1
|
Xu X, Liu Y, Li X, Zhang P, Lin F, Chen C, Zhang X, Li C, Fu Q. Characterization, expression profiling, and immunological role of Cathepsin D in Sebastes schlegelii during bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 167:105387. [PMID: 40339947 DOI: 10.1016/j.dci.2025.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Cathepsin D (CTSD), a ubiquitous aspartate hydrolase in eukaryotes, is predominantly localized in lysosomes and involved in the process of substance hydrolysis. While extensive studies have highlighted the importance of CTSD in various physiological and pathological conditions in mammals, its functional roles and mechanisms in fish in responses to bacterial infections remain poorly understood. In this study, two CTSD genes, SsCTSDa and SsCTSDb, were identified in Sebastes schlegelii, and their characteristics were systematically investigated through phylogenetic analysis, syntenic analysis, and tissue-specific expression profiling under both healthy and bacterial infection conditions. Additionally, their immune-related properties, including subcellular localization, microbial ligand-binding capacity, and agglutination activity, were explored. Firstly, SsCTSDa encodes a 396-amino acid protein with a molecular mass of 43.01 kDa, while SsCTSDb encodes a 339-amino acid protein with a molecular mass of 43.36 kDa. Furthermore, both genes were ubiquitously expressed in all examined tissues, with the highest expression levels observed in the spleen. Moreover, SsCTSDa and SsCTSDb exhibited distinct expression patterns following bacterial infection, showing significant upregulation in the kidney and gill. Functional assays demonstrated that recombinant SsCTSDa (rSsCTSDa) and SsCTSDb (rSsCTSDb) exhibited strong binding affinity to microbial ligands, including LPS, PGN, LTA, and Poly (I:C). Notably, rSsCTSDb displayed broad-spectrum agglutination activity against both Gram-positive and Gram-negative bacteria, whereas rSsCTSDa specifically agglutinated Gram-negative bacteria. This study suggests that CTSD plays a crucial role in the immune responses of teleosts, highlighting its potential as a key mediator in host-pathogen interactions.
Collapse
Affiliation(s)
- Xuan Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xingchun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengjun Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chonghui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Cheng R, Li Y, Cheng TY, Liu L. Feeding on different hosts displays different hemolymph protein compositions in Haemaphysalis qinghaiensis tick. EXPERIMENTAL & APPLIED ACAROLOGY 2025; 94:36. [PMID: 39930279 DOI: 10.1007/s10493-025-01000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025]
Abstract
Tick hemolymph plays an important role in the transportation of nutrients as well as metabolites. The hemolymph consists of plasma and blood cells, and proteins are the main components of plasma. This study aimed to investigate the protein composition of the hemolymph of Haemaphysalis qinghaiensis and to explore the effects of different hosts on the hemolymph protein composition of ticks, which could provide a reference for the screening of tick-protective antigens. Hemolymph was collected from the engorged females of the H. qinghaiensis ticks from the Bos grunniens (HqB) and Ovis aries (HqO) hosts. We identified 17 host-derived high-confidence proteins and 156 tick-derived high-confidence proteins from HqB. Fifteen host-derived high-confidence proteins and 155 tick-derived high-confidence proteins were identified from HqO. There were significant differences in the composition and abundance of the host-derived protein in the hemolymph from the two sources, with fibrinogen, alpha-1-antiproteinase, α-2-macroglobulin, and an uncharacterized protein present only in HqB, while ubiquitin-60S ribosomal protein L 40 was found only at HqO. Besides, the abundance of these proteins also varied significantly. The 163 tick-derived proteins identified are classified as enzymes, inhibitors, transporters, immunity-related proteins, cytoskeletal proteins, heat shock proteins, nuclear proteins, other proteins, uncharacterized proteins, and secreted proteins. The KGD sequence of A1 in the uncharacterized protein suggested that the unidentified protein may be associated with anti-coagulants, but further research was needed to confirm the function of these uncovered proteins. HqB and HqO shared a total of 148 tick-derived proteins, with eight proteins present only in HqB and seven only in HqO. The abundance of 65 shared proteins was significantly higher in HqO. In conclusion, the hemolymph proteins of H. qinghaiensis tick were composed of host-derived and tick-derived proteins. Different blood meals had a large effect on the composition and abundance of both host-derived and tick-derived proteins.
Collapse
Affiliation(s)
- Rong Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yong Li
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lei Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Hu L, Guan C, Zhao Y, Chai R, Zhang W, Bai R. Identification of the enzyme activity of human Demodex aspartic protease and its function to hydrolyse host macromolecules and skin cell proteins. Int J Biol Macromol 2024; 283:137291. [PMID: 39510475 DOI: 10.1016/j.ijbiomac.2024.137291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Aspartic protease (ASP), a common proteolytic enzyme, plays an important role in the pathogenesis of numerous parasites. However, its role in Demodex remains unclear. Herein, we studied the expression, purification, enzymatic activity detection, and hydrolysis function of human Demodex ASP. The findings showed that recombinant ASP (rASP) possessed aspartic protease activity, which reached optimum levels at pH 2.5-3.0 and 35 °C. Furthermore, the activity of Demodex folliculorum rASP (Df.ASP) was considerably higher than that of Demodex brevis rASP (Db.rASP). Df.rASP also exhibited a more potent hydrolytic ability than Db.rASP. Df.rASP hydrolysed IgG, IgM, and fibronectin, whereas Db.rASP only slightly hydrolysed IgG. Mass spectrometry analysis revealed that Df.rASP exerted hydrolytic effects on 38 HaCaT proteins, more than the 23 proteins hydrolysed by Db.rASP. Sequence alignment and structure modelling of the substrate binding cleft identified three distinct amino acids between Df.ASP and Db.ASP, which should be the molecular basis for their difference in enzymatic activity and hydrolytic function. These results imply that Df.rASP may play a more critical role in the pathogenesis of human Demodex, and molecular data will provide a scientific basis for future analyses of their molecular pathogenesis.
Collapse
Affiliation(s)
- Li Hu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chenglin Guan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yae Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Rong Chai
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wanyu Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Bisht N, Fular A, Saini M, Kumar S, Sankar M, Sharma AK, Ghosh S. Effect of ivermectin, amitraz and fipronil on midgut epithelium and digestive enzyme profile in Rhipicephalus microplus ticks (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:851-870. [PMID: 38642307 DOI: 10.1007/s10493-024-00913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
Blood feeding and digestion are vital physiological activities essential for the survival and reproduction of ticks. Chemical acaricides viz., ivermectin, amitraz and fipronil, are known to act on the central nervous system, resulting in the mortality of ticks. The present study is focused on the effect of these acaricides on the midgut and gut enzymes of Rhipicephalus microplus. The ultra-thin sections of midgut of ivermectin-treated ticks showed irregular basal membrane and ruptured digestive vesicles. Amitraz treatment resulted in a notable decrease in digestive cells with pleats in the basal membrane, while fipronil-exposed ticks exhibited reduced digestive cells, loss of cellular integrity, and disintegration of the basal membrane and muscle layer. The gut tissue homogenate of ivermectin and fipronil treated ticks showed a significant reduction of cathepsin D level, 76.54 ± 3.20 μg/mL and 92.67 ± 3.72 μg/mL, respectively, as compared to the control group (150.0 ± 3.80 μg/mL). The leucine aminopeptidase level (4.27 ± 0.08 units/mL) was significantly decreased in the ivermectin treated ticks compared to other treatment groups. The acid phosphatase activity (29.16 ± 0.67 μmole/min/L) was reduced in the ivermectin treated group whereas, increased activity was observed in the fipronil and amitraz treated groups. All the treatment groups revealed increased alkaline phosphatase levels (17.47-26.72 μmole/min/L). The present finding suggests that in addition to the established mechanism of action of the tested acaricides on the nervous system, the alterations in the cellular profile of digestive cells and enzymes possibly affect the blood digestion process and thus the synthesis of vital proteins which are essential for vitellogenesis, and egg production in ticks.
