IL-2+ TNF-α+ T cells compared to non-responders. Positivity for PD-L1 expression was significantly higher in the responder group than the non-responder group. In advanced melanoma, the percentage of multifunctional CD8+ PD-1+ T cells and PD-L1 expression in the tumors may be a biomarker for a good response to anti-PD-1 antibody monotherapy.
Collapse
Affiliation(s)
- Keiko Manabe
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Nakagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Miyake
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
27
|
Garutti M, Bonin S, Buriolla S, Bertoli E, Pizzichetta MA, Zalaudek I, Puglisi F. Find the Flame: Predictive Biomarkers for Immunotherapy in Melanoma. Cancers (Basel) 2021; 13:cancers13081819. [PMID: 33920288 PMCID: PMC8070445 DOI: 10.3390/cancers13081819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has revolutionized the therapeutic landscape of melanoma. In particular, checkpoint inhibition has shown to increase long-term outcome, and, in some cases, it can be virtually curative. However, the absence of clinically validated predictive biomarkers is one of the major causes of unpredictable efficacy of immunotherapy. Indeed, the availability of predictive biomarkers could allow a better stratification of patients, suggesting which type of drugs should be used in a certain clinical context and guiding clinicians in escalating or de-escalating therapy. However, the difficulty in obtaining clinically useful predictive biomarkers reflects the deep complexity of tumor biology. Biomarkers can be classified as tumor-intrinsic biomarkers, microenvironment biomarkers, and systemic biomarkers. Herein we review the available literature to classify and describe predictive biomarkers for checkpoint inhibition in melanoma with the aim of helping clinicians in the decision-making process. We also performed a meta-analysis on the predictive value of PDL-1.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Correspondence:
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34123 Trieste, Italy;
| | - Silvia Buriolla
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Dipartimento di Oncologia, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Elisa Bertoli
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Maria Antonietta Pizzichetta
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy;
| | - Iris Zalaudek
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy;
| | - Fabio Puglisi
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
28
|
TACC3 is a prognostic biomarker for kidney renal clear cell carcinoma and correlates with immune cell infiltration and T cell exhaustion. Aging (Albany NY) 2021; 13:8541-8562. [PMID: 33714201 PMCID: PMC8034911 DOI: 10.18632/aging.202668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/13/2020] [Indexed: 01/27/2023]
Abstract
Growing evidence has demonstrated that transforming acidic coiled-coil protein 3 (TACC3), a member of the TACC family, may be involved in regulating cell mitosis, transcription, and tumorigenesis. However, the role of TACC3 in kidney renal clear cell carcinoma (KIRC) remains unknown. In this study, multiple databases were used to determine the pattern of TACC3 in KIRC. We found that high TACC3 expression was associated with poor overall survival (OS) in stage I, II, IV and grade 3 KIRC patients. Univariate and multivariate Cox regression analyses showed that TACC3 was an independent risk factor for OS among KIRC patients. Moreover, TACC3 expression correlated with immune cell infiltration levels of B cells, T cells (CD8+, CD4+, follicular helper, regulatory and gamma delta), total and resting natural killer cells, total and activated dendritic cells, and resting mast cells. Furthermore, T cell exhaustion markers, such as PD1, CTLA4, LAG3 and TIM-3 were highly expressed in TACC3 overexpressing tissues. In addition, GSEA analysis revealed that the role of TACC3 in KIRC may be closely linked to immune-associated pathways. Therefore, our study reveals that TACC3 is a prognostic biomarker for OS among KIRC patients and may be associated with immune cell infiltration and T cell exhaustion.
Collapse
|
29
|
Chou M, Illa-Bochaca I, Minxi B, Darvishian F, Johannet P, Moran U, Shapiro RL, Berman RS, Osman I, Jour G, Zhong H. Optimization of an automated tumor-infiltrating lymphocyte algorithm for improved prognostication in primary melanoma. Mod Pathol 2021; 34:562-571. [PMID: 33005020 PMCID: PMC7983061 DOI: 10.1038/s41379-020-00686-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Tumor-infiltrating lymphocytes (TIL) have potential prognostic value in melanoma and have been considered for inclusion in the American Joint Committee on Cancer (AJCC) staging criteria. However, interobserver discordance continues to prevent the adoption of TIL into clinical practice. Computational image analysis offers a solution to this obstacle, representing a methodological approach for reproducibly counting TIL. We sought to evaluate the ability of a TIL-quantifying machine learning algorithm to predict survival in primary melanoma. Digitized hematoxylin and eosin (H&E) slides from prospectively enrolled patients in the NYU melanoma database were scored for % TIL using machine learning and manually graded by pathologists using Clark's model. We evaluated the association of % TIL with recurrence-free survival (RFS) and overall survival (OS) using Cox proportional hazards modeling and concordance indices. Discordance between algorithmic and manual TIL quantification was assessed with McNemar's test and visually by an attending dermatopathologist. In total, 453 primary melanoma patients were scored using machine learning. Automated % TIL scoring significantly differentiated survival using an estimated cutoff of 16.6% TIL (log-rank P < 0.001 for RFS; P = 0.002 for OS). % TIL was associated with significantly longer RFS (adjusted HR = 0.92 [0.84-1.00] per 10% increase in % TIL) and OS (adjusted HR = 0.90 [0.83-0.99] per 10% increase in % TIL). In comparison, a subset of the cohort (n = 240) was graded for TIL by melanoma pathologists. However, TIL did not associate with RFS between groups (P > 0.05) when categorized as brisk, nonbrisk, or absent. A standardized and automated % TIL scoring algorithm can improve the prognostic impact of TIL. Incorporation of quantitative TIL scoring into the AJCC staging criteria should be considered.
