1
|
Ramirez AG, Isoe J, Serafim MSM, Fong D, Le MA, Nguyen JT, Burata OE, Lucero RM, Spangler RK, Rascón AA. Biochemical and physiological characterization of Aedes aegypti midgut chymotrypsin. Sci Rep 2025; 15:9685. [PMID: 40113878 PMCID: PMC11926125 DOI: 10.1038/s41598-025-93413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
The Aedes aegypti mosquito is a vector of dengue, Zika, and chikungunya. The mosquito's reliance on blood facilitates the transmission of these viral pathogens to humans. Digestion of blood proteins depends on the biphasic expression of serine proteases, with trypsin-like activity contributing to most of the activity in the midgut. Other proteases found (serine collagenase- and chymotrypsin-like) are thought to contribute to digestion, but their roles are largely understudied. Thus, elucidating the activity and specific roles of all midgut proteases will help understand the complexity of the digestion process and help validate them as potential targets for the development of a new vector control strategy. Herein, we focused on characterizing the activity profile and role of Ae. aegypti chymotrypsin (AaCHYMO). Knockdown studies resulted in elimination and significant reduction of chymotrypsin-like activity in blood fed midgut extracts, while in vitro fluorescent and blood protein digestion assays revealed important substrate specificity differences. Interestingly, knockdown of AaCHYMO did not impact fecundity, indicating the presence of an intricate network of proteases working collectively to degrade blood proteins. Further, knockdown of the ecdysone receptor (EcR) led to a decrease in overall AaCHYMO expression and activity in the mosquito, which may play an important regulatory role.
Collapse
Affiliation(s)
- Abigail G Ramirez
- School of Molecular Sciences, Arizona State University, 551 E. University Dr., Tempe, AZ, 85281, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Isoe
- School of Molecular Sciences, Arizona State University, 551 E. University Dr., Tempe, AZ, 85281, USA
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Mateus Sá Magalhães Serafim
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Daniel Fong
- School of Molecular Sciences, Arizona State University, 551 E. University Dr., Tempe, AZ, 85281, USA
| | - My Anh Le
- School of Molecular Sciences, Arizona State University, 551 E. University Dr., Tempe, AZ, 85281, USA
| | - James T Nguyen
- School of Molecular Sciences, Arizona State University, 551 E. University Dr., Tempe, AZ, 85281, USA
| | - Olive E Burata
- Department of Chemistry, San José State University, 1 Washington Square, San José, CA, 95112, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143, USA
| | - Rachael M Lucero
- Department of Chemistry, San José State University, 1 Washington Square, San José, CA, 95112, USA
- Revolution Medicines, Redwood City, CA, 94063, USA
| | - Rebecca K Spangler
- Department of Chemistry, San José State University, 1 Washington Square, San José, CA, 95112, USA
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Alberto A Rascón
- School of Molecular Sciences, Arizona State University, 551 E. University Dr., Tempe, AZ, 85281, USA.
- Department of Chemistry, San José State University, 1 Washington Square, San José, CA, 95112, USA.
| |
Collapse
|
2
|
Li H, Lin H, Yang H, Ren C, He Y, Jiang X, Chen T, Hu C. Molecular Characterization, Recombinant Expression, and Functional Analysis of Carboxypeptidase B in Litopenaeus vannamei. Genes (Basel) 2025; 16:69. [PMID: 39858615 PMCID: PMC11764914 DOI: 10.3390/genes16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The Pacific white shrimp (L. vannamei) is economically significant, and its growth is regulated by multiple factors. Carboxypeptidase B (CPB) is related to protein digestion, but its gene sequence and features in L. vannamei are not fully understood. This study aimed to explore the molecular and functional properties of CPB in L. vannamei. Methods: The Lv-CPB gene was cloned, and bioinformatics analysis, qRT-PCR, in situ hybridization, recombinant protein expression in Escherichia coli, and an enzyme activity assay were performed. Results: The Lv-CPB gene is 1414 bp long with a 1263 bp ORF encoding a 420-amino-acid protein. It is stable, hydrophilic, and is highly expressed in the hepatopancreas. The recombinant protein was efficiently expressed with a molecular weight of about 47 kDa. The optimal pH and temperature for Lv-CPB were 8.0 and 50 °C, respectively. Conclusions: This study revealed the molecular and functional characteristics of Lv-CPB, providing insights into its role in shrimp digestion, as well as suggestions for improving aquaculture practices.
Collapse
Affiliation(s)
- Hongmei Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Hai Lin
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Hao Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Yi He
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| |
Collapse
|
3
|
Ramirez AG, Isoe J, Serafim MSM, Fong D, Le MA, Nguyen JT, Burata OE, Lucero RM, Rascón AA. Biochemical and physiological characterization of Aedes aegypti midgut chymotrypsin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630969. [PMID: 39829882 PMCID: PMC11741247 DOI: 10.1101/2024.12.31.630969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Aedes aegypti mosquito is a vector of dengue, Zika, and chikungunya. The mosquito's reliance on blood facilitates the transmission of these viral pathogens to humans. Digestion of blood proteins depends on the biphasic expression of serine proteases, with trypsin-like activity contributing to most of the activity in the midgut. Other proteases found (serine collagenase- and chymotrypsin-like) are thought to contribute to digestion, but their roles are largely understudied. Thus, elucidating the activity and specific roles of all midgut proteases will help understand the complexity of the digestion process and help validate them as potential targets for the development of a new vector control strategy. Herein, we focused on characterizing the activity profile and role of Ae. aegypti chymotrypsin (AaCHYMO). Knockdown studies resulted in elimination and significant reduction of chymotrypsin-like activity in blood fed midgut extracts, while in vitro fluorescent and blood protein digestion assays revealed important substrate specificity differences. Interestingly, knockdown of AaCHYMO did not impact fecundity, indicating the presence of an intricate network of proteases working collectively to degrade blood proteins. Further, knockdown of the ecdysone receptor (EcR) led to a decrease in overall AaCHYMO expression and activity in the mosquito, which may play an important regulatory role.
Collapse
|
4
|
Tang L, Wei QQ, Xiao Y, Tang MY, Zhu Y, Jiang MG, Chen P, Pan ZX. Bombyx mori Metal Carboxypeptidases12 ( BmMCP12) Is Involved in Host Protection Against Viral Infection. Int J Mol Sci 2024; 25:13536. [PMID: 39769299 PMCID: PMC11677143 DOI: 10.3390/ijms252413536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Baculoviruses, the largest studied insect viruses, are highly pathogenic to host insects. Bombyx mori nucleopolyhedrovirus (BmNPV) is the main cause of nuclear polyhedrosis of silkworm, a viral disease that causes significant economic losses to the sericulture industry. The anti-BmNPV mechanism of the silkworm has not yet been characterized. Carboxypeptidase is an enzyme that is involved in virtually all life activities of animals and plants. Studies have shown that the carboxypeptidase family is related to insect immunity. There are few reports on the role of carboxypeptidase in the defense of silkworms against pathogen invasion. In this study, we identified the homologous gene Bombyx mori metal carboxypeptidases12 (BmMCP12) related to mammalian carboxypeptidase A2 (CPA2) and found that BmMCP12 had a Zn-pept domain. The BmMCP12 gene was primarily located in the cytoplasm and was highly expressed in the midgut of silkworms, and the expression level in BmN-SWU1 cells was upregulated after infection with BmNPV. After overexpression of the BmMCP12 gene, quantitative real-time (qRT)-PCR and Western blots showed that BmMCP12 could inhibit BmNPV replication, whereas knockout of the gene had the opposite effect. In addition, we constructed transgenic silkworm strains with a knockout of BmMCP12, and the transgenic strains had reduced resistance to BmNPV. These findings deepen the functional study of silkworm carboxypeptidase and provide a new target for BmNPV disease prevention in silkworms.
