1
|
Bai R, Ma L, Li F, Pan L, Bao Y, Li X, Wang S, Yue H, Zheng F. Total ginsenosides from wild ginseng improve immune regulation in a rat model of spleen qi deficiency by modulating fecal-bacteria-associated short-chain fatty acids and intestinal barrier integrity. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124554. [PMID: 40081219 DOI: 10.1016/j.jchromb.2025.124554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/17/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
For thousands of years, traditional Chinese medicine (TCM) has made extensive use of wild ginseng. It is thought to provide vital energy effects and to boost immunity. This study aimed to clarify the processes by which short-chain fatty acids (SCFAs) metabolites and the intestinal barrier are used by total ginsenosides wild ginseng (TWG) to modulate immunity. In this study, we analyzed and identified ginsenosides in the colon using UPLC-Q-TOF-MSE methods. In the meantime, a rat model of spleen qi deficiency (SQD) was created using reserpine, and the effects of TWG on intestinal barrier function and short-chain fatty acids in the feces of SQD-affected rats were examined. 28 ginsenosides were found in the colon during this experiment, and the main components were measured. TWG considerably increased fecal concentrations of acetic, propionic and 6 others, according to SCFAs analysis. According to serum immunological markers, TWG reduced IL-17 and IL-1β levels, increased IL-10, IL-22, and TGF-β concentrations, balanced Th17/Treg ratios, and reduced toxicants such DAO and LPS in rats with SQD. TWG improved barrier function, reduced permeability, increased tight junction protein expression, and lessened intestinal injury. A favorable correlation between intestinal barrier proteins and fatty acids was shown by correlation studies. The gut barrier and SCFAs perspectives helped to clarify the mechanism by which TWG controls immune activity. This study offers a fresh theoretical framework for TWG's future advancement and application.
Collapse
Affiliation(s)
- Ruobing Bai
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Liting Ma
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Fangtong Li
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Lijia Pan
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Yuwen Bao
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Xinze Li
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Shen Wang
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China
| | - Hao Yue
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China.
| | - Fei Zheng
- Changchun University of Chinese Medicine, 130117 Changchun, Jilin, PR China.
| |
Collapse
|
2
|
Wang L, Li A, Zhang X, Iqbal M, Aabdin ZU, Xu M, Mo Q, Li J. Effect of Bacillus subtilis isolated from yaks on D-galactose-induced oxidative stress and hepatic damage in mice. Front Microbiol 2025; 16:1550556. [PMID: 40109966 PMCID: PMC11920168 DOI: 10.3389/fmicb.2025.1550556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Acute hepatic injury is a severe condition that is always accompanied by oxidative stress and inflammation, seriously threatening the health of the host. Probiotics have been shown to be involved in the regulation of antioxidant system and gut microbiota activity, but studies on the effects of yak derived Bacillus subtilis (B. subtilis) on acute liver injury and oxidative stress remain scarce. Here, we aim to explore the ameliorative effects of B. subtilis isolated from yaks on oxidative stress and hepatic injury caused by D-galactose, as well as the underlying processes. Results indicated that B. subtilis administration, particularly the BS3, significantly mitigated hepatic damage induced by D-galactose in mice as evidenced by ameliorating liver tissue damage as well as decreasing ALT (p < 0.05) and AST (p < 0.05) levels. Additionally, the B. subtilis intervention was demonstrated to enhance the antioxidant system in D-galactose-exposed mice, as manifested by increased T-AOC and SOD, alongside a decrease in MDA levels (p < 0.05). Meanwhile, B. subtilis intervention could effectively mitigate oxidative damage via modulating the Keap1/Nrf2 signaling pathway. Importantly, B. subtilis exhibited a pronounced protective effect against D-galactose-induced intestinal barrier dysfunction through improving tight junction proteins. The gut microbiota results suggest that BS3 alters the abundance of some gut flora such as Firmicutes phylum and Oscillibacter and Lachnospiraceae_NK4A136 genera, which affects the composition of the gut microbiota and reverses the decrease in the microbial richness index in mice. In summary, these findings demonstrated that B. subtilis isolated from yaks serve as a promising candidate to ameliorate oxidative damage and hepatic injury. Meanwhile, the positive regulation effect of B. subtilis on gut microbiota and intestinal mucosal barrier may be one of its underlying mechanisms to alleviate oxidative stress and hepatic injury.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health, Faculty of Veterinary and Animal Sciences, Ziauddin University, Karachi, Pakistan
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi, China
| |
Collapse
|
3
|
Wu ZW, Zhao XF, Quan CX, Liu XC, Tao XY, Li YJ, Peng XR, Qiu MH. Structure-function insights of natural Ganoderma polysaccharides: advances in biosynthesis and functional food applications. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:15. [PMID: 40035898 PMCID: PMC11880470 DOI: 10.1007/s13659-025-00496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 03/06/2025]
Abstract
Ganoderma polysaccharides (GPs), derived from various species of the Ganoderma genus, exhibit diverse bioactivities, including immune modulation, anti-tumor effects, and gut microbiota regulation. These properties position GPs as dual-purpose agents for medicinal and functional food development. This review comprehensively explores the structural complexity of six key GPs and their specific mechanisms of action, such as TLR signaling in immune modulation, apoptosis pathways in anti-tumor activity, and their prebiotic effects on gut microbiota. Additionally, the structure-activity relationships (SARs) of GPs are highlighted to elucidate their biological efficacy. Advances in green extraction techniques, including ultrasonic-assisted and enzymatic methods, are discussed for their roles in enhancing yield and aligning with sustainable production principles. Furthermore, the review addresses biotechnological innovations in polysaccharide biosynthesis, improving production efficiency and making large-scale production feasible. These insights, combined with ongoing research into their bioactivity, provide a solid foundation for developing health-promoting functional food products that incorporate GPs. Furthermore, future research directions are suggested to optimize biosynthesis pathways and fully harness the health benefits of these polysaccharides.
Collapse
Affiliation(s)
- Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xue-Fang Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Chen-Xi Quan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Cui Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin-Yu Tao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yu-Jie Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
4
|
Rijia A, Krishnamoorthi R, Mahalingam PU, Kaviyadharshini M, Rajeswari M, Kumar KKS, Rasmi M, Chung YK, Fang JY. Unveiling the anticancer potential and toxicity of Ganoderma applanatum wild mushroom derived bioactive compounds: An in vitro, in vivo and in silico evaluation. Bioorg Chem 2025; 156:108233. [PMID: 39908734 DOI: 10.1016/j.bioorg.2025.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
This study explores the anticancer potential of methanolic extract from Ganoderma applanatum, focusing on its cytotoxicity across various cancer cell lines and its safety and efficacy in an in vivo hepatocellular carcinoma (HCC) model, along with molecular docking analysis of its bioactive compounds targeting B-cell lymphoma 2 (Bcl-2) protein. The MTT assay revealed significant cytotoxicity of the extract against epidermoid carcinoma (A431), human alveolar carcinoma (A549), and hepatocellular carcinoma (HepG2) cell lines, with the extract exhibiting the highest potency (IC50 of 95.65 µg/ml) against HepG2 cells. Apoptosis induction and DNA degradation in HepG2 cells were confirmed through mitochondrial membrane potential analysis, ethidium bromide/acridine orange staining, and DNA fragmentation assays. In vivo studies on Wistar albino rats showed that administration of the extract up to 1000 mg/ml did not significantly affect body weight or hematological parameters, suggesting a favorable safety profile. Histopathological examination revealed normal liver architecture at most doses, with mild inflammation observed at the highest dose (1000 mg/ml). The G. applanatum extract were showed reducing liver weight and improving body weight in a Diethylnitrosamine (DEN)-induced HCC model was comparable to cyclophosphamide, indicating its potential as a less toxic alternative or adjunct to conventional chemotherapy. Additionally, the extract reduced elevated serum liver enzymes, demonstrating hepatoprotective effects. Molecular docking of nine bioactive compounds from G. applanatum identified 2h-3,11c-(epoxymethano)phenanthro[10,1-bc]pyran as a promising candidate for further investigation. These findings suggest G. applanatum as a novel anticancer agent with the potential for natural, effective cancer therapy.
Collapse
Affiliation(s)
- Akbar Rijia
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Raman Krishnamoorthi
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.
| | - Pambayan Ulagan Mahalingam
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India.
| | | | - Murugan Rajeswari
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Konda Kannan Satheesh Kumar
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Madhusoodhanan Rasmi
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| |
Collapse
|
5
|
Liu W, Sun M, Zhang H, Wang WT, Song J, Wang MY, Wang CM, Sun HM. Targeting regulation of lipid metabolism with polysaccharide of traditional Chinese medicine for the treatment of non-alcoholic fatty liver disease: A review. Int J Biol Macromol 2025; 306:141660. [PMID: 40032085 DOI: 10.1016/j.ijbiomac.2025.141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic diseases in the world, and the effective treatment of NAFLD has been listed as a key problem to be solved urgently in contemporary medicine. Polysaccharides in traditional Chinese medicine (TCM) have a wide range of pharmacological activities. A large number of preclinical studies have confirmed that TCM polysaccharides can interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improving lipid metabolism and insulin resistance, regulating oxidative stress, alleviating immune inflammatory response, and regulating intestinal microbiota, thus showing great potential as a new anti-NAFLD drug. This paper summarizes the prevention and treatment effect and mechanism of TCM polysaccharides on NAFLD, which provides a basis for the application of TCM polysaccharides in plant medicine and modern medicines, and provides a reference for promoting the development and utilization of TCM polysaccharide resources and the research and development of new drugs for NAFLD.
