1
|
Vasudhevan P, Ruoyu Z, Ma H, Singh S, Varshney D, Pu S. Biocatalytic enzymes in food packaging, biomedical, and biotechnological applications: A comprehensive review. Int J Biol Macromol 2025; 300:140069. [PMID: 39832587 DOI: 10.1016/j.ijbiomac.2025.140069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The increasing environmental concerns and health risks associated with synthetic chemicals have driven the demand for sustainable and eco-friendly solutions. Biocatalysis, employing enzymes or whole cells as biocatalysts, has emerged as a powerful alternative. This review provides a comprehensive analysis of the applications of biocatalytic enzymes in food packaging, biomedical sciences, and biotechnology. We highlight the potential of enzymes like laccase, glucose oxidase, lysozyme, protease, lipase, cellulase, and asparaginase to replace traditional chemical methods, driving innovation and sustainability. The global enzyme market is also analyzed, including current trends, emerging demands, and the impact of the COVID-19 pandemic. This review aims to bridge knowledge gaps, emphasize recent technological breakthroughs, and showcase the potential of biocatalytic enzymes to address critical industrial challenges while supporting environmental sustainability and economic growth.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| | - Zhang Ruoyu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Division of research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Deekshant Varshney
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Division of Research & innovation, Uttaranchal University, Dehradun, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
2
|
Han G, Li Y. A review of inhibition mechanisms of surimi protein hydrolysis by different exogenous additives and their application in improving surimi gel quality. Food Chem 2024; 456:140002. [PMID: 38870812 DOI: 10.1016/j.foodchem.2024.140002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
It is well known that aquatic products such as fish and shellfish, when stored for a long period of time under inappropriate conditions, can suffer from muscle softening. This phenomenon is mainly caused by endogenous proteases, which are activated during heating and accelerates the degradation of myofibrillar proteins, directly leading to weaker gels and poorer water retention capacity. This paper reviews the changes in fish proteins during storage after death and the factors affecting protein hydrolysis. A brief overview of the extraction of protease inhibitors, polysaccharides and proteins is given, as well as their mechanism of inhibition of protein hydrolysis in surimi and the current status of their application to improve the properties of surimi.
Collapse
Affiliation(s)
- Guilian Han
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University; Beijing 100048, China
| | - You Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University; Beijing 100048, China.
| |
Collapse
|
3
|
Feng Y, Cong Y, Zhao Y, Zhang C, Song H, Fang B, Yang F, Zhang H, Zhang JZH, Zhang L. "Blade of Polarized Water Molecule" Is the Key to Hydrolase Catalysis Regulation. J Chem Inf Model 2024; 64:7987-7997. [PMID: 39382954 DOI: 10.1021/acs.jcim.4c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Hydrolysis catalyzed by aspartic proteases is a crucial reaction in many biological processes. However, anchoring water molecules and unifying multiple catalytic pathways remain significant challenges. Consequently, molecular design often compromises by focusing on enhancing substrate specificity. Using our self-developed polarizable point charge (PPC) force field, we determined the significant role of polarization in the hydrolase of pepsin for the first time. To be stably anchored in the active site, the water should be intensely polarized with a charge higher than -0.94e. Induced by this polarization, the pepsin was shown to support three general base/general acid pathways, with a preference for the gemdiol-intermediate-based pathway. Consequently, we proposed the "Blade of Polarized Water Molecule" model for rational enzyme design, highlighting that the polarization of both the attacking water and the attacked carbonyl is crucial for enhancing hydrolysis. Mutants D290Q and S172P showed activity enhancements of 191.23% and 324.70%, respectively. The improved polarization of water, carbonyl, and relevant nucleophilic attack distances in the mutants reaffirmed the crucial role of polarization in improving hydrolysis. This study provides a new perspective on hydrolase analysis and modification.
Collapse
Affiliation(s)
- Yinghui Feng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yue Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chuanxi Zhang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hucheng Song
- Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Bohuan Fang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Furong Yang
- Ningxia Xiasheng Industrial Group Co., Ltd., Yinchuan 750000, China
| | - Huitu Zhang
- Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, United States
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
4
|
Parisi MG, Ozón B, Vera González SM, García-Pardo J, Obregón WD. Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics 2024; 16:582. [PMID: 38794245 PMCID: PMC11125377 DOI: 10.3390/pharmaceutics16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Mónica G. Parisi
- Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Sofía M. Vera González
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| |
Collapse
|
5
|
Du R, Zheng X, Liu Y, Lu P, Hong Y, Wang P. Molecular and functional characterization of a type-1 cystatin in amphioxus (Branchiostoma japonicum). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109423. [PMID: 38341117 DOI: 10.1016/j.fsi.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Cystatins comprise a vast superfamily of evolutionary conserved proteins, predominantly recognized for their roles as endogenous inhibitors by regulating the activity of cysteine proteases. Emerging lines of research evidence also provides insight into their alternative roles in a spectrum of biological and pathological processes, including neurodegenerative disorders, tumor progression, inflammatory diseases, and immune response. Nowadays, various type-1 cystatins (stefins) have been demonstrated among a variety of discovered vertebrate groups, while little is known about the related homologue in cephalochordate amphioxus, which are repositioned at the base of the chordate phylum. In the present study, a single type-1 cystatin homologue in Branchiostoma japonicum was first successfully cloned and designated as Bjcystatin-1. The deduced Bjcystatin-1 protein is structurally characterized by the presence of typical wedge-shaped cystatin features, including the 'QxVxG' and 'Px' motif, as well as the conserved N-terminal glycine residue. Phylogenomic analyses utilizing different cystatin counterparts affirmed the close evolutionary relationship of Bjcystatin-1 and type-1 cystatin homologue. Bjcystatin-1 was predominantly expressed in the gills and hind-gut in a tissue-specific pattern, and its expression was remarkably up-regulated in response to challenge with bacteria or their signature molecules LPS and LTA, suggesting the involvement in immune response. Additionally, the recombinant Bjcystatin-1 (rBjcystatin-1) protein showed significant inhibitory activity towards papain and binding ability to LPS and LTA, indicating its hypothesized role as a pattern recognition receptor in immune response. Subcellular localization results also showed that Bjcystatin-1 was located in the cytoplasm and nucleus, and its overexpression could attenuate the activation of LPS-induced nuclear transcription factors NF-κB. Taken together, our study suggests that amphioxus Bjcystatin-1 acts as a dual role in protease inhibitor and an immunocompetent factor, providing new insights into the immune defense effect of type-1 cystatin in amphioxus.
Collapse
Affiliation(s)
- Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China
| | - Xian Zheng
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China
| | - Yudan Liu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China
| | - Pei Lu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China
| | - Yuxiang Hong
- Zhejiang Fangyuan Testing Group Co., Ltd., Hangzhou, Zhejiang, 310020, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China.
| |
Collapse
|
6
|
Jegadheeshwari S, Velayutham M, Gunasekaran K, Kesavan M. DbGTi: Thermostable trypsin inhibitor from Dioscorea bulbifera L. ground tubers: assessment of antioxidant and antibacterial properties and cytotoxicity evaluation using zebrafish model. Int J Biol Macromol 2024; 263:130244. [PMID: 38387638 DOI: 10.1016/j.ijbiomac.2024.130244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oxidative stress disorders and diseases caused by drug-resistant bacteria have emerged as significant public health concerns. Plant-based medications like protease inhibitors are growing despite adverse effects therapies. Consecutively, in this study, trypsin inhibitors from Dioscorea bulbifera L. (DbGTi trypsin inhibitor) ground tubers were isolated, purified, characterized, and evaluated for their potential cytotoxicity, antibacterial, and antioxidant activities. DbGTi protein was purified by Q-Sepharose matrix, followed by trypsin inhibitory activity. The molecular weight of the DbGTi protein was found to be approximately 31 kDa by SDS-PAGE electrophoresis. The secondary structure analysis by circular dichroism (CD) spectroscopy revealed that the DbGTi protein predominantly comprises β sheets followed by α helix. DbGTi protein showed competitive type of inhibition with Vmax = 2.1372 × 10-1 μM/min, Km = 1.1805 × 102 μM, & Ki = 8.4 × 10-9 M and was stable up to 70 °C. DbGTi protein exhibited 58 % similarity with Dioscorin protein isolated from Dioscorea alata L. as revealed by LC-MS/MS analysis. DbGTi protein showed a non-toxic effect, analyzed by MTT, Haemolytic assay and in vivo studies on zebrafish model. DbGTi protein significantly inhibited K. pneumoniae and has excellent antioxidant properties, confirmed by various antioxidant assays. The results of anti-microbial, cytotoxicity and antioxidant assays demonstrate its bioactive potential and non-toxic nature.
