1
|
Tariq TB, Karishma, Umer M, Mubeen-Ur-Rehman. The potential of seaweed-derived polysaccharides as sustainable biostimulants in agriculture. Int J Biol Macromol 2025; 298:140009. [PMID: 39828156 DOI: 10.1016/j.ijbiomac.2025.140009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Seaweed polysaccharides such as alginate, carrageenan, agar, and ulvan are emerging as key bioresources in sustainable agriculture due to their unique structural characteristics and functional properties. This review highlights their potential as eco-friendly biostimulants capable of enhancing soil health, plant growth, and stress resilience. Specific mechanisms, including the gel-forming capacity of alginate, ion exchange abilities, and the hydrophilic nature of these polysaccharides, enable improved water retention, nutrient uptake, and plant productivity under adverse conditions, including drought, salinity, and extreme temperatures. Moreover, their role as hydrogels and bio-elicitors introduces novel approaches to addressing global challenges in agriculture, such as climate change and food security. Real-world applications, such as the use of Ascophyllum nodosum extract for drought tolerance and Gracilaria tenuistipitata var. liui to boost grain yields, underscore the practicality and success of these biostimulants. Despite their promising applications, challenges like variability in seaweed quality, high extraction costs, and limited product standardization hinder their scalability. This review provides an integrated analysis of their biochemical properties, agricultural applications, and commercial products while proposing solutions to optimize their use for advancing sustainable farming practices.
Collapse
Affiliation(s)
- Tayyaba Bint Tariq
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Karishma
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Umer
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mubeen-Ur-Rehman
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
2
|
Kang L, Zhu X, Yan Y, Zhu R, Wei W, Peng F, Sun L. Characterization and Antioxidant Activity of Polysaccharides From Agaricus bisporus by Gradient Ethanol Precipitation. Chem Biodivers 2025:e202500120. [PMID: 40165028 DOI: 10.1002/cbdv.202500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
In this present work, the polysaccharides from Agaricus bisporus were extracted and fractioned with gradient ethanol precipitation method for the first time. Five fractions (ABP40, ABP50, ABP60, ABP70, and ABP80) were obtained with ethanol concentrations of 40%, 50%, 60%, 70%, and 80%, respectively, and their characteristics and antioxidant activities in vitro were investigated. The five fractions presented significant differences in total sugar, protein, and uronic acid content, with a marked discrepancy in the molar ratio of the monosaccharide composition. The molecular weights of the polysaccharides decreased with increasing ethanol concentration. Compared to the other four fractions, ABP70, which has the highest uronic acid content, showed more conspicuous radical-scavenging activities against hydroxyl (89.9 ± 0.33%) and DPPH radicals (80.1 ± 0.01%). Moreover, it was found that the total sugar content and antioxidant activities of polysaccharides increased with the extension of precipitation time, with the highest antioxidant activities at 24 h. Therefore, ABP70, precipitated for 24 h, may have a potential application value for the development of antioxidants. This study provides valuable information for the further commercial applications of polysaccharides from Agaricus bisporus.
Collapse
Affiliation(s)
- Liqin Kang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Xinji Zhu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Yangtian Yan
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Rui Zhu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Wei Wei
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Fei Peng
- Department of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Lei Sun
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| |
Collapse
|
3
|
Cao X, Islam MN, Lu D, Han C, Wang L, Tan M, Chen Y, Xin N. Effects of barley seedling powder on rheological properties of dough and quality of steamed bread. FOOD SCI TECHNOL INT 2025; 31:155-166. [PMID: 37464807 DOI: 10.1177/10820132231188988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In order to find the optimal share of barley seedling powder (BSP) to improve the rheological properties of wheat dough and physico-chemical properties of steamed bread (SB), BSP was added with wheat flour at various proportions (2-10%). Results showed that with the increasing amount of BSP additive, the farinograph index (86.33-123), dough stability (9.37-12.63 min), and dough development time (6.23-7.63 min) in blend flour increased. Similarly, with the increasing BSP, SB became darker and more greenish, and the total flavonoid content increased. The content of chlorophyll-b, and total chlorophyll demonstrated a faster increase than that of chlorophyll-a. The hardness and chewability of SB improved as well whereas the springiness increased first and then decreased. The best springiness and gumminess of SB were found with 2% and 8% BSP additives respectively. 2%, 4%, and 6% addition of BSP resulted in a slight fluctuation in the bound water quantity than 8% and 10% BSP additive. No new compound formation was confirmed by Infrared analysis and there was only a heat and mass transfer process. Results from this study indicated that SB with improved quality attributes can be prepared from wheat flour fortified with BSP at 2-4%.
Collapse
Affiliation(s)
- Xiaohuang Cao
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Md Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Food Safety and Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dandan Lu
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Congying Han
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Lei Wang
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Mingxiong Tan
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Yuan Chen
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Ning Xin
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| |
Collapse
|
4
|
Yu X, Peng M, Liu X, Shang Y, Wang D, Jin W, Li F. Physicochemical Properties and Biological Activities of Polysaccharides from Panax Notoginseng Separated by Fractional Precipitation. Chem Biodivers 2025; 22:e202402002. [PMID: 39363708 DOI: 10.1002/cbdv.202402002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
The dried root of Panax notoginseng is a medicinal and food ingredient. P. notoginseng polysaccharides (PNPs) have physicochemical properties, which have not been fully elucidated. This study aimed to identify a method to separate the PNP fractions and investigate their activities. PNPs were prepared from roots by hot water extraction, deproteinization, and decolorization. PNP20, PNP40, and PNP60 fractions were isolated through stepwise ethanol precipitation at 20 %, 40 %, and 60 % concentrations, respectively. The three polysaccharide fractions were characterized using chromatography, spectroscopy, and thermogravimetric analysis, and their moisture retention, antioxidant, and tyrosinase-inhibition properties were evaluated. Monosaccharide composition analysis showed that the three PNPs contained mannose (Man), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in different molar ratios. HPGPC analysis demonstrated that the polysaccharides precipitated with higher ethanol concentrations had lower molecular weights (Mw). Furthermore, all PNPs had distinct moisturizing and hygroscopic properties and antioxidant activities, with PNP60 showing better antioxidant properties and a competitive mixture of hygroscopic properties and tyrosinase inhibition. The chemical composition and structural characteristics of PNPs could affect their functional attributes. PNP60 has the potential to be a moisturizer and antioxidant and could be used in the development of cosmetic ingredients.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mengli Peng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiaocheng Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wenbin Jin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
5
|
Feng C, Cheng X, Na M, Zhang F, Duan J, Ji L, Jiang J. Green preparation of low-molecular-weight galactomannan from Gleditsia sinensis and mechanistic investigation on ameliorating nonalcoholic fatty liver disease. Food Res Int 2025; 201:115647. [PMID: 39849749 DOI: 10.1016/j.foodres.2024.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Galactomannan comes from a wide range of plant resources and has some biological activities, but its bioavailability is limited due to its large molecular weight and complex structure. In this study, three degradation methods (H2O2, ultrasound, and β-mannanase) combined with ethanol fractional precipitation (25 %, 50 %, and 75 %) were used to degrade and separate Gleditsia sinensis galactomannans (GSG), and the physicochemical properties and biological activities of GSG after degradation were analyzed. Comprehensive comparison indicates that H2O2 exhibits had a better degradation effect. After 4 h of degradation using 4 % H2O2, the yield of GSG precipitated with 50 % ethanol was 37.06 % (the yield of undigested GSG is 1.80 %). Simultaneously, the molecular weight (reduced from 225.25 to 36.87 kDa) and viscosity were significantly reduced under this condition, while the solubility was increased. In addition, the low-molecular-weight GSG (LGSG) obtained by 4 % H2O2/50 % ethanol showed the strongest free radical scavenging activity in vitro. Furthermore, the results of in vivo antioxidant assays showed that LGSG inhibited Aflatoxin B1-induced developmental toxicity by regulating gene expression in the Keap1/Nrf2 pathway. LGSG also promoted Nrf2-mediated expression of the lipid metabolism genes ppar-α and cpt1, while suppressing expression of the fatty acid synthesis genes fas and scd-1. Therefore, the liver recovered from lipid peroxidation induced nonalcoholic fatty liver disease (NAFLD). The present study introduces a method for green and efficient preparation of LGSG, indicates its potential as a nutritional product.