Collapse
Affiliation(s)
- Liang Tang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Qiong-Qiong Wei
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Yu Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Ming-Yan Tang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Yan Zhu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Man-Gui Jiang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Zhi-Xin Pan
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| |
Collapse
|
5
|
Yang L, Cheng Y, Wang Q, Hou J, Rong Q, Xiao C, Zhang Y, Yan J, Xia Q, Hou Y. Insights into the activation mechanism of Bm-CPA: Implications for insect molting regulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104175. [PMID: 39134228 DOI: 10.1016/j.ibmb.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Carboxypeptidase A has been found across various animal species, yet its activation mechanism during the insect molting process remains elusive. Our study specifically delved into the activation mechanism of carboxypeptidase A (Bm-CPA), identified in Bombyx mori's molting fluid during metamorphosis. Initially, western blotting identified two forms of Bm-CPA, 65 kDa and 54 kDa, in the epidermis of silkworms during the molting stage. Expressing the complete Bm-CPA sequence in Pichia pastoris allowed the identification, via mass spectrometry analysis, of a 75-amino-acid propeptide for the initial hydrolysis process. Subsequently, a 35 kDa form of Bm-CPA emerged in the molting fluid, confirmed as the active form through in vitro assays, demonstrating potent carboxypeptidase A activity and faint carboxypeptidase B activity. Four potential activation sites (including Lys158/Arg159 and Arg177/Arg178) were identified through mass spectrometry and amino acid mutation analysis. RNAi of Bm-CPA indicates its critical role in molting. Finally, the carboxypeptidase inhibitor (Bm-CPI) from silkworm molting fluid was expressed to explore its role in regulating Bm-CPA activity, demonstrating a direct interaction with the 35 kDa Bm-CPA. Our research implies Bm-CPA's potential involvement in the silkworm molting process, suggesting diverse regulatory roles. These findings highlight intricate protein regulation patterns during insect metamorphosis and development.
Collapse
Affiliation(s)
- Lingzhen Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yuejing Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qinglang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Jianing Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyu Rong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Chunxia Xiao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yuhao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Jiamin Yan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
6
|
Omokungbe B, Centurión A, Stiehler S, Morr A, Vilcinskas A, Steinbrink A, Hardes K. Gene silencing in the aedine cell lines C6/36 and U4.4 using long double-stranded RNA. Parasit Vectors 2024; 17:255. [PMID: 38863029 PMCID: PMC11167938 DOI: 10.1186/s13071-024-06340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.
Collapse
Affiliation(s)
- Bodunrin Omokungbe
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Alejandra Centurión
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Sabrina Stiehler
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Antonia Morr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany.
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Nuss AB, Gulia-Nuss M. Trypsin, the Major Proteolytic Enzyme for Blood Digestion in the Mosquito Midgut. Cold Spring Harb Protoc 2023; 2023:pdb.top107656. [PMID: 36787964 DOI: 10.1101/pdb.top107656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
When a female mosquito takes a blood meal, proteolytic activity surges in the midgut. Trypsin-like serine proteases are the major endoproteolytic enzyme induced by feeding in mosquitoes. The mosquito midgut lacks trypsin activity before the blood meal, but in most anautogenous mosquitoes, trypsin activity increases continuously up to 30 h after feeding and subsequently returns to baseline levels by 60 h. Trypsin activity in mosquitoes is restricted entirely to the posterior midgut lumen, where blood is stored and digested. Trypsin enzyme activity can be quantitatively measured using the artificial Nα-benzoyl-DL-arginine 4-nitroanilide hydrochloride substrate, a method described in our associated protocol.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Biochemistry and Molecular Biology, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
8
|
Xie YC, Zhang HH, Li HJ, Zhang XY, Luo XM, Jiang MX, Zhang CX. Molting-related proteases in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103893. [PMID: 36513274 DOI: 10.1016/j.ibmb.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Digestion and absorption of old cuticles during insect molting are necessary for new cuticle formation, during which complicated enzyme catalysis is essential. To date, a few carboxypeptidases, aminopeptidases and serine proteases (mostly trypsins) connected with cuticle digestion, zymogen activation and histological differentiation during the ecdysis of lepidopteran, dipteran and hymenopteran insects have been identified. However, little is known about these proteins in hemimetabolous insects. In this study, we identified 33 candidate trypsin and trypsin-like homologs, 14 metallocarboxypeptidase and 32 aminopeptidase genes in the brown planthopper Nilaparvata lugens, a hemipteran rice pest. Among the proteins encoded by these genes, 9 trypsin-like proteases, 3 metallocarboxypeptidases and 1 aminopeptidase were selected as potential procuticle hydrolases by bioinformatics analysis and in vivo validation. RNA interference targeting these genes demonstrated that 3 trypsin-like proteases (NlTrypsin-8, NlTrypsin-29 and NlTrypsin-32) genes and 1 metallocarboxypeptidase (NlCpB) gene were found to be essential for ecdysis in N. lugens; specifically, gene silencing led to incomplete cuticle degradation and arrested ecdysis, causing lethal morphological phenotype acquisition. Spatiotemporal expression profiling by quantitative PCR and western blotting revealed their specific expression in the integument and their periodic expression during each stadium, with a peak before ecdysis and eclosion. Transmission electron microscopy demonstrated corresponding ultrastructural defects after RNAi targeting, with NlCpB-silenced specimens having the most undigested old procuticles. Immunohistochemical staining revealed that NlTrypsin-8, NlTrypsin-29 and NlCpB were predominantly located in the exuvial space. This research further adds to our understanding of proteases and its potential role in insect ecdysis.
Collapse
Affiliation(s)
- Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Xing Jiang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Zhang X, Zhao P, Li S, Ma S, Du J, Liang S, Yang X, Yao L, Duan J. Genome-Wide Identification of M14 Family Metal Carboxypeptidases in Antheraea pernyi (Lepidoptera: Saturniidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1285-1293. [PMID: 35640220 DOI: 10.1093/jee/toac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 06/15/2023]
Abstract
The M14 family metal carboxypeptidase genes play an important role in digestion and pathogenic infections in the gut of insects. However, the roles of these genes in Antheraea pernyi (Guérin-Méneville, 1855) remain to be analyzed. In the present study, we cloned a highly expressed M14 metal carboxypeptidase gene (ApMCP1) found in the gut and discovered that it contained a 1,194 bp open reading frame encoding a 397-amino acid protein with a predicted molecular weight of 45 kDa. Furthermore, 14 members of the M14 family metal carboxypeptidases (ApMCP1-ApMCP14) were identified in the A. pernyi genome, with typical Zn_pept domains and two Zn-anchoring motifs, and were further classified into M14A, M14B, and M14D subfamilies. Expression analysis indicated that ApMCP1 and ApMCP9 were mainly expressed in the gut. Additionally, we observed that ApMCP1 and ApMCP9 displayed opposite expression patterns after starvation, highlighting their functional divergence during digestion. Following natural infection with baculovirus NPV, their expression was significantly upregulated in the gut of A. pernyi. Our results suggest that the M14 family metal carboxypeptidase genes are conservatively digestive enzymes and evolutionarily involved in exogenous pathogenic infections.