Collapse
Affiliation(s)
- Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, China.
| |
Collapse
|
6
|
Xu M, Jiang Z, Ren J, Zhou S, Zhang X, Wu W, Li H, Li B, Wang J, Jiao L. De-starched Panax ginseng polysaccharide: Preparation, in vitro digestion, fermentation properties and the activating effect of the resultant products on RAW264.7 cells. Carbohydr Polym 2025; 351:123103. [PMID: 39779017 DOI: 10.1016/j.carbpol.2024.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Panax ginseng C. A. Meyer (ginseng) neutral polysaccharides have been proven to be an immune enhancer, but their digestion and fermentation characteristics are unclear. This study aimed to prepare a de-starched polysaccharide (DGPN) from ginseng and investigate its degradation rules and the changes in immune activity by using an in vitro digestion and fermentation model. Results showed that in digestion process, the molecular weight of DGPN decreased from 4.72 × 104 to 4.04 × 104 Da, reducing sugar (CR) content increased from 0.0539 ± 0.0037 to 0.0919 ± 0.0015 mg/mL. During the fecal fermentation process, a significant decrease in total carbohydrate content and molecular weight, a significant increase in CR and change in the proportion of monosaccharide composition can be observed, indicating that DGPN was mainly degraded during fermentation process. DGPN modulated the microbial composition via increasing the relative abundance of beneficial bacteria including Bacteroides, [Eubacterium]_nodatum_group, Ligilactobacillus, Enterococcus and reducing harmful bacteria such as Escherichia_Shigela. DGPN also promoted the production of short chain fatty acids. Cell experiments results showed that fermentation product DGPN-F48 activated RAW264.7 cells via TLR4/Myd88/NF-κB signaling pathway and the activity was significantly enhanced after fermentation process. This study confirmed DGPN is beneficial for enhancing gut health and has prebiotic potential.
Collapse
Affiliation(s)
- Mengran Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132000, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuo Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoyu Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bo Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jing Wang
- The third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
7
|
Ding L, Shangguan H, Wang X, Liu J, Shi Y, Xu X, Xie Y. Extraction, purification, structural characterization, biological activity, mechanism of action and application of polysaccharides from Ganoderma lucidum: A review. Int J Biol Macromol 2025; 288:138575. [PMID: 39662574 DOI: 10.1016/j.ijbiomac.2024.138575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Ganoderma lucidum is a traditional tonic medicine in China, known as the "fairy grass" and "spiritual grass". It contains various chemical components, such as polysaccharides, triterpenoids, alkaloids, nucleosides, sterols, and acid compounds, which have the effects of tonifying qi and calming the mind, stopping cough and asthma, and are used to treat restlessness, lung deficiency cough and asthma, fatigue and shortness of breath, and lack of appetite. Ganoderma lucidum polysaccharides (GLPs) are one of the main bioactive ingredients and are widely used in traditional Chinese medicine and traditional medicine fields. They have shown good medicinal value in enhancing immunity, inhibiting tumor cell growth, delaying aging, lowering blood sugar, lowering blood lipids, protecting the heart, anti-radiation, anti-fatigue, and other aspects. This article reviews the research progress on the extraction and purification, structural characteristics, pharmacological activity, and mechanisms of GLPs, as well as their applications in industries such as medicine, food, and daily chemical products. The aim is to provide theoretical basis for the treatment of traditional Chinese medicine compound preparations and lay the foundation for the potential value development of Ganoderma lucidum products.
Collapse
Affiliation(s)
- Ling Ding
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China
| | - Huizi Shangguan
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China
| | - Xin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Jiping Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yongheng Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Xinya Xu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China.
| |
Collapse
|
8
|
Guo K, Liu J, Yao Z, Tan Z, Yang T. Effect of soluble dietary fiber extracted from Lentinula edodes (Berk.) Pegler on lipid metabolism and liver protection in mice on high-fat diet. Front Nutr 2025; 12:1537569. [PMID: 39949544 PMCID: PMC11821492 DOI: 10.3389/fnut.2025.1537569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
With the increasing annual production of Lentinula edodes, the residues of Lentinus edodes are mass produced and wasted every year. In order to further explore the added value and effective utilization of Lentinus edodes, we studied the lipid-lowering efficacy and liver protective effect of Lentinus edodes soluble dietary fiber in mice on high-fat diet. Project team from Lentinus edodes extracted soluble dietary fiber, and its physicochemical properties, selected 30 male mice, randomly divided into normal group (N), high fat diet group (F), add low dose dietary fiber high fat diet (FL), add medium dose dietary fiber high fat diet group (FM), add high dose dietary fiber high fat diet group (FH) five groups. After 4 weeks, we assessed general state, organ conditions, liver status, blood parameters, expression of hepatic lipid metabolism genes, mRNA levels of key hepatic lipid metabolism genes. The results showed that the molecular weight of soluble dietary fiber is about 17.029 kDa, and the monosaccharides such as galactose, glucose and mannitol are connected by β-glycosidic bond. The soluble dietary fiber of Lentinus edodes can effectively slow the weight growth due to high-fat diet, delay liver tissue lesions, reduce the levels of ALT, AST, ACP, LDL-C, TG, TV, FFA, SOD, GSH and MDA, and increase the levels of γ-GT, HDL-C and CAT in blood. Lentinus edodes soluble dietary fiber decreased the expression of AMPKα and SREBP-2 in the liver, and increased the expression of PPARα, ACS, CPT1a, CYP7A1. It is proved that the soluble dietary fiber of Lentinus edodes can alleviate the organ fat accumulation caused by high-fat diet to some extent, effectively combat the liver injury, oxidative stress pressure and lipid metabolism disorder caused by high-fat diet, and provide an experimental basis for the subsequent effective use of soluble dietary fiber of Lentinus edodes in fat reduction.
Collapse
Affiliation(s)
- Kangxiao Guo
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Department of Pharmacy, Changsha Health Vocational College, Changsha, China
| | - Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zihan Yao
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Yang
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
9
|
Zhong S, Qi YY, Yuan Y, Lian L, Deng Z, Pan F, Zhou J, Wang Z, Li H. Ganoderma lucidum spore powder after oil extraction alleviates microbiota dysbiosis to improve the intestinal barrier function in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:540-553. [PMID: 39243161 DOI: 10.1002/jsfa.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND There are few studies about the differences in the composition of moisture, ash, crude protein, crude fat, crude polysaccharide and ergothioneine in Ganoderma lucidum spore powder (GLSP) from different origins. As for GLSP after oil extraction (OE-GLSP), there are still lots of bioactive substance in it. It can be seen that OE-GLSP has certain biological activity. The effect of OE-GLSP on the improvement of intestinal barrier function has been less studied. RESULTS The results showed that there were significant differences for GLSP from five different origins (Anhui, Jilin, Jiangxi, Shandong and Zhejiang) in moisture (0.065-0.113%), ash (0.603-0.955%), crude fat (42.444-44.773%), crude polysaccharide (2.977-4.127%), crude protein (14.761-17.639%) and ergothioneine (0.552-1.816 mg g-1) (P < 0.05). The monosaccharides of GLSP polysaccharide mainly consist of glucose, galactose, mannose, rhamnose, etc. Moreover, the effects of OE-GLSP supplementation on the regulation of organ index, colonic tissue and intestinal microbiota in C57BL/6J mice were investigated. The supplement of OE-GLSP could restore the organ index and weight loss of antibiotic-treated mice. Moreover, OE-GLSP led to the improvement of intestinal dysbiosis by enriching Bacteroidetes, Firmicutes, Lactobacillus and Roseburia, and increasing the Firmicutes/Bacteroidetes ratio. In addition, OE-GLSP intervention repaired intestinal barrier dysfunction by increasing the expression of tight junction proteins (Occludin, Claudin-1 and E-cadherin). CONCLUSION Different GLSP from five origins exhibited significant differences in microstructure and contents of crude polysaccharide, crude protein, crude fat, water, ash and ergothioneine. Moreover, it was found that OE-GLSP could improve the intestinal barrier function and induce potentially beneficial changes in intestinal flora. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shun Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yao Yao Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Li Lian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Junfu Zhou
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Zhiyu Wang
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Hu Y, Tang Y, Zhang J, Guo X, Wang J, Zhang X, Li Z, Yu H, Li W. In vitro digestion and fermentation of polysaccharides from nine common Polygonatum spp. and their impact on human gut microbiota. Int J Biol Macromol 2024; 280:136052. [PMID: 39341313 DOI: 10.1016/j.ijbiomac.2024.136052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
This study aimed to investigate the dynamic changes in the physicochemical properties of polysaccharides from nine common Polygonatum spp. during in vitro simulated saliva-gastrointestinal digestion, in vitro fermentation, and their subsequent effects on human gut microbiota. Results revealed that the total sugar contents of Polygonatum spp. polysaccharides almost had little changes during the vitro digestion, and the molecular weight presented a downward trend. The in vitro digestion process produced almost no free monosaccharide, with small variations on FT-IR spectroscopy analysis. However, during the in vitro fermentation process, the polysaccharides generated remarkable changes, the total sugar showed a downward trend, and the molecular weight was degraded. There were significant changes in the monosaccharide composition, and possibly the sugar occurred isomerism. Regarding the concentrations of short-chain fatty acids, both acetic acid and propionic acid were found to be significantly elevated in the treatment group compared to the control group, and the pH value dramatically decreased. Simultaneously, Polygonatum spp. polysaccharides could remarkably modulate the richness of microbial communities and improved their diversity, especially Narrowly Defined Clostridium, and Bacteroidetes. In general, this study can be helpful to better understand the potential digestion and fermentation mechanism of the genus Polygonatum polysaccharides.