Collapse
Affiliation(s)
- Chi Feng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Mula Na
- Inner Mongolia Minzu Universities, Coll Anim Sci & Technol, Tongliao, Inner Mongolia 028000, China
| | - Fenglun Zhang
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jiufang Duan
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Cai W, Zhu H, Luo Y, Huang Q. Potential skincare benefits and self-healing properties of Lignosus rhinocerotis polysaccharides as affected by ultrasound-assisted H 2O 2/Vc treatment. Int J Biol Macromol 2024; 281:136543. [PMID: 39414216 DOI: 10.1016/j.ijbiomac.2024.136543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Natural polysaccharides have been recognized as major bioactive components in skincare and wound care products. In this study, the skincare benefits and self-healing properties of Lignosus rhinocerotis polysaccharides (LRP) and its degraded products (DLRP-1, DLRP-2 and DLRP-3) by ultrasound assisted H2O2/Vc treatment (U-H/V) at different ultrasonic intensity (28.14, 70.35, and 112.56 W/cm2) were investigated. U-H/V altered the internal crystalline structure and microstructure of LRP, and enhanced the thermal stability. Due to the breakage of molecular chains after U-H/V, the moisture absorption of LRP was enhanced but the moisturizing property showed a different degree of reduction. U-H/V significantly improved the antioxidant, anti-tyrosinase and anti-inflammatory activities of LRP. Furthermore, the results of enzyme kinetic studies showed a mixed competitive-noncompetitive inhibition of tyrosinase activity by DLRP-3 and the inhibition constant of DLRP-3 on tyrosinase was 2.97 mg/mL. The apparent viscosity of LRP dispersions showed a first increasing followed by decreasing trend as ultrasonic intensity rose. U-H/V enhanced the viscoelastic properties of LRP gels without destroying their self-healing properties. This findings reveal that U-H/V is beneficial for improving the skincare efficacy of LRP, providing a theoretical foundation for the applicability of LRP in wound dressings.
Collapse
Affiliation(s)
- Wudan Cai
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Honglin Zhu
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yangchao Luo
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Chen Z, Wang D, Gu S, Wu N, Wang K, Zhang Y. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. Int J Biol Macromol 2024; 277:134236. [PMID: 39079564 DOI: 10.1016/j.ijbiomac.2024.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Natural polysaccharides exhibit a wide range of biological activities, which are closely related to their structural characteristics, including their molecular weight distribution, size, monosaccharide composition, glycosidic bond types and spatial conformation, etc. Size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4), as two potent separation techniques, both harbor potential for continuous development and enhancement. This manuscript reviewed the fundamental principles and separation applications of SEC and AF4. The structural information and spatial conformation of polysaccharides can be obtained using SEC or AF4 coupled with multiple detectors. In addition, this manuscript elaborates in detail on the shear degradation of samples such as polysaccharides separated by SEC. In addition, the abnormal elution that occurs during the application of the two methods is also discussed. Both SEC and AF4 possess considerable potential for ongoing development and refinement, thereby offering increased possibilities and opportunities for polysaccharide separation and characterization.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saisai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Chen Z, Wu J, Wang N, Li T, Wu H, Wu H, Xiang W. Isolation, Characterization, Moisturization and Anti-HepG2 Cell Activities of a Novel Polysaccharide from Cyanobacterium aponinum. Molecules 2024; 29:4556. [PMID: 39407483 PMCID: PMC11478272 DOI: 10.3390/molecules29194556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/20/2024] Open
Abstract
Polysaccharides from cyanobacteria are extensively reported for their complex structures, good biocompatibility, and diverse bioactivities, but only a few cyanobacterial species have been exploited for the biotechnological production of polysaccharides. According to our previous study, the newly isolated marine cyanobacterium Cyanobacterium aponinum SCSIO-45682 was a good candidate for polysaccharide production. This work provided a systematic study of the extraction optimization, isolation, structural characterization, and bioactivity evaluation of polysaccharides from C. aponinum SCSIO-45682. Results showed that the crude polysaccharide yield of C. aponinum reached 17.02% by hot water extraction. The crude polysaccharides showed a porous and fibrous structure, as well as good moisture absorption and retention capacities comparable to that of sodium alginate. A homogeneous polysaccharide (Cyanobacterium aponinum polysaccharide, CAP) was obtained after cellulose DEAE-52 column and Sephadex G-100 column purification. CAP possessed a high molecular weight of 4596.64 kDa. It was mainly composed of fucose, galactose, and galacturonic acid, with a molar ratio of 15.27:11.39:8.64. The uronic acid content and sulfate content of CAP was 12.96% and 18.06%, respectively. Furthermore, CAP showed an in vitro growth inhibition effect on human hepatocellular carcinoma (HepG2) cells. The above results indicated the potential of polysaccharides from the marine cyanobacterium C. aponinum SCSIO-45682 as a moisturizer and anticancer addictive applied in cosmetical and pharmaceutical industries.
Collapse
Affiliation(s)
- Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou 511466, China
| | - Na Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Basic Medical Sciences, Heyang Medical School, University of South China, Hengyang 421001, China
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| |
Collapse
|
9
|
Wang H, Feng Y, Liang Y, Wang K, Yang X, Lai M, Li H, Yang J, Ji X. Effects of Separation and Purification Methods on Antioxidation, Hypoglycemic and DNA Protection Activity of Fenugreek Polysaccharide. Chem Biodivers 2024; 21:e202400190. [PMID: 38860451 DOI: 10.1002/cbdv.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Six low molecular weight fenugreek polysaccharides (FP) were isolated and purified by ethanol stepwise precipitation (EFP-20, EFP-40, and EFP-60) and DEAE-52 cellulose column method (DFP-0, DFP-0.15, and DFP-0.3), respectively. The effects of different separation and purification techniques on the preliminary properties and biological activities of fenugreek polysaccharides were compared. The results showed that the DEAE-52 cellulose-eluted fractions had a higher total sugar content and displayed a looser structure. The molecular weights of all six fractions were in the range of 4-19 kDa, with significant changes in the ratio of galactose to mannose. All six fractions contained α-D-galactopyranose and β-D-mannopyranose structures. Activity tests showed that all six fractions possessed antioxidant, hypoglycemic and DNA-protective activities. Among them, the DFP-0 fraction showed the highest activity. Overall, different isolation and purification methods lead to changes in the properties and bioactivities of FP, which provides a theoretical basis for the development and application of FP in functional foods and drugs.