Collapse
Affiliation(s)
- Xian Zhang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Shanshan Li
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Jie Du
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Shimei Liang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Xinfeng Yang
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou 450008, PR China
| | - Lunguang Yao
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Jianping Duan
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
10
|
Pomun T, Wonginta P, Kubera A. Malaria Box Compounds against Anopheles gambiae (Diptera: Culicidae) Carboxypeptidase B Activity to Block Malaria Transmission. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1355-1362. [PMID: 35522203 DOI: 10.1093/jme/tjac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Carboxypeptidase B (CPB) plays an important role in blood digestion in mosquitos, aiding the release of free amino acids. Anopheles CPB is a target to block malaria transmission because it facilitates Plasmodium invasion of the mosquito midgut. Our study aimed to discover inhibitors of Anopheles CPB to prevent Plasmodium development in the mosquito. The Anopheles gambiae cpb (Agcpb) gene without a signal sequence was cloned into the pET28b expression vector. The recombinant AgCPB protein was expressed in E. coli BL21(DE3) within inclusion bodies after induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside at 37°C for 4 h. The protein pellet was dissolved in 6 M urea, purified by affinity chromatography, and dialyzed in reaction buffer. The refolded recombinant AgCPB could digest the hippuryl-arginine substrate similarly to that of the commercial porcine pancreas CPB. The 20 top-scoring malaria box compounds from the virtual-screening results were then chosen for an in vitro inhibition assay against AgCPB. Four of the 20 malaria box compounds could inhibit AgCPB activity. The compound MMV007591 was the most potent inhibitor with an IC50 at 0.066 µM. The results indicate that these candidate compounds may be utilized in drug development against mosquito CPB activity to curb malaria transmission.
Collapse
Affiliation(s)
- Tippawan Pomun
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Phattaradanai Wonginta
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Anchanee Kubera
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
11
|
Hixson B, Bing XL, Yang X, Bonfini A, Nagy P, Buchon N. A transcriptomic atlas of Aedes aegypti reveals detailed functional organization of major body parts and gut regional specializations in sugar-fed and blood-fed adult females. eLife 2022; 11:76132. [PMID: 35471187 PMCID: PMC9113746 DOI: 10.7554/elife.76132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate explorations of mosquito biology, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, hindgut), and a gut time course of blood meal digestion. Using Aegypti-Atlas, we provide insights into regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior midgut possess digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential induction and repression/depletion of multiple cohorts of peptidases. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by holotricin and gambicin, which are expressed in carcass and digestive tissues, respectively, in a mutually exclusive manner. In the midgut, gambicin and other effectors are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits hallmarks of immune tolerance. Finally, in a cross-species comparison between Ae. aegypti and Anopheles gambiae midguts, we observe that regional digestive and immune specializations are conserved, indicating that our dataset may be broadly relevant to multiple mosquito species. We demonstrate that the expression of orthologous genes is highly correlated, with the exception of a ‘species signature’ comprising a few highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.
Collapse
Affiliation(s)
- Bretta Hixson
- Department of Entomology, Cornell University, Ithaca, United States
| | - Xiao-Li Bing
- Department of Entomology, Cornell University, Ithaca, United States
| | - Xiaowei Yang
- Department of Entomology, Cornell University, Ithaca, United States
| | | | - Peter Nagy
- Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
12
|
He YZ, Ding Y, Wang X, Zou Z, Raikhel AS. E93 confers steroid hormone responsiveness of digestive enzymes to promote blood meal digestion in the midgut of the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103580. [PMID: 33901693 PMCID: PMC8947147 DOI: 10.1016/j.ibmb.2021.103580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Anautogenous female mosquitoes obtain the nutrients needed for egg development from vertebrate blood, and consequently they transmit numerous pathogens of devastating human diseases. Digestion of blood proteins into amino acids that are used for energy production, egg maturation and replenishment of maternal reserves is an essential part of the female mosquito reproductive cycle. However, the regulatory mechanisms underlying this process remain largely unknown. Here, we report that the transcription factor E93 is a critical factor promoting blood meal digestion in adult females of the major arboviral vector Aedes aegypti in response to the steroid hormone 20-hydroxyecdysone (20E). E93 was upregulated in the female mosquito midgut after a blood meal, and RNA interference (RNAi)-mediated knockdown of E93 inhibited midgut blood digestion. E93 RNAi depletion repressed late trypsin (LT), serine protease I (SPI), SPVI and SPVII, and activated early trypsin (ET) expression in the female mosquito midgut after a blood meal. Injection of 20E activated E93, LT, SPI, SPVI and SPVII, and repressed ET expression, whereas RNAi knockdown of the ecdysone receptor (EcR) repressed E93, LT, SPI, SPVI and SPVII, and activated ET expression in the midgut. Furthermore, E93 depletion resulted in a complete loss of 20E responsiveness of LT, SPVI and SPVII. Our findings reveal important mechanisms regulating blood meal digestion in disease-transmitting mosquitoes.
Collapse
Affiliation(s)
- Ya-Zhou He
- Department of Entomology, University of California, Riverside, CA, 92521, USA; Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yike Ding
- Department of Entomology, University of California, Riverside, CA, 92521, USA; Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Xueli Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA, 92521, USA; Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Wimalasiri-Yapa BMCR, Barrero RA, Stassen L, Hafner LM, McGraw EA, Pyke AT, Jansen CC, Suhrbier A, Yakob L, Hu W, Devine GJ, Frentiu FD. Temperature modulates immune gene expression in mosquitoes during arbovirus infection. Open Biol 2021; 11:200246. [PMID: 33401993 PMCID: PMC7881175 DOI: 10.1098/rsob.200246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
The principal vector of dengue, Zika and chikungunya viruses is the mosquito Aedes aegypti, with its ability to transmit pathogens influenced by ambient temperature. We use chikungunya virus (CHIKV) to understand how the mosquito transcriptome responds to arbovirus infection at different ambient temperatures. We exposed CHIKV-infected mosquitoes to 18, 28 and 32°C, and found that higher temperature correlated with higher virus levels, particularly at 3 days post infection, but lower temperature resulted in reduced virus levels. RNAseq analysis indicated significantly altered gene expression levels in CHIKV infection. The highest number of significantly differentially expressed genes was observed at 28°C, with a more muted effect at the other temperatures. At the higher temperature, the expression of many classical immune genes, including Dicer-2, was not substantially altered in response to CHIKV. The upregulation of Toll, IMD and JAK-STAT pathways was only observed at 28°C. Functional annotations suggested that genes in immune response and metabolic pathways related to energy supply and DNA replication were involved in temperature-dependent changes. Time post infection also led to substantially different gene expression profiles, and this varied with temperature. In conclusion, temperature significantly modulates mosquito gene expression in response to infection, potentially leading to impairment of immune defences at higher temperatures.