Collapse
Affiliation(s)
- Nisha Bisht
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ashutosh Fular
- Temperate Animal Husbandry Division, ICAR- Indian Veterinary Research Institute, Mukteshwar, Uttarakhand, 263138, India.
| | - Mohini Saini
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Satyanshu Kumar
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Boriavi, Anand, Gujarat, 387310, India
| | - M Sankar
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
- School of Agriculture, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
5
|
Hu L, Guan C, Zhao Y, Zhang W, Chai R, Teng J, Tian Q, Xun M, Wu F. Cloning, sequencing, expression, and purification of aspartic proteases isolated from two human Demodex species. Int J Biol Macromol 2023; 253:127404. [PMID: 37848116 DOI: 10.1016/j.ijbiomac.2023.127404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Aspartic proteases (ASPs) are important hydrolases for parasitic invasion of host tissues or cells. This was the first study on Demodex ASP. First, the complete coding sequence (CDS) was amplified, cloned and sequenced. Then, the protein physical and chemical properties was analysed. Finally, the recombinant plasmid, expression and purification system was established. Results showed that the lengths of CDS of Demodex folliculorum and D. brevis were 1161 and 1173 bp, respectively. The molecular weight of the protein was approximately 40 KDa. It contained an aspartic acid residue, a substrate-binding site and signal peptide, yet lacked a transmembrane domain and was located in the membrane or extracellular matrix. The phylogenetic and conserved motif analyses showed that D. folliculorum and D. brevis clustered separately and then formed a single branch, which finally clustered with other Acariformes species. The prokaryotic expression systems for recombinant ASP with His-tag (rASP-His) and GST-tag (rASP-GST) were constructed. The inclusion bodies of rASP-His were renaturated by gradient urea and purified using NI beads, while those of rASP-GST were renaturated by sarkosyl and Triton X-100 and purified using GST beads. Conclusively, the prokaryotic expression and purification system of Demodex rASP was successfully established for further pathogenic mechanism research.
Collapse
Affiliation(s)
- Li Hu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenglin Guan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yae Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Wanyu Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rong Chai
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Juan Teng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Linyi People's Hospital, Linyi, China
| | - Qiong Tian
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Xun
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feng Wu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
6
|
Xu M, Liu P, Huang Q, Xu S, Dumont HJ, Han BP. High-quality genome of Diaphanosoma dubium provides insights into molecular basis of its broad ecological adaptation. iScience 2023; 26:106006. [PMID: 36798432 PMCID: PMC9926121 DOI: 10.1016/j.isci.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Diaphanosoma dubium Manuilova, 1964, is a widespread planktonic water flea in Asian freshwater. Although sharing similar ecological roles with species of Daphnia, studies on D. dubium and its congeners are still few and lacking a genome for the further studies. Here, we assembled a high quality and chromosome level genome of D. dubium by combining long reads sequencing and Hi-C technologies. The total length of assembled genome was 101.8 Mb, with 98.92 Mb (97.2%) anchored into 22 chromosomes. Through comparative genomic analysis, we found the genes, involved in anti-ROS, detoxification, protein digestion, germ cells regulation and protection, underwent expansion in D. dubium. These genes and their expansion helpfully explain its widespread geographical distribution and dominance in eutrophic waters. This study provides insight into the adaptive evolution of D. dubium at genomic perspectives, and the present high quality genomic resource will be a footstone for future omics studies of the species and its congeners.
Collapse
Affiliation(s)
- Meng Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Ping Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Huang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Shaolin Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Henri J. Dumont
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Ghent University, Department of Biology, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Corresponding author
| |
Collapse
|
7
|
Qin S, Zhu B, Huang X, Hull JJ, Chen L, Luo J. Functional Role of AsAP in the Reproduction of Adelphocoris suturalis (Hemiptera: Miridae). INSECTS 2022; 13:755. [PMID: 36005380 PMCID: PMC9409435 DOI: 10.3390/insects13080755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) is an omnivorous agricultural pest that has severe economic impacts on a diverse range of agricultural crops. Although the targeted disruption of reproductive development among insects has been proposed as a novel control strategy for pest species, the current understanding of the physiology and molecular mechanisms of A. suturalis reproduction is very limited. In this study, we isolated a putative A. suturalisaspartic protease (AsAP) gene that is highly expressed in the fat body and ovaries of sexually mature females. The double-stranded RNA (dsRNA)-mediated knockdown of AsAP suppressed ovarian development and negatively impacted female fertility, which suggested that it plays an essential role in A. suturalis reproduction. The results of this study could help to expand our understanding of A. suturalis reproductive development and have the potential to facilitate the development of effective strategies for the better control of this pest species.
Collapse
Affiliation(s)
- Shidong Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bangqin Zhu
- Guiyang Center for Disease Control and Prevention, Guiyang 550003, China
| | - Xingxing Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - J. Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
8
|
Nganso BT, Pines G, Soroker V. Insights into gene manipulation techniques for Acari functional genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103705. [PMID: 35134533 DOI: 10.1016/j.ibmb.2021.103705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Functional genomics is an essential tool for elucidating the structure and function of genes in any living organism. Here, we review the use of different gene manipulation techniques in functional genomics of Acari (mites and ticks). Some of these Acari species inflict severe economic losses to managed crops and health problems to humans, wild and domestic animals, but many also provide important ecosystem services worldwide. Currently, RNA interference (RNAi) is the leading gene expression manipulation tool followed by gene editing via the bacterial type II Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 system (CRISPR-Cas9). Whilst RNAi, via siRNA, does not always lead to expected outcomes, the exploitations of the CRISPR systems in Acari are still in their infancy and are limited only to CRISP/Cas9 to date. In this review, we discuss the advantages and disadvantages of RNAi and CRISPR-Cas9 and the technical challenges associated with their exploitations. We also compare the biochemical machinery of RNAi and CRISPR-Cas9 technologies. We highlight some potential solutions for experimental optimization of each mechanism in gene function studies. The potential benefits of adopting various CRISPR-Cas9 systems for expanding on functional genomics experiments in Acari are also discussed.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Gur Pines
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Victoria Soroker
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
9
|
Umemiya-Shirafuji R, Zhou J, Liao M, Battsetseg B, Boldbaatar D, Hatta T, Kuboki T, Sakaguchi T, Chee HS, Miyoshi T, Huang X, Tsuji N, Xuan X, Fujisaki K. Data from expressed sequence tags from the organs and embryos of parthenogenetic Haemaphysalis longicornis. BMC Res Notes 2021; 14:326. [PMID: 34433501 PMCID: PMC8390289 DOI: 10.1186/s13104-021-05740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives Haemaphysalis longicornis is the most important tick species in Japan and has a wide range of vector capacity. Due to its veterinary and medical importance, this tick species has been used as a model for tick/vector biological studies. To identify the key molecules associated with physiological processes during blood feeding and embryogenesis, full-length cDNA libraries were constructed using the fat body, hemocytes-containing hemolymph, midgut, ovary and salivary glands of fed females and embryos of the laboratory colony of parthenogenetic H. longicornis. The sequences of cDNA from the salivary glands had been already released. However, the related information is still poor, and the other expressed sequence tags have not yet been deposited. Data description A total of 39,113 expressed sequence tags were obtained and deposited at the DNA DataBank of Japan. There were 7745 sequences from embryos, 7385 from the fat body, 8303 from the hemolymph including hemocytes, 7385 from the midgut, and 8295 from the ovary. The data, including expressed sequence tags from the salivary glands was summarized into Microsoft Excel files. Sharing this data resource with the tick research community will be valuable for the identification of novel genes and advance the progress of tick research.