Collapse
Affiliation(s)
- Haiyang Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Yifan Liang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kun Wang
- Nanchang Cigarette Factory of China Tobacco Jiangxi Industry Co., Ltd., Nanchang, 330000, China
| | - Xiaopeng Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Miao Lai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huayu Li
- Technology Center of Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, Henan, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Xiaoming Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
10
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
11
|
Wang H, Lai M, Li H, Jiang L, Wei Y, Yu Z, Zhang Y, Ji X, Li J, Yang X. Moisturizing and aroma-enhancing effects of low molecular weight fenugreek polysaccharides in cigarettes. Int J Biol Macromol 2024; 259:129320. [PMID: 38218276 DOI: 10.1016/j.ijbiomac.2024.129320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Polysaccharides possess excellent moisturizing effects due to their abundance of hydrophilic groups and film-forming properties. Additionally, they can produce a refreshing aroma during the pyrolysis process. However, there is scarce research on their application in the tobacco field. Herein, we investigated the effects of low molecular weight fenugreek polysaccharide (FP) obtained through ethanol fractionation and DEAE-52 cellulose column chromatography on moisture retention and aroma enhancement in tobacco. The moisture retention test revealed that the addition of FP increased the moisture retention index (MRI) of tobacco by 11.72 %-16.69 %, indicating that the hydrophilic nature of polysaccharides facilitated the migration of free water in tobacco to bound water, resulting in reduced water activity. Moreover, the contact angle between polysaccharide and tobacco was <90°, enabling better infiltration into tobacco and slowing down tobacco shrinkage caused by water loss. Among all the components, EFP-20 and EFP-40 demonstrated superior performance. Furthermore, FP exhibited excellent thermal stability below 200 °C and can decomposed to produce aromatic substances at high temperatures. It also demonstrated the ability to adsorb ethyl heptanoate and thermally decompose to produce a substantial amount of heptanoic acid. Consequently, the incorporation of FP in tobacco demonstrated favorable effects on both moisturization and aroma enhancement.
Collapse
Affiliation(s)
- Haiyang Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Miao Lai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Huayu Li
- Technology Center of Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang 461000, China
| | - Lin Jiang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuewei Wei
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaojin Yu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoming Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Junying Li
- Henan Province Tobacco Company Pingdingshan Company, Pingdingshan 467000, China.
| | - Xiaopeng Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Hamed YS, Ahsan HM, Hussain M, Ahmad I, Tian B, Wang J, Zou XG, Bu T, Ming C, Rayan AM, Yang K. Polysaccharides from Brassica rapa root: Extraction, purification, structural features, and biological activities. A review. Int J Biol Macromol 2024; 254:128023. [PMID: 37952795 DOI: 10.1016/j.ijbiomac.2023.128023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Brassica rapa (B. rapa) roots are attracting increased attention from nutritionists and health-conscious customers because of their remarkable performance in supplying necessary nutrients. Polysaccharides are major biologically active substances in B. rapa roots, which come in a variety of monosaccharides with different molar ratios and glycosidic bond types. Depending on the source, extraction, separation, and purification methods of B. rapa roots polysaccharides (BRP); different structural features, and pharmacological activities are elucidated. Polysaccharides from B. rapa roots possess a range of nutritional, biological, and health-enhancing characteristics, including anti-hypoxic, antifatigue, immunomodulatory, hypoglycemic, anti-tumor, and antioxidant activities. This paper reviewed extraction and purification methods, structural features, and biological activities as well as correlations between the structural and functional characteristics of polysaccharides from the B. rapa roots. Ultimately, this work will serve as useful reference for understanding the connections between polysaccharide structure and biological activity and developing novel BRP-based functional foods.
Collapse
Affiliation(s)
- Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahahuddin Zakaria University, Multan, Pakistan
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| |
Collapse
|
13
|
Zhang Y, Liu Y, Cai Y, Tian Y, Xu L, Zhang A, Zhang C, Zhang S. Ultrasonic-assisted extraction brings high-yield polysaccharides from Kangxian flowers with cosmetic potential. ULTRASONICS SONOCHEMISTRY 2023; 100:106626. [PMID: 37793200 PMCID: PMC10550611 DOI: 10.1016/j.ultsonch.2023.106626] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
The purpose of this work was to ameliorate the yield of polysaccharides from Kangxian flowers (PKFs) using ultrasonic-assisted extraction (UAE) and to explore the structural features and cosmetic potential of PKFs obtained under the optimized UAE. According to response surface methodology, the optimal UAE for PKFs were liquid-to-solid ratio of 59: 1 mL/g, ultrasonic power of 404 W, time of 48 min, and temperature of 66℃, under which the yield of PKFs reached 26.8 ± 1.76 %, 2.6-folds higher than hot-water extraction. By comparing the microstructures, it can be seen that ultrasonication exerted great damage on Kangxian flowers to promote the outflow of PKFs. Various analyses revealed that the PKFs extracted with UAE were acidic polysaccharides with relatively lower molecular weights of 0.92 - 76.9 kDa, negatively charged potential of -16.3 mV, and arabinose the dominant monosaccharide followed by galactose. These structural features conferred PKFs pronounced antioxidant, moistureabsorptionandretentionproperties, showing great potential for cosmetic application.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China.
| | - Yihui Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yingying Cai
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yuping Tian
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Lianfa Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Aibei Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Chen Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Shushu Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| |
Collapse
|
14
|
Lin TY, Wu YT, Chang HJ, Huang CC, Cheng KC, Hsu HY, Hsieh CW. Anti-Inflammatory and Anti-Oxidative Effects of Polysaccharides Extracted from Unripe Carica papaya L. Fruit. Antioxidants (Basel) 2023; 12:1506. [PMID: 37627501 PMCID: PMC10451988 DOI: 10.3390/antiox12081506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Yun-Ting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Hui-Ju Chang
- Department of Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Executive Yuan, Taichung City 426017, Taiwan;
| | - Chun-Chen Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| | - Hsien-Yi Hsu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| |
Collapse
|
15
|
Li Z, Zhang X, Zhu C. Physicochemical properties and Pb 2+ adsorption capacity of freeze-dried hawthorn pectin fractions by gradient ethanol precipitation. Int J Biol Macromol 2023; 245:125581. [PMID: 37385315 DOI: 10.1016/j.ijbiomac.2023.125581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/27/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Three fractions of FHP20, FHP40 and FHP60 were obtained from freeze-dried hawthorn pectin by gradient ethanol precipitation (20-60 %), and their physicochemical properties and adsorption performance on Pb2+ were investigated. It was found that the content of galacturonic acid (GalA) and esterification of FHP fractions gradually reduced with the increase of ethanol concentration. FHP60 had the lowest molecular weight (60.69 × 103 Da), and the composition and proportion of monosaccharides were significantly different. The experimental results of Pb2+ adsorption showed that the adsorption process fitted well with the Langmuir monolayer adsorption and the pseudo-second-order models. Our findings suggested that pectin fractions with good homogeneity of molecular weight and chemical construction can be obtained by gradient ethanol precipitation, and hawthorn pectin could be developed as a potential adsorbent for Pb2+ removal.