Collapse
Affiliation(s)
- Margaret Chou
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Irineu Illa-Bochaca
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ben Minxi
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Farbod Darvishian
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Paul Johannet
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Una Moran
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Richard L Shapiro
- Division of Surgical Oncology, Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Russell S Berman
- Division of Surgical Oncology, Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Iman Osman
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - George Jour
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Hua Zhong
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Meneveau MO, Sahli ZT, Lynch KT, Mauldin IS, Slingluff CL. Immunotyping and Quantification of Melanoma Tumor-Infiltrating Lymphocytes. Methods Mol Biol 2021; 2265:515-528. [PMID: 33704737 DOI: 10.1007/978-1-0716-1205-7_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The density of tumour-infiltrating lymphocytes (TILs) in melanoma is correlated with improved clinical prognosis; however, standardized TIL immunotyping and quantification protocols are lacking. Herein, we provide a review of the technologies being utilized for the immunotyping and quantification of melanoma TILs.
Collapse
Affiliation(s)
- Max O Meneveau
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA
| | - Zeyad T Sahli
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA
| | - Kevin T Lynch
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA
| | - Ileana S Mauldin
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA
| | - Craig L Slingluff
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Lin Z, Meng X, Wen J, Corral JM, Andreev D, Kachler K, Schett G, Chen X, Bozec A. Intratumor Heterogeneity Correlates With Reduced Immune Activity and Worse Survival in Melanoma Patients. Front Oncol 2020; 10:596493. [PMID: 33344244 PMCID: PMC7747763 DOI: 10.3389/fonc.2020.596493] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Background Human malignant melanoma is a highly aggressive, heterogeneous and drug-resistant cancer. Due to a high number of clones, harboring various mutations that affect key pathways, there is an exceptional level of phenotypic variation and intratumor heterogeneity (ITH) in melanoma. This poses a significant challenge to personalized cancer medicine. Hitherto, it remains unclear to what extent the heterogeneity of melanoma affects the immune microenvironment. Herein, we explore the interaction between the tumor heterogeneity and the host immune response in a melanoma cohort utilizing The Cancer Genome Atlas (TCGA). Methods Clonal Heterogeneity Analysis Tool (CHAT) was used to estimate intratumor heterogeneity, and immune cell composition was estimated using CIBERSORT. The Overall Survival (OS) among groups was analyzed using Kaplan-Meier curves with the log-rank test and multivariate cox regression. RNA-seq data were evaluated to identify differentially expressed immunomodulatory genes. The reverse phase protein array (RPPA) data platform was used to validate immune responses at protein level. Results Tumors with high heterogeneity were associated with decreased overall survival (p = 0.027). High CHAT tumors were correlated with less infiltration by anti-tumor CD8 T cells (p = 0.0049), T follicular cells (p = 0.00091), and M1 macrophages (p = 0.0028), whereas tumor-promoting M2 macrophages were increased (p = 0.02). High CHAT tumors correlated with a reduced expression of immunomodulatory genes, particularly Programmed Cell Death 1 (PD1) and its ligand PD-L1. In addition, high CHAT tumors exhibited lower immune Cytotoxic T lymphocytes (CTLs)-mediated toxicity pathway score (p = 2.9E-07) and cytotoxic pathway score (p = 2.9E-08). High CHAT tumors were also associated with a lower protein level of immune-regulatory kinases, such as lymphocyte-specific protein tyrosine kinase (LCK) (p = 3.4e-5) and spleen tyrosine kinase (SYK) (p = 0.0011). Conclusions Highly heterogeneous melanoma tumors are associated with reduced immune cell infiltration and immune response activation as well as decreased survival. Our results reveal that intratumor heterogeneity is an indicative factor for patient survival due to its impact on anti-tumor immune response.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jinming Wen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - José María Corral
- Division of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
32
|
Yusuf M, Gaskins J, Mandish S, May ME, Wall W, Fisher W, Tennant P, Jorgensen J, Bumpous J, Dunlap N. Tumor infiltrating lymphocyte grade in Merkel cell carcinoma: relationships with clinical factors and independent prognostic value. Acta Oncol 2020; 59:1409-1415. [PMID: 32687000 DOI: 10.1080/0284186x.2020.1794033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Surrogate markers of the host immune response are not currently included in AJCC staging for Merkel cell carcinoma (MCC), and have not been consistently associated with clinical outcomes. We performed an analysis of a large national database to investigate tumor infiltrating lymphocyte (TIL) grade as an independent predictor of overall survival (OS) for patients with MCC and to characterize the relationship between TIL grade and other clinical prognostic factors. MATERIAL AND METHODS The NCDB was queried for patients with resected, non-metastatic MCC with known TIL grade (absent, non-brisk and brisk). Multivariable Cox regression modeling was performed to define TIL grade as a predictor of OS adjusting for other relevant clinical factors. Multinomial, multivariable logistic regression was performed to characterize the relationship between TIL grade and other clinical prognostic factors. Multiple imputation was performed to account for missing data bias. RESULTS Both brisk (HR 0.55, CI 0.36-0.83) and non-brisk (HR 0.77, CI 0.60-0.98) were associated with decreased adjusted hazard of death relative to absent TIL grade. Adverse clinical factors such as 1-3 positive lymph nodes, lymphovascular invasion (LVI) and immunosuppression were associated with increased likelihood of non-brisk TIL relative to absent TIL grade (p values <.05). Extracapsular extension (ECS) was associated with decreased likelihood of brisk TIL relative to absent TIL grade (p<.05). DISCUSSION Histopathologic TIL grade was independently predictive for OS in this large national cohort. Significant differences in the likelihood of non-brisk or brisk TIL relative to absent grade were present with regards to LVI, ECS and immune status. TIL grade may be a useful prognostic factor to consider in addition to more granular characterization of TIL morphology and immunophenotype.