Collapse
Affiliation(s)
- S Jegadheeshwari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology, Integrative Physiology, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, India
| | - K Gunasekaran
- Department of Crystallography and Biophysics, University of Madras, Chennai, India
| | - M Kesavan
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
7
|
Kocyigit E, Kocaadam-Bozkurt B, Bozkurt O, Ağagündüz D, Capasso R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins (Basel) 2023; 15:356. [PMID: 37368657 PMCID: PMC10303728 DOI: 10.3390/toxins15060356] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolve to synthesize various natural metabolites to protect themselves against threats, such as insects, predators, microorganisms, and environmental conditions (such as temperature, pH, humidity, salt, and drought). Plant-derived toxic proteins are often secondary metabolites generated by plants. These proteins, including ribosome-inactivating proteins, lectins, protease inhibitors, α-amylase inhibitors, canatoxin-like proteins and ureases, arcelins, antimicrobial peptides, and pore-forming toxins, are found in different plant parts, such as the roots, tubers, stems, fruits, buds, and foliage. Several investigations have been conducted to explore the potential applications of these plant proteins by analyzing their toxic effects and modes of action. In biomedical applications, such as crop protection, drug development, cancer therapy, and genetic engineering, toxic plant proteins have been utilized as potentially useful instruments due to their biological activities. However, these noxious metabolites can be detrimental to human health and cause problems when consumed in high amounts. This review focuses on different plant toxic proteins, their biological activities, and their mechanisms of action. Furthermore, possible usage and removal strategies for these proteins are discussed.
Collapse
Affiliation(s)
- Emine Kocyigit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Turkey;
| | - Betul Kocaadam-Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Osman Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, Emek, 06490 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
8
|
Cotabarren J, Ozón B, Claver S, Geier F, Rossotti M, Garcia-Pardo J, Obregón WD. A Multifunctional Trypsin Protease Inhibitor from Yellow Bell Pepper Seeds: Uncovering Its Dual Antifungal and Hypoglycemic Properties. Pharmaceutics 2023; 15:pharmaceutics15030781. [PMID: 36986642 PMCID: PMC10054557 DOI: 10.3390/pharmaceutics15030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Fungal infections are a growing public health concern worldwide and the emergence of antifungal resistance has limited the number of therapeutic options. Therefore, developing novel strategies for identifying and developing new antifungal compounds is an active area of research in the pharmaceutical industry. In this study, we purified and characterized a trypsin protease inhibitor obtained from Yellow Bell Pepper (Capsicum annuum L.) seeds. The inhibitor not only showed potent and specific activity against the pathogenic fungus Candida albicans, but was also found to be non-toxic against human cells. Furthermore, this inhibitor is unique in that it also inhibits α-1,4-glucosidase, positioning it as one of the first plant-derived protease inhibitors with dual biological activity. This exciting discovery opens new avenues for the development of this inhibitor as a promising antifungal agent and highlights the potential of plant-derived protease inhibitors as a rich source for the discovery of novel multifunctional bioactive molecules.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Santiago Claver
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Florencia Geier
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Martina Rossotti
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Javier Garcia-Pardo
- Departament de Bioquimica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| |
Collapse
|
9
|
Sultana MS, Mazarei M, Jurat-Fuentes JL, Hewezi T, Millwood RJ, Stewart CN. Overexpression of soybean trypsin inhibitor genes decreases defoliation by corn earworm ( Helicoverpa zea) in soybean ( Glycine max) and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1129454. [PMID: 36875574 PMCID: PMC9982021 DOI: 10.3389/fpls.2023.1129454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Trypsin inhibitors (TIs) are widely distributed in plants and are known to play a protective role against herbivores. TIs reduce the biological activity of trypsin, an enzyme involved in the breakdown of many different proteins, by inhibiting the activation and catalytic reactions of proteins. Soybean (Glycine max) contains two major TI classes: Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI). Both genes encoding TI inactivate trypsin and chymotrypsin enzymes, which are the main digestive enzymes in the gut fluids of Lepidopteran larvae feeding on soybean. In this study, the possible role of soybean TIs in plant defense against insects and nematodes was investigated. A total of six TIs were tested, including three known soybean trypsin inhibitors (KTI1, KTI2 and KTI3) and three genes encoding novel inhibitors identified in soybean (KTI5, KTI7, and BBI5). Their functional role was further examined by overexpression of the individual TI genes in soybean and Arabidopsis. The endogenous expression patterns of these TI genes varied among soybean tissues, including leaf, stem, seed, and root. In vitro enzyme inhibitory assays showed significant increase in trypsin and chymotrypsin inhibitory activities in both transgenic soybean and Arabidopsis. Detached leaf-punch feeding bioassays detected significant reduction in corn earworm (Helicoverpa zea) larval weight when larvae fed on transgenic soybean and Arabidopsis lines, with the greatest reduction observed in KTI7 and BBI5 overexpressing lines. Whole soybean plant greenhouse feeding bioassays with H. zea on KTI7 and BBI5 overexpressing lines resulted in significantly reduced leaf defoliation compared to non-transgenic plants. However, bioassays of KTI7 and BBI5 overexpressing lines with soybean cyst nematode (SCN, Heterodera glycines) showed no differences in SCN female index between transgenic and non-transgenic control plants. There were no significant differences in growth and productivity between transgenic and non-transgenic plants grown in the absence of herbivores to full maturity under greenhouse conditions. The present study provides further insight into the potential applications of TI genes for insect resistance improvement in plants.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
10
|
Maghraby Y, El-Shabasy RM, Ibrahim AH, Azzazy HMES. Enzyme Immobilization Technologies and Industrial Applications. ACS OMEGA 2023; 8:5184-5196. [PMID: 36816672 PMCID: PMC9933091 DOI: 10.1021/acsomega.2c07560] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 05/27/2023]
Abstract
Enzymes play vital roles in diverse industrial sectors and are essential components of many industrial products. Immobilized enzymes possess higher resistance to environmental changes and can be recovered/recycled easily when compared to the free forms. The primary benefit of immobilization is protecting the enzymes from the harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). The immobilized enzymes can be utilized in various large-scale industries, e.g., medical, food, detergent, textile, and pharmaceutical industries, besides being used in water treatment plants. According to the required application, a suitable enzyme immobilization technique and suitable carrier materials are chosen. Enzyme immobilization techniques involve covalent binding, encapsulation, entrapment, adsorption, etc. This review mainly covers enzyme immobilization by various techniques and their usage in different industrial applications starting from 1992 until 2022. It also focuses on the multiscale operation of immobilized enzymes to maximize yields of certain products. Lastly, the severe consequence of the COVID-19 pandemic on global enzyme production is briefly discussed.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin El-Kom 32512, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, 6th of October 12578, Giza, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute for
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
11
|
Premachandran K, Srinivasan TS. A brief review on oryzacystatin: a potent phytocystatin for crop management. Mol Biol Rep 2023; 50:1799-1807. [PMID: 36471210 DOI: 10.1007/s11033-022-08161-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Phytocystatins are a type of proteinase inhibitor which are extensively studied for their specific inhibitory action against cysteine protease enzymes (CP) of insects and pathogens. Oryzacystatins (OC), a phytocystatin from rice inhibits CP in a reversible manner with its conserved tripartite wedge. OCs have important role in plant innate defense mechanism through phytohormonal signalling pathways. OC are induced in response to both biotic and abiotic stress conditions and are used to develop transgenic plants exhibiting resistance against stress conditions. In this review, we focus on the structure and mechanism of action of oryzacystatins, their possible role in plant physiology, biotic and abiotic stress tolerance mechanism in plants and their potential application strategies for future crop management studies.
Collapse
Affiliation(s)
- Krishnamanikumar Premachandran
- Centre for Climate Change Studies, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Thanga Suja Srinivasan
- Centre for Climate Change Studies, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
12
|
Jmel MA, Voet H, Araújo RN, Tirloni L, Sá-Nunes A, Kotsyfakis M. Tick Salivary Kunitz-Type Inhibitors: Targeting Host Hemostasis and Immunity to Mediate Successful Blood Feeding. Int J Mol Sci 2023; 24:1556. [PMID: 36675071 PMCID: PMC9865953 DOI: 10.3390/ijms24021556] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel β-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Hanne Voet
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ricardo N. Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Anderson Sá-Nunes
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
13
|
Carvalho R, Bonfá IS, de Araújo Isaías Muller J, Pando SC, Toffoli-Kadri MC. Protease inhibitor from Libidibia ferrea seeds attenuates inflammatory and nociceptive responses in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115694. [PMID: 36096346 DOI: 10.1016/j.jep.2022.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Libidibia ferrea (Mart. ex. Tul.) L.P. Queiroz is a Brazilian native tree locally known as jucá and pau-ferro, and it has been used in folk medicine for relieving, asthma, bronchitis, sore throat, rheumatism, enterocolitis and fever. The anti-inflammatory properties of L. ferrea were confirmed for its stem, fruit, leaves, bark and seeds extracts, however little is known about the natural compounds that may be associated with that response. AIM OF THIS STUDY In a normal physiological condition, many enzymes play an important role in catalyzing biological functions. Among them, proteases are of great interest. Although they take part of many biological systems, as the inflammatory process, when deregulated, proteases may cause system malfunctions, such as under- or overproduction of cytokines, or immune cells activation. Thus, protease inhibitors prevent these immune responses by regulating proteases. The objective of this study was to evaluate the anti-inflammatory and anti-nociceptive response of a protease inhibitor purified from L. ferrea seeds (LfTI). MATERIALS AND METHODS In vitro (5, 50 and 250 μg/mL of LfTI) and in vivo (0.6, 3 e 15 mg/kg of LfTI) assays were performed. Male Swiss mice weighing 18-25 g were used for cell harvesting and for the in vivo assays. The anti-inflammatory activity was analyzed in vitro by macrophage cytotoxicity, hydrogen peroxide (H2O2) production, and cell adhesion assays; and in vivo by leukocyte recruitment, nitric oxide (NO) production, vascular permeability, paw edema and mast cell degranulation assays. The anti-nociceptive activity was evaluated through abdominal writhing test induced by acetic acid and formalin sensitization. RESULTS Our results showed that, in vitro, LfTI is not cytotoxic. Also, LfTI (50 μg/mL) inhibited macrophage H2O2 production (48.2%), and adhesion (48.4%). LfTI (0.6, 3 e 15 mg/kg) decreased polymorphonuclear cell recruitment dose-dependently, and it inhibited NO production (53%), vascular permeability (40.7%) and paw edema at 3 mg/kg at different time, but it did not inhibit mast cell degranulation. Besides, LfTI did not inhibit either the number of writhing or the licking time in the formalin test in the second phase (inflammatory). However, LfTI (3 mg/kg) inhibited licking time at the first phase (neurogenic) in the formalin sensitization (46.1%). CONCLUSIONS Our results show that LfTI has anti-inflammatory and antinociceptive (neurogenic pain) effects, and these effects might be associated with the inhibition of inflammatory proteases and/or protease-activated receptors activation hindering.