Collapse
Affiliation(s)
- Zhixin Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xiaoyan Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
16
|
Chen Y, Song L, Chen P, Liu H, Zhang X. Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh. Foods 2023; 12:2335. [PMID: 37372546 DOI: 10.3390/foods12122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to isolate polysaccharides from Penthorum chinense Pursh and evaluate their rheological characteristics, physicochemical properties, and antioxidant activity. The optimal conditions for the maximal extraction yield of Penthorum chinense Pursh polysaccharides (4.05 ± 0.12%) were determined by employing a single-factor test and response surface methodology which included an extraction time of 3 h, a liquid-solid ratio of 20 mL/g, and three separate extraction times. The rheological experiments showcased that the P. chinense polysaccharides exhibited typical shear-thinning behavior, with their apparent viscosity being influenced by various parameters such as concentration, pH, temperature, salt content, and freeze-thaw. The purified polysaccharides (PCP-100), having an average molecular weight of 1.46 × 106 Da, mainly consisted of glucose (18.99%), arabinose (22.87%), galactose (26.72%), and galacturonic acid (21.89%). Furthermore, the PCP-100 exhibited high thermal stability and displayed an irregular sheet-like morphology. Its superior reducing power and free radical scavenging ability implied its significant antioxidant activity in vitro. Collectively, these findings provide important insights for the future application of P. chinense polysaccharides in the food industry.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Song
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowei Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
17
|
Yang X, Cao D, Ji H, Xu H, Feng Y, Liu A. Physicochemical characterization, rheological properties, and hypolipidemic and antioxidant activities of compound polysaccharides in Chinese herbal medicines by fractional precipitation. Int J Biol Macromol 2023; 242:124838. [PMID: 37172701 DOI: 10.1016/j.ijbiomac.2023.124838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
This study aimed to investigate the effects of different compound polysaccharides (CPs) extracted from Folium nelumbinis, Fructus crataegi, Fagopyrum tataricum, Lycium barbarum, Semen cassiae, and Poria cocos (w/w, 2:4:2:1:1.5:1) by gradient ethanol precipitation on the physicochemical properties and biological activities. Three CPs (CP50, CP70, and CP80) were obtained and comprised rhamnose, arabinose, xylose, mannose, glucose, and galactose in different proportions. The CPs contained different amounts of total sugar, uronic acid, and proteins. These also exhibited different physical properties, including particle size, molecular weight, microstructure, and apparent viscosity. Scavenging abilities of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 1,1'-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and superoxide radicals of CP80 were more potent compared to those of the other two CPs. Furthermore, CP80 significantly increased serum levels of high-density lipoprotein cholesterol (HDL-C) and lipoprotein lipase (LPL), and hepatic lipase (HL) activity in the liver, while decreasing the serum levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), along with LPS activity. Therefore, CP80 may serve as a natural novel lipid regulator in the field of medicinal and functional food.
Collapse
Affiliation(s)
- Xu Yang
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China.
| | - Dongli Cao
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China
| | - Haiyu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huijing Xu
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China
| | - Yingying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
18
|
Hasköylü ME, Gökalsin B, Tornaci S, Sesal C, Öner ET. Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. Int J Biol Macromol 2023; 240:124418. [PMID: 37080400 DOI: 10.1016/j.ijbiomac.2023.124418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the β-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.
Collapse
Affiliation(s)
- Merve Erginer Hasköylü
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey.
| | - Barış Gökalsin
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Selay Tornaci
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
19
|
Niu G, You G, Zhou X, Fan H, Liu X. Physicochemical properties and in vitro hypoglycemic activities of hsian-tsao polysaccharide fractions by gradient ethanol precipitation method. Int J Biol Macromol 2023; 231:123274. [PMID: 36649866 DOI: 10.1016/j.ijbiomac.2023.123274] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Hsian-tsao polysaccharides fractions (HPs), including HP20, HP40, HP60, and HP80, were fractioned by gradient precipitation of 20 %, 40 %, 60 %, and 80 % (v/v) ethanol, respectively. Their physicochemical properties and in vitro hypoglycemic activities (inhibitory activities on α-amylase and α-glucosidase, glucose adsorption capacity, and glucose diffusion retardation) were determined. The results showed that, with ethanol upward, the average particle size, molecular weight, and apparent viscosity of HPs were decreased while carbohydrate and uronic acid contents, absolute zeta potential, and thermal stability were increased. Each of the HPs contained Rha, Ara, Gal, Xyl, Man, and GalA with different molar ratios, indicative of anionic heteropolysaccharides with uronic acid. HPs, with diverse structures and surface morphologies as proved by FTIR and SEM, whose solutions were pseudoplastic fluids, exhibited elastic behavior of weak gel networks at concentrations of >1 %. Moreover, HPs showed inhibitory activities on α-amylase and α-glucosidase, of which HP80 was the strongest. For α-amylase, HP20 and HP60 behaved as mixed inhibitors, while HP40 and HP80 were non-competitive. For α-glucosidase, HPs acted as mixed inhibitors. Additionally, HPs possessed glucose adsorption capacity and glucose diffusion retardation, with the best for HP20. These results suggested that HPs possessed hypoglycemic activities, which could be developed as functional food or hypoglycemic drugs.
Collapse
Affiliation(s)
- Gaigai Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Gang You
- College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China.
| | - Xinyi Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Heliang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
20
|
Fan W, Tian H, Chen H, Chu W, Han L, Li P, Gao Z, Ji X, Lai M. Moisture Property and Thermal Behavior of Two Novel Synthesized Polyol Pyrrole Esters in Tobacco. ACS OMEGA 2023; 8:4716-4726. [PMID: 36777589 PMCID: PMC9910070 DOI: 10.1021/acsomega.2c06683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
To overcome the shortcomings of high relative humidity and harmful oxidation products from traditional humectants, excellent humectants and flavor precursors were reported herein. Glucosamine hydrochloride was used as the starting material for the cyclization, oxidation, and alkylation processes that produced pyrrole acid. Then, esterification occurred with polyol catalyzed by EDC and DMAP to give the target compounds 2-(2,3-dihydroxypropyl) 4-methyl 5-methyl-1-propyl-1H-pyrrole-2,4-dicarboxylate (Gpe) and (2-hydroxypropyl) 4-methyl 5-methyl-1-propyl-1H-pyrrole-2,4-dicarboxylate (Ppe). Nuclear magnetic resonance (1H NMR, 13C NMR), infrared spectroscopy (IR), and high-resolution mass recorded spectrometry (HRMS) were used to confirm the two novel polyol pyrrole ester compounds. When Gpe and Ppe were added to the tobacco shred, low-field nuclear magnetic resonance (LF-NMR) imaging was applied to assess the hygroscopicity and moisturizing capacity. Furthermore, thermogravimetry (TG) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) techniques were applied to study their thermal behaviors. These results showed that the target compounds (Gpe and Ppe) are good humectants with thermal properties of high-temperature stability and flavor release.
Collapse
Affiliation(s)
- Wenpeng Fan
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, Zhengzhou 450002, China
| | - Haiying Tian
- Technology
Center, China Tobacco Henan Industrial Co.,
Ltd., Zhengzhou 450000, China
| | - Hongli Chen
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, Zhengzhou 450002, China
| | - Wenjuan Chu
- Technology
Center, China Tobacco Henan Industrial Co.,
Ltd., Zhengzhou 450000, China
| | - Lu Han
- Technology
Center, China Tobacco Henan Industrial Co.,
Ltd., Zhengzhou 450000, China
| | - Pengyu Li
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, Zhengzhou 450002, China
| | - Ziting Gao
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, Zhengzhou 450002, China
| | - Xiaoming Ji
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, Zhengzhou 450002, China
| | - Miao Lai
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
21
|
MO M, JIANG F, CHEN W, DING Z, BI Y, KONG F. Preparation, characterization, and bioactivities of polysaccharides fractions from sugarcane leaves. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Song Z, Zhang Y, Luo Y, Ti Y, Wang W, Ban Y, Tang Y, Hou Y, Xu L, Ming J, Yang P. Systematic evaluation on the physicochemical characteristics of a series polysaccharides extracted from different edible lilies by ultrasound and subcritical water. Front Nutr 2022; 9:998942. [PMID: 36204382 PMCID: PMC9531164 DOI: 10.3389/fnut.2022.998942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
A series polysaccharide samples extracted from three edible lilies (Lilium davidii var. willmottiae, Lilium brownii var. viridulum, and Lilium lancifolium) by subcritical water and ultrasound-assisted extraction were systematically compared. The results showed that extraction method was a more important factor than lily species. Subcritical water extracted lily polysaccharides (S-LP) with higher yield, molecular weight, neutral glucose and uronic acid content as well as apparent viscosity. Ultrasound-assisted extracted lily polysaccharides (U-LP) with higher reducing sugars and protein content. Moreover, due to the degradation of glycosidic bonds, ultrasonic extraction was easier to obtain lower molecular weight polysaccharides. In addition, the extraction method significantly affected the monosaccharide proportion of polysaccharides, but had no effect on type. Glucose was the main component in S-LP, and glucose and mannose were the main components in U-LP. The micromorphology of different polysaccharide samples was similar, and the scanning electron microscope (SEM) images showed regular/irregular particle clusters with different particle sizes. Overall, the relationships between extraction methods, lily species and polysaccharide properties were preliminarily elucidated, providing a reference for the targeted extraction of specific lily polysaccharides (LP).