Collapse
Affiliation(s)
- B. M. C. Randika Wimalasiri-Yapa
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Medical Laboratory Sciences, Faculty of Health Science, Open University of Sri Lanka, Nugegoda, Colombo, Sri Lanka
| | - Roberto A. Barrero
- eResearch Office, Division of Research and Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Liesel Stassen
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Louise M. Hafner
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alyssa T. Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Cassie C. Jansen
- Communicable Diseases Branch, Department of Health, Queensland Government, Herston, Queensland, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Laith Yakob
- London School of Hygiene and Tropical Medicine, London, UK
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gregor J. Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Francesca D. Frentiu
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Hammond MJ, Wang T, Cummins SF. Characterisation of early metazoan secretion through associated signal peptidase complex subunits, prohormone convertases and carboxypeptidases of the marine sponge (Amphimedon queenslandica). PLoS One 2019; 14:e0225227. [PMID: 31714927 PMCID: PMC6850559 DOI: 10.1371/journal.pone.0225227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023] Open
Abstract
Efficient communication between cells requires the ability to process precursor proteins into their mature and biologically active forms, prior to secretion into the extracellular space. Eukaryotic cells achieve this via a suite of enzymes that involve a signal peptidase complex, prohormone convertases and carboxypeptidases. Using genome and transcriptome data of the demosponge Amphimedon queenslandica, a universal ancestor to metazoan multicellularity, we endeavour to bridge the evolution of precursor processing machinery from single-celled eukaryotic ancestors through to the complex multicellular organisms that compromise Metazoa. The precursor processing repertoire as defined in this study of A. queenslandica consists of 3 defined signal peptidase subunits, 6 prohormone convertases and 1 carboxypeptidase, with 2 putative duplicates identified for signal peptidase complex subunits. Analysis of their gene expression levels throughout the sponge development enabled us to predict levels of activity. Some A. queenslandica precursor processing components belong to established functional clades while others were identified as having novel, yet to be discovered roles. These findings have clarified the presence of precursor processing machinery in the poriferans, showing the necessary machinery for the removal of precursor sequences, a critical post-translational modification required by multicellular organisms, and further sets a foundation towards understanding the molecular mechanism for ancient protein processing.
Collapse
Affiliation(s)
- Michael J. Hammond
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore Dc, Queensland, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore Dc, Queensland, Australia
| | - Scott F. Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore Dc, Queensland, Australia
| |
Collapse
|
15
|
Li X, Yang J, Pu Q, Peng X, Xu L, Liu S. Serine hydroxymethyltransferase controls blood-meal digestion in the midgut of Aedes aegypti mosquitoes. Parasit Vectors 2019; 12:460. [PMID: 31551071 PMCID: PMC6757384 DOI: 10.1186/s13071-019-3714-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diverse diseases of public health significance. Blood protein digestion by midgut proteases provides anautogenous mosquitoes with the nutrients essential for oocyte maturation and egg production. Midgut-specific miR-1174 affects the functions of the midgut through its target gene serine hydroxymethyltransferase (SHMT). However, less is known about SHMT-regulated processes in blood digestion by mosquitoes. Methods RNAi of SHMT was realized by injection of the double-stranded RNA at 16 h post-eclosion. The expression of SHMT at mRNA level and protein level was assayed by real-time PCR and Western blotting, respectively. Statistical analyses were performed with GraphPad7 using Student’s t-test. Results Here, we confirmed that digestion of blood was inhibited in SHMT RNAi-silenced female A. aegypti mosquitoes. Evidence is also presented that all SHMT-depleted female mosquitoes lost their flight ability and died within 48 h of a blood meal. Furthermore, most examined digestive enzymes responded differently in their transcriptional expression to RNAi depletion of SHMT, with some downregulated, some upregulated and some remaining stable. Phylogenetic analysis showed that transcriptional expression responses to SHMT silence were largely unrelated to the sequence similarity between these enzymes. Conclusions Overall, this research shows that SHMT was expressed at a low level in the midgut of Aedes aegypti mosquitoes, but blood-meal digestion was inhibited when SHMT was silenced. Transcriptional expressions of different digestive enzymes were affected in response to SHMT depletion, suggesting that SHMT is required for the blood-meal digestion in the midgut and targeting SHMT could provide an effective strategy for vector mosquito population control.
Collapse
Affiliation(s)
- Xuemei Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Jinyu Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China.,College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Pu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xinyue Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lili Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shiping Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China. .,College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China. .,College of Life Science, China West Normal University, Nanchong, 637002, People's Republic of China.
| |
Collapse
|
16
|
RNASeq Analysis of Aedes albopictus Mosquito Midguts after Chikungunya Virus Infection. Viruses 2019; 11:v11060513. [PMID: 31167461 PMCID: PMC6631752 DOI: 10.3390/v11060513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/02/2019] [Indexed: 01/01/2023] Open
Abstract
Chikungunya virus (CHIKV) is an emerging pathogen around the world and causes significant morbidity in patients. A single amino acid mutation in the envelope protein of CHIKV has led to a shift in vector preference towards Aedesalbopictus. While mosquitoes are known to mount an antiviral immune response post-infection, molecular interactions during the course of infection at the tissue level remain largely uncharacterised. We performed whole transcriptome analysis on dissected midguts of Aedes albopictus infected with CHIKV to identify differentially expressed genes. For this, RNA was extracted at two days post-infection (2-dpi) from pooled midguts. We initially identified 25 differentially expressed genes (p-value < 0.05) when mapped to a reference transcriptome. Further, multiple differentially expressed genes were identified from a custom de novo transcriptome, which was assembled using the reads that did not align with the reference genome. Thirteen of the identified transcripts, possibly involved in immunity, were validated by qRT-PCR. Homologues of seven of these genes were also found to be significantly upregulated in Aedes aegypti midguts 2 dpi, indicating a conserved mechanism at play. These results will help us to characterise the molecular interaction between Aedes albopictus and CHIKV and can be utilised to reduce the impact of this viral infection.
Collapse
|
17
|
Michaud DR, Poley JD, Fast MD. Sex-biased gene expression and evolution of candidate reproductive transcripts in adult stages of salmon lice (Lepeophtheirus salmonis). Facets (Ott) 2019. [DOI: 10.1139/facets-2018-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The salmon louse Lepeophtheirus salmonis (Krøyer 1837) displays numerous sexually dimorphic characteristics. Insights into their underlying molecular components have only recently been explored, which serve to better understand both the basic biology of the louse, associated impacts on drug sensitivity, and evolution of resistance. Expression of 16 L. salmonis genes putatively involved in sexual dimorphism and reproduction were used to determine differences between sexes and better understand responses to mating using RT-qPCR of pre-adult and adult lice. Analysis of these genes revealed the dynamic nature of sex-biased expression across stages. However, female reception of a spermatophore did not appear to impact the expression of these particular genes. Furthermore six of these transcripts and 84 others identified previously in a large-scale louse transcriptomics experiment were used to estimate differences in evolutionary rates and codon-usage bias of sex-related genes using phylogenetic analysis by maximum likelihood (PAML) and codonW. Results suggest male-biased genes are evolving at significantly greater rates than female-biased and unbiased genes as evidenced by higher rates of non-synonymous substitutions and lower codon-usage bias in these genes. These analyses expand our understanding of interactions of sex-biased expression across the pre-adult and adult life stages and provide foundations for better understanding evolutionary differences in sex-biased genes of L. salmonis.