Collapse
Affiliation(s)
- Yunfei Hu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Chinese Medicine, Bozhou University, Bozhou 236800, Anhui, China
| | - Yuchen Tang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jianyu Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuting Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaru Wang
- School of Chinese Medicine, Bozhou University, Bozhou 236800, Anhui, China
| | - Xinmeng Zhang
- School of Chinese Medicine, Bozhou University, Bozhou 236800, Anhui, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hao Yu
- School of Chinese Medicine, Bozhou University, Bozhou 236800, Anhui, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Liu H, Wang S, Qiu K, Zheng C, Tan H. Preparation, structural characterization, and biological activities of lotus polysaccharides: A review. Int J Biol Macromol 2024; 279:135191. [PMID: 39216588 DOI: 10.1016/j.ijbiomac.2024.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lotus (Nelumbo nucifera), belonging to the family of Nelumbonaceae, is a beautiful aquatic perennial plant. It has been used as an ancient horticulture plant and famous agricultural crop for thousands of years. Modern phytochemical and pharmacological experiments have proved that polysaccharide is one of the most pivotal bioactive constituents of lotus. Hence, the systematic review covering the fundamental research advances and developing prospects of N. nucifera polysaccharides (NNPs) is an urgent demand to provide theoretical basis for their further research and application. The present review summarizes current emerging research progresses on the polysaccharides isolated from lotus, and it focuses on advanced extraction and purification methods, unique structural features, engaging biological activities, potential molecular mechanisms, as well as the relationship of structure and activity of NNPs. This review sheds light on the potential values of NNPs in affording functionally bioactive agents in food industry or therapeutically effective medicines for health care. In addition, this review will provide valuable insights for further commercial product development and promising industrial application of NNPs in both of the fundamental research communities and food or pharmaceutical industries in future.
Collapse
Affiliation(s)
- Hongxin Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Kaidi Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haibo Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Gao YY, Liu XP, Zhou YH, He JY, Di B, Zheng XY, Guo PT, Zhang J, Wang CK, Jin L. The Addition of Hot Water Extract of Juncao-Substrate Ganoderma lucidum Residue to Diets Enhances Growth Performance, Immune Function, and Intestinal Health in Broilers. Animals (Basel) 2024; 14:2926. [PMID: 39457856 PMCID: PMC11503797 DOI: 10.3390/ani14202926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The purpose of this experiment was to investigate the effects of Hot Water Extract of Juncao-substrate Ganoderma lucidum Residue (HWE-JGLR) on the immune function and intestinal health of yellow-feather broilers. In an animal feeding experiment, 288 male yellow-feather broilers (1 day old) were randomly allocated to four treatment groups with six replicates of 12 birds each. The control (CON) group was fed a basal diet. HJ-1, HJ-2, and HJ-3 were fed a basal diet supplemented with 0.25%, 0.50%, and 1.00% HWE-JGLR, respectively. The feeding trial lasted for 63 d. The results showed increased ADFI (p = 0.033) and ADG (p = 0.045) of broilers in HJ-3, compared with the CON group. Moreover, higher contents of serum IL-4 and IL-10 and gene expression of IL-4 and IL-10 in jejunum mucosa and lower contents of serum IL-1β and gene expression of IL-1β in jejunum mucosa in HJ-3 were observed (p < 0.05). Additionally, the jejunal mucosal gene expression of Claudin-1 and ZO-1 in HJ-2 and HJ-3 was higher than that in the CON group (p < 0.05). As for the microbial community, compared with the CON group, the ACE index, Shannon index, and Shannoneven index of cecal microorganisms in HJ-2 and HJ-3 were elevated (p < 0.05). PCoA analysis showed that the cecal microbial structure of broilers in HJ-2 and HJ-3 was different from the CON group (p < 0.05). In contrast with the CON group, the broilers in HJ-2 and HJ-3 possessed more abundant Desulfobacterota at the phylum level and unclassified Lachnospiraceae, norank Clostridia vadinBB60 group and Blautia spp. at the genus level, while Turicibacter spp. and Romboutsia spp. were less (p < 0.05). In conclusion, dietary supplementation with HWE-JGLR can improve growth performance, enhance body immunity and intestinal development, and maintain the cecum microflora balance of yellow-feather broilers.
Collapse
Affiliation(s)
- Yu-Yun Gao
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Xiao-Ping Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ying-Huan Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Jia-Yi He
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Bin Di
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Xian-Yue Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ping-Ting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Jing Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Chang-Kang Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
13
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
14
|
Kulshreshtha S. Mushroom as Prebiotics: a Sustainable Approach for Healthcare. Probiotics Antimicrob Proteins 2024; 16:699-712. [PMID: 37776487 DOI: 10.1007/s12602-023-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Mushrooms are considered as sustainable foods as they require less effort and can be cultivated on different agro-industrial wastes. Besides, these possess many nutraceuticals for providing health benefits along with supplementing nutrition. The mushrooms are also used as prebiotics for their ability to support beneficial microbes in the gut and inhibit the growth of pathogens. Furthermore, these remain undigested in the upper gut and reach the intestine to replenish the gut microbiota. The mushrooms boost health by inhibiting the binding of pathogenic bacteria, by promoting the growth of specific gut microbiota, producing short chain fatty acids, and regulating lipid metabolism and cancer. Research has been initiated in the commercial formulation of various products such as yogurt and symbiotic capsules. This paper sheds light on health-promoting effect, disease controlling, and regulating effect of mushroom prebiotics. This paper also presented a glimpse of commercialization of mushroom prebiotics. In the future, proper standardization of mushroom-based prebiotic formulations will be available to boost human health.
Collapse
Affiliation(s)
- Shweta Kulshreshtha
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
15
|
Qin X, Fang Z, Zhang J, Zhao W, Zheng N, Wang X. Regulatory effect of Ganoderma lucidum and its active components on gut flora in diseases. Front Microbiol 2024; 15:1362479. [PMID: 38572237 PMCID: PMC10990249 DOI: 10.3389/fmicb.2024.1362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Driven by the good developmental potential and favorable environment at this stage, Ganoderma lucidum is recognized as a precious large fungus with medicinal and nutritional health care values. Among them, polysaccharides, triterpenoids, oligosaccharides, trace elements, etc. are important bioactive components in G. lucidum. These bioactive components will have an impact on gut flora, thus alleviating diseases such as hyperglycemia, hyperlipidemia and obesity caused by gut flora disorder. While numerous studies have demonstrated the ability of G. lucidum and its active components to regulate gut flora, a systematic review of this mechanism is currently lacking. The purpose of this paper is to summarize the regulatory effects of G. lucidum and its active components on gut flora in cardiovascular, gastrointestinal and renal metabolic diseases, and summarize the research progress of G. lucidum active components in improving related diseases by regulating gut flora. Additionally, review delves into the principle by which G. lucidum and its active components can treat or assist treat diseases by regulating gut flora. The research progress of G. lucidum in intestinal tract and its potential in medicine, health food and clinical application were fully explored for researchers.