Collapse
Affiliation(s)
- Zihan Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanli Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulin Luo
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Yongrui Ti
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weizhen Wang
- School of Agriculture, Yunnan University, Kunming, China
| | - Yuqian Ban
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqing Hou
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ming
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jun Ming,
| | - Panpan Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Panpan Yang,
| |
Collapse
|
23
|
Yu L, Wang Y, Tang Q, Zhang R, Zhang D, Zhu G. Structural Characterization of a Polygonatum cyrtonema Hua Tuber Polysaccharide and Its Contribution to Moisture Retention and Moisture-Proofing of Porous Carbohydrate Material. Molecules 2022; 27:molecules27155015. [PMID: 35956965 PMCID: PMC9370567 DOI: 10.3390/molecules27155015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Porous carbohydrate materials such as tobacco shreds readily absorb moisture and become damp during processing, storage, and consumption (smoking). Traditional humectants have the ability of moisture retention but moisture-proofing is poor. Polygonatum cyrtonema Hua polysaccharide (PCP 85−1−1) was separated by fractional precipitation and was purified by anion exchange and gel permeation chromatography. The average molecular weight (Mw) of PCP 85−1−1 was 2.88 × 103 Da. The monosaccharide composition implied that PCP 85−1−1 consisted of fucose, glucose, and fructose, and the molar ratio was 22.73:33.63:43.65. When 2% PCP 85−1−1 was added to tobacco shreds, the ability of moisture retention and moisture-proofing were significantly enhanced. The moisture retention index (MRI) and moisture-proofing index (MPI) increased from 1.95 and 1.67 to 2.11 and 2.14, respectively. Additionally, the effects of PCP 85−1−1 on the aroma and taste of tobacco shreds were evaluated by electronic tongue and gas chromatography–mass spectrometry (GC-MS). These results indicated that PCP 85−1−1 had the characteristics of preventing water absorption under high relative humidity and moisturizing under dry conditions. The problem that traditional humectants are poorly moisture-proof was solved. PCP 85−1−1 can be utilized as a natural humectant on porous carbohydrates, which provides a reference for its development and utilization.
Collapse
Affiliation(s)
- Ling Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
- Correspondence: ; Tel.: +86-13501687790
| | - Yipeng Wang
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Rongrong Zhang
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Danyu Zhang
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Guangyong Zhu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
24
|
Zhang T, Guo Q, Xin Y, Liu Y. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
25
|
Guo D, Lei J, Xu L, Cheng Y, Feng C, Meng J, Chang M, Geng X. Two Novel Polysaccharides From Clitocybe squamulosa: Their Isolation, Structures, and Bioactivities. Front Nutr 2022; 9:934769. [PMID: 35845786 PMCID: PMC9280651 DOI: 10.3389/fnut.2022.934769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
The crude polysaccharides from the fruiting bodies of Clitocybe squamulosa (CSFP) were isolated by hot-water extraction. Two novel polysaccharides, CSFP1-β and CSFP2-α, were further purified by DEAE-52 anion exchange and Sephacryl S-400 gel filtration chromatography, and the purities reached 98.44 and 97.83%, respectively. The structural characteristics and bioactivities of CSFP, CSFP1-β, and CSFP2-α were identified by the combination of chemical and instrumental analysis. Results showed that CSFP was formed by the aggregation of honeycomb spherical materials; CSFP1-β and CSFP2-α were interwoven by reticular and fibrous structures, respectively. Purified components of both CSFP1-β and CSFP2-α showed typical infrared absorption peaks of polysaccharides, and contents of nucleic acid and protein decreased significantly. Simultaneously, CSFP with a molecular weight (Mw) of 1.948 × 104 Da were composed mainly of glucose, mannose, galactose, and rhamnose. CSFP1-β was composed mainly of glucose, galactose, and mannose, while CSFP2-α was composed of glucose, and both their Mw distributions were uneven. Compared with CSFP, the antioxidant activities of CSFP1-β and CSFP2-α were significantly improved (p < 0.05), and they both showed good abilities to bind free cholesterol and bile acid salts in vitro. The binding abilities of the two compounds were found to be 68.62 and 64.43%, and 46.66 and 45.05 mg/g, respectively. CSFP, CSFP1-β, and CSFP2-α had good bacteriostatic effects with a linear increasing relationship to increasing concentration. In addition, CSFP promoted the growth of RAW264.7 cells and has potential immunomodulatory, anti-inflammatory, and anti-tumor activities.
Collapse
Affiliation(s)
- Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu, China
- *Correspondence: Mingchang Chang,
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
- Xueran Geng,
| |
Collapse
|
26
|
Geng XQ, Liu CY, Wang LY, Jiang W, Liu XC, Zhu ZY. Rheological properties of polysaccharides from Pholiota nameko with different temperature extraction: Concentration, pH, temperature, and saltion. J Food Sci 2022; 87:3632-3643. [PMID: 35765755 DOI: 10.1111/1750-3841.16223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
Cold and hot water extracted polysaccharides (CW-PNPs and HW-PNPs) were isolated from Pholiota nameko. The rheological properties of PNPs were investigated by steady shear and oscillatory rheological measurements. The PNPs exhibited typical non-Newtonian and shear-thinning behavior, which are affected by PNP concentration, temperature, pH value, salt ion, and concentration. Specifically, the apparent viscosity of the two PNPs solutions at concentration of 1% (w/w) was shown as HW-PNPs > CW-PNPs. The apparent viscosity of PNPs decreases under acidic and alkaline conditions and when the temperature rises; K+ and Na+ cause the apparent viscosity of CW-PNPs to decrease, while Ca2+ and Al3+ are opposite. The addition of four different salt ions all caused the apparent viscosity of the HW-PNPs to decrease. The results of dynamic rheological experiments show that G' and G″ showed slightly frequency dependency with G' exceeding G″ throughout the accessible range of frequency for CW-PNPs and HW-PNPs.