Collapse
Affiliation(s)
- Dylan R. Michaud
- Hoplite Research Group, Department of Pathology and Microbiology, Atlantic Veterinary College, UPEI, Charlottetown, PE C1A 4P3, Canada
| | - Jordan D. Poley
- Hoplite Research Group, Department of Pathology and Microbiology, Atlantic Veterinary College, UPEI, Charlottetown, PE C1A 4P3, Canada
- Center for Aquaculture Technologies Canada, 20 Hope Street, Souris PE C0A 2B0, Canada
| | - Mark D. Fast
- Hoplite Research Group, Department of Pathology and Microbiology, Atlantic Veterinary College, UPEI, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
18
|
Singh RK, Dhama K, Khandia R, Munjal A, Karthik K, Tiwari R, Chakraborty S, Malik YS, Bueno-Marí R. Prevention and Control Strategies to Counter Zika Virus, a Special Focus on Intervention Approaches against Vector Mosquitoes-Current Updates. Front Microbiol 2018; 9:87. [PMID: 29472902 PMCID: PMC5809424 DOI: 10.3389/fmicb.2018.00087] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) is the most recent intruder that acquired the status of global threat creating panic and frightening situation to public owing to its rapid spread, attaining higher virulence and causing complex clinical manifestations including microcephaly in newborns and Guillain Barré Syndrome. Alike other flaviviruses, the principal mode of ZIKV transmission is by mosquitoes. Advances in research have provided reliable diagnostics for detecting ZIKV infection, while several drug/therapeutic targets and vaccine candidates have been identified recently. Despite these progresses, currently there is neither any effective drug nor any vaccine available against ZIKV. Under such circumstances and to tackle the problem at large, control measures of which mosquito population control need to be strengthened following appropriate mechanical, chemical, biological and genetic control measures. Apart from this, several other known modes of ZIKV transmission which have gained importance in recent past such as intrauterine, sexual intercourse, and blood-borne spread need to be checked and kept under control by adopting appropriate precautions and utmost care during sexual intercourse, blood transfusion and organ transplantation. The virus inactivation by pasteurization, detergents, chemicals, and filtration can effectively reduce viral load in plasma-derived medicinal products. Added to this, strengthening of the surveillance and monitoring of ZIKV as well as avoiding travel to Zika infected areas would aid in keeping viral infection under check. Here, we discuss the salient advances in the prevention and control strategies to combat ZIKV with a focus on highlighting various intervention approaches against the vector mosquitoes of this viral pathogen along with presenting an overview regarding human intervention measures to counter other modes of ZIKV transmission and spread. Additionally, owing to the success of vaccines for a number of infections globally, a separate section dealing with advances in ZIKV vaccines and transmission blocking vaccines has also been included.
Collapse
Affiliation(s)
- Raj K Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Yashpal S Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Valencia, Spain
| |
Collapse
|
19
|
Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors 2016; 9:516. [PMID: 27664127 PMCID: PMC5035468 DOI: 10.1186/s13071-016-1802-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Infectious diseases caused by arboviruses (viruses transmitted by arthropods) are undergoing unprecedented epidemic activity and geographic expansion. With the recent introduction of West Nile virus (1999), chikungunya virus (2013) and Zika virus (2015) to the Americas, stopping or even preventing the expansion of viruses into susceptible populations is an increasing concern. With a few exceptions, available vaccines protecting against arboviral infections are nonexistent and current disease prevention relies on vector control interventions. However, due to the emergence of and rapidly spreading insecticide resistance, different disease control methods are needed. A feasible method of reducing emerging tropical diseases is the implementation of vaccines that prevent or decrease viral infection in the vector. These vaccines are designated ‘transmission blocking vaccines’, or TBVs. Here, we summarize previous TBV work, discuss current research on arboviral TBVs and present several promising TBV candidates.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA.
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
20
|
Genome-Wide Identification and Characterization of Carboxypeptidase Genes in Silkworm (Bombyx mori). Int J Mol Sci 2016; 17:ijms17081203. [PMID: 27483237 PMCID: PMC5000601 DOI: 10.3390/ijms17081203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022] Open
Abstract
The silkworm (Bombyx mori) is an economically-important insect that can secrete silk. Carboxypeptidases have been found in various metazoan species and play important roles in physiological and biochemical reactions. Here, we analyzed the silkworm genome database and characterized 48 carboxypeptidases, including 34 metal carboxypeptidases (BmMCP1-BmMCP34) and 14 serine carboxypeptidases (BmSCP1-BmSCP14), to better understand their diverse functions. Compared to other insects, our results indicated that carboxypeptidases from silkworm have more family members. These silkworm carboxypeptidases could be divided into four families: Peptidase_M2 carboxypeptidases, Peptidase_M14 carboxypeptidases, Peptidase_S10 carboxypeptidases and Peptidase_S28 carboxypeptidases. Microarray analysis showed that the carboxypeptidases had distinct expression patterns, whereas quantitative real-time PCR demonstrated that the expression level of 13 carboxypeptidases significantly decreased after starvation and restored after re-feeding. Overall, our study provides new insights into the functional and evolutionary features of silkworm carboxypeptidases.
Collapse
|
21
|
Tham HW, Balasubramaniam VRMT, Tejo BA, Ahmad H, Hassan SS. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells. Viruses 2014; 6:5028-46. [PMID: 25521592 PMCID: PMC4276941 DOI: 10.3390/v6125028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.
Collapse
Affiliation(s)
- Hong-Wai Tham
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Vinod R M T Balasubramaniam
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Bimo Ario Tejo
- Department of Biotechnology and Neuroscience, Faculty of Life Science, Surya University, 15810 Tangerang, Banten, Indonesia.
| | - Hamdan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| | - Sharifah Syed Hassan
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
22
|
Zhao B, Kokoza VA, Saha TT, Wang S, Roy S, Raikhel AS. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:1-10. [PMID: 25152428 PMCID: PMC4426967 DOI: 10.1016/j.ibmb.2014.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 05/26/2023]
Abstract
Pathogen transmission by mosquitoes is tightly linked to blood feeding which, in turn, is required for egg development. Studies of these processes would greatly benefit from genetic methods, such as the binary Gal4/UAS system. The latter has been well established for model organisms, but its availability is limited for mosquitoes. The objective of this study was to develop the blood-meal-activated, gut-specific Gal4/UAS system for the yellow-fever mosquito Aedes aegypti and utilize it to investigate the regulation of gut-specific gene expression. A 1.1-kb, 5(') upstream region of the carboxypeptidase A (CP) gene was used to genetically engineer the CP-Gal4 driver mosquito line. The CP-Gal4 specifically activated the Enhanced Green Fluorescent Protein (EGFP) reporter only after blood feeding in the gut of the CP-Gal4 > UAS-EGFP female Ae. aegypti. We used this system to study the regulation of CP gene expression. In vitro treatments with either amino acids (AAs) or insulin stimulated expression of the CP-Gal4 > UAS-EGFP transgene; no effect was observed with 20-hydroxyecdysone (20E) treatments. The transgene activation by AAs and insulin was blocked by rapamycin, the inhibitor of the Target-of-Rapamycin (TOR) kinase. RNA interference (RNAi) silence of the insulin receptor (IR) reduced the expression of the CP-Gal4 > UAS-EGFP transgene. Thus, in vitro and in vivo experiments have revealed that insulin and TOR pathways control expression of the digestive enzyme CP. In contrast, 20E, the major regulator of post-blood-meal vitellogenic events in female mosquitoes, has no role in regulating the expression of this gene. This novel CP-Gal4/UAS system permits functional testing of midgut-specific genes that are involved in blood digestion and interaction with pathogens in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, CA 92521, USA.