Collapse
Affiliation(s)
- Xinjie Qin
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Zinan Fang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Jinkang Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Wenbo Zhao
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Ni Zheng
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Xiaoe Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| |
Collapse
|
16
|
Zhao WX, Wang T, Zhang YN, Chen Q, Wang Y, Xing YQ, Zheng J, Duan CC, Chen LJ, Zhao HJ, Wang SJ. Molecular Mechanism of Polysaccharides Extracted from Chinese Medicine Targeting Gut Microbiota for Promoting Health. Chin J Integr Med 2024; 30:171-180. [PMID: 35583582 DOI: 10.1007/s11655-022-3522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The accumulating evidence revealed that gut microbiota plays an important role in pathological process of disease including obesity, type 2 diabetes mellitus, heart failure, and non-alcoholic fatty liver disease. Polysaccharides extracted from Chinese medicine (CM) can not only alleviate pathological status but also promote health by anti-inflammatory, regulating immunity, lowering blood glucose and lipids, anti-cancer, and anti-oxidation. The alterations of gut microbiota composition and metabolism pathways are the potential mechanisms of CM polysaccharides treatment. In addition, they exert functions through gut-organ axis or play an indirect role by synergistic actions with other drugs or components mediated by gut microbiota. This review summarizes the molecular mechanisms of CM polysaccharides interacted with intestinal microbial inhabitants as potential prebiotics for promoting health.
Collapse
Affiliation(s)
- Wen-Xiao Zhao
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Ya-Nan Zhang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Qian Chen
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yuan Wang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yan-Qing Xing
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Jun Zheng
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Chen-Chen Duan
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Li-Jun Chen
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Hai-Jun Zhao
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Shi-Jun Wang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| |
Collapse
|
17
|
Huang D, Shen S, Zhuang Q, Ye X, Qian Y, Dong Z, Wan X. Ganoderma lucidum polysaccharide ameliorates cholesterol gallstone formation by modulating cholesterol and bile acid metabolism in an FXR-dependent manner. Chin Med 2024; 19:16. [PMID: 38268006 PMCID: PMC10809463 DOI: 10.1186/s13020-024-00889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Cholesterol gallstone (CG) disease is a worldwide common disease characterized by cholesterol supersaturation in gallbladder bile. Ganoderma lucidum polysaccharide (GLP) has been shown to possess various beneficial effects against metabolic disorders. However, the role and underlying mechanism of GLP in CG formation are still unknown. This study aimed to determine the role of GLP in ameliorating lithogenic diet (LD)-induced CG formation. METHODS Mice were fed either a normal chow diet, a LD, or LD supplemented with GLP. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of genes involved in cholesterol and bile acid (BA) metabolism. The BA concentrations in the ileum were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The microbiota in cecal contents were characterized using 16S ribosomal RNA (16S rRNA) gene sequencing. RESULTS GLP effectively alleviated CG formation induced by LD. Specifically, GLP reduced the total cholesterol (TC) levels, increased the total BA levels, and decreased the cholesterol saturation index (CSI) in gallbladder bile. The protective effect of GLP was attributed to the inhibition of farnesoid X receptor (FXR) signaling, increased hepatic BA synthesis and decreased hepatic cholesterol synthesis and secretion. GLP also altered the BA composition in the ileum, reducing FXR-agonistic BAs and increasing FXR-antagonistic BAs, which may contribute to the inhibition of intestinal FXR signaling. Additionally, GLP improved dysbiosis of the intestinal flora and reduced the serum levels of hydrogen sulfide (H2S), a bacterial metabolite that can induce hepatic FXR, thereby inhibiting hepatic FXR signaling. Moreover, the protective effect of GLP against CG formation could be reversed by both the global and gut-restricted FXR agonists. CONCLUSIONS Taken together, GLP ameliorates CG formation by regulating cholesterol and BA metabolism in an FXR-dependent manner. Our study demonstrates that GLP may be a potential strategy for the prevention against CG disease.
Collapse
Affiliation(s)
- Dan Huang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yueqin Qian
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
18
|
Gao X, Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: a multifaceted approach to combat cancer. Cancer Cell Int 2023; 23:324. [PMID: 38104078 PMCID: PMC10724890 DOI: 10.1186/s12935-023-03146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a growing global interest in the potential health benefits of edible natural bioactive products in recent years. Ganoderma lucidum, a medicinal mushroom, has gained attention for its decadent array of therapeutic and pharmaceutical compounds. Notably, G. lucidum exhibits significant anti-cancer effects against various cancer types. Polysaccharides, a prominent component in G. lucidum, are pivotal in conferring its diverse biological and medicinal properties. The primary focus of this study was to investigate the anti-cancer activities of G. lucidum polysaccharides (GLPs), with particular attention to their potential to mitigate chemotherapy-associated toxicity and enhance targeted drug delivery. Our findings reveal that GLPs exhibit anti-cancer effects through diverse mechanisms, including cytotoxicity, antioxidative properties, apoptosis induction, reactive oxygen species (ROS) generation, and anti-proliferative effects. Furthermore, the potential of GLPs-based nanoparticles (NPs) as delivery vehicles for bioactive constituents was explored. These GLPs-based NPs are designed to target various cancer tissues, enhancing the biological activity of encapsulated compounds. As such, GLPs derived from G. lucidum represent a promising avenue for inhibiting cancer progression, minimizing chemotherapy-related side effects, and supporting their utilization in combination therapies as natural adjuncts.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Life Science, Lyuliang University, Lyuliang, 033001, Shanxi, China.
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
19
|
Li J, Guo Y, Ma L, Liu Y, Zou C, Kuang H, Han B, Xiao Y, Wang Y. Synergistic effects of alginate oligosaccharide and cyanidin-3-O-glucoside on the amelioration of intestinal barrier function in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
20
|
Zhang F, Huang W, Zhao L. Regulatory Effects of Ganoderma lucidum, Grifola frondosa, and American ginseng Extract Formulation on Gut Microbiota and Fecal Metabolomics in Mice. Foods 2023; 12:3804. [PMID: 37893697 PMCID: PMC10606397 DOI: 10.3390/foods12203804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The bioactivities of Ganoderma lucidum, Grifola frondosa, and American ginseng have been extensively studied and documented. However, the effects of their complexes on the structural properties of intestinal microbiota and fecal metabolism remain unclear. Therefore, this paper aims to present a preliminary study to shed light on this aspect. In this study, an immunocompromised mouse model was induced using cyclophosphamide, and Ganoderma lucidum, Grifola frondosa, and American ginseng extract formulation (referred to as JGGA) were administered via gavage to investigate their modulatory effects on gut microbiota and fecal metabolism in mice. The effects of JGGA on immune enhancement were explored using serum test kits, hematoxylin-eosin staining, 16SrDNA high-throughput sequencing, and UHPLC-QE-MS metabolomics. The findings revealed potential mechanisms underlying the immune-enhancing effects of JGGA. Specifically, JGGA administration resulted in an improved body weight, thymic index, splenic index, carbon scavenging ability, hypersensitivity, and cellular inflammatory factor expression levels in mice. Further analysis demonstrated that JGGA reduced the abundance of Firmicutes, Proteobacteria, and Actinobacteria, while increasing the abundance of Bacteroidetes. Additionally, JGGA modulated the levels of 30 fecal metabolites. These results suggest that the immune enhancement observed with JGGA may be attributed to the targeted modulation of gut microbiota and fecal metabolism, thus promoting increased immunity in the body.
Collapse
Affiliation(s)
- Fengli Zhang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Z.); (W.H.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqi Huang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Z.); (W.H.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lina Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Z.); (W.H.)