Collapse
Affiliation(s)
- Mehran Yusuf
- Department of Radiation Oncology, University of Louisville Hospital, Louisville, KY, USA
| | - Jeremy Gaskins
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Steven Mandish
- Department of Radiation Oncology, University of Louisville Hospital, Louisville, KY, USA
| | - Michael E. May
- Department of Radiation Oncology, University of Louisville Hospital, Louisville, KY, USA
| | - Weston Wall
- Department of Dermatology, Medical College of Georgia, Augusta, GA, USA
| | - William Fisher
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul Tennant
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville Hospital, Louisville, KY, USA
| | - Jeffrey Jorgensen
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville Hospital, Louisville, KY, USA
| | - Jeffrey Bumpous
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville Hospital, Louisville, KY, USA
| | - Neal Dunlap
- Department of Radiation Oncology, University of Louisville Hospital, Louisville, KY, USA
| |
Collapse
|
33
|
Hu K, Xie L, Hanyu M, Zhang Y, Li L, Ma X, Nagatsu K, Suzuki H, Wang W, Zhang MR. Harnessing the PD-L1 interface peptide for positron emission tomography imaging of the PD-1 immune checkpoint. RSC Chem Biol 2020; 1:214-224. [PMID: 34458761 PMCID: PMC8341843 DOI: 10.1039/d0cb00070a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Interface peptides that mediate protein-protein interactions (PPI) are a class of important lead compounds for designing PPI inhibitors. However, their potential as precursors for radiotracers has never been exploited. Here we report that the interface peptides from programmed death-ligand 1 (PD-L1) can be used in positron emission tomography (PET) imaging of programmed cell death 1 (PD-1) with high accuracy and sensitivity. Moreover, the performance differentiation between murine PD-L1 derived interface peptide (mPep-1) and human PD-L1 derived interface peptide (hPep-1) as PET tracers for PD-1 unveiled an unprecedented role of a non-critical residue in target binding, highlighting the significance of PET imaging as a companion diagnostic in drug development. Collectively, this study not only provided a first-of-its-kind peptide-based PET tracer for PD-1 but also conveyed a unique paradigm for developing imaging agents for highly challenging protein targets, which could be used to identify other protein biomarkers involved in the PPI networks.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaohui Ma
- Department of Vascular Surgery, General Hospital of People's Liberation Army Beijing 100853 P. R. China
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Hisashi Suzuki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| | - Weizhi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology Chiba, 263-8555 Japan
| |
Collapse
|
34
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
35
|
Sabbatino F, Scognamiglio G, Liguori L, Marra A, Anniciello AM, Polcaro G, Dal Col J, Caputo A, Peluso AL, Botti G, Zeppa P, Ferrone S, Pepe S. Peritumoral Immune Infiltrate as a Prognostic Biomarker in Thin Melanoma. Front Immunol 2020; 11:561390. [PMID: 33117345 PMCID: PMC7550791 DOI: 10.3389/fimmu.2020.561390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Thin melanomas are tumors less than 1 mm thick according to Breslow classification. Their prognosis is in most cases excellent. However, a small subset of these tumors relapses. These clinical findings emphasize the need of novel prognostic biomarkers to identify this subset of tumors. Characterization of tumor immune microenvironment (TIME) is currently investigated as a prognostic and predictive biomarker for cancer immunotherapy in several solid tumors including melanoma. Here, taking into account the limited availability of tumor tissues, by characterizing some of the characteristics of TIME such as number of infiltrating lymphocytes, HLA class I antigen and PD-L1 expression, we show that number of infiltrating CD8+ and FOXP3+ T cells as well as CD8+/FOXP3+ T cell ratio can represent a useful prognostic biomarker in thin melanoma. Although further investigations in a larger patient cohort are needed, these findings have potential clinical significance since they can be used to define subgroups of thin melanoma patients who have a worse prognosis and might need different treatment modalities.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Oncology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori, IRCSS, “Fondazione G. Pascale”, Naples, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology, Milan, Italy
| | - Anna Maria Anniciello
- Pathology Unit, Istituto Nazionale Tumori, IRCSS, “Fondazione G. Pascale”, Naples, Italy
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Alessandro Caputo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Pathology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Anna Lucia Peluso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Pathology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Pio Zeppa
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Pathology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Oncology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| |
Collapse
|
36
|