| | - Vladimir A Kokoza
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Tusar T Saha
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Stephanie Wang
- Honors Undergraduate Program, University of California Riverside, Riverside, CA 92521, USA.
| | - Sourav Roy
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Alexander S Raikhel
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
23
|
Kumar A, Sharma A, Sharma R, Gakhar S. Identification, characterization and analysis of expression of gene encoding carboxypeptidase A in Anopheles culicifacies A (Diptera: culicidae). Acta Trop 2014; 139:123-30. [PMID: 24910441 DOI: 10.1016/j.actatropica.2014.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/23/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Carboxypeptidases are the digestive enzymes which cleave single amino acid residue from c-terminus of the protein. Digestive carboxypeptidase A gene regulatory elements in insects have shown their efficiency to drive midgut specific expression in transgenic mosquitoes. However no endogenous promoter has been reported for Indian malaria vector Anopheles culicifacies which is major vector in Indian subcontinent. Here we report cloning of carboxypeptidase A gene in the An. culicifacies A including its 5' upstream regions and named AcCP. In the upstream region of the gene an arthropod initiator sequence and two repeat sequences of the particular importance TTATC and GTTTT were also identified. The 1290 base pairs open reading frame encodes a protein of 48.5kDa. The coding region of the gene shares 82% and 72% similarity at nucleotide level with Anopheles gambiae and Ae. aegypti carboxypeptidase A gene, respectively. The peak expression of the gene was found to be at 3h after blood feeding and this is limited to midgut only. Based on the protein sequence, 3D structure of the AcCP was predicted and the active centre of the enzyme was predicted to consist of GLN 183, GLU 186, HIS 308 and Ser 309 amino acid residues. Comparison of the protein sequence among different genera revealed the conservation of zinc binding residues. Phylogenetically, AcCP was found most closely related to An. gambiae.
Collapse
|
24
|
Exsheathment and midgut invasion of nocturnally subperiodic Brugia malayi microfilariae in a refractory vector, Aedes aegypti (Thailand strain). Parasitol Res 2014; 113:4141-9. [PMID: 25138070 DOI: 10.1007/s00436-014-4086-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Exsheathment and midgut invasion of nocturnally subperiodic Brugia malayi microfilariae were analyzed using light and scanning electron microscopy in a refractory vector, Aedes aegypti (Thailand strain). Results showed that exsheathed microfilariae represented only approximately 1% of the total microfilaria midguts dissected at 5-min post-infected blood meal (PIBM). The percentage of exsheathed microfilariae found in midguts progressively increased to about 20, 60, 80, 90, and 100% at 1-, 2-5-, 6-12-, 18-36-, and 48-h PIBM, respectively. Importantly, all the microfilariae penetrating the mosquito midguts were exsheathed. Midgut invasion by the exsheathed microfilariae was observed between 2- and 48-h PIBM. SEM analysis revealed sheathed microfilariae surrounded by small particles and maceration of the microfilarial sheath in the midguts, suggesting that the midguts of the refractory mosquitoes might have protein(s) and/or enzyme(s) and/or factor(s) that induce and/or accelerate exsheathment. The microfilariae penetrated the internal face of the peritrophic matrix (PM) by their anterior part and then the midgut epithelium, before entering the hemocoel suggesting that PM was not a barrier against the microfilariae migrating towards the midgut. Melanized microfilariae were discovered in the hemocoel examined at 96-h PIBM suggesting that the refractory mosquitoes used melanization reactions against this parasite. This study provided evidence that A. aegypti (Thailand strain) has refractory mechanisms against B. malayi in both midgut and hemocoel.
Collapse
|
25
|
Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti. Parasitol Res 2014; 113:3565-80. [DOI: 10.1007/s00436-014-4022-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/04/2014] [Indexed: 11/27/2022]
|
26
|
Isoe J, Stover W, Miesfeld RB, Miesfeld RL. COPI-mediated blood meal digestion in vector mosquitoes is independent of midgut ARF-GEF and ARF-GAP regulatory activities. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:732-9. [PMID: 23727611 PMCID: PMC3717261 DOI: 10.1016/j.ibmb.2013.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 05/26/2023]
Abstract
We have previously shown that defects in COPI coatomer proteins cause 80% mortality in blood fed Aedes aegypti mosquitoes by 96 h post-feeding. In this study we show that similar deficiencies in COPII and clathrin mediated vesicle transport do not disrupt blood meal digestion and are not lethal, even though both COPII and clathrin functions are required for ovarian development. Since COPI vesicle transport is controlled in mammalian cells by upstream G proteins and associated regulatory factors, we investigated the function of the orthologous ADP-ribosylation factor 1 (ARF1) and ARF4 proteins in mosquito tissues. We found that both ARF1 and ARF4 function upstream of COPI vesicle transport in blood fed mosquitoes given that an ARF1/ARF4 double deficiency is required to phenocopy the feeding-induced mortality observed in COPI coatomer deficient mosquitoes. Small molecule inhibitors of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) are often transitory, and therefore, we investigated the role of five Ae. aegypti ARF-GEF and ARF-GAP proteins in blood meal digestion using RNA interference. Surprisingly, we found that ARF-GEF and ARF-GAP functions are not required for blood meal digestion, even though both vitellogenesis and ovarian development in Ae. aegypti are dependent on GBF1 (ARF-GEF) and GAP1/GAP2 (ARF-GAPs) proteins. Moreover, deficiencies in orthologous COPI regulating genes in Anopheles stephensi mosquitoes had similar phenotypes, indicating conserved functions in these two mosquito species. We propose that based on the need for rapid initiation of protein digestion and peritrophic membrane formation, COPI vesicle transport in midgut epithelial cells is not dependent on ARF-GEF and ARF-GAP regulatory proteins to mediate vesicle recycling within the first 48 h post-feeding.