Collapse
Affiliation(s)
- Raquel Carvalho
- Graduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil; Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil.
| | - Iluska Senna Bonfá
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil.
| | - Jéssica de Araújo Isaías Muller
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil; Multicenter Graduate Program in Biochemistry and Molecular Biology, Institute of Biosciences, UFMS, Campo Grande, MS, Brazil.
| | | | - Mônica Cristina Toffoli-Kadri
- Graduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil; Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil; Multicenter Graduate Program in Biochemistry and Molecular Biology, Institute of Biosciences, UFMS, Campo Grande, MS, Brazil.
| |
Collapse
|
14
|
Precursor genes of Bowman-Birk-type serine proteinase inhibitors comprise multiple inhibitory domains to promote diversity. Biochim Biophys Acta Gen Subj 2023; 1867:130248. [PMID: 36191739 DOI: 10.1016/j.bbagen.2022.130248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Proteinase inhibitors are important for the regulation of the activity of enzymes essential for the survival and maintenance of all organisms, and they may hold medicinal and agricultural value. Hyacinthus orientalis L. serine protease inhibitors (HOSPIs), belonging to the Bowman-Birk type inhibitor (BBI) family, have strong inhibitory activities against mammalian serine proteinases. This study explored the relationship between gene structure and multiple isoinhibitor production of these diversified BBIs by analyzing sequences of HOSPI precursor genes. METHODS Genomic DNA of H. orientalis roots was obtained and fragmented using 13 specific restriction enzymes, which were amplified by inverse and nested polymerase chain reactions, cloned into the pBluescript II SK (+) vector, and directly sequenced using specific primers. HOSPI gene and protein expression were assessed by quantitative real-time PCR and western blot, respectively. Proteinase inhibitory activity of hyacinth bulb extracts was evaluated by fluorescein isothiocyanate-labeled casein. RESULTS Four distinct HOSPI precursor genes were identified, encoding 2-4 different HOSPI domains that were surrounded by additional sequences (named head, linker, and tail sequences) and some introns. Moreover, 3' splicing of the linker sequence may occur through introns inserted between linker sequences. HOSPI gene and protein expression was higher during the stem elongation and the flowering periods. CONCLUSIONS These results indicate that gene duplication of the HOSPI precursor as a single set, including tandem repeated HOSPI domains, leads to diversity and effective production of mature HOSPIs by posttranslational processing. GENERAL SIGNIFICANCE These findings shed light on the diversity of proteinase inhibitors.
Collapse
|
15
|
Xu S, Wang Y, Jiang Y, Han C, Qin Q, Wei S. Functional analysis of the cystatin A gene response to SGIV infection in orange-spotted grouper, Epinephelus coioides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104502. [PMID: 35940384 DOI: 10.1016/j.dci.2022.104502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Cystatin A (CyA), an inhibitor of cysteine protease, was widely studied in immune defense and cancer therapy. However, the function of CyA and its potential molecular mechanism during virus infection in fish remain unknown. In our study, we cloned the open reading frame (ORF) of CyA homology from orange-spotted grouper (Ec-CyA) consisting of 303 nucleotides and encoding a 101-amino acid protein. Ec-CyA included two conserved sequences containing one N-terminal glycine fragment and one QXVXG sequence (48aa-52aa) without the signal peptide. Tissue distribution analysis showed that Ec-CyA was highly expressed in spleen and head kidney. Moreover, further analysis indicated that the expression of Ec-CyA increased during SGIV simulation in grouper spleen (GS) cells. Subcellular localization assay demonstrated that Ec-CyA was mainly distributed in cytoplasm in GS cells. Overexpressed Ec-CyA promoted the mRNA level of viral genes MCP, VP19 and LITAF. Meanwhile, SGIV-induced apoptosis in fat head minnow (FHM) cells was facilitated, as well as the activation of caspase-3/7, caspase-9. In addition, Ec-CyA overexpression down-regulated the expression of interferon (IFN) related molecules including ISG15, IFN, IRF3, MAVS, MyD88, TRAF6 and up-regulated proinflammatory factors such as IL-1β, IL-8 and TNF-α. At the same time, Ec-CyA-overexpressing inhibited the activity of IFN and ISRE promoter, but induced NF-κB promoter activity by luciferase reporter gene assay. In summary, our findings suggested that Ec-CyA was involved in innate immune response and played a key role in DNA virus infection.
Collapse
Affiliation(s)
- Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Xu S, Wang Y, Han C, Jiang Y, Qin Q, Wei S. Functional analysis of the Cystatin F gene response to SGIV infection in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2022; 130:43-52. [PMID: 36084885 DOI: 10.1016/j.fsi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Cystatin F (CyF), an inhibitor of cysteine protease, was widely studied in immune defense and cancer therapy. However, the function of CyF and its latent molecular mechanism during virus infection in fish remain vacant. In our research, we cloned the open reading frame (ORF) of CyF homology from orange-spotted grouper (Ec-CyF) consisting of 342 nucleotides and encoding a 114-amino acid protein. Ec-CyF included two cystatins family sequences containing one KXVXG sequence without the signal peptide, and a hairpin ring containing proline and tryptophan (PW). Tissue distribution analysis indicated that Ec-CyF was highly expressed in spleen and head kidney. Besides, further analysis showed that the expression of Ec-CyF increased during SGIV infection in grouper spleen (GS) cells. Subcellular localization assay demonstrated that Ec-CyF was mainly distributed in cytoplasm in GS cells. Overexpressed Ec-CyF demoted the mRNA level of viral genes MCP, VP19 and LITAF. Meanwhile, SGIV-induced apoptosis in fat head minnow (FHM) cells was impeded, as well as the restraint of caspase 3/7 and caspase 8. In addition, Ec-CyF overexpression up-regulated the expression of IFN related molecules including ISG15, IFN, IFP35, IRF3, IRF7, MYD88 and down-regulated proinflammatory factors such as IL-1β, IL-8 and TNF-α. At the same time, Ec-CyF-overexpressing increased the activity of IFN3 and ISRE promoter, but impeded NF-κB promoter activity by luciferase reporter gene assay. In summary, our findings suggested that Ec-CyF was involved in innate immunity response and played a key role in DNA virus infection.
Collapse
Affiliation(s)
- Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull SB, Najda A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022; 27:5354. [PMID: 36014591 PMCID: PMC9412838 DOI: 10.3390/molecules27165354] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pea (Pisum sativum) is an important source of nutritional components and is rich in protein, starch, and fiber. Pea protein is considered a high-quality protein and a functional ingredient in the global industry due to its low allergenicity, high protein content, availability, affordability, and deriving from a sustainable crop. Moreover, pea protein has excellent functional properties such as solubility, water, and oil holding capacity, emulsion ability, gelation, and viscosity. Therefore, these functional properties make pea protein a promising ingredient in the food industry. Furthermore, several extraction techniques are used to obtain pea protein isolate and concentrate, including dry fractionation, wet fractionation, salt extraction, and mild fractionation methods. Dry fractionation is chemical-free, has no loss of native functionality, no water use, and is cost-effective, but the protein purity is comparatively low compared to wet extraction. Pea protein can be used as a food emulsifier, encapsulating material, a biodegradable natural polymer, and also in cereals, bakery, dairy, and meat products. Therefore, in this review, we detail the key properties related to extraction techniques, chemistry, and structure, functional properties, and modification techniques, along with their suitable application and health attributes.