Wu QY, Yang CK, Rong LJ, Li JC, Lei LM. Investigation of the association between C-X-C motif chemokine receptor subunits and tumor infiltration levels and prognosis in patients with early-stage pancreatic ductal adenocarcinoma. Oncol Lett 2020; 20:16. [PMID: 32774489 PMCID: PMC7406880 DOI: 10.3892/ol.2020.11877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the malignancies with the highest morality rate due to postoperative local invasion and distant metastasis. Although C-X-C motif chemokine receptor (CXCR) subunits have been reported as prognostic indicators in gastric cancer, the prognostic value of CXCR subunits in PDAC remains poorly understood. In the present study, the expression levels and biological functions of CXCR subunits were investigated using multiple publicly accessible bioinformatic platforms and databases. Survival analysis was used to evaluate the prognostic value of CXCR subunits in 112 early-stage PDAC cases by setting the median expression levels as the cut-off values. A nomogram was constructed to combine CXCR subunit expression levels and clinical data for prognosis prediction. Moreover, the association between CXCR subunit expression levels and tumor infiltration levels were detected in PDAC. The expression levels of CXCR subunits were elevated in PDAC tumor tissues. In the multivariate Cox proportional risk regression model, high CXCR2, CXCR4 and CXCR6 expression levels in early-stage PDAC were associated with a more favorable prognosis. Further, it was demonstrated that the differential expression levels of CXCR subunits in PDAC for combined survival analysis could contribute to risk stratification. The nomogram model demonstrated the contribution of CXCR subunits and clinical features in the prognosis of PDAC. Gene Set Enrichment Analysis suggested that CXCR subunits serve a role in immunomodulatory functions. The expression levels and somatic copy number alterations of CXCR subunits were associated with tumor infiltration levels in PDAC. CXCR subunits were associated with prognosis in patients with early-stage PDAC and may be potential drug targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Qiong-Yuan Wu
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R.China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530023, P.R.China
| | - Liang-Jun Rong
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R.China
| | - Jun-Chan Li
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R.China
| | - Long-Ming Lei
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R.China
| |
Collapse
|
37
|
Ribero S, Torres-Navarro I, Botella-Estrada R. Tumour-infiltrating lymphocyte and histological regression in primary melanoma. Arch Dermatol Res 2020; 313:63-64. [PMID: 32382813 DOI: 10.1007/s00403-020-02089-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Simone Ribero
- Dermatology Clinic, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - I Torres-Navarro
- Dermatology Department, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - R Botella-Estrada
- Dermatology Department, Hospital Universitario y Politécnico la Fe, Valencia, Spain
- Dermatology, Universitat de València, Valencia, Spain
| |
Collapse
|
38
|
Lattanzi M, Lee Y, Simpson D, Moran U, Darvishian F, Kim RH, Hernando E, Polsky D, Hanniford D, Shapiro R, Berman R, Pavlick AC, Wilson MA, Kirchhoff T, Weber JS, Zhong J, Osman I. Primary Melanoma Histologic Subtype: Impact on Survival and Response to Therapy. J Natl Cancer Inst 2020; 111:180-188. [PMID: 29912415 PMCID: PMC7962783 DOI: 10.1093/jnci/djy086] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/28/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Two primary histologic subtypes, superficial spreading melanoma (SSM) and nodular melanoma (NM), comprise the majority of all cutaneous melanomas. NM is associated with worse outcomes, which have been attributed to increased thickness at presentation, and it is widely expected that NM and SSM would exhibit similar behavior once metastasized. Herein, we tested the hypothesis that primary histologic subtype is an independent predictor of survival and may impact response to treatment in the metastatic setting. METHODS We examined the most recent Surveillance, Epidemiology, and End Results (SEER) cohort (n = 118 508) and the New York University (NYU) cohort (n = 1621) with available protocol-driven follow-up. Outcomes specified by primary histology were studied in both the primary and metastatic settings with respect to BRAF-targeted therapy and immunotherapy. We characterized known driver mutations and examined a 140-gene panel in a subset of NM and SSM cases using next-generation sequencing. All statistical tests were two-sided. RESULTS NM was an independent risk factor for death in both the SEER (hazard ratio [HR] = 1.55, 95% confidence interval [CI] = 1.41 to 1.70, P < .001) and NYU (HR = 1.47, 95% CI = 1.05, 2.07, P = .03) cohorts, controlling for thickness, ulceration, stage, and other variables. In the metastatic setting, NM remained an independent risk factor for death upon treatment with BRAF-targeted therapy (HR = 3.33, 95% CI = 1.06 to 10.47, P = .04) but showed no statistically significant difference with immune checkpoint inhibition. NM was associated with a higher rate of NRAS mutation (P < .001), and high-throughput sequencing revealed NM-specific genomic alterations in NOTCH4, ANK3, and ZNF560, which were independently validated. CONCLUSIONS Our data reveal distinct clinical and biological differences between NM and SSM that support revisiting the prognostic and predictive impact of primary histology subtype in the management of cutaneous melanoma.