Collapse
Affiliation(s)
- Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Jinlin Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518, Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Min Liao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Badgar Battsetseg
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Laboratory of Molecular Genetics, Institute of Veterinary Medicine, Mongolian University of Life Science, Zaisan, 17024, Ulaanbaatar, Mongolia
| | - Damdinsuren Boldbaatar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Institute of Veterinary Medicine, Mongolian University of Life Science, Zaisan, 17024, Ulaanbaatar, Mongolia
| | - Takeshi Hatta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Thasaneeya Kuboki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Sakaguchi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Huey Shy Chee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Takeharu Miyoshi
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Xiaohong Huang
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Naotoshi Tsuji
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
10
|
Fernando DD, Fischer K. Proteases and pseudoproteases in parasitic arthropods of clinical importance. FEBS J 2020; 287:4284-4299. [PMID: 32893448 DOI: 10.1111/febs.15546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Parasitic arthropods feed on blood or skin tissue and share comparable repertoires of proteases involved in haematophagy, digestion, egg development and immunity. While proteolytically active proteases of multiple classes dominate, an increasing number of pseudoproteases have been discovered that have no proteolytic function but are pharmacologically active biomolecules, evolved to carry out alternative functions as regulatory, antihaemostatic, anti-inflammatory or immunomodulatory compounds. In this review, we provide an overview of proteases and pseudoproteases from clinically important arthropod parasites. Many of these act in central biological pathways of parasite survival and host-parasite interaction and may be potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Deepani Darshika Fernando
- Cell and Molecular Biology Department, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - Katja Fischer
- Cell and Molecular Biology Department, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| |
Collapse
|
11
|
Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR, da Silva Vaz I, Mulenga A. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis 2020; 14:e0007758. [PMID: 32049966 PMCID: PMC7041860 DOI: 10.1371/journal.pntd.0007758] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/25/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Amblyomma americanum ticks transmit more than a third of human tick-borne disease (TBD) agents in the United States. Tick saliva proteins are critical to success of ticks as vectors of TBD agents, and thus might serve as targets in tick antigen-based vaccines to prevent TBD infections. We describe a systems biology approach to identify, by LC-MS/MS, saliva proteins (tick = 1182, rabbit = 335) that A. americanum ticks likely inject into the host every 24 h during the first 8 days of feeding, and towards the end of feeding. Searching against entries in GenBank grouped tick and rabbit proteins into 27 and 25 functional categories. Aside from housekeeping-like proteins, majority of tick saliva proteins belong to the tick-specific (no homology to non-tick organisms: 32%), protease inhibitors (13%), proteases (8%), glycine-rich proteins (6%) and lipocalins (4%) categories. Global secretion dynamics analysis suggests that majority (74%) of proteins in this study are associated with regulating initial tick feeding functions and transmission of pathogens as they are secreted within 24–48 h of tick attachment. Comparative analysis of the A. americanum tick saliva proteome to five other tick saliva proteomes identified 284 conserved tick saliva proteins: we speculate that these regulate critical tick feeding functions and might serve as tick vaccine antigens. We discuss our findings in the context of understanding A. americanum tick feeding physiology as a means through which we can find effective targets for a vaccine against tick feeding. The lone star tick, Amblyomma americanum, is a medically important species in US that transmits 5 of the 16 reported tick-borne disease agents. Most recently, bites of this tick were associated with red meat allergies in humans. Vaccination of animals against tick feeding has been shown to be a sustainable and an effective alternative to current acaricide based tick control method which has several limitations. The pre-requisite to tick vaccine development is to understand the molecular basis of tick feeding physiology. Toward this goal, this study has identified proteins that A. americanum ticks inject into the host at different phases of its feeding cycle. This data set has identified proteins that A. americanum inject into the host within 24–48 h of feeding before it starts to transmit pathogens. Of high importance, we identified 284 proteins that are present in saliva of other tick species, which we suspect regulate important role(s) in tick feeding success and might represent rich source target antigens for a tick vaccine. Overall, this study provides a foundation to understand the molecular mechanisms regulating tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, Californai, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Fouche G, Adenubi OT, Leboho T, McGaw LJ, Naidoo V, Wellington KW, Eloff JN. Acaricidal activity of the aqueous and hydroethanolic extracts of 15 South African plants against Rhipicephalus turanicus and their toxicity on human liver and kidney cells. ACTA ACUST UNITED AC 2019; 86:e1-e7. [PMID: 31368326 PMCID: PMC6676935 DOI: 10.4102/ojvr.v86i1.1665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022]
Abstract
Hot water and hydroethanolic (70:30) extracts were prepared from 15 plant species, which were investigated to discover eco-friendly and less expensive tick control methods as an alternative to synthetic acaricides. A contact bioassay was used to determine the acaricidal activity of these extracts against the cattle tick, Rhipicephalus turanicus (Acari: Ixodidae) at a concentration of 20% (200 mg/mL). The hydroethanolic extracts had better activity than the hot water extracts against R. turanicus. The hydroethanolic extract from Tabernaemontana elegans (leaves) had the best mortality (87.0%). This was followed by Calpurnia aurea (stems) with a mortality of 75.0%, Schkuhria pinnata (whole plant) with a mortality of 67.0% and Aloe rupestris (leaves) with a mortality of 66.6%. The toxicity of the plant extracts was also investigated and it was found that most of the hydroethanolic and hot water extracts were either safe or very safe on human Vero kidney and liver HepG2 cells. From this study, it was evident that botanicals have the potential to be developed as environmentally benign natural acaricides against R. turanicus.
Collapse
Affiliation(s)
- Gerda Fouche
- Chemistry Department, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lu S, Parizi LF, Torquato RJS, Vaz Junior IS, Tanaka AS. Novel pseudo-aspartic peptidase from the midgut of the tick Rhipicephalus microplus. Sci Rep 2019; 9:435. [PMID: 30679545 PMCID: PMC6345952 DOI: 10.1038/s41598-018-36849-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/29/2018] [Indexed: 11/23/2022] Open
Abstract
The characterization of Rhipicephalus microplus tick physiology can support efforts to develop and improve the efficiency of control methods. A sequence containing a domain with similarity to one derived from the aspartic peptidase family was isolated from the midgut of engorged female R. microplus. The lack of the second catalytic aspartic acid residue suggest that it may be a pseudo-aspartic peptidase, and it was named RmPAP. In this work we confirm the lack of proteolytic activity of RmPAP and investigate it’s non-proteolytic interaction with bovine hemoglobin by Surface Plasmon Resonance and phage display. Moreover we carried out RNAi interference and artificial feeding of ticks with anti-RmPAP antibodies to assess it’s possible biological role, although no changes were observed in the biological parameters evaluated. Overall, we hypothesize that RmPAP may act as a carrier of hemoglobin/heme between the tick midgut and the ovaries.
Collapse
Affiliation(s)
- S Lu
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil
| | - L F Parizi
- Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil
| | - R J S Torquato
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil
| | - I S Vaz Junior
- Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil.,School of Veterinary, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil.,National Institute of Science and Technology in Molecular Entomology (INTC-EM), RJ, Brazil
| | - A S Tanaka
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil. .,National Institute of Science and Technology in Molecular Entomology (INTC-EM), RJ, Brazil.
| |
Collapse
|
14
|
Fouche G, Sakong BM, Adenubi OT, Dzoyem JP, Naidoo V, Leboho T, Wellington KW, Eloff JN. Investigation of the acaricidal activity of the acetone and ethanol extracts of 12 South African plants against the adult ticks of <i>Rhipicephalus turanicus</i>. ACTA ACUST UNITED AC 2017; 84:e1-e6. [PMID: 29227130 PMCID: PMC6238707 DOI: 10.4102/ojvr.v84i1.1523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
Abstract
The acaricidal activity of acetone and ethanol extracts of 12 plant species was evaluated using the contact method on Rhipicephalus turanicus (Acari: Ixodidae) ticks at an initial concentration of 20% (200 mg/mL). Eight of the 12 plants had mortality greater than 50% and the acetone extracts had better acaricidal activity than the ethanol extracts. The acetone extract of Calpurnia aurea (leaves and flowers) had the highest corrected mortality (CM) of 92.2% followed by Schkuhria pinnata (whole plant) with a CM of 88.9%, Ficus sycomorus (bark and stems) 86.7% and Senna italica subsp. arachoides (roots, leaves and fruits) 83.3%. Selected extracts were tested at five different concentrations using the adult immersion test. From dose-response assays, EC<sub>50</sub> values of 61.82 mg/mL, 115.21 mg/mL and 161.02 mg/mL were obtained for the acetone extracts of S. pinnata (whole plant), S. italica subsp. arachoides (roots, leaves and fruits) and C. aurea (leaves and flowers) respectively. The ethanol extract of Monsonia angustifolia (whole plant) had the highest CM of 97.8% followed by S. pinnata (whole plant) with a CM of 86.7%, C. aurea (leaves and flowers) 81.1% and Cleome gynandra (leaves) 77.8%. There is potential for the development of environmentally benign botanicals as natural acaricides against R. turanicus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kevin W Wellington
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria.
| | | |
Collapse
|
15
|
Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine 2017; 35:5682-5692. [PMID: 28911904 DOI: 10.1016/j.vaccine.2017.08.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/12/2023]
Abstract
Hyalomma anatolicum and Rhipicephalus microplus seriously affect dairy animals and immunization of host is considered as a sustainable option for the management of the tick species. Identification and validation of protective molecules are the major challenges in developing a cross-protective vaccine. The subolesin (SUB), calreticulin (CRT) and cathepsin L-like cysteine proteinase (CathL) genes of H. anatolicum were cloned, sequenced and analysed for sequence homology. Both Ha-SUB and Ha-CRT genes showed very high level of homogeneity within the species (97.6-99.4% and 98.2-99.7%) and among the tick species (77.3-99.3% and 85.1-99.7%) while for Ha-CathL the homogeneity was lower among ticks (57.5-89.5%). Besides tick species, both Ha-SUB and Ha- CRT genes showed high level of homogeneity with dipterans (47.2-53.4% and 72.0-74.4%) and nematodes (64.0% by CRT). The level of expression of the conserved genes in different stages of the tick species was studied. The differences in fold change of expression (FCE) of the targeted genes in life stages of tick were not statistically significant except Ha-SUB in eggs and in frustrated females, Ha-CRT in fed male and Ha-CathL in unfed and frustrated females where highest FCE was recorded. The functional properties of the genes were studied by RNAi technology and a significant level of gene suppression (p<0.05) resulted in very low percentage of engorgement of treated ticks viz., 3.7%, 11.1% and 30.0% in Ha-SUB, Ha-CRT and Ha-CathL respectively, in comparison to control was recorded. The recombinant proteins rHa-SUB, rHa-CRT and rHa-CathL encoded by the genes were expressed in prokaryotic expression system. They were evaluated for cross-protective efficacy and found to be respectively, 65.4%, 41.3% and 30.2% protective against H. anatolicum and 54.0%, 37.6% and 22.2%, against R. microplus infestations.