Collapse
Affiliation(s)
- Parvathy Shanthakumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| |
Collapse
|
18
|
Milhm ACP, Bonet LFS, Aiub CAF, Siqueira Junior CL. Biochemical characterization and phytotoxic activity of protein extract from Euphorbia tirucalli L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114903. [PMID: 34890731 DOI: 10.1016/j.jep.2021.114903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia tirucalli L., a tropical and subtropical plant, also known by the popular name avelós, has been used in folk medicine against many diseases as rheumatism, asthma, toothache, and cancer. Studies have shown that natural compounds contained in this plant species may be associated with these functions. However, little is known about its potential toxicity. AIM OF THE STUDY Several proteins conduct biological functions, in particular, proteinases, play a crucial role in many mechanisms of living beings, including plants, animals and microorganisms. However, when poorly regulated, they can generate consequences, such as the non-production of certain substances, or even the abnormal multiplication of cells, which leads to tumors. On the other hand, by regulating these enzymes, proteinase inhibitors act by reducing the activity of proteinases, thus preventing their malfunction. The objective of this work was to evaluate the toxicity of the protein extract of E. tirucalli and to purify a protease inhibitor that may be associated with the biological medicinal functions of the plant. MATERIALS AND METHODS The cytotoxic and mutagenic properties of the protein extract produced from the stem of avelós was investigated using the Ames test. The protein extract was also submitted to a protease inhibitor purification process using the gel filtration chromatography technique and the purified protein was biochemically characterized. RESULTS A protease inhibitor, called tirustatin, was isolated 1.84-fold by Biogel P100. The calculated molecular mass of the isolated protein is 25.97 kDa. The inhibitor was stable at pH 3-10, with pronounced activity at pH 6. Thermostability was observed even at elevated temperature (100 °C) with inhibitory activity increased by 1.14-fold compared to inhibitor activity at room temperature. Incubation at basic pH values for up to 60 min caused little reduction (0.25-fold) in the papain inhibitory activity of tirustatin. The stoichiometry of the papain-tirustatin interaction was 1.5: 1 and 28.8 pM of the inhibitor effected 50% inhibition. With an equilibrium dissociation constant of 8.74 x 10-8M for the papain enzyme, it is possible to evaluate the isolated protein as a non-competitive inhibitor. In addition, the protein extract of E. tirucalli even at the maximum concentration used (20 μg/mL), did not show a cytotoxic and mutagenic profile in a bacterial model. CONCLUSION The results presented in this work provide data that reinforce the idea of the potential use of proteins produced in E. tirucalli as pharmacological and biotechnological agents that can be exploited for the development of efficient drugs.
Collapse
Affiliation(s)
- Ana Carolina Pereira Milhm
- Laboratory of Biochemistry and Function of Plant Proteins, Department of Botany, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458, Urca, Brazil.
| | - Luiz Felippe Sarmento Bonet
- Laboratory of Biochemistry and Function of Plant Proteins, Department of Botany, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458, Urca, Brazil.
| | - Claudia Alessandra Fortes Aiub
- Laboratory of Genotoxicity, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro, R. Frei Caneca, 94 - Centro, Brazil.
| | - César Luis Siqueira Junior
- Laboratory of Biochemistry and Function of Plant Proteins, Research Center on Agricultural Systems, Department of Botany, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458, Urca, Brazil.
| |
Collapse
|
19
|
Sultana MS, Millwood RJ, Mazarei M, Stewart CN. Proteinase inhibitors in legume herbivore defense: from natural to genetically engineered protectants. PLANT CELL REPORTS 2022; 41:293-305. [PMID: 34674016 DOI: 10.1007/s00299-021-02800-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Proteinase inhibitors (PIs) from legumes have the potential for use as protectants in response to pests and pathogens. Legumes have evolved PIs that inhibit digestive proteinases upon herbivory resulting in delayed development, deformities, and reduced fertility of herbivorous insects. Legume PIs (serine proteinase inhibitors and cysteine proteinase inhibitors) have been overexpressed in plants to confer plant protection against herbivores. Recently, the co-expression of multiple PIs in transgenic plants enhanced host defense over single PI expression, i.e., in an additive fashion. Therefore, a synthetic PI could conceivably be designed using different inhibitory domains that may provide multifunctional protection. Little attention has yet given to expanding PI gene repertoires to improve PI efficacy for targeting multiple proteinases. Also, PIs have been shown to play an important role in response to abiotic stresses. Previously published papers have presented several aspects of strategic deployment of PIs in transgenic plants, which is the focus of this review by providing a comprehensive update of the recent progress of using PIs in transgenic plants. We also emphasize broadening the potential usefulness of PIs and their future direction in research, which will likely result in a more potent defense against herbivores.
Collapse
Affiliation(s)
| | | | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
20
|
Dick K, Pattang A, Hooker J, Nissan N, Sadowski M, Barnes B, Tan LH, Burnside D, Phanse S, Aoki H, Babu M, Dehne F, Golshani A, Cober ER, Green JR, Samanfar B. Human-Soybean Allergies: Elucidation of the Seed Proteome and Comprehensive Protein-Protein Interaction Prediction. J Proteome Res 2021; 20:4925-4947. [PMID: 34582199 DOI: 10.1021/acs.jproteome.1c00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The soybean crop, Glycine max (L.) Merr., is consumed by humans, Homo sapiens, worldwide. While the respective bodies of literature and -omics data for each of these organisms are extensive, comparatively few studies investigate the molecular biological processes occurring between the two. We are interested in elucidating the network of protein-protein interactions (PPIs) involved in human-soybean allergies. To this end, we leverage state-of-the-art sequence-based PPI predictors amenable to predicting the enormous comprehensive interactome between human and soybean. A network-based analytical approach is proposed, leveraging similar interaction profiles to identify candidate allergens and proteins involved in the allergy response. Interestingly, the predicted interactome can be explored from two complementary perspectives: which soybean proteins are predicted to interact with specific human proteins and which human proteins are predicted to interact with specific soybean proteins. A total of eight proteins (six specific to the human proteome and two to the soy proteome) have been identified and supported by the literature to be involved in human health, specifically related to immunological and neurological pathways. This study, beyond generating the most comprehensive human-soybean interactome to date, elucidated a soybean seed interactome and identified several proteins putatively consequential to human health.
Collapse
Affiliation(s)
- Kevin Dick
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Arezo Pattang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Julia Hooker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Michael Sadowski
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bradley Barnes
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Le Hoa Tan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Daniel Burnside
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ashkan Golshani
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Elroy R Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
21
|
Zhong H, Chen Z, Lin J, Xu Y, Liu D, Yin X. The inhibition mechanism of carp (
Cyprinus carpio
) stefin to cathepsin B and their tertiary structures. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Haixia Zhong
- Department of Agricultural Technology Neijiang Vocational and Technical College Neijiang 641100 China
| | - Zhiguang Chen
- Department of Agricultural Technology Neijiang Vocational and Technical College Neijiang 641100 China
| | - Jianhe Lin
- Department of Agricultural Technology Neijiang Vocational and Technical College Neijiang 641100 China
| | - Yi Xu
- Department of Agricultural Technology Neijiang Vocational and Technical College Neijiang 641100 China
| | - Dan Liu
- Department of Agricultural Technology Neijiang Vocational and Technical College Neijiang 641100 China
| | - Xianfeng Yin
- Department of Agricultural Technology Neijiang Vocational and Technical College Neijiang 641100 China
| |
Collapse
|
22
|
Nur’aini AL, Hartati S, Untari T. In ovo inhibition of avian pox virus replication by mangosteen rind and red ginger ethanolic extracts. Vet World 2021; 14:2640-2645. [PMID: 34903920 PMCID: PMC8654773 DOI: 10.14202/vetworld.2021.2640-2645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND AIM Avian pox is a contagious disease caused by the avian pox virus (APV). Mangostin and γ-mangostin in mangosteen rind (MR) and gingerol in red ginger (RG) exhibit antiviral activity. In this study, we evaluated the effect of MR and RG ethanolic extracts on APV based on pock lesions on the chorioallantoic membrane (CAM) of specific pathogen-free (SPF) embryonated chicken eggs (ECEs). MATERIALS AND METHODS Three APVs from chicken isolates (C1, C2, and C3), one APV from a pigeon isolate (P), 1.5% and 3% MR ethanolic extract, 5% and 10% RG ethanolic extract, and a combination of 1.5% MR and 5% RG at 0.1 mL/egg were inoculated in ovo (7th day incubation, chorioallantoic route) in SPF ECEs. A control group inoculated in ovo with APV alone was also established. Each treatment consisted of three replicates. Parameters including embryo survival, CAM lesions, and average number of pock lesions were determined. RESULTS In ovo inoculation of MR and RG ethanolic extracts was not harmful to the ECEs and did not induce CAM lesions. The average number of pock lesions in the control group (C1, C2, C3, and P) was 35, 14, 10, and 17, respectively, whereas in all treatment groups, the number was 0, except in the 5% RG group of C1, which had a value of 10. CONCLUSION In ovo inoculation of 1.5% and 3% MR, 5% and 10% RG, and the combination of 1.5% MR plus 5% RG ethanolic extracts at 0.1 mL/egg inhibit APV by reducing the number of pock lesions on the CAM of the ECE.