Collapse
Affiliation(s)
| | | | | | - Roger L. Miesfeld
- Corresponding author; Roger L. Miesfeld, , Department of Chemistry & Biochemistry, BioSciences West Room 518, 1041 E. Lowell St., University of Arizona, Tucson, AZ, 85721. Phone: (520) 626-2343, Fax: (520) 621-1697
| |
Collapse
|
27
|
Khoo CCH, Doty JB, Heersink MS, Olson KE, Franz AWE. Transgene-mediated suppression of the RNA interference pathway in Aedes aegypti interferes with gene silencing and enhances Sindbis virus and dengue virus type 2 replication. INSECT MOLECULAR BIOLOGY 2013; 22:104-14. [PMID: 23331493 PMCID: PMC3558842 DOI: 10.1111/imb.12008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
RNA interference (RNAi) is the major innate antiviral pathway in Aedes aegypti that responds to replicating arboviruses such as dengue virus (DENV) and Sindbis virus (SINV). On the one hand, the mosquito's RNAi machinery is capable of completely eliminating DENV2 from Ae. aegypti. On the other, transient silencing of key genes of the RNAi pathway increases replication of SINV and DENV2, allowing the viruses to temporally overcome dose-dependent midgut infection and midgut escape barriers (MEB) more efficiently. Here we expressed Flock house virus B2 (FHV-B2) from the poly-ubiquitin (PUb) promoter in Ae. aegypti using the ΦC31 site-directed recombination system to investigate the impact of transgene-mediated RNAi pathway suppression on infections with SINV-TR339eGFP and DENV2-QR94, the latter of which has been shown to be confronted with a strong MEB in Ae. aegypti. FHV-B2 was constitutively expressed in midguts of sugar- and blood-fed mosquitoes of transgenic line PUbB2 P61. B2 over-expression suppressed RNA silencing of carboxypeptidase A-1 (AeCPA-1) in midgut tissue of PUbB2 P61 mosquitoes. Following oral challenge with SINV-TR339eGFP or DENV2-QR94, mean titres in midguts of PUbB2 P61 females were significantly higher at 7 days post-bloodmeal (pbm) than in those of nontransgenic control mosquitoes. At 14 days pbm, infection rates of carcasses were significantly increased in PubB2 P61 mosquitoes infected with SINV-TR339eGFP. Following infection with DENV2-QR94, midgut infection rates were significantly increased in the B2-expressing mosquitoes at 14 days pbm. However, B2 expression in PUbB2 P61 did not increase the DENV2-QR94 dissemination rate, indicating that the infection phenotype was not primarily controlled by RNAi.
Collapse
Affiliation(s)
- C C H Khoo
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
28
|
Soares TS, Soares Torquato RJ, Alves Lemos FJ, Tanaka AS. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:9-16. [PMID: 23142191 DOI: 10.1016/j.ibmb.2012.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/18/2012] [Accepted: 10/23/2012] [Indexed: 06/01/2023]
Abstract
Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.
Collapse
Affiliation(s)
- Tatiane Sanches Soares
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua 3 de Maio 100, 04044-020 São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
29
|
Soares TS, Watanabe RM, Lemos FJ, Tanaka AS. Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes. Gene 2011; 489:70-5. [DOI: 10.1016/j.gene.2011.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/25/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
30
|
Peng X, Zha W, He R, Lu T, Zhu L, Han B, He G. Pyrosequencing the midgut transcriptome of the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2011; 20:745-762. [PMID: 21919985 DOI: 10.1111/j.1365-2583.2011.01104.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The brown planthopper, Nilaparvata lugens, is a serious pest threatening rice production across the world. To identify the main features of the gene expression and the key components of the midgut of N. lugens responsible for nutrition, xenobiotic metabolism and the immune response, we used pyrosequencing to sample the transcriptome. More than 190,000 clean sequences were generated, which led to about 30,000 unique sequences. Sequence analysis indicated that genes with abundant transcripts in the midgut of N. lugens were mainly sugar hydrolyases and transporters, proteases and detoxification-related proteins. Based on the sequence information, we cloned the candidate sucrase gene; this enzyme is likely to interact with the perimicrovillar membrane through its highly hydrophobic C-terminal region. Many proteases were identified, which supported the hypothesis that N. lugens uses the proteolysis system for digestion. Scores of detoxification genes were newly identified, including cytochrome P450s, glutathione S-transferases, caroxylesterases. A wealth of new transcripts possibly participating in the immune response were described as well. The gene encoding a peptidoglycan recognition protein was cloned. Unlike in Acyrthosiphon pisum, the immunodeficiency pathway may be present in N. lugens. This is the first global analysis of midgut transcriptome from N. lugens.
Collapse
Affiliation(s)
- X Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Lyons PJ, Fricker LD. Carboxypeptidase O is a glycosylphosphatidylinositol-anchored intestinal peptidase with acidic amino acid specificity. J Biol Chem 2011; 286:39023-32. [PMID: 21921028 DOI: 10.1074/jbc.m111.265819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The first metallocarboxypeptidase (CP) was identified in pancreatic extracts more than 80 years ago and named carboxypeptidase A (CPA; now known as CPA1). Since that time, seven additional mammalian members of the CPA subfamily have been described, all of which are initially produced as proenzymes, are activated by endoproteases, and remove either C-terminal hydrophobic or basic amino acids from peptides. Here we describe the enzymatic and structural properties of carboxypeptidase O (CPO), a previously uncharacterized and unique member of the CPA subfamily. Whereas all other members of the CPA subfamily contain an N-terminal prodomain necessary for folding, bioinformatics and expression of both human and zebrafish CPO orthologs revealed that CPO does not require a prodomain. CPO was purified by affinity chromatography, and the purified enzyme was able to cleave proteins and synthetic peptides with greatest activity toward acidic C-terminal amino acids unlike other CPA-like enzymes. CPO displayed a neutral pH optimum and was inhibited by common metallocarboxypeptidase inhibitors as well as citrate. CPO was modified by attachment of a glycosylphosphatidylinositol membrane anchor to the C terminus of the protein. Immunocytochemistry of Madin-Darby canine kidney cells stably expressing CPO showed localization to vesicular membranes in subconfluent cells and to the plasma membrane in differentiated cells. CPO is highly expressed in intestinal epithelial cells in both zebrafish and human. These results suggest that CPO cleaves acidic amino acids from dietary proteins and peptides, thus complementing the actions of well known digestive carboxypeptidases CPA and CPB.
Collapse
Affiliation(s)
- Peter J Lyons
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
32
|
Rascón AA, Gearin J, Isoe J, Miesfeld RL. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito Aedes aegypti. BMC BIOCHEMISTRY 2011; 12:43. [PMID: 21827688 PMCID: PMC3162888 DOI: 10.1186/1471-2091-12-43] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/09/2011] [Indexed: 11/10/2022]
Abstract
Background The major Dengue virus vector Aedes aegypti requires nutrients obtained from blood meal proteins to complete the gonotrophic cycle. Although bioinformatic analyses of Ae. aegypti midgut serine proteases have provided evolutionary insights, very little is known about the biochemical activity of these digestive enzymes. Results We used peptide specific antibodies to show that midgut serine proteases are expressed as zymogen precursors, which are cleaved to the mature form after blood feeding. Since midgut protein levels are insufficient to purify active proteases directly from blood fed mosquitoes, we engineered recombinant proteins encoding a heterologous enterokinase cleavage site to permit generation of the bona fide mature form of four midgut serine proteases (AaET, AaLT, AaSPVI, AaSPVII) for enzyme kinetic analysis. Cleavage of the chromogenic trypsin substrate BApNA showed that AaET has a catalytic efficiency (kcat/KM) that is ~30 times higher than bovine trypsin, and ~2-3 times higher than AaSPVI and AaSPVII, however, AaLT does not cleave BApNA. To measure the enzyme activities of the mosquito midgut proteases using natural substrates, we developed a quantitative cleavage assay based on cleavage of albumin and hemoglobin proteins. These studies revealed that the recombinant AaLT enzyme was indeed catalytically active, and cleaved albumin and hemoglobin with equivalent efficiency to that of AaET, AaSPVI, and AaSPVII. Structural modeling of the AaLT and AaSPVI mature forms indicated that AaLT is most similar to serine collagenases, whereas AaSPVI appears to be a classic trypsin. Conclusions These data show that in vitro activation of recombinant serine proteases containing a heterologous enterokinase cleavage site can be used to investigate enzyme kinetics and substrate cleavage properties of biologically important mosquito proteases.