Collapse
|
16
|
Landulfo GA, Patané JSL, Silva DGND, Junqueira-de-Azevedo ILM, Mendonca RZ, Simons SM, Carvalho ED, Barros-Battesti DM. Gut transcriptome analysis on females of Ornithodoros mimon (Acari: Argasidae) and phylogenetic inference of ticks. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2017; 26:185-204. [DOI: 10.1590/s1984-29612017027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/17/2017] [Indexed: 11/21/2022]
Abstract
Abstract Ornithodoros mimon is an argasid tick that parasitizes bats, birds and opossums and is also harmful to humans. Knowledge of the transcripts present in the tick gut helps in understanding the role of vital molecules in the digestion process and parasite-host relationship, while also providing information about the evolution of arthropod hematophagy. Thus, the present study aimed to know and ascertain the main molecules expressed in the gut of argasid after their blood meal, through analysis on the gut transcriptome of engorged females of O. mimon using 454-based RNA sequencing. The gut transcriptome analysis reveals several transcripts associated with hemoglobin digestion, such as serine, cysteine, aspartic proteases and metalloenzymes. The phylogenetic analysis on the peptidases confirmed that most of them are clustered with other tick genes. We recorded the presence a cathepsin O peptidase-coding transcript in ticks. The topology of the phylogenetic inferences, based on transcripts of inferred families of homologues, was similar to that of previous reports based on mitochondrial genome and nuclear rRNA sequences. We deposited 2,213 sequence of O. mimon to the public databases. Our findings may help towards better understanding of important argasid metabolic processes, such as digestion, nutrition and immunity.
Collapse
|
17
|
Santiago PB, de Araújo CN, Motta FN, Praça YR, Charneau S, Bastos IMD, Santana JM. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review. Parasit Vectors 2017; 10:79. [PMID: 28193252 PMCID: PMC5307778 DOI: 10.1186/s13071-017-2005-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/27/2017] [Indexed: 11/10/2022] Open
Abstract
Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Yanna Reis Praça
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Izabela M Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Jaime M Santana
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
18
|
A deep insight into the whole transcriptome of midguts, ovaries and salivary glands of the Amblyomma sculptum tick. Parasitol Int 2016; 66:64-73. [PMID: 27789388 DOI: 10.1016/j.parint.2016.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/31/2023]
|
19
|
Sojka D, Hartmann D, Bartošová-Sojková P, Dvořák J. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets. Trends Parasitol 2016; 32:708-723. [PMID: 27344362 DOI: 10.1016/j.pt.2016.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/27/2016] [Accepted: 05/25/2016] [Indexed: 11/18/2022]
Abstract
Inhibition of aspartic cathepsin D-like peptidases (APDs) has been often discussed as an antiparasite intervention strategy. APDs have been considered as virulence factors of Trypanosoma cruzi and Leishmania spp., and have been demonstrated to have important roles in protein trafficking mechanisms of apicomplexan parasites. APDs also initiate blood digestion as components of multienzyme proteolytic complexes in malaria, platyhelminths, nematodes, and ticks. Increasing DNA and RNA sequencing data indicate that parasites express multiple APD isoenzymes of various functions that can now be specifically evaluated using new functional-genomic and biochemical tools, from which we can further assess the potential of APDs as targets for novel effective intervention strategies against parasitic diseases that still pose an alarming threat to mankind.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic.
| | - David Hartmann
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic
| | - Jan Dvořák
- Institute of Molecular Genetics, The Czech Academy of Sciences, Prague 14220, Czech Republic; Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 16610, Czech Republic; School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
20
|
Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae). Parasitology 2016; 143:494-506. [PMID: 26888494 DOI: 10.1017/s0031182015001808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In parasitic flatworms, acid endopeptidases are involved in crucial processes, including digestion, invasion, interactions with the host immune system, etc. In haematophagous monogeneans, however, no solid information has been available about the occurrence of these enzymes. Here we aimed to identify major cysteine and aspartic endopeptidase activities in Eudiplozoon nipponicum, an invasive haematophagous parasite of common carp. Employing biochemical, proteomic and molecular tools, we found that cysteine peptidase activities prevailed in soluble protein extracts and excretory/secretory products (ESP) of E. nipponicum; the major part was cathepsin L-like in nature supplemented with cathepsin B-like activity. Significant activity of the aspartic cathepsin D also occurred in soluble protein extracts. The degradation of haemoglobin in the presence of ESP and worm protein extracts was completely inhibited by a combination of cysteine and aspartic peptidase inhibitors, and diminished by particular cathepsin L, B and D inhibitors. Mass spectrometry revealed several tryptic peptides in ESP matching to two translated sequences of cathepsin L genes, which were amplified from cDNA of E. nipponicum and bioinformatically annotated. The dominance of cysteine peptidases of cathepsin L type in E. nipponicum resembles the situation in, e.g. fasciolid trematodes.
Collapse
|
21
|
Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi. PLoS One 2015; 10:e0123954. [PMID: 25923525 PMCID: PMC4414500 DOI: 10.1371/journal.pone.0123954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/09/2015] [Indexed: 01/03/2023] Open
Abstract
Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi.
Collapse
|
22
|
Xiao R, Zhang Z, Wang H, Han Y, Gou M, Li B, Duan D, Wang J, Liu X, Li Q. Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:149-156. [PMID: 25450905 DOI: 10.1016/j.dci.2014.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Cathepsin D (EC 3.4.23.5) is a lysosomal aspartic proteinase of the pepsin superfamily which participates in various digestive processes within the cell. In the present study, the full length cDNA of a novel cathepsin D homologue was cloned from the buccal glands of lampreys (Lampetra japonica) for the first time, including a 124-bp 5' terminal untranslated region (5'-UTR), a 1194-bp open reading frame encoding 397 amino acids, and a 472-bp 3'-UTR. Lamprey cathepsin D is composed of a signal peptide (Met 1-Ala 20), a propeptide domain (Leu 21-Ala 48) and a mature domain (Glu 76-Val 397), and has a conserved bilobal structure. Cathepsin D was widely distributed in the buccal glands, immune bodies, hearts, intestines, kidneys, livers, and gills of lampreys. After challenging with Escherichia coli or Staphylococcus aureus, the expression level of lamprey cathepsin D in the buccal gland was 8.5-fold or 6.5-fold higher than that in the PBS group. In addition, lamprey cathepsin D stimulated with Escherichia coli was also up-regulated in the hearts, kidneys, and intestines. As for the Staphylococcus aureus challenged group, the expression level of lamprey cathepsin D was found increased in the intestines. The above results revealed that lamprey cathepsin D may play key roles in immune response to exogenous pathogen and could serve as a potential antibacterial agent in the near future. In addition, lamprey cathepsin D was subcloned into pcDNA 3.1 vector and expressed in the human embryonic kidney 293 cells. The recombinant lamprey cathepsin D could degrade hemoglobin, fibrinogen, and serum albumin which are the major components in the blood, suggested that lamprey cathepsin D may also act as a digestive enzyme during the adaptation to a blood-feeding lifestyle.