Collapse
Affiliation(s)
- Michael Lattanzi
- Department of Medicine.,Interdisciplinary Melanoma Cooperative Group
| | - Yesung Lee
- Interdisciplinary Melanoma Cooperative Group.,The Ronald O. Perelman Department of Dermatology
| | - Danny Simpson
- Interdisciplinary Melanoma Cooperative Group.,Department of Population Health
| | - Una Moran
- Interdisciplinary Melanoma Cooperative Group.,The Ronald O. Perelman Department of Dermatology
| | - Farbod Darvishian
- Interdisciplinary Melanoma Cooperative Group.,Department of Pathology
| | - Randie H Kim
- Interdisciplinary Melanoma Cooperative Group.,The Ronald O. Perelman Department of Dermatology
| | - Eva Hernando
- Interdisciplinary Melanoma Cooperative Group.,Department of Pathology
| | - David Polsky
- Interdisciplinary Melanoma Cooperative Group.,The Ronald O. Perelman Department of Dermatology.,Department of Pathology
| | - Doug Hanniford
- Interdisciplinary Melanoma Cooperative Group.,Department of Pathology
| | - Richard Shapiro
- Interdisciplinary Melanoma Cooperative Group.,Department of Surgery, NYU School of Medicine, New York, NY
| | - Russell Berman
- Interdisciplinary Melanoma Cooperative Group.,Department of Surgery, NYU School of Medicine, New York, NY
| | - Anna C Pavlick
- Department of Medicine.,Interdisciplinary Melanoma Cooperative Group.,The Ronald O. Perelman Department of Dermatology
| | - Melissa A Wilson
- Department of Medicine.,Interdisciplinary Melanoma Cooperative Group
| | - Tomas Kirchhoff
- Interdisciplinary Melanoma Cooperative Group.,Department of Population Health
| | - Jeffrey S Weber
- Department of Medicine.,Interdisciplinary Melanoma Cooperative Group.,The Ronald O. Perelman Department of Dermatology
| | - Judy Zhong
- Interdisciplinary Melanoma Cooperative Group.,Department of Population Health
| | - Iman Osman
- Department of Medicine.,Interdisciplinary Melanoma Cooperative Group.,The Ronald O. Perelman Department of Dermatology
| |
Collapse
|
39
|
Lippens L, Van Bockstal M, De Jaeghere EA, Tummers P, Makar A, De Geyter S, Van de Vijver K, Hendrix A, Vandecasteele K, Denys H. Immunologic impact of chemoradiation in cervical cancer and how immune cell infiltration could lead toward personalized treatment. Int J Cancer 2020; 147:554-564. [PMID: 32017078 DOI: 10.1002/ijc.32893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
We investigated the potential of tumor-infiltrating immune cells (ICs) as predictive or prognostic biomarkers for cervical cancer patients. In total, 38 patients treated with (chemo)radiotherapy and subsequent surgery were included in the current study. This unique treatment schedule makes it possible to analyze IC markers in pretreatment and posttreatment tissue specimens and their changes during treatment. IC markers for T cells (CD3, CD4, CD8 and FoxP3), macrophages (CD68 and CD163) and B cells (CD20), as well as IL33 and PD-L1, were retrospectively analyzed via immunohistochemistry. Patients were grouped in the low score or high score group based on the amount of positive cells on immunohistochemistry. Correlations to pathological complete response (pCR), cause-specific survival (CSS) and metastasis development during follow-up were evaluated. In analysis of pretreatment biopsies, significantly more pCR was seen for patients with CD8 = CD3, CD8 ≥ CD4, positive IL33 tumor cell (TC) scores, IL33 IC < TC and PD-L1 TC ≥5%. Besides patients with high CD8 scores, also patients with CD8 ≥ CD4, CD163 ≥ CD68 or PD-L1 IC ≥5% had better CSS. In the analysis of posttreatment specimens, less pCR was observed for patients with high CD8 or CD163 scores. Patients with decreasing CD8 or CD163 scores between pretreatment and posttreatment samples showed more pCR, whereas those with increasing CD8 or decreasing IL33 IC scores showed a worse CSS. Meanwhile, patients with an increasing CD3 score or stable/increasing PD-L1 IC score showed more metastasis during follow-up. In this way, the intratumoral IC landscape is a promising tool for prediction of outcome and response to (chemo)radiotherapy.
Collapse
Affiliation(s)
- Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Mieke Van Bockstal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Emiel A De Jaeghere
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Philippe Tummers
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Amin Makar
- Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Sofie De Geyter
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Koen Van de Vijver
- Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Vandecasteele
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Radiation Therapy, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
40
|
Porcellato I, Silvestri S, Menchetti L, Recupero F, Mechelli L, Sforna M, Iussich S, Bongiovanni L, Lepri E, Brachelente C. Tumour-infiltrating lymphocytes in canine melanocytic tumours: An investigation on the prognostic role of CD3 + and CD20 + lymphocytic populations. Vet Comp Oncol 2019; 18:370-380. [PMID: 31750993 DOI: 10.1111/vco.12556] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
The study of the immune response in several types of tumours has been rapidly increasing in recent years with the dual aim of understanding the interactions between neoplastic and immune cells and their importance in cancer pathogenesis and progression, as well as identifying targets for cancer immunotherapy. Despite being considered one of the most immunogenic tumour types, melanoma can progress in the presence of abundant lymphocytic infiltration, therefore suggesting that the immune response is not able to efficiently control tumour growth. The purpose of this study was to investigate whether the density, distribution and grade of tumour-infiltrating lymphocytes (TILs) in 97 canine melanocytic tumours is associated with histologic indicators of malignancy and can be considered a prognostic factor in the dog. As a further step in the characterization of the immune response in melanocytic tumours, an immunohistochemical investigation was performed to evaluate the two main populations of TILs, T-lymphocytes (CD3+ ) and B-lymphocytes (CD20+ ). The results of our study show that TILs are present in a large proportion of canine melanocytic tumours, especially in oral melanomas, and that the infiltrate is usually mild. The quantity of CD20+ TILs was significantly associated with some histologic prognostic factors, such as the mitotic count, the cellular pleomorphism and the percentage of pigmented cells. Remarkably, a high infiltration of CD20+ TILs was associated with tumour-related death, presence of metastasis/recurrence, shorter overall and disease-free survival, increased hazard of death and of developing recurrence/metastasis, hence representing a potential new negative prognostic factor in canine melanocytic tumours.