Collapse
Affiliation(s)
- Annisaa’ Lu’lu Nur’aini
- Postgraduate Program of Veterinary Science, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sri Hartati
- Department of Internal Medicine, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Tri Untari
- Department of Microbiology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
23
|
Huang Y, Wu J, Chen X, Tong D, Zhou J, Wu F, Zhang H, Yang Y, Ma G, Du A. A Zinc Metalloprotease nas-33 Is Required for Molting and Survival in Parasitic Nematode Haemonchus contortus. Front Cell Dev Biol 2021; 9:695003. [PMID: 34327203 PMCID: PMC8313830 DOI: 10.3389/fcell.2021.695003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Molting is of great importance for the survival and development of nematodes. Nematode astacins (NAS), a large family of zinc metalloproteases, have been proposed as novel anthelmintic targets due to their multiple roles in biological processes of parasitic nematodes. In this study, we report a well conserved nas-33 gene in nematodes of clade V and elucidate how this gene is involved in the molting process of the free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. A predominant transcription of nas-33 is detected in the larval stages of these worms, particularly in the molting process. Knockdown of this gene results in marked molecular changes of genes involved in cuticle synthesis and ecdysis, compromised shedding of the old cuticle, and reduced worm viability in H. contortus. The crucial role of nas-33 in molting is closely associated with a G protein beta subunit (GPB-1). Suppression of both nas-33 and gpb-1 blocks shedding of the old cuticle, compromises the connection between the cuticle and hypodermis, and leads to an increased number of sick and dead worms, indicating essentiality of this module in nematode development and survival. These findings reveal the functional role of nas-33 in nematode molting process and identify astacins as novel anthelmintic targets for parasitic nematodes of socioeconomic significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Li R, Tan X, Li S, Jin Y, Li S, Li S, Takala TM, Saris PEJ. Cloning, Expression, Characterization, and Tissue Distribution of Cystatin C from Silver Carp ( Hypophthalmichthys molitrix). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5144-5154. [PMID: 33881846 DOI: 10.1021/acs.jafc.1c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cystatins are proteins, which inhibit cysteine proteases, such as papain. In this study, the 336-bp cystatin C gene (family II, HmCysC) of silver carp (Hypophthalmichthys molitrix) was cloned and expressed in Escherichia coli BL21 (DE3). HmCysC encodes the mature peptide of cystatin C (HmCystatin C), with 111 amino acids. A typical QXXXG motif was found in HmCystatin C and it formed a cluster with Cyprinus carpio and Danio rerio cystatin C in the phylogenetic tree. Quantitative real-time polymerase chain reaction analysis indicated that HmCysC was transcribed at different levels in five tested tissues of silver carp. Following purification with Ni2+- nitrilotriacetic acid agarose affinity chromatography, HmCystatin C displayed a molecular weight of 20 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Purified HmCystatin C had strong inhibitory effects toward the proteolytic activity of papain. Immunochemical staining with anti-HmCystatin C antibody showed that HmCystatin C was widely distributed in silver carp tissues. These results collectively demonstrated the properties of HmCystatin C, providing information for further studies of cystatins from fish organisms.
Collapse
Affiliation(s)
- Ran Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00014, Finland
| | - Xiaoqian Tan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
| | - Shuhong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
| | - Yu Jin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
| | - Song Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
| | - Shulei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province 130021, China
| | - Timo M Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00014, Finland
| | - Per E J Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
25
|
Herwade AP, Kasar SS, Rane NR, Ahmed S, Maras JS, Pawar PK. Characterization of a Bowman-Birk type trypsin inhibitor purified from seeds of Solanum surattense. Sci Rep 2021; 11:8648. [PMID: 33883624 PMCID: PMC8060351 DOI: 10.1038/s41598-021-87980-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
A Bowman-Birk type trypsin inhibitor protein (SSTI) from seeds of the medicinal plant Solanum surattense was isolated, purified and characterized. SSTI showed a single band on SDS-PAGE corresponding to 11.4 kDa molecular weight. It is a glycoprotein (2.8% glycosylation) that differentially interacted with trypsin and chymotrypsin in a concentration-dependent manner. Its peptide sequence is similar to other Bowman-Birk type protease inhibitors found in Glycine max and Phaseolus acutifolius. The inhibitory activity was stable over a wide range of pH (1-10) and temperatures (10-100° C). Far-UV Circular Dichroism (CD) studies showed that SSTI contains β sheets (~ 23%) and α helix (~ 6%) and demonstrated structural stability at wide pH and high temperature. The kinetic analysis revealed a noncompetitive (mixed) type nature of SSTI and low inhibitor constant (Ki) values (16.6 × 10-8 M) suggested strong inhibitory activity. Isothermal titration calorimetric analysis revealed its high affinity towards trypsin with dissociation constant (Kd) 2.28 µM.
Collapse
Affiliation(s)
- Abhijeet P Herwade
- Department of Biotechnology, Shivaji University, Kolhapur, MS, 416004, India
| | - Sainath S Kasar
- Department of Biotechnology, Shivaji University, Kolhapur, MS, 416004, India
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, 425001, India
| | - Niraj R Rane
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Shadab Ahmed
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Science, New Delhi, 110070, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur, MS, 416004, India.
| |
Collapse
|
26
|
Purification and Characterization of a Novel Thermostable Papain Inhibitor from Moringa oleifera with Antimicrobial and Anticoagulant Properties. Pharmaceutics 2021; 13:pharmaceutics13040512. [PMID: 33917878 PMCID: PMC8068210 DOI: 10.3390/pharmaceutics13040512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022] Open
Abstract
Plant cystatins (or phytocystatins) comprise a large superfamily of natural bioactive small proteins that typically act as protein inhibitors of papain-like cysteine proteases. In this report, we present the purification and characterization of the first phytocystatin isolated from Moringa oleifera (MoPI). MoPI has a molecular mass of 19 kDa and showed an extraordinary physicochemical stability against acidic pHs and high temperatures. Our findings also revealed that MoPI is one of the most potent cysteine protease inhibitors reported to date, with Ki and IC50 values of 2.1 nM and 5.7 nM, respectively. More interestingly, MoPI presents a strong antimicrobial activity against human pathogens such as Enterococcus faecalis and Staphylococcus aureus. In addition, MoPI also showed important anticoagulant activity, which is an unprecedented property for this family of protease inhibitors. These results highlight the pharmaceutical potential of this plant and its derived bioactive molecules.
Collapse
|
27
|
de Almeida Barros R, Meriño-Cabrera Y, Vital CE, da Silva Júnior NR, de Oliveira CN, Lessa Barbosa S, Marques Gonçalves Assis JV, Ramos HJ, de Almeida Oliveira MG. Small peptides inhibit gut trypsin-like proteases and impair Anticarsia gemmatalis (Lepidoptera: Noctuidae) survival and development. PEST MANAGEMENT SCIENCE 2021; 77:1714-1723. [PMID: 33200876 DOI: 10.1002/ps.6191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Anticarsia gemmatalis larvae are key defoliating pests of soybean plants. Inorganic insecticides, harmful to the environment and human health, are the main molecules used in the control of this pest. To apply more sustainable management methods, organic molecules with high specificities, such as proteinaceous protease inhibitors, have been sought. Thus, molecular docking studies, kinetics assays, and biological tests were performed to evaluate the inhibitory activity of two peptides (GORE1 and GORE2) rationally designed to inhibit trypsin-like enzymes, which are the main proteases of A. gemmatalis midgut. RESULTS The molecular docking simulations revealed critical hydrogen bonding patterns of the peptides with key active site residues of trypsin-like proteases of A. gemmatalis and other Lepidopteran insects. The negative values of binding energy indicate that hydrogen bonds potentiate the tight binding of the peptides with trypsin-like proteases, predicting an effective inhibition. The inhibition's rate constants (Ki) were 0.49 and 0.10 mM for GORE1 and GORE2, resulting in effective inhibition of the activity trypsin on the L-BApNA substrate in the in vitro tests, indicating that the peptide GORE2 has higher inhibitory capacity on the A. gemmatalis trypsins. In addition, the two peptides were determined to be reversible competitive inhibitors. The in vivo test demonstrated that the peptides harm the survival and development of A. gemmatalis larvae. CONCLUSION These results suggest that these peptides are potential candidates in the management of A. gemmatalis larvae and provide baseline information for the design of new trypsin-like inhibitors based on peptidomimetic tools. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Yaremis Meriño-Cabrera
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Camilo E Vital
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Neilier R da Silva Júnior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Cauê N de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Samuel Lessa Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - João V Marques Gonçalves Assis
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Humberto Jo Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria G de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| |
Collapse
|
28
|
Fakhri S, Piri S, Majnooni MB, Farzaei MH, Echeverría J. Targeting Neurological Manifestations of Coronaviruses by Candidate Phytochemicals: A Mechanistic Approach. Front Pharmacol 2021; 11:621099. [PMID: 33708124 PMCID: PMC7941749 DOI: 10.3389/fphar.2020.621099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a wide range of manifestations. In this regard, growing evidence is focusing on COVID-19 neurological associations; however, there is a lack of established pathophysiological mechanisms and related treatments. Accordingly, a comprehensive review was conducted, using electronic databases, including PubMed, Scopus, Web of Science, and Cochrane, along with the author's expertize in COVID-19 associated neuronal signaling pathways. Besides, potential phytochemicals have been provided against neurological signs of COVID-19. Considering a high homology among SARS-CoV, Middle East Respiratory Syndrome and SARS-CoV-2, revealing their precise pathophysiological mechanisms seems to pave the road for the treatment of COVID-19 neural manifestations. There is a complex pathophysiological mechanism behind central manifestations of COVID-19, including pain, hypo/anosmia, delirium, impaired consciousness, pyramidal signs, and ischemic stroke. Among those dysregulated neuronal mechanisms, neuroinflammation, angiotensin-converting enzyme 2 (ACE2)/spike proteins, RNA-dependent RNA polymerase and protease are of special attention. So, employing multi-target therapeutic agents with considerable safety and efficacy seems to show a bright future in fighting COVID-19 neurological manifestations. Nowadays, natural secondary metabolites are highlighted as potential multi-target phytochemicals in combating several complications of COVID-19. In this review, central pathophysiological mechanisms and therapeutic targets of SARS-CoV-2 has been provided. Besides, in terms of pharmacological mechanisms, phytochemicals have been introduced as potential multi-target agents in combating COVID-19 central nervous system complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
29
|
Jmel MA, Aounallah H, Bensaoud C, Mekki I, Chmelař J, Faria F, M’ghirbi Y, Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int J Mol Sci 2021; 22:E892. [PMID: 33477394 PMCID: PMC7831016 DOI: 10.3390/ijms22020892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Hajer Aounallah
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Chaima Bensaoud
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Youmna M’ghirbi
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| |
Collapse
|
30
|
Ribeiro HS, Soares AMS, de Jesus Castro Brito D, Oliveira JTA, Costa-Junior LM. Inhibition of Protease and Egg Hatching of Haemonchus contortus by Soybean Seed Exudates. J Parasitol 2021; 107:23-28. [PMID: 33498082 DOI: 10.1645/19-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal nematode infection of small ruminants causes losses in livestock production. Plant compounds show promises as alternatives to commercial anthelmintics that have been exerting selective pressures that lead to the development of drug-resistant parasites. Soybean (Glycine max) is an economical value crop, with a higher protein content compared to other legumes. The objective of this study was to evaluate whether the protease inhibitors exuded from the G. max mature seeds have anthelmintic activity against Haemonchus contortus. To obtain the soybean exudates (SEX), mature seeds were immersed in 100 mM sodium acetate buffer, pH 5.0, at 10 C, for 24 hr. Then the naturally released substances present in SEX were collected and exhaustively dialyzed (cutoff 12 kDa) against distilled water. The dialyzed seed exudates (SEXD) were heated at 100 C for 10 min and centrifuged (12,000 g, at 4 C for 15 min). The supernatant obtained was recovered and designated as the heat-treated exudate fraction (SEXDH). The protein content, protease inhibitor activity, and the effect of each fraction on H. contortus egg hatch rate were evaluated. The inhibition extent of SEX, SEXD, and SEXDH on H. contortus egg proteases was 31.1, 42.9, and 63.8%, respectively. Moreover, SEX, SEXD, and SEXDH inhibited the egg hatching with EC50 of 0.175, 0.175, and 0.241 mg ml-1, respectively. Among the commercial protease inhibitors tested, only EDTA and E-64 inhibited the H. contortus hatch rate (79.0 and 28.9%, respectively). We present evidence demonstrating that soybean exudate proteins can effectively inhibit H. contortus egg hatching. This bioactivity is displayed by thermostable proteins and provides evidence that protease inhibitors are a potential candidate for anthelmintic use.