| |
Collapse
|
21
|
Li L, Yan S, Liu S, Wang P, Li W, Yi Y, Qin S. In-depth insight into correlations between gut microbiota and dietary fiber elucidates a dietary causal relationship with host health. Food Res Int 2023; 172:113133. [PMID: 37689844 DOI: 10.1016/j.foodres.2023.113133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Dietary fiber exerts a wide range of biological benefits on host health, which not only provides a powerful source of nutrition for gut microbiota but also supplies key microbial metabolites that directly affect host health. This review mainly focuses on the decomposition and metabolism of dietary fiber and the essential genera Bacteroides and Bifidobacterium in dietary fiber fermentation. Dietary fiber plays an essential role in host health by impacting outcomes related to obesity, enteritis, immune health, cancer and neurodegenerative diseases. Additionally, the gut microbiota-independent pathway of dietary fiber affecting host health is also discussed. Personalized dietary fiber intake combined with microbiome, genetics, epigenetics, lifestyle and other factors has been highlighted for development in the future. A higher level of evidence is needed to demonstrate which microbial phenotype benefits from which kind of dietary fiber. In-depth insights into the correlation between gut microbiota and dietary fiber provide strong theoretical support for the precise application of dietary fiber, which elucidates a dietary causal relationship with host health.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Shuling Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangjiang Liu
- Shandong University, Qingdao 266237, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
22
|
Zhang Y, Aldamarany WAS, Deng L, Zhong G. Carbohydrate supplementation retains intestinal barrier and ameliorates bacterial translocation in an antibiotic-induced mouse model. Food Funct 2023; 14:8186-8200. [PMID: 37599609 DOI: 10.1039/d3fo01343j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Bacterial translocation (BT), with antibiotic use as an inducer, is associated with increased risk of developing multiple inflammatory disorders, and is closely associated with intestinal barrier integrity. Deacetylated konjac glucomannan (DKGM) and konjac oligo-glucomannan (KOGM) are two of the most widely used derivatives in the food industry. They are structurally and physiologically distinct from konjac glucomannan (KGM), and previous studies have confirmed their prebiotic effects. But whether they play a role in antibiotic-induced BT is unknown. Here, we applied an antibiotic cocktail (Abx) to a mouse model and investigated whether and how KGM and its derivatives function in BT and inflammation response amelioration during and after antibiotics, and which intervention plan is more effective. The results showed that KGM and its derivatives all inhibited BT. The colon tissue lesions caused by BT were largely alleviated, and short-chain fatty acid (SCFA) production was highly improved with the supplementation of carbohydrates. The prolonged intervention plan using KGM and its derivatives was more efficient than intervention only during the Abx administration period. Among the three dietary fibers, KGM behaved best, while DKGM and KOGM behaved equivalently. Additionally, KGM and its derivatives all reduced the inflammatory response accompanying BT, but DKGM may have a direct inhibitory efficacy in inflammation other than that through IL-10, unlike KGM or KOGM.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| | - Waleed A S Aldamarany
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt
| | - Liling Deng
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Geng Zhong
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
23
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
24
|
Wang W, Zhang Y, Wang Z, Zhang J, Jia L. Ganoderma lucidum polysaccharides improve lipid metabolism against high-fat diet-induced dyslipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116321. [PMID: 36868439 DOI: 10.1016/j.jep.2023.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a kind of traditional medicinal fungi, Ganoderma lucidum has been employed as folk medicine in China against multiple metabolic diseases on account of its superior bioactivities. Recently, accumulated reports have investigated the protective effects of G. lucidum polysaccharides (GLP) on ameliorating dyslipidemia. However, the specific mechanism by which GLP improves dyslipidemia is not completely clear. AIMS OF THE STUDY This study aimed to investigate the protective effects of GLP on high-fatdiet-induced hyperlipidemia and exploring its underlying mechanism. MATERIALS AND METHODS The GLP was successfully obtained from G. lucidum mycelium. The mice were conducted with high-fatdiet to establish the hyperlipidemia model. Biochemical determination, histological analysis, immunofluorescence, western blot and real-time qPCR were used to assess the alterations in high-fatdiet-treated mice after the GLP intervention. RESULTS It was found that GLP administration significantly decreased body weight gain and the excessive lipid levels, and partly alleviated tissue injury. Oxidative stress and inflammations were efficiently ameliorated after the treatment of GLP by activing Nrf2-Keap1 and inhibiting NF-κB signal pathways. GLP promoted cholesterol reverse transport by LXRα-ABCA1/ABCG1 signaling, increased the expressions of CYP7A1 and CYP27A1 responsible for bile acids production, accompanied by inhibition of intestinal FXR-FGF15 levels. Besides, multiple target proteins involved in lipid metabolism were also significantly modulated under the intervention of GLP. CONCLUSION Taken together, our results suggested that GLP showed potential lipid-lowering effects and its possible mechanism was involved in improving oxidative stress and inflammation response, modulating bile acids synthesis and lipid regulatory factors, and promoting reverse cholesterol transport, thereby suggesting that GLP may possibly used as a dietary supplement or medication for the adjuvant therapy for hyperlipidemia.
Collapse
Affiliation(s)
- Wenshuai Wang
- College of Life Science, Shandong Agricultural University, PR China
| | - Yaohan Zhang
- College of Life Science, Shandong Agricultural University, PR China
| | - Zhiying Wang
- College of Life Science, Shandong Agricultural University, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, PR China.
| |
Collapse
|
25
|
Kou F, Ge Y, Wang W, Mei Y, Cao L, Wei X, Xiao H, Wu X. A review of Ganoderma lucidum polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. Int J Biol Macromol 2023:125199. [PMID: 37285888 DOI: 10.1016/j.ijbiomac.2023.125199] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Ganoderma lucidum polysaccharides possess unique functional properties. Various processing technologies have been used to produce and modify G. lucidum polysaccharides to improve their yield and utilization. In this review, the structure and health benefits were summarized, and the factors that may affect the quality of G. lucidum polysaccharides were discussed, including the use of chemical modifications such as sulfation, carboxymethylation, and selenization. Those modifications improve the physicochemical characteristics and utilization of G. lucidum polysaccharides, and make them more stable that could be used as functional biomaterials to encapsulate active substances. Ultimate, G. lucidum polysaccharide-based nanoparticles were designed to deliver various functional ingredients to achieve better health-promoting effects. Overall, this review presents an in-depth summary of current modification strategies and offers new insights into the effective processing techniques to develop G. lucidum polysaccharide-rich functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Fang Kou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Longkui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
26
|
Li JP, Chu CL, Chao WR, Yeh CS, Lee YJ, Chen DC, Yang SF, Chao YH. Ling Zhi-8, a fungal immunomodulatory protein in Ganoderma lucidum, alleviates CPT-11-induced intestinal injury via restoring claudin-1 expression. Aging (Albany NY) 2023; 15:3621-3634. [PMID: 37155145 PMCID: PMC10449289 DOI: 10.18632/aging.204695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
CPT-11 (Irinotecan) remains an important chemotherapeutic agent against various solid tumors nowadays. Potential adverse effects, especially gastrointestinal toxicities, are the main limiting factor for its clinical utility. Ling Zhi-8 (LZ-8), a fungal immunomodulatory protein in Ganoderma lucidum mycelia, has potential for drug development due to its multiple bioactivities and functions. This study aimed to explore the influence of LZ-8 on CPT-11-treated IEC-6 cells in vitro and on mice with CPT-11-induced intestinal injury in vivo. The mechanism through which LZ-8 exerted its protective effects was also investigated. In the in vitro study, the viability and claudin-1 expression of IEC-6 cells decreased gradually with increasing concentrations of CPT-11, but LZ-8 treatment had no obvious influence on their viability, morphology, and claudin-1 expression. Pretreatment of LZ-8 significantly improved CPT-11-decreased cell viability and claudin-1 expression in IEC-6 cells. In mice with CPT-11-induced intestinal injury, LZ-8 treatment could ameliorate symptoms and mitigate intestinal damage. Meanwhile, LZ-8 restored claudin-1 expression in the intestinal membranes in CPT-11-treated mice. Collectively, our results demonstrated the protective effects of LZ-8 against CPT-11 damage in both IEC-6 cells and mice. LZ-8 can restore claudin-1 expression in intestinal cells following CPT-11 treatment, suggesting the role of claudin-1 in the scenario.
Collapse
Affiliation(s)
- Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Ru Chao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Siang Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ju Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dz-Chi Chen
- Yeastern Biotech Co., Ltd., New Taipei City, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Qin W, Qi X, Xie Y, Wang H, Wu S, Sun MA, Bao W. LncRNA446 Regulates Tight Junctions by Inhibiting the Ubiquitinated Degradation of Alix after Porcine Epidemic Diarrhea Virus Infection. J Virol 2023; 97:e0188422. [PMID: 36790206 PMCID: PMC10062151 DOI: 10.1128/jvi.01884-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 02/16/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious disease, caused by porcine epidemic diarrhea virus (PEDV), which causes huge economic losses. Tight junction-associated proteins play an important role during virus infection; therefore, maintaining their integrity may be a new strategy for the prevention and treatment of PEDV. Long noncoding RNAs (lncRNAs) participate in numerous cellular functional activities, yet whether and how they regulate the intestinal barrier against viral infection remains to be elucidated. Here, we established a standard system for evaluating intestinal barrier integrity and then determined the differentially expressed lncRNAs between PEDV-infected and healthy piglets by lncRNA-seq. A total of 111 differentially expressed lncRNAs were screened, and lncRNA446 was identified due to significantly higher expression after PEDV infection. Using IPEC-J2 cells and intestinal organoids as in vitro models, we demonstrated that knockdown of lncRNA446 resulted in increased replication of PEDV, with further damage to intestinal permeability and tight junctions. Mechanistically, RNA pulldown and an RNA immunoprecipitation (RIP) assay showed that lncRNA446 directly binds to ALG-2-interacting protein X (Alix), and lncRNA446 inhibits ubiquitinated degradation of Alix mediated by TRIM25. Furthermore, Alix could bind to ZO1 and occludin and restore the expression level of the PEDV M gene and TJ proteins after lncRNA446 knockdown. Additionally, Alix knockdown and overexpression affects PEDV infection in IPEC-J2 cells. Collectively, our findings indicate that lncRNA446, by inhibiting the ubiquitinated degradation of Alix after PEDV infection, is involved in tight junction regulation. This study provides new insights into the mechanisms of intestinal barrier resistance and damage repair triggered by coronavirus. IMPORTANCE Porcine epidemic diarrhea is an acute, highly contagious enteric viral disease severely affecting the pig industry, for which current vaccines are inefficient due to the high variability of PEDV. Because PEDV infection can lead to severe injury of the intestinal epithelial barrier, which is the first line of defense, a better understanding of the related mechanisms may facilitate the development of new strategies for the prevention and treatment of PED. Here, we demonstrate that the lncRNA446 directly binds one core component of the actomyosin-tight junction complex named Alix and inhibits its ubiquitinated degradation. Functionally, the lncRNA446/Alix axis can regulate the integrity of tight junctions and potentially repair intestinal barrier injury after PEDV infection.