Collapse
Affiliation(s)
- Alberto A Rascón
- Department of Chemistry & Biochemistry, and Center for Insect Science West Room 518, 1041 E, Lowell St., University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
33
|
Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes. Proc Natl Acad Sci U S A 2011; 108:E211-7. [PMID: 21628559 DOI: 10.1073/pnas.1102637108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Blood feeding by vector mosquitoes provides the entry point for disease pathogens and presents an acute metabolic challenge that must be overcome to complete the gonotrophic cycle. Based on recent data showing that coatomer protein I (COPI) vesicle transport is involved in cellular processes beyond Golgi-endoplasmic reticulum retrograde protein trafficking, we disrupted COPI functions in the Yellow Fever mosquito Aedes aegypti to interfere with blood meal digestion. Surprisingly, we found that decreased expression of the γCOPI coatomer protein led to 89% mortality in blood-fed mosquitoes by 72 h postfeeding compared with 0% mortality in control dsRNA-injected blood-fed mosquitoes and 3% mortality in γCOPI dsRNA-injected sugar-fed mosquitoes. Similar results were obtained using dsRNA directed against five other COPI coatomer subunits (α, β, β', δ, and ζ). We also examined midgut tissues by EM, quantitated heme in fecal samples, and characterized feeding-induced protein expression in midgut, fat body, and ovary tissues of COPI-deficient mosquitoes. We found that COPI defects disrupt epithelial cell membrane integrity, stimulate premature blood meal excretion, and block induced expression of several midgut protease genes. To study the role of COPI transport in ovarian development, we injected γCOPI dsRNA after blood feeding and found that, although blood digestion was normal, follicles in these mosquitoes were significantly smaller by 48 h postinjection and lacked eggshell proteins. Together, these data show that COPI functions are critical to mosquito blood digestion and egg maturation, a finding that could also apply to other blood-feeding arthropod vectors.
Collapse
|
34
|
Gulia-Nuss M, Robertson AE, Brown MR, Strand MR. Insulin-like peptides and the target of rapamycin pathway coordinately regulate blood digestion and egg maturation in the mosquito Aedes aegypti. PLoS One 2011; 6:e20401. [PMID: 21647424 PMCID: PMC3103545 DOI: 10.1371/journal.pone.0020401] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/25/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mosquitoes are insects that vector many serious pathogens to humans and other vertebrates. Most mosquitoes must feed on the blood of a vertebrate host to produce eggs. In turn, multiple cycles of blood feeding promote frequent contacts with hosts and make mosquitoes ideal disease vectors. Both hormonal and nutritional factors are involved in regulating egg development in the mosquito, Aedes aegypti. However, the processes that regulate digestion of the blood meal remain unclear. Methodology/Principal Findings Here we report that insulin peptide 3 (ILP3) directly stimulated late phase trypsin-like gene expression in blood fed females. In vivo knockdown of the mosquito insulin receptor (MIR) by RNA interference (RNAi) delayed but did not fully inhibit trypsin-like gene expression in the midgut, ecdysteroid (ECD) production by ovaries, and vitellogenin (Vg) expression by the fat body. In contrast, in vivo treatment with double-stranded MIR RNA and rapamycin completely blocked egg production. In vitro experiments showed that amino acids did not simulate late phase trypsin-like gene expression in the midgut or ECD production by the ovaries. However, amino acids did enhance ILP3-mediated stimulation of trypsin-like gene expression and ECD production. Conclusions/Significance Overall, our results indicate that ILPs from the brain synchronize blood meal digestion and amino acid availability with ovarian ECD production to maximize Vg expression by the fat body. The activation of digestion by ILPs may also underlie the growth promoting effects of insulin and TOR signaling in other species.
Collapse
Affiliation(s)
- Monika Gulia-Nuss
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Anne E. Robertson
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Mark R. Brown
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MRS); (MRB)
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MRS); (MRB)
| |
Collapse
|
35
|
Bahia AC, Kubota MS, Tempone AJ, Pinheiro WD, Tadei WP, Secundino NFC, Traub-Csekö YM, Pimenta PFP. Anopheles aquasalis Infected by Plasmodium vivax displays unique gene expression profiles when compared to other malaria vectors and plasmodia. PLoS One 2010; 5:e9795. [PMID: 20339545 PMCID: PMC2842430 DOI: 10.1371/journal.pone.0009795] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/24/2010] [Indexed: 12/30/2022] Open
Abstract
Malaria affects 300 million people worldwide every year and is endemic in 22 countries in the Americas where transmission occurs mainly in the Amazon Region. Most malaria cases in the Americas are caused by Plasmodium vivax, a parasite that is almost impossible to cultivate in vitro, and Anopheles aquasalis is an important malaria vector. Understanding the interactions between this vector and its parasite will provide important information for development of disease control strategies. To this end, we performed mRNA subtraction experiments using A. aquasalis 2 and 24 hours after feeding on blood and blood from malaria patients infected with P. vivax to identify changes in the mosquito vector gene induction that could be important during the initial steps of infection. A total of 2,138 clones of differentially expressed genes were sequenced and 496 high quality unique sequences were obtained. Annotation revealed 36% of sequences unrelated to genes in any database, suggesting that they were specific to A. aquasalis. A high number of sequences (59%) with no matches in any databases were found 24 h after infection. Genes related to embryogenesis were down-regulated in insects infected by P. vivax. Only a handful of genes related to immune responses were detected in our subtraction experiment. This apparent weak immune response of A. aquasalis to P. vivax infection could be related to the susceptibility of this vector to this important human malaria parasite. Analysis of some genes by real time PCR corroborated and expanded the subtraction results. Taken together, these data provide important new information about this poorly studied American malaria vector by revealing differences between the responses of A. aquasalis to P. vivax infection, in relation to better studied mosquito-Plasmodium pairs. These differences may be important for the development of malaria transmission-blocking strategies in the Americas.
Collapse
Affiliation(s)
- Ana C. Bahia
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina S. Kubota
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio J. Tempone
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Waleria D. Pinheiro
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Wanderli P. Tadei
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Nágila F. C. Secundino
- Laboratório de Entomologia Médica, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Yara M. Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo F. P. Pimenta
- Laboratório de Entomologia Médica, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
36
|
Isoe J, Rascón AA, Kunz S, Miesfeld RL. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:903-12. [PMID: 19883761 PMCID: PMC2818436 DOI: 10.1016/j.ibmb.2009.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 05/13/2023]
Abstract
Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post-blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (P < 0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme.
Collapse
Affiliation(s)
| | | | | | - Roger L. Miesfeld
- Corresponding author; Roger L. Miesfeld; . Department of Chemistry & Biochemistry, BioSciences West Room 518, 1041 E. Lowell St., University of Arizona, Tucson, AZ, 85721. Phone: (520) 626-2343, Fax: (520) 621-1697
| |
Collapse
|