Collapse
Affiliation(s)
- Ilaria Porcellato
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Serenella Silvestri
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Laura Menchetti
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Francesca Recupero
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Luca Mechelli
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Selina Iussich
- Department of Veterinary Science, Università degli Studi di Torino, Turin, Italy
| | - Laura Bongiovanni
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Elvio Lepri
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
41
|
Zidlik V, Bezdekova M, Brychtova S. Tumor infiltrating lymphocytes in malignant melanoma - allies or foes? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 164:43-48. [PMID: 31649385 DOI: 10.5507/bp.2019.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
This is an overview of current problematics regarding the role of tumor infiltrating lymphocytes (TILs) in malignant melanomas. Various and often conflicting data have been published, correlating tumor type, stage, prognosis, as well as sex and age of patients. This is partly due to heterogeneity in scaling systems and unstandardized TILs grading but also due to changes of tumor-host interactions. Melanomas are an immunologically heterogeneous group with variability of TILs, where distinct gene expression patterns were found in tumors with absent, and/or non- brisk TIL grade versus brisk TIL grade. However, the presence of TILs alone appears to be inadequate for implicating them as immunologically functional. Further characterisation of TIL phenotype and function is warranted. This especially concerns, evaluation of TILs of the suppressor phenotype but rather than as a prognostic factor, more for prediction of targeted immunotherapy.
Collapse
Affiliation(s)
- Vladimir Zidlik
- Department of Pathology, University Hospital Ostrava, Czech Republic.,Department of Pathology, CGB Laboratory, Ostrava, Czech Republic
| | - Michala Bezdekova
- Institute of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Svetlana Brychtova
- Institute of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czech Republic.,Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
42
|
Osella-Abate S, Conti L, Annaratone L, Senetta R, Bertero L, Licciardello M, Caliendo V, Picciotto F, Quaglino P, Cassoni P, Ribero S. Phenotypic characterisation of immune cells associated with histological regression in cutaneous melanoma. Pathology 2019; 51:487-493. [PMID: 31266597 DOI: 10.1016/j.pathol.2019.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 10/26/2022]
Abstract
Histological regression and tumour infiltrating lymphocytes represent an early sign of activation of the immune system against primary melanoma. The first phenomenon has been especially discussed in the literature because of its prognostic role, but no clear agreement on its evaluation has been reached. Immunotherapy of advanced stage melanoma has recently shown promising results; an improved understanding of the initial interplay between melanoma cells and the immune system would potentially help tailor treatment for patients. Seventy consecutive melanomas with regression were analysed to identify a prognostic cut-off value of regression extension. Then, we compared the immune infiltrate between regressed and not regressed areas of these regressed melanomas, assessing CD3, CD4, CD8, CD20, CD123, PD1 and FOXP3/CD25 expression. The immune infiltrate of these cases was further compared with 28 control melanomas without regression. A regression extension of 10% represented a reliable cut-off to distinguish two different risk categories in regressed melanomas. Regressed areas were less infiltrated by CD4/CD25, FOXP3/CD4 or PD1/CD4 compared to not regressed areas of each sample. These lymphocyte subsets are associated with anergy and hamper the immune CD8+ response towards the cancer cells. Moreover, the relevance of these findings was further supported by the observation that not regressed controls were significantly more infiltrated by these anergic immune cell subsets compared to the regressed cases. These results help understand the real meaning of regression in melanoma. Moreover, the association here identified between specific immunomodulatory immune cell subsets and regression could help in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Simona Osella-Abate
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Luca Conti
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Laura Annaratone
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Rebecca Senetta
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Luca Bertero
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Matteo Licciardello
- Department of Medical Sciences, Section of Dermatology, University of Turin, Torino, Italy
| | - Virginia Caliendo
- Dermatologic Surgery Section, Department of Oncology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Franco Picciotto
- Dermatologic Surgery Section, Department of Oncology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Torino, Italy
| | - Paola Cassoni
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy.