Collapse
Affiliation(s)
- Xue-Qing Geng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Chun-Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Liu-Ya Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiao-Cui Liu
- Key Laboratory of Food Bio-technology, School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
27
|
Yang C, Liu G, Chen J, Zeng B, Shen T, Qiu D, Huang C, Li L, Chen D, Chen J, Mu Z, Deng H, Cai X. Chitosan and polyhexamethylene guanidine dual-functionalized cotton gauze as a versatile bandage for the management of chronic wounds. Carbohydr Polym 2022; 282:119130. [PMID: 35123752 DOI: 10.1016/j.carbpol.2022.119130] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
Abstract
Development of versatile medical dressing with good immediate and long-lasting antibacterial, hygroscopic and moisturizing abilities is of great significance for management of chronic wounds. Cotton gauze (CG) can protect wounds and promote scabbing, but can cause wound dehydration and loss of biologically active substances, thereby greatly delays wound healing. Herein, a bi-functional CG dressing (CPCG) was developed by chemically grafting polyhexamethylene guanidine (PHMG) and physically adsorbing chitosan (CS) onto the CG surface. Due to the powerful microbicidal activity of PHMG, CPCG exhibited excellent immediate and long-lasting antibacterial activity against gram-positive and gram-negative bacteria. Moreover, the abundant hydroxyl and amino groups in CS endowed CPCG with good biocompatibility, moisture absorption, moisturizing and cell scratch healing performances. Importantly, CPCG can be easily fabricated into a bandage to conveniently manage infected full-skin wounds. Together, this study suggests that CPCG is a versatile wound dressing, having enormous application potential for management chronic wounds.
Collapse
Affiliation(s)
- Chao Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Guofang Liu
- Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, PR China
| | - Junpeng Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Bairui Zeng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Tianxi Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Dongchao Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Chen Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Lin Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Dongfan Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiale Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhixiang Mu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Hui Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| |
Collapse
|
28
|
Pholiota nameko Polysaccharides Protect against Ultraviolet A-Induced Photoaging by Regulating Matrix Metalloproteinases in Human Dermal Fibroblasts. Antioxidants (Basel) 2022; 11:antiox11040739. [PMID: 35453423 PMCID: PMC9029720 DOI: 10.3390/antiox11040739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet-A (UVA) exposure is a major cause of skin aging and can induce oxidative damage and accelerate skin wrinkling. Many natural polysaccharides exhibit a UV protective effect. In research on Pholiota nameko polysaccharides (PNPs), a natural macromolecular polysaccharide (4.4–333.487 kDa), studies have shown that PNPs can significantly decrease elastase activity to protect against UVA-induced aging in Hs68 human dermal fibroblasts. Cellular experiments in the present study indicated that PNPs can protect against UVA-induced oxidative damage in Hs68 cells by inhibiting the production of reactive oxygen species. Furthermore, PNPs significantly attenuated UVA-induced cell aging by decreasing the protein expression of matrix metalloproteinase 1, 3, and 9. Pretreatment of Hs68 cells with PNP-40, PNP-60, and PNP-80 before UVA irradiation increased protein expression of tissue inhibitor metalloproteinase 1 by 41%, 42%, and 56% relative to untreated cells. In conclusion, this study demonstrates that PNPs are a natural resource with potentially beneficial effects in protecting against UVA-induced skin aging.
Collapse
|
29
|
Separation, Purification, Structural Characterization, and Anticancer Activity of a Novel Exopolysaccharide from Mucor sp. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072071. [PMID: 35408470 PMCID: PMC9000282 DOI: 10.3390/molecules27072071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Mucor sp. has a wide range of applications in the food fermentation industry. In this study, a novel exopolysaccharide, labeled MSEPS, was separated from Mucor sp. fermentation broth through ethanol precipitation and was purified by ion-exchange chromatography, as well as gel filtration column chromatography. MSEPS was composed mostly of mannose, galactose, fucose, arabinose, and glucose with a molar ratio of 0.466:0.169:0.139:0.126:0.015 and had a molecular weight of 7.78 × 104 Da. The analysis of methylation and nuclear magnetic resonance results indicated that MSEPS mainly consisted of a backbone of →3,6)-α-d-Manp-(1→3,6)-β-d-Galp-(1→, with substitution at O-3 of →6)-α-d-Manp-(1→ and →6)-β-d-Galp-(1→ by terminal α-l-Araf residues. MTT assays showed that MSEPS was nontoxic in normal cells (HK-2 cells) and inhibited the proliferation of carcinoma cells (SGC-7901 cells). Additionally, morphological analysis and flow cytometry experiments indicated that MSEPS promoted SGC-7901 cell death via apoptosis. Therefore, MSEPS from Mucor sp. can be developed as a potential antitumor agent.
Collapse
|
30
|
Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
31
|
Sun X, Wang Y, Li X, Wang M, Dong J, Tang W, Lei Z, Guo Y, Li M, Li Y. Alterations of gut fungal microbiota in patients with rheumatoid arthritis. PeerJ 2022; 10:e13037. [PMID: 35251791 PMCID: PMC8896017 DOI: 10.7717/peerj.13037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/09/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease, in addition, gut microbiota plays an important role in the etiology of RA. However, our understanding of alterations to the gut fungal microbiota in Chinese population with RA is still limited. METHODS Serum samples were obtained from 62 patients with RA, and 39 age- and gender-matched healthy controls (HCs). Fecal samples were obtained from 42 RA patients and 39 HCs. Fecal fungal microbiota targeting internal transcribed spacer region 2 (ITS2) rRNA genes was investigated using MiSeq sequencing, as well as their associations with some diagnostic biomarkers for RA. RESULTS Our results showed that the fungal diversity did not alter in RA patients but taxonomic composition of the fecal fungal microbiota did. The gut mycobiota of RA patients was characterized by decreased abundance of Pholiota, Scedosporium, and Trichosporon. The linear discriminant analysis (LDA) effect size analysis (LEfSe) analysis identified several RA-enriched fungal genera, which were positively correlated with most RA biomarkers. Furthermore, since RA is an age- and gende-related disease, we classified RA patients into subgroups with age and gender and analyzed the sequencing results. Our data demonstrated that Wallemia and Irpex were the most discriminatory against RA patients over 60 years old, while Pseudeurotiaceae was the most discriminatory against female RA patients. CONCLUSIONS The case-control study presented here confirmed the alterations of gut fungal microbiota in Chinese patients with RA, and we speculated that the fungal dysbiosis may contribute to RA development.
Collapse
Affiliation(s)
- Xiaoyu Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yushuang Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xinke Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Meiling Wang
- Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Jianyi Dong
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, China
| | - Wei Tang
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Zengjie Lei
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Yuling Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
32
|
Chen Z, Tan L, Yang B, Wu J, Li T, Wu H, Wu H, Xiang W. A mutant of seawater Arthrospira platensis with high polysaccharides production induced by space environment and its application potential. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Wang K, Guo J, Cheng J, Zhao X, Ma B, Yang X, Shao H. Ultrasound-assisted extraction of polysaccharide from spent Lentinus edodes substrate: Process optimization, precipitation, structural characterization and antioxidant activity. Int J Biol Macromol 2021; 191:1038-1045. [PMID: 34599988 DOI: 10.1016/j.ijbiomac.2021.09.174] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022]
Abstract
Lentinus edodes is the second-most popular and cultivated mushroom worldwide due to its nutritional and health-promoting benefit. However, the mushroom production generates vast amounts of spent L. edodes substrate (SLS) that is generally discharged into the environment, posing a great challenge within mushroom by-product valorization. In this work, SLS polysaccharide (SP) was ultrasonically extracted by optimizing the process conditions with response surface methodology. Using gradient ethanol precipitation, SP was separated into SP40, SP60 and SP80, and their monosaccharide composition, structural properties, and antioxidant potential were further characterized and compared. The results showed the total polysaccharide content reached up to 37.05 ± 0.31 mg/g under the optimal conditions including an extraction temperature of 50 °C, a liquid-solid ratio of 30 mL/g and an ultrasonic power of 120 W. SP and its fractional precipitations were heteropolysaccharides sharing a similar monosaccharide composition including L-rhamnose, D-glucuronic acid, D-galacturonic acid, d-glucose and D-xylose, and a typical infrared spectrum for polysaccharide. These fractions also varied in the surface morphology, where SP80 was looser and more porous than SP40 and SP60. Furthermore, SP and SP80 displayed the strongest antioxidant activities in vitro. This study identified a novel and practical strategy to valorize SLS for valuable polysaccharide.