Collapse
Affiliation(s)
- Helen Silva Ribeiro
- Laboratory of Plant Biochemistry, Center for Exact Sciences and Technology, Federal University of Maranhao, Sao Luis, MA, 65080-805, Brazil
| | - Alexandra Martins Santos Soares
- Laboratory of Plant Biochemistry, Center for Exact Sciences and Technology, Federal University of Maranhao, Sao Luis, MA, 65080-805, Brazil
| | - Daniella de Jesus Castro Brito
- Laboratory of Plant Biochemistry, Center for Exact Sciences and Technology, Federal University of Maranhao, Sao Luis, MA, 65080-805, Brazil
| | - José Tadeu A Oliveira
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60440-900, Brazil
| | - Lívio Martins Costa-Junior
- Laboratory of Parasite Control, Center for Biological and Health Sciences, Federal University of Maranhao, Sao Luis, MA, 65080-805, Brazil
| |
Collapse
|
31
|
Barzkar N, Khan Z, Tamadoni Jahromi S, Pourmozaffar S, Gozari M, Nahavandi R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int J Biol Macromol 2020; 170:674-687. [PMID: 33387547 DOI: 10.1016/j.ijbiomac.2020.12.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Marine organisms are rich sources of enzymes and their inhibitors having enormous therapeutic potential. Among different proteolytic enzymes, serine proteases, which can be obtained from various marine organisms show a potential to biomedical application as thrombolytic agents. Although this type of proteases plays a crucial role in almost all biological processes, their uncontrolled activity often leads to several diseases. Accordingly, the actions of these types of proteases are regulated by serine protease inhibitors (SPIs). Marine SPIs control complement activation and various other physiological functions, such as inflammation, immune function, fibrinolysis, blood clotting, and cancer metastasis. This review highlights the potential use of serine proteases and their inhibitors as the new wave of promising drugs.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Zahoor Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecological Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
32
|
In vitro screening of peptidase inhibitory activity in some plants of North India. Heliyon 2020; 6:e05203. [PMID: 33088962 PMCID: PMC7566102 DOI: 10.1016/j.heliyon.2020.e05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/05/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
In the present study, trypsin and chymotrypsin inhibitory activity of some plants of different families was evaluated. A total of 55 plants were screened, out of which six showed the maximum trypsin inhibitory activity namely Acacia concinna, Caesalpinia bonducella, Lathyrus sativus, Mucuna pruriens, Psoralea corylifolia and Sapindus mukorossi. Results suggested that the plants showing trypsin inhibitory activity (TIA) also have chymotrypsin inhibitory activity (CIA). Both trypsin and chymotrypsin inhibitory activities were high in seeds compared to leaves followed by flowers. It was also observed that TIA was maximally present in Sapindaceae family whereas CIA was maximum in fabaceae family followed by others.
Collapse
|
33
|
Patriota LLDS, Ramos DDBM, Dos Santos ACLA, Silva YA, Gama E Silva M, Torres DJL, Procópio TF, de Oliveira AM, Coelho LCBB, Pontual EV, da Silva DCN, Paiva PMG, de Lorena VMB, Mendes RL, Napoleão TH. Antitumor activity of Moringa oleifera (drumstick tree) flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Food Chem Toxicol 2020; 145:111691. [PMID: 32810586 DOI: 10.1016/j.fct.2020.111691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
The plant Moringa oleifera is used as food and medicine. M. oleifera flowers are source of protein, fiber, and antioxidants, and are used to treat inflammation and tumors. This work evaluated the antitumor activity of the M. oleifera flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Swiss female mice were inoculated with sarcoma 180 cells. Seven days later, the animals were treated intraperitoneally for 1 week with daily doses of PBS (control) or MoFTI (15 or 30 mg/kg). For toxicity assessment, water and food consumption, body and organ weights, histological alterations, and blood hematological and biochemical parameters were measured. Treatment with MoFTI caused pronounced reduction (90.1%-97.9%) in tumor weight. The tumors of treated animals had a reduced number of secondary vessels and lower gauge of the primary vessels compared to the control. No significant changes were observed in water and food consumption or in body and organ weights. Histopathological analysis did not indicate damage to the liver, kidneys, and spleen. In conclusion, MoFTI showed antitumor potential, with no clear evidence of toxicity.
Collapse
Affiliation(s)
| | | | | | - Yasmym Araújo Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Mariana Gama E Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Diego José Lira Torres
- Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Thamara Figueiredo Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Rosemairy Luciane Mendes
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
34
|
Li R, Li S, Chen Z, Jin Y, Li S, Li S, Bai Z. Grass carp (Ctenopharyngodon idella) stefin A: Systematic research on its cloning, expression, characterization and tissue distribution. Food Chem 2020; 335:127564. [PMID: 32738541 DOI: 10.1016/j.foodchem.2020.127564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/13/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
To fully understand the properties of piscine stefins (family I cystatins), the 294-bp stefinA gene from grass carp (Ctenopharyngodon idella, Ci) was cloned and expressed in E. coli BL21 (DE3). After purification by Ni2+-NTA agarose affinity chromatography, the CiStefin A protein was tested to have a molecular weight of 11.48 kDa and an isoelectric point of 8.7. The typical motif of the cystatins superfamily was characterized from CiStefin A (QVVQG). CiStefin A specifically inhibited the activity of papain and cathepsin B/L. The Ki value of CiStefin A against papain was 6.5 × 10-11 M. CiStefin A showed excellent heat and acid-base tolerance. StefinA gene transcription occurred in all tested tissues of grass carp, with the highest level in the hepatopancreas. Immunolocalization staining with an anti-CiStefinA antibody revealed the CiStefinA protein distribution in all tested tissues at various levels. Overall, these results clarified the physical and biochemical properties of grass carp stefin A.
Collapse
Affiliation(s)
- Ran Li
- College of Food Science, Sichuan Agricultural University, Sichuan Province 625014, China; Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00014, Finland
| | - Shuhong Li
- College of Food Science, Sichuan Agricultural University, Sichuan Province 625014, China.
| | - Zhiguang Chen
- College of Food Science, Sichuan Agricultural University, Sichuan Province 625014, China
| | - Yu Jin
- College of Food Science, Sichuan Agricultural University, Sichuan Province 625014, China
| | - Shulei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Jilin Province 130021, China
| | - Song Li
- College of Food Science, Sichuan Agricultural University, Sichuan Province 625014, China
| | - Zhizi Bai
- College of Food Science, Sichuan Agricultural University, Sichuan Province 625014, China
| |
Collapse
|
35
|
Li C, Li W, Zhang Y, Simpson BK. Comparison of physicochemical properties of recombinant buckwheat trypsin inhibitor (rBTI) and soybean trypsin inhibitor (SBTI). Protein Expr Purif 2020; 171:105614. [PMID: 32114102 DOI: 10.1016/j.pep.2020.105614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
Abstract
The inhibitory activities of buckwheat trypsin inhibitor (rBTI) towards trypsin were compared with soybean trypsin inhibitor (SBTI) in terms of their sensitivities to temperature, pH, salt ions and organic solvents. Both rBTI and SBTI were stable over a broad pH range of 2.0-12.0. rBTI exhibited higher thermal stability than SBTI. The inhibitory activity of rBTI was decreased by Zinc ions (Zn2+), KSCN, vitamin C and urea, while that of SBTI remained unchanged. However, H2O2, Mg2+ and Cu2+ ions had no significant effects on the inhibitory activities of rBTI and SBTI. Acetonitrile enhanced the inhibitory activity of rBTI, but had no effect on SBTI, while dimethylacetamide (DMAC) increased the inhibitory effect of both rBTI and SBTI. On the contrary, the inhibitory activities of rBTI and SBTI were reduced by isopropyl alcohol and methanol. The inhibition constants Ki of rBTI and SBTI were calculated to be 7.41 × 10-9 M and 6.52 × 10-9 M, respectively.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China.
| | - Wenjie Li
- School of Life Science, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China.