Collapse
Affiliation(s)
- Weiyun Qin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoyi Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yunxiao Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Tian B, Wang P, Xu T, Cai M, Mao R, Huang L, Sun P, Yang K. Ameliorating effects of Hericium erinaceus polysaccharides on intestinal barrier injury in immunocompromised mice induced by cyclophosphamide. Food Funct 2023; 14:2921-2932. [PMID: 36892225 DOI: 10.1039/d2fo03769f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Hericium erinaceus is a kind of large fungus with rich nutrition and its polysaccharides exhibit various biological activities. In recent years, widespread interest has been focused on maintaining or improving intestinal health through the consumption of edible fungi. Studies have shown that hypoimmunity can damage the intestinal barrier, which in turn seriously affects human health. The aim of this work was to investigate the ameliorative effects of Hericium erinaceus polysaccharides (HEPs) on intestinal barrier damage in cyclophosphamide (CTX)-induced immunocompromised mice. The results showed that the HEP effectively increased the levels of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), and total superoxide dismutase (T-SOD), and decreased malondialdehyde (MDA) content in the liver tissues of mice. In addition, the HEP restored the immune organ index, increased the serum levels of IL-2 and IgA, augmented the mRNA expression levels of intestinal Muc2, Reg3γ, occludin and ZO-1, and reduced intestinal permeability in mice. It was further confirmed by an immunofluorescence assay that the HEP enhanced the expression level of intestinal tight junction proteins to protect the intestinal mucosal barrier. These results suggested that the HEP could reduce intestinal permeability and enhance intestinal immune functions by increasing antioxidant capacity, tight junction proteins and immune-related factors in CTX-induced mice. In conclusion, the HEP effectively ameliorated CTX-induced intestinal barrier damage in immunocompromised mice, which provides a new application direction for the HEP as a natural immunopotentiator with antioxidant function.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co. Ltd, Quzhou 324207, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou 324200, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| |
Collapse
|
29
|
Li J, Wang L, Yang K, Zhang G, Li S, Gong H, Liu M, Dai X. Structure characteristics of low molecular weight pectic polysaccharide and its anti-aging capability by modulating the intestinal homeostasis. Carbohydr Polym 2023; 303:120467. [PMID: 36657846 DOI: 10.1016/j.carbpol.2022.120467] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Pectic polysaccharide has attracted increasing attention for their potential biological properties and applications in health industries. In this study, a low-molecular-weight pectic polysaccharide, POS4, was obtained from citrus peel. The structure of POS4 was preliminarily analyzed by gel-permeation chromatography, monosaccharide analysis, infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Results showed that the molecular weight of POS4 was 4.76 kDa and it was a galacturonic acid enriched pectic polysaccharide. The anti-aging activity in vivo showed that POS4 could notably prolong the average lifespan of fruit flies by suppressing the generation of reactive oxygen species (ROS). Further studies demonstrated that POS4 could enhance intestinal homeostasis by modulating gut microbiota in a positive way and regulating autophagy associated genes. Taken together, we proposed that galacturonic acid enriched low molecular weight pectic polysaccharide have great potential in the development of healthy foods such as anti-aging health care products.
Collapse
Affiliation(s)
- Junhui Li
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
| | - Lu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Kun Yang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Guocai Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266003, China
| | - Hongjian Gong
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Mingqi Liu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
30
|
Xu J, Yan X, Jia X, Wang Y, Xu H, Yu H, He L, Zheng B, Wu X. A new strategy to improve Ganoderma polysaccharides production by symbiotic fungi elicitors through activating the biosynthetic pathway. Int J Biol Macromol 2023; 235:123798. [PMID: 36841391 DOI: 10.1016/j.ijbiomac.2023.123798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ganoderma lucidum polysaccharides (GLP) attract growing attention due to their remarkable bioactivities, but the low content in raw materials remains a bottleneck severely restricting their application. We previously found a higher polysaccharides accumulation in Ganoderma lucidum cultured in continuous cropping soil, and soil symbiotic fungi are presumed as the key among many factors. Herein, 33 symbiotic fungi were isolated from the soil, and fungal elicitors were prepared to investigate their biotic eliciting effect on GLP biosynthesis. Most elicitors were found to significantly improve GLP production, among which the NO.16 molecularly identified as Penicillium citrinum, exhibited the optimum eliciting effect with GLP yield increasing by 3.4 times. Differences in the biosynthetic pathway genes expressions and the monosaccharide components of GLP were further analyzed. The transcriptions of the main genes of GLP biosynthetic pathway were up-regulated under PCE treatments, suggesting it improves GLP production by activating transcriptions of the biosynthetic pathway genes. Moreover, PCE eliciting significantly altered the monosaccharide compositions of GLP with Gal, Man, GalA, GlcA, and Fuc increasing by 8.17 %, 5.68 %, 5.41 %, 2.66 %, and 1.51 % respectively, but Glc decreased by 23.43 %, which may result in the activity change. It can serve as a new strategy to improve GLP production.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Xiaoyun Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China
| | - Xumei Jia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China
| | - Ying Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Haishun Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Haizheng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Liang He
- Zhejiang Provincial academy of forestry, Hangzhou 310000, China
| | - BingSong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Xueqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China.
| |
Collapse
|
31
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
32
|
Zhang J, Feng N, Liu Y, Zhang H, Yang Y, Liu L, Feng J. Bioactive Compounds from Medicinal Mushrooms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:219-268. [PMID: 36244999 DOI: 10.1007/10_2022_202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Research progress of active compounds and biological activities of medicinal mushroom-Ganoderma spp., Hericium spp., Phellinus spp., and Cordyceps spp. were summarized systematically. The main active compounds of medicinal mushrooms included are polysaccharides, proteins, triterpenes, meroterpenoids, polyphenols and nitrogen-containing compounds. The biological activities of the compounds cover immunomodulatory activity, antitumor activity, hypoglycemic activity, hepatoprotective activity, and activity of regulation of intellectual flora.
Collapse
Affiliation(s)
- Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China.
| | - Na Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yangfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Liang Z, Yuan ZH, Wang Y, Du ZH, Guo JJ, Xia LL, Shan Y. New Mechanistic Insight into the Protective Effects of Ganoderma lucidum Polysaccharides Against Palmitic Acid-Induced Cell Damage in Porcine Intestinal Epithelial Cell Line IPEC-J2. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221128103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ganoderma lucidum ( G. lucidum) is one of the well-known mushrooms in China, which has G. lucidum polysaccharides (GLP) that have been widely studied for various biological activities, such as antioxidant, antitumor, antiinflammatory, antiviral, antidiabetes, and immunomodulatory activities. A signal transducer and activator of transcription (STAT) signaling pathway is related to cell proliferation and apoptosis. The relationship between STAT and intestinal protection of GLP is still unknown. We studied the inhibitors AG490 in the STAT pathway and its downstream molecules to analyze the unique effects in the protection of GLP against palmitic acid (PA)-induced porcine intestinal epithelial cells (IPEC-J2) injury. Compared to PA treatment, GLP + PA obviously decreased Ca2+ concentration, H2O2 production, NF-E2-related factor 2 (Nrf2) nuclear translocation, STAT1 and STAT2 protein levels, and increased nuclear factor kappa-B (NF-κB) nuclear translocation and p-STAT3/STAT3 ratio in IPEC-J2 cells. After inhibition of STAT3 signaling, p-STAT3/STAT3 ratio, NF-κB nuclear translocation obviously decreased and Nrf2 nuclear translocation significantly increased in the GLP + PA group. The protection of GLP on proliferation and apoptosis of PA-induced IPEC-J2 cells was suppressed by inhibiting STAT3. The STAT3 pathway regulated the enterocyte-protective effects of GLP by modulating the nuclear translocation of Nrf2 and NF-κB. We provide new insights into the mechanism of STAT signaling for the protection of GLP on PA-induced intestinal epithelial cell injury.
Collapse
Affiliation(s)
- Zengenni Liang
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | | | - Yan Wang
- Hunan Biological and Electromechanical Polytechnic, Changsha, China
| | - Zhong-Hua Du
- Changsha Qiantu Biological Technology Limited Company, Changsha, China
| | - Jia-Jing Guo
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ling-Li Xia
- Changsha Diwei Agricultural Technology Limited Company, Changsha, China
| | - Yang Shan
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
34
|
The Effects and Cell Barrier Mechanism of Main Dietary Nutrients on Intestinal Barrier. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Zheng M, Pi X, Li H, Cheng S, Su Y, Zhang Y, Man C, Jiang Y. Ganoderma spp. polysaccharides are potential prebiotics: a review. Crit Rev Food Sci Nutr 2022; 64:909-927. [PMID: 35980144 DOI: 10.1080/10408398.2022.2110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.