Collapse
Affiliation(s)
- Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Zhilin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Hongyan Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yinglun Han
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Meng Gou
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Bowen Li
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Dandan Duan
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Xin Liu
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
23
|
Marr EJ, Sargison ND, Nisbet AJ, Burgess STG. RNA interference for the identification of ectoparasite vaccine candidates. Parasite Immunol 2015; 36:616-26. [PMID: 25065384 DOI: 10.1111/pim.12132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Ectoparasites present a major challenge for disease management globally. With drug resistance increasingly observed in many disease-causing species, the need for novel control measures is pressing. Ever-expanding genomic resources from 'next generation' sequencing are now available for a number of arthropod ectoparasites, necessitating an effective means of screening these data for novel candidates for vaccine antigens or targets for chemotherapeutics. Such in vitro screening methods must be developed if we are to make discoveries in a timely and cost-effective manner. This review will discuss the potential that RNA interference (RNAi) has demonstrated thus far in the context of arthropod ectoparasites and the potential roles for this technology in the development of novel methods for parasite control.
Collapse
Affiliation(s)
- E J Marr
- Division of Vaccines and Diagnostics, Pentlands Science Park, Moredun Research Institute, Bush Loan, Penicuik, Edinburgh, UK; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK
| | | | | | | |
Collapse
|
24
|
Galay RL, Umemiya-Shirafuji R, Mochizuki M, Fujisaki K, Tanaka T. Iron metabolism in hard ticks (Acari: Ixodidae): the antidote to their toxic diet. Parasitol Int 2014; 64:182-9. [PMID: 25527065 DOI: 10.1016/j.parint.2014.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Ticks are notorious parasitic arthropods, known for their completely host-blood-dependent lifestyle. Hard ticks (Acari: Ixodidae) feed on their hosts for several days and can ingest blood more than a hundred times their unfed weight. Their blood-feeding habit facilitates the transmission of various pathogens. It is remarkable how hard ticks cope with the toxic nature of their blood meal, which contains several molecules that can promote oxidative stress including iron. While it is required in several physiological processes, high amounts of iron can be dangerous because iron can also participate in the formation of free radicals that may cause cellular damage and death. Here we review the current knowledge on heme and inorganic iron metabolism in hard ticks and compare it with that in vertebrates and other arthropods. We briefly discuss the studies on heme transport, storage and detoxification, and the transport and storage of inorganic iron, with emphasis on the functions of tick ferritins. This review points out other aspects of tick iron metabolism that warrant further investigation, as compared to mammals and other arthropods. Further understanding of this physiological process may help in formulating new control strategies for tick infestation and the spread of tick-borne diseases.
Collapse
Affiliation(s)
- Remil Linggatong Galay
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Masami Mochizuki
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tetsuya Tanaka
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
25
|
Cloning and Expression Analysis of Cathepsin D in the Olive FlounderParalichthys olivaceus. Biosci Biotechnol Biochem 2014; 73:1856-9. [DOI: 10.1271/bbb.80822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Zhang L, Han B, Li R, Lu X, Nie A, Guo L, Fang Y, Feng M, Li J. Comprehensive identification of novel proteins and N-glycosylation sites in royal jelly. BMC Genomics 2014; 15:135. [PMID: 24529077 PMCID: PMC3942810 DOI: 10.1186/1471-2164-15-135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/12/2014] [Indexed: 02/01/2023] Open
Abstract
Background Royal jelly (RJ) is a proteinaceous secretion produced from the hypopharyngeal and mandibular glands of nurse bees. It plays vital roles in honeybee biology and in the improvement of human health. However, some proteins remain unknown in RJ, and mapping N-glycosylation modification sites on RJ proteins demands further investigation. We used two different liquid chromatography-tandem mass spectrometry techniques, complementary N-glycopeptide enrichment strategies, and bioinformatic approaches to gain a better understanding of novel and glycosylated proteins in RJ. Results A total of 25 N-glycosylated proteins, carrying 53 N-glycosylation sites, were identified in RJ proteins, of which 42 N-linked glycosylation sites were mapped as novel on RJ proteins. Most of the glycosylated proteins were related to metabolic activities and health improvement. The 13 newly identified proteins were also mainly associated with metabolic processes and health improvement activities. Conclusion Our in-depth, large-scale mapping of novel glycosylation sites represents a crucial step toward systematically revealing the functionality of N-glycosylated RJ proteins, and is potentially useful for producing a protein with desirable pharmacokinetic and biological activity using a genetic engineering approach. The newly-identified proteins significantly extend the proteome coverage of RJ. These findings contribute vital and new knowledge to our understanding of the innate biochemical nature of RJ at both the proteome and glycoproteome levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianke Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China.
| |
Collapse
|
27
|
Yu J, Wu FY, Zou FM, Cai XY, Yu HY, Liu YW, Fang Y, Ren ZX, Jia JQ, Zhang GZ, Guo XJ, Jin BR, Gui ZZ. Identification and functional analysis of the cathepsin D gene promoter of Bombyx mori. Mol Biol Rep 2014; 41:1623-30. [DOI: 10.1007/s11033-013-3009-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
28
|
Yin C, Zheng L, Chen L, Tan Q, Shang X, Ma A. Cloning, expression, and characterization of a milk-clotting aspartic protease gene (Po-Asp) from Pleurotus ostreatus. Appl Biochem Biotechnol 2013; 172:2119-31. [PMID: 24338250 DOI: 10.1007/s12010-013-0674-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
An aspartic protease gene from Pleurotus ostreatus (Po-Asp) had been cloned based on the 3' portion of cDNA in our previous work. The Po-Asp cDNA contained 1,324 nucleotides with an open reading frame (ORF) of 1,212 bp encoding 403 amino acid residues. The putative amino acid sequence included a signal peptide, an activation peptide, two most possible N-glycosylation sites and two conserved catalytic active site. The mature polypeptide with 327 amino acid residues had a calculated molecular mass of 35.3 kDa and a theoretical isoelectric point of 4.57. Basic Local Alignment Search Tool analysis showed 68-80 % amino acid sequence identical to other basidiomycetous aspartic proteases. Sequence comparison and evolutionary analysis revealed that Po-Asp is a member of fungal aspartic protease family. The DNA sequence of Po-Asp is 1,525 bp in length without untranslated region, consisting of seven exons and six introns. The Po-Asp cDNA without signal sequence was expressed in Pichia pastoris and sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the molecular mass of recombinant Po-Asp was about 43 kDa. The crude recombinant aspartic protease had milk-clotting activity.
Collapse
Affiliation(s)
- Chaomin Yin
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | |
Collapse
|
29
|
Mori H, Galay RL, Maeda H, Matsuo T, Umemiya-Shirafuji R, Mochizuki M, Fujisaki K, Tanaka T. Host-derived transferrin is maintained and transferred from midgut to ovary in Haemaphysalis longicornis ticks. Ticks Tick Borne Dis 2013; 5:121-6. [PMID: 24268885 DOI: 10.1016/j.ttbdis.2013.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Transferrin is known to be an iron transporter in vertebrates and several arthropods. Iron from host blood is essential for ovarian development in blood-sucking arthropods. However, tick transferrin has been identified in only a few species, and its function has yet to be elucidated, resulting in incomplete understanding of iron metabolism in ticks. Here, we investigated the transfer of host-derived transferrin in the hard tick Haemaphysalis longicornis using immunological methods. Western blot showed that host-derived transferrin was maintained in all developmental stages of ticks up to 28 days after engorgement and was detected in the midgut and the ovary of adult females following blood feeding. However, no host-derived transferrin was detected in eggs after laying or in larvae after hatching, indicating that host-derived transferrin is not transferred to offspring transovarially. Indirect immunofluorescent antibody testing showed the localization of host-derived transferrin in digestive cells of the midgut and oocytes of the ovary from engorged adult females. These results suggest that host-derived transferrin is transferred to the ovary through the midgut and the hemolymph, and raise the possibility of the function of host-derived transferrin as an iron source in the ovary, providing additional insight on iron metabolism in ticks.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Laboratory of Emerging Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Remil Linggatong Galay
- Laboratory of Emerging Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroki Maeda
- Laboratory of Emerging Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Tomohide Matsuo
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Masami Mochizuki
- Laboratory of Emerging Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Emerging Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
30
|
An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules. PLoS Negl Trop Dis 2013; 7:e2525. [PMID: 24244770 PMCID: PMC3820722 DOI: 10.1371/journal.pntd.0002525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. Scabies is an infectious disease of the skin caused by infestation with the parasitic mite Sarcoptes scabiei. It is a disease that has a considerable impact on humans and other animals, including livestock, wildlife and companion animals. Scabies mites burrow into the skin of their host, consuming host skin and blood molecules. Aspartic proteases play a key role in invasion and digestion processes in many parasitic organisms. We have identified a scabies mite aspartic protease and have shown that it is capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin in vitro, indicating that it plays a role in mite digestive processes. This raises the possibility that interfering with the function of this digestive enzyme may impact on mite survival.