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Torino, Italy; Dermatologic Surgery Section, Department of Oncology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
43
|
Incorvaia L, Badalamenti G, Rinaldi G, Iovanna JL, Olive D, Swayden M, Terruso L, Vincenzi B, Fulfaro F, Bazan V, Russo A, Fanale D. Can the plasma PD-1 levels predict the presence and efficiency of tumor-infiltrating lymphocytes in patients with metastatic melanoma? Ther Adv Med Oncol 2019; 11:1758835919848872. [PMID: 31205506 PMCID: PMC6535916 DOI: 10.1177/1758835919848872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The immune response in melanoma patients is locally affected by presence of tumor-infiltrating lymphocytes (TILs), generally divided into brisk, nonbrisk, and absent. Several studies have shown that a greater presence of TILs, especially brisk, in primary melanoma is associated with a better prognosis and higher survival rate. PATIENTS AND METHODS We investigated by enzyme-linked immunosorbent assay (ELISA) the correlation between PD-1 levels in plasma and the presence/absence of TILs in 28 patients with metastatic melanoma. RESULTS Low plasma PD-1 levels were correlated with brisk TILs in primary melanoma, whereas intermediate values correlated with the nonbrisk TILs, and high PD-1 levels with absent TILs. Although the low number of samples did not allow us to obtain a statistically significant correlation between the plasma PD-1 levels and the patients' overall survival depending on the absence/presence of TILs, the median survival of patients having brisk type TILs was 5 months higher than that of patients with absent and nonbrisk TILs. CONCLUSIONS This work highlights the ability of measuring the plasma PD-1 levels in order to predict the prognosis of patients with untreated metastatic melanoma without a BRAF mutation at the time of diagnosis.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Gaetana Rinaldi
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Mirna Swayden
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Lidia Terruso
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Bruno Vincenzi
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - Fabio Fulfaro
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
44
|
Neagu M, Constantin C, Caruntu C, Dumitru C, Surcel M, Zurac S. Inflammation: A key process in skin tumorigenesis. Oncol Lett 2019; 17:4068-4084. [PMID: 30944600 PMCID: PMC6444305 DOI: 10.3892/ol.2018.9735] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
The extremely delicate shift from an inflammatory process to tumorigenesis is a field of major scientific interest. While the inflammation induced by environmental agents has well known underlying mechanisms, less is known concerning the oncogenic changes that follow an inflammatory chronic status in the tissue microenvironment that can lead to pro-tumorigenic processes. Regardless of the origin of the environmental factors, the maintenance of an inflammatory microenvironment is a clear condition that favors tumorigenesis. Inflammation sustains the proliferation and survival of malignant transformed cells, can promote angiogenesis and metastatic processes, can negatively regulate the antitumoral adaptive and innate immune responses and may alter the efficacy of therapeutic agents. There is an abundance of studies focusing on molecular pathways that trigger inflammation-mediated tumorigenesis, and these data have revealed a series of biomarkers that can improve the diagnosis and prognosis in oncology. In skin there is a clear connection between tissue destruction, inflammation and tumor onset. Inflammation is a self-limiting process in normal physiological conditions, while tumor is a constitutive process activating new pro-tumor mechanisms. Among skin cancers, the most commonly diagnosed skin cancers, squamous cell carcinoma and basal cell carcinoma (BCC) have important inflammatory components. The most aggressive skin cancer, melanoma, is extensively research in regards to the new context of novel developed immune-therapies. In skin cancers, inflammatory markers can find their place in the biomarker set for improvement of diagnosis and prognosis.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Dumitru
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Mihaela Surcel
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
45
|
Kovalska J, Cervinkova M, Chmelikova E, Planska D, Cizkova J, Horak V. Immunohistochemical Evidence of the Involvement of Natural Killer (CD161 +) Cells in Spontaneous Regression of Lewis Rat Sarcoma. In Vivo 2019; 33:47-52. [PMID: 30587601 DOI: 10.21873/invivo.11437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIM Spontaneous regression (SR) of tumours is a rare phenomenon not yet fully understood. The aim of this study was to investigate immune cells infiltrating progressive and SR tumours in a Lewis rat sarcoma model. MATERIALS AND METHODS Rats were subcutaneously inoculated with rat sarcoma R5-28 (clone C4) cells. Developing tumours were obtained on day 42 and cryosections were immunohistochemically processed for detection of immune cells. RESULTS A high density of granulocytes was found in the necrotic areas of both progressive and SR tumours. CD4+ cells and CD8+ cells were rare and sparsely dispersed in the tumour tissue without clear difference between the two types of tumours. On the contrary, CD161+ cells were abundant and evenly distributed in SR tumours, but these cells were very rare in progressive tumours. CONCLUSION Based on the differences in number and distribution of the immune cell subpopulations, we believe that natural killer (CD161+) cells play a major role in the destruction of cancer cells during SR of tumours in this Lewis rat model.
Collapse
Affiliation(s)
- Jana Kovalska
- Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Libechov, Czech Republic .,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Monika Cervinkova
- Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Libechov, Czech Republic.,Department of Surgery, First Medical Faculty of Charles University, Hospital Na Bulovce, Prague, Czech Republic
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Daniela Planska
- Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jana Cizkova
- Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Libechov, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Vratislav Horak
- Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
46
|
Fu Q, Chen N, Ge C, Li R, Li Z, Zeng B, Li C, Wang Y, Xue Y, Song X, Li H, Li G. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. Oncoimmunology 2019; 8:1593806. [PMID: 31143514 PMCID: PMC6527267 DOI: 10.1080/2162402x.2019.1593806] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are associated with prognosis in various tumors. However, it remains controversial whether the presence of TILs is related to an improved prognosis in melanoma. This meta-analysis confirmed the favorable prognostic role of the CD3+, CD4+, CD8+, FOXP3+, and CD20+ TILs in the overall survival of melanoma patients and found an association between the TILs present and improved overall survival. Additionally, subgroup analysis demonstrated that brisk TILs were obviously associated with OS, RFS and DSS/MSS. Thus, TILs may be a predictive biomarker in melanoma. This analysis will provide more insight into the study of TILs and predictive biomarker.