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus), Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| | - Benjamin Kofi Simpson
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus), Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
36
|
Raj S, Aswati Nair R, Peter P. Antimicrobial peptide (AMP) from Zingiber zerumbet rhizomes with inhibitory effect on Pythium myriotylum secretory proteases and zoospore viability. World J Microbiol Biotechnol 2020; 36:77. [PMID: 32399738 DOI: 10.1007/s11274-020-02848-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/04/2020] [Indexed: 11/24/2022]
Abstract
Protease mediated proteolysis has been widely implicated in virulence of necrotrophic fungal pathogens. This is counteracted in plants by evolving new and effective antimicrobial peptides (AMP) that constitute important components of innate immune system. Peptide extraction from rhizome of Zingiber zerumbet was optimized using ammonium sulphate (50-80% w/v) and acetone (60 and 100% v/v) with maximal protein recovery of 1.2 ± 0.4 mg/g obtained using 100% acetone. Evaluation of inhibitory potential of Z. zerumbet rhizome protein extract to prominent hydrolases of necrotrophic Pythium myriotylum revealed maximal inhibition of proteases (75.8%) compared to other hydrolytic enzymes. Protein was purified by Sephacryl S200HR resin resulting in twofold purification and protease inhibition of 84.4%. Non-reducing polyacrylamide gel electrophoresis (PAGE) of the fractions yielded two bands of 75 kDa and 25 kDa molecular size. Peptide mass fingerprint of the protein bands using matrix assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectroscopy (MS) and subsequent MASCOT searches revealed peptide match to methylesterase from Arabidopsis thaliana (15%) and to hypothetical protein from Oryza sativa (98%) respectively. Further centrifugal filter purification using Amicon Ultra (10,000 MW cut-off) filter, yielded a prominent band of 25 kDa size. Concentration dependent inhibition of zoospore viability by Z. zerumbet AMP designated as ZzAMP was observed with maximal inhibition of 89.5% at 4 µg protein and an IC50 value of 0.59 µg. Studies are of particular relevance in the context of identifying the molecules involved in imparting below ground defense in Z. zerumbet as well in development of AMPs as potential candidate molecules for control of necrotrophic pathogens of agricultural relevance.
Collapse
Affiliation(s)
- Sharmila Raj
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673 601, India
| | - R Aswati Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala (CUK), Kasaragod, 671 320, India.
| | - Princy Peter
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673 601, India
| |
Collapse
|
37
|
Cotabarren J, Broitman DJ, Quiroga E, Obregón WD. GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int J Biol Macromol 2020; 148:869-879. [DOI: 10.1016/j.ijbiomac.2020.01.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|
38
|
Lokya V, Swathi M, Mallikarjuna N, Padmasree K. Response of Midgut Trypsin- and Chymotrypsin-Like Proteases of Helicoverpa armigera Larvae Upon Feeding With Peanut BBI: Biochemical and Biophysical Characterization of PnBBI. FRONTIERS IN PLANT SCIENCE 2020; 11:266. [PMID: 32265951 PMCID: PMC7105688 DOI: 10.3389/fpls.2020.00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Proteinase/Protease inhibitors (PIs) from higher plants play an important role in defense and confer resistance against various insect pests and pathogens. In the present study, Bowman-Birk Inhibitor (BBI) was purified from mature seeds of an interspecific advanced hybrid peanut variety (4368-1) using chromatographic techniques. The biochemical and biophysical characteristics such as low molecular mass, presence of several isoinhibitors and higher-ordered dimer/tetramer, predominance of antiparallel β-sheets and random coils in secondary structure, reactive sites against trypsin and chymotrypsin, broad spectrum of stability toward extreme pH and temperature along with MALDI TOF-TOF analysis (ProteomeXchange identifier PXD016933) ascertained the purified biomolecule from peanut as BBI (PnBBI). Surface plasmon resonance competitive binding analysis revealed the bifunctional PnBBI is a trypsin specific inhibitor with 1:2 stoichiometry as compared to chymotrypsin. A concentration-dependent self-association tendency of PnBBI was further confirmed by 'red shift' in the far-UV CD spectra. Furthermore, the insecticidal potential of PnBBI against Helicoverpa armigera was assessed by in vitro assays and in vivo feeding experiments. A significant reduction in larval body weight was observed with concomitant attenuation in the activity of midgut trypsin-like proteases of H. armigera (HaTPs) fed on PnBBI supplemented diet. The one and two-dimensional zymography studies revealed the disappearance of several isoforms of HaTP upon feeding with PnBBI. qRT-PCR analysis further suggests the role of PnBBI in not only inhibiting the activity of midgut trypsin and chymotrypsin-like proteases but also in modulating their expression. Taken together, the results provide a biochemical and molecular basis for introgressed resistance in peanut interspecific advanced hybrid variety against H. armigera.
Collapse
Affiliation(s)
- Vadthya Lokya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Marri Swathi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
39
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
40
|
Cristina Oliveira de Lima V, Piuvezam G, Leal Lima Maciel B, Heloneida de Araújo Morais A. Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J Enzyme Inhib Med Chem 2019; 34:405-419. [PMID: 30734596 PMCID: PMC6327991 DOI: 10.1080/14756366.2018.1542387] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022] Open
Abstract
The increase in non-communicable chronic diseases has aroused interest in the research of adjuvants to the classic forms of treatments. Obesity and metabolic syndrome are the main targets of confrontation because they relate directly to other chronic diseases. In this context, trypsin inhibitors, molecules with wide heterologous application, appear as possibilities in the treatment of overweight and obesity due to the action on satiety related mechanisms, mainly in the modulation of satiety hormones, such as cholecystokinin. In addition, trypsin inhibitors have the ability to also act on some biochemical parameters related to these diseases, thus, emerging as potential candidates and promising molecules in the treatment of the obesity and metabolic syndrome. Thus, the present article proposes to approach, through a systematic literature review, the advantages, disadvantages and viabilities for the use of trypsin inhibitors directed to the treatment of overweight and obesity.
Collapse
Affiliation(s)
| | - Grasiela Piuvezam
- Department of Collective Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Heloneida de Araújo Morais
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
41
|
ClTI, a Kunitz trypsin inhibitor purified from Cassia leiandra Benth. seeds, exerts a candidicidal effect on Candida albicans by inducing oxidative stress and necrosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183032. [DOI: 10.1016/j.bbamem.2019.183032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
|
42
|
Ferreira GC, Duran AFA, da Silva FRS, Bomediano LDM, Machado GC, Sasaki SD. Neutrophil elastase inhibitor purification strategy from cowpea seeds. PLoS One 2019; 14:e0223713. [PMID: 31600323 PMCID: PMC6786636 DOI: 10.1371/journal.pone.0223713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023] Open
Abstract
Serine proteases and its inhibitors are involved in physiological process and its deregulation lead to various diseases like Chronic Obstructive Pulmonary Disease (COPD), pulmonary emphysema, skin diseases, atherosclerosis, coagulation diseases, cancer, inflammatory diseases, neuronal disorders and other diseases. Serine protease inhibitors have been described in many species, as well as in plants, including cowpea beans (Vigna unguiculata (L.) Walp). Here, we purified and characterized a protease inhibitor, named VuEI (Vigna unguiculata elastase inhibitor), from Vigna unguiculata, with inhibitory activity against HNE (human neutrophil elastase) and chymotrypsin but has no inhibitory activity against trypsin and thrombin. VuEI was obtained by alkaline protein extraction followed by three different chromatographic steps in sequence. First, an ion exchange chromatography using Hitrap Q column was employed, followed by two reversed-phase chromatography using Source15RPC and ACE18 columns. The molecular mass of VuEI was estimated in 10.99 kDa by MALDI-TOF mass spectrometry. The dissociation constant (Ki) to HNE was 9 pM. These data indicate that VuEI is a potent inhibitor of human neutrophil elastase, besides to inhibit chymotrypsin.