Collapse
|
31
|
Nong X, Tan YJ, Wang JH, Xie Y, Fang CL, Chen L, Liu TF, Yang DY, Gu XB, Peng XR, Wang SX, Yang GY. Evaluation acaricidal efficacy of botanical extract from Eupatorium adenophorum against the hard tick Haemaphysalis longicornis (Acari: Ixodidae). Exp Parasitol 2013; 135:558-63. [DOI: 10.1016/j.exppara.2013.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/10/2013] [Accepted: 09/03/2013] [Indexed: 11/30/2022]
|
32
|
Yamaji K, Miyoshi T, Hatta T, Matsubayashi M, Alim MA, Anisuzzaman, Kushibiki S, Fujisaki K, Tsuji N. HlCPL-A, a cathepsin L-like cysteine protease from the ixodid tick Haemaphysalis longicornis, modulated midgut proteolytic enzymes and their inhibitors during blood meal digestion. INFECTION GENETICS AND EVOLUTION 2013; 16:206-11. [DOI: 10.1016/j.meegid.2013.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 11/28/2022]
|
33
|
Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol 2013; 29:276-85. [PMID: 23664173 DOI: 10.1016/j.pt.2013.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/26/2022]
Abstract
Blood-protein digestion is a key physiological process providing essential nutrients for ticks and is a prerequisite for the transmission of tick-borne pathogens. Recently, substantial progress has been made in determining the proteolytic machinery in tick gut tissue, which is based on a dynamic multienzyme network capable of processing a vast amount of host blood. In this article we summarize our current knowledge of the molecular mechanisms of tick hematophagy and their similarities to those of Platyhelminthes, nematodes, and Plasmodium. Future research perspectives, including the potential for rational control of ticks and transmitted diseases, are also discussed.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, CZ 370 05, Czech Republic
| | | | | | | | | | | |
Collapse
|
34
|
Galay RL, Aung KM, Umemiya-Shirafuji R, Maeda H, Matsuo T, Kawaguchi H, Miyoshi N, Suzuki H, Xuan X, Mochizuki M, Fujisaki K, Tanaka T. Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis. ACTA ACUST UNITED AC 2013; 216:1905-15. [PMID: 23393286 DOI: 10.1242/jeb.081240] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ticks are obligate hematophagous parasites and important vectors of diseases. The large amount of blood they consume contains great quantities of iron, an essential but also toxic element. The function of ferritin, an iron storage protein, and iron metabolism in ticks need to be further elucidated. Here, we investigated the function a newly identified secreted ferritin from the hard tick Haemaphysalis longicornis (HlFER2), together with the previously identified intracellular ferritin (HlFER1). Recombinant ferritins, expressed in Escherichia coli, were used for anti-serum preparation and were also assayed for iron-binding activity. RT-PCR and western blot analyses of different organs and developmental stages of the tick during blood feeding were performed. The localization of ferritins in different organs was demonstrated through an indirect immunofluorescent antibody test. RNA interference (RNAi) was performed to evaluate the importance of ferritin in blood feeding and reproduction of ticks. The midgut was also examined after RNAi using light and transmission electron microscopy. RT-PCR showed differences in gene expression in some organs and developmental stages. Interestingly, only HlFER2 was detected in the ovary during oviposition and in the egg despite the low mRNA transcript. RNAi induced a reduction in post-blood meal body weight, high mortality and decreased fecundity. The expression of vitellogenin genes was affected by silencing of ferritin. Abnormalities in digestive cells, including disrupted microvilli, and alteration of digestive activity were also observed. Taken altogether, our results show that the iron storage and protective functions of ferritin are crucial to successful blood feeding and reproduction of H. longicornis.
Collapse
Affiliation(s)
- Remil Linggatong Galay
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rojo L, García-Carreño F, de Los Angeles Navarrete del Toro M. Cold-adapted digestive aspartic protease of the clawed lobsters Homarus americanus and Homarus gammarus: biochemical characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:87-96. [PMID: 22648335 DOI: 10.1007/s10126-012-9461-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Aspartic proteinases in the gastric fluid of clawed lobsters Homarus americanus and Homarus gammarus were isolated to homogeneity by single-step pepstatin-A affinity chromatography; such enzymes have been previously identified as cathepsin D-like enzymes based on their deduced amino acid sequence. Here, we describe their biochemical characteristics; the properties of the lobster enzymes were compared with those of its homolog, bovine cathepsin D, and found to be unique in a number of ways. The lobster enzymes demonstrated hydrolytic activity against synthetic and natural substrates at a wider range of pH; they were more temperature-sensitive, showed no changes in the K(M) value at 4°C, 10°C, and 25°C, and had 20-fold higher k(cat)/K(M) values than bovine enzyme. The bovine enzyme was temperature-dependent. We propose that both properties arose from an increase in molecular flexibility required to compensate for the reduction of reaction rates at low habitat temperatures. This is supported by the fast denaturation rates induced by temperature.
Collapse
Affiliation(s)
- Liliana Rojo
- Centro de Investigaciones Biológicas del Noroeste-CIBNOR, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | | | | |
Collapse
|
36
|
Hatta T, Miyoshi T, Matsubayashi M, Islam MK, Alim MA, Anisuzzaman, Yamaji K, Fujisaki K, Tsuji N. Semi-artificial mouse skin membrane feeding technique for adult tick, Haemaphysalis longicornis. Parasit Vectors 2012; 5:263. [PMID: 23153119 PMCID: PMC3514109 DOI: 10.1186/1756-3305-5-263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An in vitro artificial feeding technique for hard ticks is quite useful for studying the tick-pathogen interactions. Here, we report a novel semi-artificial feeding technique for the adult parthenogenetic tick, Haemaphysalis longicornis, using mouse skin membrane. FINDINGS Skin with attached adult ticks was removed from the mouse body at 4 to 5 days post-infestation for the construction of the feeding system. This system supplied with rabbit blood was kept in >95% relative humidity at 30°C during the feeding, and ticks were fully engorged (artificially engorged, AE) within 12 to 48 h. For comparison, ticks were fed to engorgement solely on rabbit or mouse for 5 days as controls (naturally engorged on rabbit, NEr, or mouse, NEm). Blood digestion-related gene expression in the midgut and reproductive fitness were compared. Body weight, egg mass weight, egg conversion ratio, and hatchability of eggs did not show any significant differences. We analyzed transcription profiles of selected genes assayed by quantitative RT-PCR and revealed similar patterns of expression between NEr and AE but some differences between NEm and AE or NEm and NEr. CONCLUSIONS Our results demonstrate that this semi-artificial feeding technique mimics natural feeding processes of ticks and can be utilized as a standardized method to inoculate pathogens, especially Babesia protozoa, into H. longicornis and possibly other tick species as well.
Collapse
Affiliation(s)
- Takeshi Hatta
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yu J, Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ. Identification of ecdysone response elements (EcREs) in the Bombyx mori cathepsin D promoter. Biochem Biophys Res Commun 2012; 425:113-8. [DOI: 10.1016/j.bbrc.2012.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 11/16/2022]
|
38
|
Sojka D, Franta Z, Frantová H, Bartosová P, Horn M, Váchová J, O'Donoghue AJ, Eroy-Reveles AA, Craik CS, Knudsen GM, Caffrey CR, McKerrow JH, Mares M, Kopácek P. Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1). J Biol Chem 2012; 287:21152-63. [PMID: 22539347 DOI: 10.1074/jbc.m112.347922] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the gut-associated tick aspartic hemoglobinase, this work focuses on the functional diversity of multiple Ixodes ricinus cathepsin D forms (IrCDs). Out of three encoding genes representing Ixodes scapularis genome paralogs, IrCD1 is the most distinct enzyme with a shortened propeptide region and a unique pattern of predicted post-translational modifications. IrCD1 gene transcription is induced by tick feeding and is restricted to the gut tissue. The hemoglobinolytic role of IrCD1 was further supported by immunolocalization of IrCD1 in the vesicles of tick gut cells. Properties of recombinantly expressed rIrCD1 are consistent with the endo-lysosomal environment because the zymogen is autoactivated and remains optimally active in acidic conditions. Hemoglobin cleavage pattern of rIrCD1 is identical to that produced by the native enzyme. The preference for hydrophobic residues at the P1 and P1' position was confirmed by screening a novel synthetic tetradecapeptidyl substrate library. Outside the S1-S1' regions, rIrCD1 tolerates most amino acids but displays a preference for tyrosine at P3 and alanine at P2'. Further analysis of the cleavage site location within the peptide substrate indicated that IrCD1 is a true endopeptidase. The role in hemoglobinolysis was verified with RNAi knockdown of IrCD1 that decreased gut extract cathepsin D activity by >90%. IrCD1 was newly characterized as a unique hemoglobinolytic cathepsin D contributing to the complex intestinal proteolytic network of mainly cysteine peptidases in ticks.