Collapse
Affiliation(s)
- Qiaofen Fu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China.,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Nan Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Baozhen Zeng
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Chunyan Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Ying Wang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Yuanbo Xue
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Xin Song
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Heng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Gaofeng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| |
Collapse
|
47
|
Hyams DM, Cook RW, Buzaid AC. Identification of risk in cutaneous melanoma patients: Prognostic and predictive markers. J Surg Oncol 2019; 119:175-186. [PMID: 30548543 PMCID: PMC6590387 DOI: 10.1002/jso.25319] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022]
Abstract
New therapeutic modalities for melanoma promise benefit in selected individuals. Efficacy appears greater in patients with lower tumor burden, suggesting an important role for risk-stratified surveillance. Robust predictive markers might permit optimization of agent to patient, while low-risk prognostic markers might guide more conservative management. This review evaluates protein, gene, and multiplexed marker panels that may contribute to better risk assessment and improved management of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- David M. Hyams
- Desert Surgical Oncology, Eisenhower Medical CenterRancho MirageCalifornia
| | - Robert W. Cook
- R&D and Medical Affairs, Castle Biosciences, IncFriendswoodTexas
| | - Antonio C. Buzaid
- Oncology Center, Hospital Israelita Albert EinsteinSão PauloBrazil
- Centro Oncológico Antonio Ermírio de Moraes, Beneficência Portuguesa de São PauloSão PauloBrazil
| |
Collapse
|
48
|
Yan BY, Garcet S, Gulati N, Kiecker F, Fuentes-Duculan J, Gilleaudeau P, Sullivan-Whalen M, Shemer A, Mitsui H, Krueger JG. Novel immune signatures associated with dysplastic naevi and primary cutaneous melanoma in human skin. Exp Dermatol 2019; 28:35-44. [PMID: 30326165 PMCID: PMC6333525 DOI: 10.1111/exd.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Dysplastic naevi (DN) are benign lesions with atypical features intermediate between that of common melanocytic naevi (CMN) and malignant melanoma (MM). Debate remains over whether DN represent progressive lesions from CMN. Through gene expression profiling and analysis of molecular gene signatures, our study revealed progressive increases in immune activation and regulation, along with pathways implicated in melanomagenesis, from CMN to DN to MM. Using criteria of 1.5-fold change and false discovery rate ≤0.05, we found differential expression of 7186 probes (6370 unique genes) with the largest difference detected between DN and MM from the standpoint of genomic melanoma progression. Despite progressive increases in the T-helper type 1 (Th1)-inducing gene (IL-12), RT-PCR indicated impaired Th1 or cytotoxic T-cell response (decreased IFN-γ) in MM. Concordantly, our results indicated progressive increases in molecular markers associated with regulatory T cells, exhausted T cells and tolerogenic dendritic cells, including detection of increased expression of suppressor of cytokine signalling 3 (SOCS3) in dendritic cells associated with MM. All together, our findings suggest that the increased immunosuppressive microenvironment of melanoma may contribute to unhampered proliferation of neoplastic cells. In addition, the detection of increased markers associated with tolerogenic dendritic cells in MM suggests that targeting these suppressive immune cell types may represent an alternative avenue for future immunotherapy.
Collapse
Affiliation(s)
- Bernice Y. Yan
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Sandra Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Nicholas Gulati
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Felix Kiecker
- Department of Dermatology, Allergy, Skin Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany0020
| | | | - Patricia Gilleaudeau
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Mary Sullivan-Whalen
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Avner Shemer
- Department of Dermatology, Tel-Hashomer Medical Center, Ramat Gan, Israel
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
- Authors share senior authorship
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
- Authors share senior authorship
| |
Collapse
|
49
|
Němejcová K, Tichá I, Bártů M, Kodet O, Důra M, Jakša R, Michálková R, Dundr P. Comparison of five different scoring methods in the evaluation of inflammatory infiltration (tumor-infiltrating lymphocytes) in superficial spreading and nodular melanoma. Pigment Cell Melanoma Res 2018; 32:412-423. [PMID: 30506645 DOI: 10.1111/pcmr.12757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023]
Abstract
The objective of our study was to compare the five different scoring methods of tumor-infiltrating lymphocytes (TILs) assessment in a group of 213 cases of superficial spreading and nodular melanoma. The scoring methods include (a) Clark scoring; (b) Melanoma Institute Australia system; (c) scoring system used in the study of Saldanha et al.; (d) scoring system used in the TCGA study and modified by Park et al.; and (e) the system recently proposed by the "International Immuno-Oncology Biomarker Working Group" for TILs scoring in all solid tumors. Prediction of survival with three main outcomes-disease-specific-free survival, local recurrence-free survival, and distant metastasis-free survival-was evaluated. The prognostic value of TILs showed statistical significance in univariate analysis regarding all three of the outcomes only for three of the five evaluated methods; the Clark scoring, the Melanoma Institute Australia system, and the system proposed by the "International Immuno-Oncology Biomarker Working Group". However, in multivariate analysis with covariants including Breslow thickness, type of melanoma, location, sex, and age, we did not find TILs to be an independent prognostic factor.
Collapse
Affiliation(s)
- Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ivana Tichá
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Kodet
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miroslav Důra
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radek Jakša
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Romana Michálková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
50
|
Adoptive cellular therapies: the current landscape. Virchows Arch 2018; 474:449-461. [PMID: 30470934 PMCID: PMC6447513 DOI: 10.1007/s00428-018-2484-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
For many cancer types, the immune system plays an essential role in their development and growth. Based on these rather novel insights, immunotherapeutic strategies have been developed. In the past decade, immune checkpoint blockade has demonstrated a major breakthrough in cancer treatment and has currently been approved for the treatment of multiple tumor types. Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) or gene-modified T cells expressing novel T cell receptors (TCR) or chimeric antigen receptors (CAR) is another strategy to modify the immune system to recognize tumor cells and thus carry out an anti-tumor effector function. These treatments have shown promising results in various tumor types, and multiple clinical trials are being conducted worldwide to further optimize this treatment modality. Most successful results were obtained in hematological malignancies with the use of CD19-directed CAR T cell therapy and already led to the commercial approval by the FDA. This review provides an overview of the developments in ACT, the associated toxicity, and the future potential of ACT in cancer treatment.
Collapse
|