Collapse
Affiliation(s)
- Miao Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongxuan Li
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shasha Cheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yue Su
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
36
|
Yao X, Yuan Y, Jing T, Ye S, Wang S, Xia D. Ganoderma lucidum polysaccharide ameliorated diabetes mellitus-induced erectile dysfunction in rats by regulating fibrosis and the NOS/ERK/JNK pathway. Transl Androl Urol 2022; 11:982-995. [PMID: 35958898 PMCID: PMC9360518 DOI: 10.21037/tau-22-428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Diabetes mellitus-induced erectile dysfunction (DMED) is a frequent complication of diabetes mellitus (DM), with limited therapy at present. This study aimed to explore the role and mechanism of Ganoderma lucidum polysaccharide (GLP) on DMED. Methods DMED was induced in the experimental rats [male 12-week-old Sprague-Dawley (SD) rats] by treatment with streptozotocin (60 mg/kg) and apomorphine (APO). Next, rats in the GLP low dose (GLP-L)/GLP high dose (GLP-H) groups were treated with GLP (100 or 400 mg/kg/d, respectively) for 8 weeks. Subsequently, erectile function was assessed by APO and electrostimulation of the cavernous nerve (CN). Serum or penile testosterone (T), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and cyclic guanosine monophosphate (cGMP) contents were evaluated by enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress indicators in the corpus cavernosum (CC) were measured by corresponding kits, and histological changes in the CC were observed by hematoxylin-eosin (HE) and Masson staining. Additionally, the apoptosis index, caspase-3, caspase-9, and eNOS expression, and mitochondrial membrane potential (MMP) were also detected. Furthermore, quantitative polymerase chain reaction (qPCR) and western blot assays were conducted to determine the NOS, TGF-β1 mRNA expression, ERK1/2, eNOS, JNK phosphorylation, and arginase II protein expression. Results The erectile function test revealed that erectile dysfunction (ED) was alleviated in the DMED rats following treatment with GLP. Moreover, GLP upregulated the T and cGMP content, improved the oxidative stress and histological injuries of CC, and also inhibited the apoptosis and MMP loss of penile tissues in DMED rats. Furthermore, GLP treatment enhanced the mRNA expression of NOS and TGF-β1 and suppressed the phosphorylation of ERK1/2, eNOS, and JNK, as well as the protein expression of arginase II in DMED rats. Conclusions GLP ameliorated DMED by repairing the CC pathological damage and upregulating NOS expression and ERK/JNK phosphorylation, indicating that GLP may be a candidate drug for DMED therapy.
Collapse
Affiliation(s)
- Xiaolin Yao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufang Yuan
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Taile Jing
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sunyi Ye
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuo Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Xia
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
GPP (composition of Ganoderma lucidum polysaccharides and Polyporus umbellatus polysaccharides) protects against DSS-induced murine colitis by enhancing immune function and regulating intestinal flora. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
da Silva Milhorini S, de Lima Bellan D, Zavadinack M, Simas FF, Smiderle FR, de Santana-Filho AP, Sassaki GL, Iacomini M. Antimelanoma effect of a fucoxylomannan isolated from Ganoderma lucidum fruiting bodies. Carbohydr Polym 2022; 294:119823. [DOI: 10.1016/j.carbpol.2022.119823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 01/22/2023]
|
39
|
He Q, Si C, Sun Z, Chen Y, Zhang X. The Intervention of Prebiotics on Depression via the Gut-Brain Axis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123671. [PMID: 35744797 PMCID: PMC9230023 DOI: 10.3390/molecules27123671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
The imbalance of intestinal microbiota can cause the accumulation of endotoxin in the main circulation system of the human body, which has a great impact on human health. Increased work and life pressure have led to a rise in the number of people falling into depression, which has also reduced their quality of life. The gut–brain axis (GBA) is closely related to the pathological basis of depression, and intestinal microbiota can improve depressive symptoms through GBA. Previous studies have proven that prebiotics can modulate intestinal microbiota and thus participate in human health regulation. We reviewed the regulatory mechanism of intestinal microbiota on depression through GBA, and discussed the effects of prebiotics, including plant polysaccharides and polyphenols on the regulation of intestinal microbiota, providing new clues for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Qinghui He
- Amway (China) R&D Centre Co., Ltd., Guangzhou 510730, China;
| | - Congcong Si
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Zhenjiao Sun
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Yuhui Chen
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
40
|
Polysaccharides from Medicine and Food Homology Materials: A Review on Their Extraction, Purification, Structure, and Biological Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103215. [PMID: 35630690 PMCID: PMC9147777 DOI: 10.3390/molecules27103215] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/16/2023]
Abstract
Medicine and food homology (MFH) materials are rich in polysaccharides, proteins, fats, vitamins, and other components. Hence, they have good medical and nutritional values. Polysaccharides are identified as one of the pivotal bioactive constituents of MFH materials. Accumulating evidence has revealed that MFH polysaccharides (MFHPs) have a variety of biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progress and future prospects of MFHPs must be systematically reviewed to promote their better understanding. This paper reviewed the extraction and purification methods, structure, biological activities, and potential molecular mechanisms of MFHPs. This review may provide some valuable insights for further research regarding MFHPs.
Collapse
|
41
|
Yang L, Kang X, Dong W, Wang L, Liu S, Zhong X, Liu D. Prebiotic properties of Ganoderma lucidum polysaccharides with special enrichment of Bacteroides ovatus and B. uniformis in vitro. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
42
|
Lv K, Yuan Q, Li H, Li T, Ma H, Gao C, Zhang S, Liu Y, Zhao L. Chlorella pyrenoidosa Polysaccharides as a Prebiotic to Modulate Gut Microbiota: Physicochemical Properties and Fermentation Characteristics In Vitro. Foods 2022; 11:foods11050725. [PMID: 35267359 PMCID: PMC8908982 DOI: 10.3390/foods11050725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
This study was conducted to investigate the prebiotic potential of Chlorella pyrenoidosa polysaccharides to provide useful information for developing C. pyrenoidosa as a green healthy food. C. pyrenoidosa polysaccharides were prepared and their physicochemical characteristics were determined. The digestibility and fermentation characteristics of C. pyrenoidosa polysaccharides were evaluated using in vitro models. The results revealed that C. pyrenoidosa polysaccharides were composed of five non-starch polysaccharide fractions with monosaccharide compositions of Man, Rib, Rha, GlcA, Glc, Gal, Xyl and Ara. C. pyrenoidosa polysaccharides could not be degraded under saliva and the gastrointestinal conditions. However, the molecular weight and contents of residual carbohydrates and reducing sugars of C. pyrenoidosa polysaccharides were significantly reduced after fecal fermentation at a moderate speed. Notably, C. pyrenoidosa polysaccharides could remarkably modulate gut microbiota, including the promotion of beneficial bacteria, inhibition of growth of harmful bacteria, and reduction of the ratio of Firmicutes to Bacteroidetes. Intriguingly, C. pyrenoidosa polysaccharides can promote growth of Parabacteroides distasonis and increase short-chain fatty acid contents, thereby probably contributing to the promotion of intestinal health and prevention of diseases. Thus, these results suggested that C. pyrenoidosa polysaccharides had prebiotic functions with different fermentation characteristics compared with conventional prebiotics such as fructooligosaccharide, and they may be a new prebiotic for improving human health.
Collapse
Affiliation(s)
- Kunling Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Hong Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Tingting Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Siyuan Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Correspondence: (S.Z.); (L.Z.)
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
- Correspondence: (S.Z.); (L.Z.)
| |
Collapse
|
43
|
The Algal Polysaccharide Ulvan and Carotenoid Astaxanthin Both Positively Modulate Gut Microbiota in Mice. Foods 2022; 11:foods11040565. [PMID: 35206042 PMCID: PMC8871025 DOI: 10.3390/foods11040565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal microbial community (microbiota) is dynamic and variable amongst individuals and plays an essential part in gut health and homeostasis. Dietary components can modulate the structure of the gut microbiota. In recent years, substantial efforts have been made to find novel dietary components with positive effects on the gut microbial community structure. Natural algal polysaccharides and carotenoids have been reported to possess various functions of biological relevance and their impact on the gut microbiota is currently a topic of interest. This study, therefore, reports the effect of the sulfated polysaccharide ulvan and the carotenoid astaxanthin extracted and purified from the aquacultured marine green macroalgae Ulva ohnoi and freshwater green microalgae Haematococcus pluvialis, respectively, on the temporal development of the murine gut microbiota. Significant changes with the increase in the bacterial classes Bacteroidia, Bacilli, Clostridia, and Verrucomicrobia were observed after feeding the mice with ulvan and astaxanthin. Duration of the treatments had a more substantial effect on the bacterial community structure than the type of treatment. Our findings highlight the potential of ulvan and astaxanthin to mediate aspects of host-microbe symbiosis in the gut, and if incorporated into the diet, these could assist positively in improving disease conditions associated with gut health.