Collapse
Affiliation(s)
- Kaijie Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Juntong Guo
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Junxia Cheng
- Shaanxi Environmental Monitoring Centre, Xi'an 710043, China
| | - Xinghua Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Bohan Ma
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
34
|
Zhang S, Liu B, Yan G, Wu H, Han Y, Cui H. Chemical properties and anti-fatigue effect of polysaccharide from Pholiota nameko. J Food Biochem 2021; 46:e14015. [PMID: 34821398 DOI: 10.1111/jfbc.14015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
The aim of this study was to explore the primary chemical properties and anti-fatigue effect in vivo of Pholiota nameko polysaccharide (PNP). Through UV-visible spectrum, the absorption peaks of proteins, nucleic acids and pigments were not found. The organic functional groups of polysaccharides (3,289.97, 1,584.72, and 1,045.23 cm-1 so on) were measured by IR spectroscopy. The PNP was a semi-crystalline or non-crystalline substance, possessed a three-dimensional lump structure with a smooth, dense surface and amorphous structure according to the scanning electron microscopy and XRD images. Moreover, the PNP was chain or bright-spot structures formed by the entanglement of multiple polysaccharide fibers on the basis of atomic force microscopy. The results of anti-fatigue suggested the PNP could significantly extend the forced swim time from 121.58 ± 18.48 and 101.91 ± 14.27 min to 154.95 ± 24.26 and 134.13 ± 25.71 min in male and female mice respectively. The LDH activity was up to 31.68 ± 4.60 U/ml in male mice and 29.49 ± 5.12 U/ml in female mice. Meanwhile, the Ca2+ -Mg2+ -ATPase activity was reached to 2.49 ± 0.41 μmol/(mg·h) in male mice and 2.44 ± 0.29 μmol/(mg·h) in female mice. The SOD activity was increased to 5.92 ± 1.19 U/ml in male mice and 5.89 ± 0.98 U/ml in female mice, while the MDA content was decreased to 2.24 ± 0.34 nmol/mg in male mice and 2.02 ± 0.41 nmol/mg in female mice. These results showed a theoretical basis for application of the PNP in food and pharmacy as a natural physical strengthening substance. PRACTICAL APPLICATIONS: Fatigue affects physical and mental health in vivo, which resulted in negative effects on everyday tasks, leisure activities, cognitive and behavioral performances and is very common in modern life. Therefore, this study was designed to explore the primary chemical properties and research the anti-fatigue effects of Pholiota nameko polysaccharide (PNP) in mice. And then, it would be a reference for the development and utilization of PNP as a kind of healthy food on sub-health.
Collapse
Affiliation(s)
- Sisheng Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Bo Liu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Guoyue Yan
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Han Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Yaochen Han
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Hongxia Cui
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China.,Hebei Province Key Laboratory of Applied Chemistry, Qinhuangdao, China.,Hebei Province Key Laboratory of Nano-Biotechnology, Qinhuangdao, China
| |
Collapse
|
35
|
Jia Y, Li N, Wang Q, Zhou J, Liu J, Zhang M, He C, Chen H. Effect of Fe (III), Zn (II), and Cr (III) complexation on the physicochemical properties and bioactivities of corn silk polysaccharide. Int J Biol Macromol 2021; 189:847-856. [PMID: 34464643 DOI: 10.1016/j.ijbiomac.2021.08.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 01/18/2023]
Abstract
In this paper, Fe (III), Zn (II), and Cr (III) were used to complex with corn silk polysaccharide (CSP) by classical methods and CSP-Fe, CSP-Zn, and CSP-Cr were successfully synthesized, respectively. The physicochemical properties and structural features were characterized by chemical composition analysis, inductive coupled plasma-mass spectrometry (ICP-MS), ultraviolet-visible (UV-Vis) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), respectively. The antioxidant activities and inhibitory effects on α-glucosidase of CSP, CSP-Fe, CSP-Zn, and CSP-Cr were compared. The results showed that the Fe (III), Zn (II), and Cr (III) chelation could change the morphology, conformation, thermostability, and biological activities of CSP. CSP-Zn exhibited higher antioxidant activities and inhibition effects on α-glucosidase than CSP, which suggested that it could be considered as a potential candidate for developing an ingredient of functional foods for antidiabetics.
Collapse
Affiliation(s)
- Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
36
|
Lin H, Lin TY, Lin JA, Cheng KC, Santoso SP, Chou CH, Hsieh CW. Effect of Pholiota nameko Polysaccharides Inhibiting Methylglyoxal-Induced Glycation Damage In Vitro. Antioxidants (Basel) 2021; 10:antiox10101589. [PMID: 34679724 PMCID: PMC8533542 DOI: 10.3390/antiox10101589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/01/2023] Open
Abstract
Advanced glycation end products (AGEs) can induce oxidative stress and inflammation. AGEs are major risk factors for the development of many aging-related diseases, such as cancer and diabetes. In this study, Pholiota nameko polysaccharides (PNPs) were prepared from water extract of P. nameko via graded alcohol precipitation (40%, 60%, and 80% v/v). We explored the in vitro antiglycation ability of the PNPs and inhibition of methylglyoxal (MG)-induced Hs68 cell damage. In a bovine serum albumin (BSA) glycation system, PNPs significantly inhibited the formation of Amadori products. Fluorescence spectrophotometry revealed that the PNPs trapped MG and reduced MG-induced changes in functional groups (carbonyl and ε-NH2) in the BSA. Pretreating Hs68 cells with PNPs enhanced the cell survival rate and protected against MG-induced cell damage. This was due to decreased intracellular ROS content. PNPs thus mitigate skin cell damage and oxidative stress resulting from glycation stress, making them a potential raw material for antiaging-related skincare products.
Collapse
Affiliation(s)
- His Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan; (H.L.); (T.-Y.L.)
| | - Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan; (H.L.); (T.-Y.L.)
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan;
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung City 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 406040, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia;
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Keelung Rd. 43, Da’an Dist., Taipei 10607, Taiwan
| | - Chun-Hsu Chou
- Dr Jou Biotech Co., Ltd., No. 21, Lugong S. 2nd Rd., Lukang Township, Changhua 505, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan; (H.L.); (T.-Y.L.)
- Department of Medical Research, China Medical University Hospital, Taichung City 406040, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0385 (ext. 5031); Fax: +886-4-2287-6211
| |
Collapse
|
37
|
Yang Z, Hu Y, Yue P, Luo H, Li Q, Li H, Zhang Z, Peng F. Physicochemical Properties and Skin Protection Activities of Polysaccharides from Usnea longissima by Graded Ethanol Precipitation. ACS OMEGA 2021; 6:25010-25018. [PMID: 34604681 PMCID: PMC8482769 DOI: 10.1021/acsomega.1c04163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Four Usnea longissima polysaccharides (ULPs; ULP15, ULP30, ULP50, and ULP70) were obtained from the lichen U. longissima via water extraction and graded ethanol precipitation. The obtained ULPs were all heteropolysaccharides with a few proteins, with which glucose was the major monosaccharide composition. With the increase in the precipitated ethanol concentrations, the content of galactose, xylose, and mannose increased, whereas that of glucose decreased. Moreover, the antioxidant activity test demonstrated that ULP15 exhibited better reducing power and stronger scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl free radicals. Importantly, ULP15 also had a better proliferative effect on human HaCaT keratinocytes and dermal fibroblasts. Meanwhile, ULP15 protected HaCaT keratinocytes from UVB-induced proliferation inhibition and exhibited tyrosinase inhibition activity. Therefore, this work provides interesting insight into the preparation of cosmetic ingredients using the polysaccharide ULP15.