Collapse
Affiliation(s)
- Daniel Sojka
- From the Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, CZ 370 05, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Umemiya-Shirafuji R, Tanaka T, Boldbaatar D, Tanaka T, Fujisaki K. Akt is an essential player in regulating cell/organ growth at the adult stage in the hard tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:164-173. [PMID: 22193391 DOI: 10.1016/j.ibmb.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
Ticks grow rapidly during blood feeding, and their body weight may ultimately increase 100-fold more than that before feeding. The molecular mechanisms controlling growth during blood feeding in ticks remain largely unknown. The conserved insulin/PI3K/Akt signaling pathway regulates growth and metabolism in eukaryotes. Here, we show evidence for the involvement of Akt in growth during blood feeding in the parthenogenetic strain of the hard tick Haemaphysalis longicornis. We identified a homolog of the Ser/Thr kinase Akt (HlAkt) from the EST database of the H. longicornis embryo. HlAkt cDNA had a 1,590 bp ORF that encodes 529 amino acids with a predicted molecular weight of 60 kDa. HlAkt possesses a PH domain, a Ser/Thr kinase domain, a hydrophobic motif, and dual phosphorylation residues (Thr 338 and Ser 503) that are essential for kinase activation. Knockdown of HlAkt by RNA interference caused inhibition of blood feeding in female ticks. Histological observation demonstrated that HlAkt knockdown led to the arrest of growth in internal organs. HlAkt knockdown also affected the expressions of blood meal-induced genes that are essential for blood digestion, development, and reproduction in the female tick. These results strongly indicate that HlAkt is essential to complete the blood feeding process accompanied by the growth of internal organs in adult ticks. This is the first report of identification and characterization of Akt in Chelicerata, including ticks.
Collapse
Affiliation(s)
- Rika Umemiya-Shirafuji
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
Parasitic diseases cause important losses in public and veterinary health worldwide. Novel drugs, more reliable diagnostic techniques and vaccine candidates are urgently needed. Due to the complexity of parasites and the intricate relationship with their hosts, development of successful tools to fight parasites has been very limited to date. The growing information on individual parasite genomes is now allowing the use of a broader range of potential strategies to gain deeper insights into the host-parasite relationship and has increased the possibilities to develop molecular-based tools in the field of parasitology. Nevertheless, functional studies of respective genes are still scarce. The RNA interference phenomenon resulting in the regulation of protein expression through the specific degradation of defined mRNAs, and more specifically the possibility of artificially induce it, has shown to be a powerful tool for the investigation of proteins function in many organisms. Recent advances in the design and delivery of targeting molecules allow efficient and highly specific gene silencing in different types of parasites, pointing out this technology as a powerful tool for the identification of novel vaccine candidates or drug targets at the high-throughput level in the near future, and could enable researchers to functionally annotate parasite genomes. The aim of this review is to provide a comprehensive overview on the current advances and pitfalls in gene silencing mechanisms, techniques, applications and prospects in animal parasites.
Collapse
|
41
|
Aung KM, Boldbaatar D, Umemiya-Shirafuji R, Liao M, Xuenan X, Suzuki H, Linggatong Galay R, Tanaka T, Fujisaki K. Scavenger receptor mediates systemic RNA interference in ticks. PLoS One 2011; 6:e28407. [PMID: 22145043 PMCID: PMC3228737 DOI: 10.1371/journal.pone.0028407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022] Open
Abstract
RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Egg Proteins/antagonists & inhibitors
- Egg Proteins/genetics
- Egg Proteins/metabolism
- Female
- Fluorescent Antibody Technique
- Gene Silencing
- Ovary/metabolism
- Ovary/pathology
- RNA Interference
- RNA, Double-Stranded/genetics
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Rabbits
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Scavenger/antagonists & inhibitors
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- Tick Infestations/genetics
- Tick Infestations/metabolism
- Tick Infestations/mortality
- Ticks/pathogenicity
Collapse
Affiliation(s)
- Kyaw Min Aung
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Damdinsuren Boldbaatar
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Rika Umemiya-Shirafuji
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Min Liao
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Xuan Xuenan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Japan
| | - Remil Linggatong Galay
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Tetsuya Tanaka
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Kozo Fujisaki
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
42
|
Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ. The Influence of Challenge on Cathepsin B and D Expression Patterns in the Silkworm Bombyx mori L. ACTA ACUST UNITED AC 2011. [DOI: 10.7852/ijie.2011.23.1.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Mulenga A, Erikson K. A snapshot of the Ixodes scapularis degradome. Gene 2011; 482:78-93. [PMID: 21596113 PMCID: PMC3129411 DOI: 10.1016/j.gene.2011.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/04/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Parasitic encoded proteases are essential to regulating interactions between parasites and their hosts and thus they represent attractive anti-parasitic druggable and/or vaccine target. We have utilized annotations of Ixodes scapularis proteases in gene bank and version 9.3 MEROPS database to compile an index of at least 233 putatively active and 150 putatively inactive protease enzymes that are encoded by the I. scapularis genome. The 233 putatively active protease homologs hereafter referred to as the degradome (the full repertoire of proteases encoded by the I. scapularis genome) represent ~1.14% of the 20485 putative I. scapularis protein content. Consistent with observations in other animals, the content of the I. scapularis degradome is ~6.0% (14/233) aspartic, ~19% (44/233) cysteine, ~40% (93/233) metallo, ~28.3% (66/233) serine and ~6.4% (15/233) threonine proteases. When scanned against other tick sequences, ~11% (25/233) of I. scapularis putatively active proteases are conserved in other tick species with ≥ 60% amino acid identity levels. The I. scapularis genome does not apparently encode for putatively inactive aspartic proteases. Of the 150 putative inactive protease homologs none are from the aspartic protease class, ~8% (12/150) are cysteine, ~58.7% (88/150) metallo, 30% (45/150) serine and ~3.3% (5/150) are threonine proteases. The I. scapularis tick genome appears to have evolutionarily lost proteolytic activity of at least 6 protease families, C56 and C64 (cysteine), M20 and M23 (metallo), S24 and S28 (serine) as revealed by a lack of the putatively active proteases in these families. The overall protease content is comparable to other organisms. However, the paucity of the S1 chymotrypsin/trypsin-like serine protease family in the I. scapularis genome where it is ~12.7% (28/233) of the degradome as opposed to ~22-48% content in other blood feeding arthropods, Pediculus humanus humanus, Anopheles gambiae, Aedes Aegypti and Culex pipiens quinquefasciatus is notable. The data is presented as a one-stop index of proteases encoded by the I. scapularis genome.