Collapse
|
44
|
Wang H, Li Y, Wang X, Li Y, Cui J, Jin DQ, Tuerhong M, Abudukeremu M, Xu J, Guo Y. Preparation and structural properties of selenium modified heteropolysaccharide from the fruits of Akebia quinata and in vitro and in vivo antitumor activity. Carbohydr Polym 2022; 278:118950. [PMID: 34973766 DOI: 10.1016/j.carbpol.2021.118950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023]
Abstract
Cancer is a complex disease, and blocking tumor angiogenesis has become one of the most promising approaches in cancer therapy. Here, an exopoly heteropolysaccharide (AQP70-2B) was firstly isolated from Akebia quinata. Monosaccharide composition indicated that the AQP70-2B was composed of rhamnose, glucose, galactose, and arabinose. The backbone of AQP70-2B consisted of →1)-l-Araf, →3)-l-Araf-(1→, →5)-l-Araf-(1→, →3,5)-l-Araf-(1→, →2,5)-l-Araf-(1→, →4)-d-Glcp-(1→, →6)-d-Galp-(1→, and →1)-d-Rhap residues. Based on the close relationship between selenium and anti-tumor activity, AQP70-2B was modified with selenium to obtain selenized polysaccharide Se-AQP70-2B. Then, a series of methods for analysis and characterization, especially scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS), indicated that Se-AQP70-2B was successfully synthesized. Furthermore, zebrafish xenografts and anti-angiogenesis experiments indicated that selenization could improve the antitumor activity by inhibiting tumor cell proliferation and migration and blocking angiogenesis.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuelian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
45
|
Shao W, Xiao C, Yong T, Zhang Y, Hu H, Xie T, Liu R, Huang L, Li X, Xie Y, Zhang J, Chen S, Cai M, Chen D, Liu Y, Gao X, Wu Q. A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice. Int J Biol Macromol 2022; 197:23-38. [PMID: 34920067 DOI: 10.1016/j.ijbiomac.2021.12.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
In this study, we reported a thermal stable and non-toxic heteropolysaccharide F31, which decreased the blood glucose of diabetic mice (21.75 mmol/L) induced by high-fat diet (HFD) and streptozotocin (STZ) to 12.56 and 15.18 mmol/L (P < 0.01) at 180 and 60 mg/kg, depicting remarkable hypoglycemic effects of 42.25 and 30.21%. Moreover, F31 repaired islet cells and increased insulin secretion, promoted the synthesis and storage of glycogen in liver and improved activities of antioxidant enzymes and insulin resistances, declining HOMA-IR (43.77 mmol/mU) of diabetic mice (P < 0.01) to 17.32 and 20.96 mmol/mU at both doses. 16S rRNA gene sequencing revealed that F31 significantly decreased Firmicutes (44.92%, P < 0.01) and enhanced Bacteroidetes (33.73%, P < 0.01) and then increased B/F ratio of diabetic mice to 0.6969 (P < 0.01), even being close to normal control (P = 0.9579). F31 enriched Lactobacillus, Bacteroides and Ruminococcaceae, which may relieve glucose, insulin resistance and inflammation through decreasing the release of endotoxins into the circulation from intestine, carbohydrate fermentation in gut and activation of the intestine-brain axis. Functionally, F31 improved metabolism of gut microbiota to a normal state. These results may provide novel insights into the beneficial effect of F31 against hyperglycemia.
Collapse
Affiliation(s)
- Weiming Shao
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Jiaoling Tiehan Big Health Industry Investment Co., Ltd., Jiaoling 514100, Guangdong, China
| | - Tianqiao Yong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yifan Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ting Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Rongjie Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longhua Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Diling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanchao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
46
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
47
|
Differences of gut microbiota composition in mice supplied with polysaccharides from γ-irradiated and non-irradiated Schizophyllum commune. Food Res Int 2022; 151:110855. [PMID: 34980391 DOI: 10.1016/j.foodres.2021.110855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023]
Abstract
In this study, polysaccharides from normal (N-SFP) and γ-irradiated (I-SFP) Schizophyllum commune were supplied to Kunming mice for 30 days. The results showed that N-SFP and I-SFP supplementation prevent body weight gain, enhance kidney uric acid metabolism and increase the concentration of SCFAs to a certain extent. Moreover, N-SFP and I-SFP promote the growth of beneficial gut microbiota and inhibit the growth of harmful bacteria. Compared to N-SFP, I-SFP decreased the relative abundance of Muribaculaceae and Lactobacillaceae, and increased the beneficial gut microbiota, especially the family of Akkermansiaceae, Lachnospiraceae and Bacteroidaceae. In total, I-SFP showed better effects than N-SFP in preventing weight gain, and modulating the mice gut microbiota, which suggests that I-SFP could act as a potential health supplement in the prevention of obesity.
Collapse
|
48
|
Sun Q, Ho CT, Zhang X, Liu Y, Zhang R, Wu Z. Strategies for circadian rhythm disturbances and related psychiatric disorders: A new cue based on plant polysaccharides and intestinal microbiota. Food Funct 2022; 13:1048-1061. [DOI: 10.1039/d1fo02716f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian rhythm is essential to human physiological homeostasis and health. The oscillation of host circadian rhythm affects the composition and function of intestinal microbiota, meanwhile, the normal operation of host...
Collapse
|
49
|
Cho M, Bu Y, Park JW, Rahman H, Ko SJ. Efficacy of complementary medicine for nonsteroidal anti-inflammatory drug-induced small intestinal injuries: A narrative review. Medicine (Baltimore) 2021; 100:e28005. [PMID: 35049210 PMCID: PMC9191556 DOI: 10.1097/md.0000000000028005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-induced small bowel injuries (NSIs) have been largely ignored for decades due to the focus on nonsteroidal anti-inflammatory drug gastropathy. With the visualization of the small intestines enabled by video capsule endoscopy, the frequency and severity of NSIs have become more evident. NSIs have a complex pathophysiology, and no effective preventive or treatment options have been proven. Complementary and alternative medicine (CAM) has been used to treat disorders of the small intestine, and more research on its effectiveness for NSIs has been conducted.We reviewed the current evidence and mechanisms of action of CAMs on NSI. Clinical and experimental studies on the effect of CAMs on NSIs were performed using 10 databases.Twenty-two studies (3 clinical and 19 in vivo experimental studies) were included in the final analysis involving 10 kinds of CAMs: bovine colostrum, Orengedokuto (coptis), muscovite, licorice, grape seed, wheat, brown seaweed, Ganoderma lucidum fungus mycelia, Chaenomeles speciosa (sweet) Nakai (muguasantie), and Jinghua Weikang capsule. The mechanisms of CAM include an increase in prostaglandin E2, reparation of the enteric nervous system, inhibition of pro-inflammatory cytokines, reduction of intestinal permeability and enteric bacterial numbers, decrease in oxidative stress, and modulation of small intestinal motility.CAM may be a novel alternative option for treating and preventing NSI, and further studies on human and animal models with relevant comorbidities are warranted.
Collapse
Affiliation(s)
- Minji Cho
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Zhang Y, Duan X, Wassie T, Wang HH, Li T, Xie C, Wu X. Enteromorpha prolifera polysaccharide-zinc complex modulates the immune response and alleviates LPS-induced intestinal inflammation via inhibiting the TLR4/NF-κB signaling pathway. Food Funct 2021; 13:52-63. [PMID: 34704575 DOI: 10.1039/d1fo02171k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enteromorpha prolifera polysaccharide-zinc (EP-Zn), a kind of polysaccharide-zinc complex, has been shown to improve the immune response and reduce the inflammatory factors in weaned piglets. Yet, the molecular mechanism remains unclear. The present study was conducted to investigate the immunomodulating activity and anti-inflammatory mechanism of EP-Zn in mice. Different doses (350 mg kg-1, 700 mg kg-1, 1050 mg kg-1 and 1400 mg kg-1) of EP-Zn were administered to C57BL/6J mice for 28 days. The results showed that under physiological conditions, 350 mg kg-1 EP-Zn stimulated cytokine (TNF-α, IL-1β, IL-6 and IL-10) secrection, regulated the intestinal microbiota, and reduced the levels of short-chain fatty acids (SCFAs) (acetic acid and propionic acid). In addition, in the LPS-induced inflammation model, EP-Zn pretreatment effectively alleviated LPS-induced shortening of colonic length and increased MPO and DAO contents, improved intestinal physical barrier function by modulating mucosal structure, and attenuated intestinal inflammation via inhibiting the TLR4/NF-κB signaling pathway. These findings suggested that EP-Zn exerted immunomodulatory and anti-inflammatory activities under physiological and inflammatory conditions, respectively.
Collapse
Affiliation(s)
- Yumei Zhang
- College of Resources and Environment, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China. .,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Xinyi Duan
- College of Resources and Environment, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China. .,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Teketay Wassie
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Hai-Hua Wang
- Qingdao Seawin Biotech Group Co., Ltd., Qingdao, 266071, China
| | - Tiejun Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Chunyan Xie
- College of Resources and Environment, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P R China
| |
Collapse
|