Collapse
Affiliation(s)
- Graziele Cristina Ferreira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | | | | | - Livia de Moraes Bomediano
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Gabriel Capella Machado
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Sergio Daishi Sasaki
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
43
|
Awosika T, Aluko RE. Enzymatic Pea Protein Hydrolysates Are Active Trypsin and Chymotrypsin Inhibitors. Foods 2019; 8:E200. [PMID: 31185637 PMCID: PMC6616451 DOI: 10.3390/foods8060200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
In this work, we report the potency of enzymatic hydrolysates of pea proteins against trypsin and chymotrypsin. Pea protein concentrate was digested with each of alcalase, chymotrypsin, pepsin, and trypsin, followed by membrane separation of the protein hydrolysates into peptide fractions (<1, 1-3, 3-5, and 5-10 kDa). Peptide size profiling with size-exclusion gel chromatography indicated the narrowest size range (0.85-4.98 kDa) for alcalase. Trypsin activity was strongly (p < 0.05) inhibited by the ultrafiltration fractions (mean IC50 = 2.2 mg/mL) obtained from the trypsin hydrolysate when compared to the unfractionated hydrolysate (IC50 = 6.8 mg/mL). Similarly, ultrafiltration also enhanced trypsin inhibition by the alcalase-digested peptides with an IC50 of 21.4 mg/mL for the unfractionated hydrolysate in comparison to 3.1-4.7 mg/mL for the fractions. However, ultrafiltration did not enhance trypsin inhibitory activity of chymotrypsin-digested peptides, while the peptide separation reduced efficacy of pepsin-digested peptides. In contrast, chymotrypsin inhibition by all the enzymatic digests was significantly (p < 0.05) enhanced by ultrafiltration, especially peptide sizes >3 kDa. Kinetics of enzyme inhibition indicate peptides were bound to the enzyme active site in a competitive mode that led to reduced catalysis. We conclude that the pea peptides could function as useful tools to promote human health and as a preservative during food processing and storage.
Collapse
Affiliation(s)
- Temitola Awosika
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
44
|
Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie 2019; 166:233-250. [PMID: 31071357 DOI: 10.1016/j.biochi.2019.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
Cystatins are endogenous and reversible inhibitors of cysteine peptidases that are important players in cancer progression. Besides their primary role as regulators of cysteine peptidase activity, cystatins are involved in cancer development and progression through proteolysis-independent mechanisms. Mechanistic studies of cystatin function revealed that they affect all stages of cancer progression including tumor growth, apoptosis, invasion, metastasis and angiogenesis. Recently, the involvement of cystatins in the antitumor immune responses was reported. In this review, we discuss molecular mechanisms and clinical aspects of cystatins in cancer. Altered expression of cystatins in cancer resulting in harmful excessive cysteine peptidase activity has been a subject of several studies in order to find correlations with clinical outcome and therapy response. However, involvement in anti-tumor immune response and signaling cascades leading to cancer progression designates cystatins as possible targets for development of new anti-tumor drugs.
Collapse
|
45
|
Melo IRS, Dias LP, Araújo NMS, Vasconcelos IM, Martins TF, de Morais GA, Gonçalves JFC, Nagano CS, Carneiro RF, Oliveira JTA. ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida tropicalis by inducing disruption of the cell surface. Int J Biol Macromol 2019; 133:1115-1124. [PMID: 31034905 DOI: 10.1016/j.ijbiomac.2019.04.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Infections caused by Candida tropicalis have increased significantly worldwide in parallel with resistance to antifungal drugs. To overcome resistance novel drugs have to be discovered. The objective of this work was to purify and characterize a cysteine protease inhibitor from the seeds of the Amazon rainforest tree Cassia leiandra and test its inhibitory effect against C. tropicalis growth. The inhibitor, named ClCPI, was purified after ion exchange and affinity chromatography followed by ultrafiltration. ClCPI is composed of a single polypeptide chain and is not a glycoprotein. The molecular mass determined by SDS-PAGE in the absence or presence of β-mercaptoethanol and ESI-MS were 16.63 kDa and 18.362 kDa, respectively. ClCPI was stable in the pH range of 7.0-9.0 and thermostable up to 60 °C for 20 min. ClCPI inhibited cysteine proteases, but not trypsin, chymotrypsin neither alpha-amylase. Inhibition of papain was uncompetitive with a Ki of 4.1 × 10-7 M and IC50 of 8.5 × 10-7 M. ClCPI at 2.6 × 10-6 M reduced 50% C. tropicalis growth. ClCPI induced damages and morphological alterations in C. tropicalis cell surface, which led to death. These results suggest that ClCPI have great potential for the development of an antifungal drug against C. tropicalis.
Collapse
Affiliation(s)
- Ivna R S Melo
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil
| | - Lucas P Dias
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil.
| | - Nadine M S Araújo
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil
| | - Thiago F Martins
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil
| | | | | | - Celso S Nagano
- Department of Fisher Engineering, Center of Agricultural Sciences, UFC, Science Center, UFC, Fortaleza, CE 60020-181, Brazil
| | - Rômulo F Carneiro
- Department of Fisher Engineering, Center of Agricultural Sciences, UFC, Science Center, UFC, Fortaleza, CE 60020-181, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil.
| |
Collapse
|
46
|
Shamsi TN, Parveen R, Ahmad A, Samal RR, Kumar S, Fatima S. Inhibition of gut proteases and development of dengue vector, Aedes aegypti by Allium sativum protease inhibitor. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.chnaes.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Brandão-Costa RM, Araújo VF, Porto ALF. CgTI, a novel thermostable Kunitz trypsin-inhibitor purified from Cassia grandis seeds: Purification, characterization and termiticidal activity. Int J Biol Macromol 2018; 118:2296-2306. [DOI: 10.1016/j.ijbiomac.2018.07.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
48
|
Rodamilans B, Shan H, Pasin F, García JA. Plant Viral Proteases: Beyond the Role of Peptide Cutters. FRONTIERS IN PLANT SCIENCE 2018; 9:666. [PMID: 29868107 PMCID: PMC5967125 DOI: 10.3389/fpls.2018.00666] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 05/23/2023]
Abstract
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hongying Shan
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio Pasin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
49
|
Recombinant Inga Laurina Trypsin Inhibitor (ILTI) Production in Komagataella Phaffii Confirms Its Potential Anti-Biofilm Effect and Reveals an Anti-Tumoral Activity. Microorganisms 2018; 6:microorganisms6020037. [PMID: 29710773 PMCID: PMC6027459 DOI: 10.3390/microorganisms6020037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Protease inhibitors have a broad biotechnological application ranging from medical drugs to anti-microbial agents. The Inga laurina trypsin inhibitor (ILTI) previously showed a great in vitro inhibitory effect under the adherence of Staphylococcus species, being a strong candidate for use as an anti-biofilm agent. Nevertheless, this is found in small quantities in its sources, which impairs its utilization at an industrial scale. Within this context, heterologous production using recombinant microorganisms is one of the best options to scale up the recombinant protein production. Thus, this work aimed at utilizing Komagataella phaffii to produce recombinant ILTI. For this, the vector pPIC9K+ILTI was constructed and inserted into the genome of the yeast K. phaffii, strain GS115. The protein expression was highest after 48 h using methanol 1%. A matrix-assisted laser desorption ionization⁻time-of-flight (MALDI⁻TOF) analysis was performed to confirm the production of the recombinant ILTI and its activity was investigated trough inhibitory assays using the synthetic substrate Nα-Benzoyl-D,L-arginine p-nitroanilide hydrochloride (BAPNA). Finally, recombinant ILTI (rILTI) was used in assays, showing that there was no significant difference between native and recombinant ILTI in its inhibitory activity in biofilm formation. Anti-tumor assay against Ehrlich ascites tumor (EAT) cells showed that rILTI has a potential anti-tumoral effect, showing the same effect as Melittin when incubated for 48 h in concentrations above 25 µg/mL. All together the results suggests broad applications for rILTI.
Collapse
|
50
|
Joanitti GA, Sawant RS, Torchilin VP, Freitas SMD, Azevedo RB. Optimizing liposomes for delivery of Bowman-Birk protease inhibitors - Platforms for multiple biomedical applications. Colloids Surf B Biointerfaces 2018; 167:474-482. [PMID: 29723819 DOI: 10.1016/j.colsurfb.2018.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/19/2022]
Abstract
One of the major challenges in the administration of therapeutic proteins involves delivery limitations. Liposomes are well-known drug delivery systems (DDS) that have been used to overcome this drawback; nevertheless, low protein entrapment efficiency (EE) still limits their wide biomedical application on a commercial scale. In the present work, different methods for protein entrapment into liposomes were tested in order to obtain tailored DDS platforms for multiple biomedical applications. The protein used as model was the Black-eyed pea Trypsin and Chymotrypsin Inhibitor (BTCI), a member of the Bowman-Birk protease inhibitor family (BBIs), which has been largely explored for its potential application in many biomedical therapies. We optimized reverse-phase evaporation (REV) and freeze/thaw (F/T) entrapment methods, using a cationic lipid matrix to entrap expressive amounts of BTCI (∼100 μM) in stable liposomes without affecting its protease inhibition activity. The influence of various parameters (e.g. entrapment method, liposome composition, buffer type) on particle size, charge, polydispersity, and EE of liposomes was investigated to provide an insight on how to control such parameters in view of obtaining a high entrapment yield. In addition, BTCI liposome platforms obtained herein showed to be versatile vesicles, allowing surface modification with moieties/polymers of interest (e.g. PEG, transferrin). The aforementioned results are relevant to focusing on the entrapment of other promising BBIs or protein agents sharing similar structural features. These findings encourage future studies to investigate the advantages of using the liposome platforms presented herein to broaden the use of this type of DDS for BBI biomedical applications.
Collapse
Affiliation(s)
- Graziella Anselmo Joanitti
- Laboratory of Nanobiotecnology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil; Universidade de Brasília (UnB), Campus Ceilândia (FCE) Centro Metropolitano, Conjunto A - Lote 01, Brasília, DF, 72220-900, Brazil.
| | - Rupa S Sawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Vertex Pharmaceuticals, Boston, MA 02210, USA.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Sonia Maria de Freitas
- Laboratory of Biophysics, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil.
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotecnology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil.
| |
Collapse
|