Collapse
Affiliation(s)
- Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, College Station, TX 77843, USA.
| | | |
Collapse
|
44
|
Franta Z, Sojka D, Frantova H, Dvorak J, Horn M, Srba J, Talacko P, Mares M, Schneider E, Craik CS, McKerrow JH, Caffrey CR, Kopacek P. IrCL1 - the haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. Int J Parasitol 2011; 41:1253-62. [PMID: 21819989 DOI: 10.1016/j.ijpara.2011.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 11/28/2022]
Abstract
Intracellular proteolysis of ingested blood proteins is a crucial physiological process in ticks. In our model tick, Ixodes ricinus, cathepsin L (IrCL1) is part of a gut-associated multi-peptidase complex; its endopeptidase activity is important in the initial phase of haemoglobinolysis. We present the functional and biochemical characterisation of this enzyme. We show, by RNA interference (RNAi), that cathepsin L-like activity that peaks during the slow feeding period of females is associated with IrCL1. Recombinant IrCL1 was expressed in bacteria and yeast. Activity profiling with both peptidyl and physiological protein substrates (haemoglobin and albumin) revealed that IrCL1 is an acidic peptidase with a very low optimum pH (3-4) being unstable above pH 5. This suggests an endo/lysosomal localisation that was confirmed by indirect fluorescence microscopy that immunolocalised IrCL1 inside the vesicles of digestive gut cells. Cleavage specificity determined by a positional scanning synthetic combinatorial library and inhibition profile indicated that IrCL1 has the ligand-binding characteristics of the cathepsin L subfamily of cysteine peptidases. A non-redundant proteolytic function was demonstrated when IrCL1-silenced ticks had a decreased ability to feed compared with controls. The data suggest that IrCL1 may be a promising target against ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Zdenek Franta
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Ceske Budejovice, CZ 37005, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aung KM, Boldbaatar D, Liao M, Umemiya-Shirafuji R, Nakao S, Matsuoka T, Tanaka T, Fujisaki K. Identification and characterization of class B scavenger receptor CD36 from the hard tick, Haemaphysalis longicornis. Parasitol Res 2011; 108:273-85. [PMID: 20872015 DOI: 10.1007/s00436-010-2053-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/06/2010] [Indexed: 11/27/2022]
Abstract
Scavenger receptors (SRs) are cell-surface proteins and exhibit distinctive ligand-binding properties, recognizing a wide range of ligands that include microbial surface constituents and intact microbes. The class B scavenger receptor CD36 (SRB) is predominantly expressed by macrophages and is considered important in innate immunity. We here show the identification and characterization of SRB from the hard ixodid tick, Haemaphysalis longicornis (HlSRB). The full-length cDNA was 2,908 bp, including an ORF encoding of 1,518 amino acids with a pI value of 5.83. H. longicornis SRB contains a hydrophobic SRB domain and four centrally clustered cysteine residues for arrangement of disulfide bridges. Deduced amino acid sequence has an identity of 30-38% with the SRB of other organisms. RT-PCR analysis showed that mRNA transcripts were expressed in multiple organs of adult ticks but with a different transcript level in the developmental stages of H. longicornis ticks. His-tagged recombinant HlSRB was expressed in Escherichia coli with an expected molecular mass of 50 kDa. In Western blot analysis, mouse anti-rHlSRB serum recognized a strong reaction with a 50 kDa protein band in lysates prepared from egg and adult tick but showed a weak reaction with lysates of larva and nymph. In an indirect immunofluorescent antibody test, HlSRB antiserum recognized the protein located on the midgut, salivary glands, and ovary of partially fed H. longicornis females. Silencing of the HlSRB gene by RNAi led to a significant reduction in the engorged female body weight. It is noteworthy that more than a dozen SRB orthologs have been identified in the genomes of insect species with functions related to pheromone signaling, innate immunity, phagocytic clearance of apoptotic cells, and various aspects of the fatty acid metabolism. This is the first report of the identification and characterization of the SRB homologue in Chelicerata, including ticks, horseshoe crabs, scorpions, spiders, and mites.
Collapse
Affiliation(s)
- Kyaw Min Aung
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sojka D, Francischetti IMB, Calvo E, Kotsyfakis M. Cysteine proteases from bloodfeeding arthropod ectoparasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:177-91. [PMID: 21660665 PMCID: PMC3413451 DOI: 10.1007/978-1-4419-8414-2_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cysteine proteases have been discovered in various bloodfeeding ectoparasites. Here, we assemble the available information about the function of these peptidases and reveal their role in hematophagy and parasite development. While most of the data shed light on key proteolytic events that play a role in arthropod physiology, we also report on the association of cysteine proteases with arthropod vectorial capacity. With emphasis on ticks, specifically Ixodes ricinus, we finally propose a model about the contribution of cysteine peptidases to blood digestion and how their concerted action with other tick midgut proteases leads to the absorbance of nutrients by the midgut epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Michalis Kotsyfakis
- Corresponding Author: Michalis Kotsyfakis—Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.,
| |
Collapse
|
47
|
Rojo L, Muhlia-Almazan A, Saborowski R, García-Carreño F. Aspartic cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:696-707. [PMID: 20169386 DOI: 10.1007/s10126-010-9257-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
Acid digestive proteinases were studied in the gastric fluids of two species of clawed lobster (Homarus americanus and Homarus gammarus). An active protein was identified in both species as aspartic proteinase by specific inhibition with pepstatin A. It was confirmed as cathepsin D by mass mapping, N-terminal, and full-length cDNA sequencing. Both lobster species transcribed two cathepsin D mRNAs: cathepsin D1 and cathepsin D2. Cathepsin D1 mRNA was detected only in the midgut gland, suggesting its function as a digestive enzyme. Cathepsin D2 mRNA was found in the midgut gland, gonads, and muscle. The deduced amino acid sequence of cathepsin D1 and cathepsin D2 possesses two catalytic DTG active-site motifs, the hallmark of aspartic proteinases. The putatively active cathepsin D1 has a molecular mass of 36.4 kDa and a calculated pI of 4.14 and possesses three potential glycosylation sites. The sequences showed highest similarities with cathepsin D from insects but also with another crustacean cathepsin D. Cathepsin D1 transcripts were quantified during a starvation period using real-time qPCR. In H. americanus, 15 days of starvation did not cause significant changes, but subsequent feeding caused a 2.5-fold increase. In H. gammarus, starvation caused a 40% reduction in cathepsin D1 mRNA, and no effect was observed with subsequent feeding.
Collapse
Affiliation(s)
- Liliana Rojo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, BCS 23096, Mexico
| | | | | | | |
Collapse
|
48
|
Boldbaatar D, Umemiya-Shirafuji R, Liao M, Tanaka T, Xuan X, Fujisaki K. Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1587-1598. [PMID: 20576517 DOI: 10.1016/j.jinsphys.2010.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Ovarian development and egg maturation are crucial processes for the success of reproduction in ticks. Three full-length cDNAs encoding the precursor of major yolk protein, vitellogenin, were obtained from cDNA libraries of the Haemaphysalis longicornis tick and designated as HlVg-1, HlVg-2 and HlVg-3. The HlVg mRNAs were found in fed females with major expression sites in the midgut, fat body and ovary. Native PAGE and Western blot demonstrated that HlVgs in the hemolymph, fat body and ovary of fed females consisted of four major polypeptides. RNAi results showed that HlVg dsRNA-injected ticks obtained lower body weight, egg weight and showed higher mortality of engorged females after blood sucking than control groups. Our results indicate that all HlVgs are essential for egg development and oviposition.
Collapse
Affiliation(s)
- Damdinsuren Boldbaatar
- Department of Frontier Veterinary Science, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Rojo L, Sotelo-Mundo R, García-Carreño F, Gráf L. Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:394-400. [PMID: 20817002 DOI: 10.1016/j.cbpb.2010.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 11/16/2022]
Abstract
An aspartic proteinase was isolated from American lobster gastric fluid. The purified cathepsin D runs as a single band on native-PAGE displaying proteolytic activity on a zymogram at pH 3.0, with an isoelectric point of 4.7. Appearance of the protein in SDS-PAGE, depended on the conditions of the gel electrophoresis. SDS treatment by itself was not able to fully unfold the protein. Thus, in SDS-PAGE the protein appeared to be heterogeneous. A few minute of boiling the sample in the presence of SDS was necessary to fully denature the protein that then run in the gel as a single band of ~50 kDa. The protein sequence of lobster cathepsin D1, as deduced from its mRNA sequence, lacks a 'polyproline loop' and β-hairpin, which are characteristic of some of its structural homologues. A comparison of amino acid sequences of digestive and non-digestive cathepsin D-like enzymes from invertebrates showed that most cathepsin D enzymes involved in food digestion, lack the polyproline loop, whereas all non-digestive cathepsin Ds, including the American lobster cathepsin D2 paralog, contain the polyproline loop. We propose that the absence or presence of this loop may be characteristic of digestive and non-digestive aspartic proteinases, respectively.
Collapse
Affiliation(s)
- Liliana Rojo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Mexico
| | | | | | | |
Collapse
|
50
|
Cruz CE, Fogaça AC, Nakayasu ES, Angeli CB, Belmonte R, Almeida IC, Miranda A, Miranda MTM, Tanaka AS, Braz GR, Craik CS, Schneider E, Caffrey CR, Daffre S. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasit Vectors 2010; 3:63. [PMID: 20663211 PMCID: PMC2921360 DOI: 10.1186/1756-3305-3-63] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 07/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. RESULTS An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus) microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. CONCLUSIONS BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.
Collapse
Affiliation(s)
- Carlos E Cruz
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|