Collapse
Affiliation(s)
- Ziying Yang
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yajie Hu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Panpan Yue
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Hongdan Luo
- Department
of Dermatology, Zunyi Hospital of Traditional
Chinese Medicine, Zunyi, Guizhou 563000, China
| | - Qisui Li
- Meteorological
Bureau of Meishan City, Meishan, Sichuan 620010, China
| | - Huiling Li
- JALA
Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Zhang Zhang
- JALA
Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Feng Peng
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
38
|
López-Legarda X, Rostro-Alanis M, Parra-Saldivar R, Villa-Pulgarín JA, Segura-Sánchez F. Submerged cultivation, characterization and in vitro antitumor activity of polysaccharides from Schizophyllum radiatum. Int J Biol Macromol 2021; 186:919-932. [PMID: 34280450 DOI: 10.1016/j.ijbiomac.2021.07.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
Production of polysaccharides by white-rot-fungi in submerged cultivation has several advantages due to process control. This work deals with the submerged cultivation, extraction and antitumor activity of polysaccharides from a wild strain of Schizophyllum radiatum isolated from a tropical forest of Colombia. The mushroom was cultivated in laboratory conditions, and classified by classical and molecular taxonomy. Submerged cultivation was performed in a bioreactor of 5 L using a ligninolytic residue as substrate. The fermentation conditions were 30 ± 1 °C, pH 4.5, 300 rpm and 1.5 vvm of air for 4 days. The yields were 16.8 g/L (w/v) of biomass, and after extraction, 0.6 g/L of water-soluble exopolysaccharide (SEPS) and 2.01 % (w/w) of water-soluble intrapolysaccharide (SIPS) were obtained. In each extract total carbohydrate, glucans and protein contents were determined. Also, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), high performance liquid chromatography with refraction index detection (HPLC-RI), high performance gel permeation chromatography (HPGPC) and Nuclear Magnetic Resonance (NMR) analysis were performed. Results indicated that SEPS and SIPS are heteropolysaccharides with amorphous structure and high molecular weights. Antitumor and immunostimulant activity was evaluated in different cancer cell lines. The results suggest these polysaccharides have direct and indirect antitumor activity activating immune cells such as macrophages. These findings enhance our knowledge about new sources of fungal metabolites that serve as adjuvant, cheaper and less harmful alternatives to cancer treatment.
Collapse
Affiliation(s)
- Xiomara López-Legarda
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia.
| | - Magdalena Rostro-Alanis
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Roberto Parra-Saldivar
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Janny A Villa-Pulgarín
- Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Calle 51 # 51 27, Medellín, Colombia
| | - Freimar Segura-Sánchez
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia.
| |
Collapse
|
39
|
Zhao W, Zhang W, Liu L, Cheng Y, Guo Y, Yao W, Qian H. Fractionation, characterization and anti-fatigue activity of polysaccharides from Brassica rapa L. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Healthy function and high valued utilization of edible fungi. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Asgher M, Qamar SA, Iqbal HMN. Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors. Biologia (Bratisl) 2021; 76:673-685. [DOI: 10.2478/s11756-020-00588-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
|
42
|
Jia Y, Xue Z, Wang Y, Lu Y, Li R, Li N, Wang Q, Zhang M, Chen H. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydr Polym 2021; 252:117185. [DOI: 10.1016/j.carbpol.2020.117185] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
|
43
|
Wang H, Chen J, Ren P, Zhang Y, Omondi Onyango S. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide. ULTRASONICS SONOCHEMISTRY 2021; 70:105355. [PMID: 33007535 PMCID: PMC7786635 DOI: 10.1016/j.ultsonch.2020.105355] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 05/04/2023]
Abstract
In this study, the impact of ultrasound irradiation on the structural characteristics and antioxidant properties of yellow tea polysaccharides with different molecular weights (Mw) were investigated. Native yellow tea polysaccharide containing YTPS-3N, YTPS-5N and YTPS-7N were prepared through precipitation with ethanol at various concentrations of 30%, 50%, and 70%, respectively, and irradiated with high intensity ultrasound (20 kHz) for 55 min to yield yellow tea polysaccharide including YTPS-3U, YTPS-5U and YTPS-7U. The molecular weight (Mw) of YTPS-3N (from 37.7 to 15.1 kDa) and YTPS-5N (from 14.6 to 5.2 kDa) sharply decreased upon ultrasound irradiation, coincidentally particle size (Zavg) was also significantly reduced for YTPS-3N (40%), YTPS-5N (48%) and YTPS-7N (54%). The high-performance liquid chromatography and Fourier transform-infrared spectroscopy analysis revealed a partial degradation of native yellow tea polysaccharide treated with ultrasound, though the monosaccharide composition was not altered. Furthermore, changes in morphology and the breakdown of native yellow tea polysaccharide upon irradiation was confirmed with the circular dichroism spectrum, atomic force and scanning electron microscopy. As a consequence, irradiation of yellow tea polysaccharide increased free radical scavenging activity with YTPS-7U exhibiting the highest levels of 2, 2-diphenyl-1-picrylhydrazyl free radical, superoxide and hydroxyl radicals scavenging activity. These results suggest that the alteration of the spatial structure of yellow tea polysaccharide can enhance its antioxidant activity which is an important property for functional foods or medicines.
Collapse
Affiliation(s)
- Haisong Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Jiangsu, PR China; School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, PR China.
| | - Jinran Chen
- School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, PR China
| | - Pengfei Ren
- School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, PR China
| | - Yiwen Zhang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui, PR China
| | - Stanley Omondi Onyango
- Department of Biotechnology, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
López-Legarda X, Arboleda-Echavarría C, Parra-Saldívar R, Rostro-Alanis M, Alzate JF, Villa-Pulgarín JA, Segura-Sánchez F. Biotechnological production, characterization and in vitro antitumor activity of polysaccharides from a native strain of Lentinus crinitus. Int J Biol Macromol 2020; 164:3133-3144. [DOI: 10.1016/j.ijbiomac.2020.08.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
45
|
Barreto SMAG, Cadavid COM, Moura RADO, Silva GMM, de Araújo SVF, da Silva Filho JAA, Rocha HAO, Oliveira RDP, Giordani RB, Ferrari M. In Vitro and In Vivo Antioxidant Activity of Agave sisalana Agro-Industrial Residue. Biomolecules 2020; 10:biom10101435. [PMID: 33053674 PMCID: PMC7601387 DOI: 10.3390/biom10101435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Agave sisalana agro-industrial residue has considerable potential against damage associated with oxidative stress and skin aging. This study aims to demonstrate, in vitro and in vivo, the potential of Agave sisalana agro-industrial residue as a safe and effective alternative for the prevention of damage caused by oxidative stress and aging. The antioxidant activity was evaluated in vitro (total antioxidant capacity, reducing power, DPPH radical scavenging, metal chelating (Fe2+ and Cu2+), and hydroxyl radical scavenging) and in vivo using the Caenorhabditis elegans organism model. The extract showed in vitro antioxidant activity in all tests performed. Tests with C. elegans showed that the extract was able to reduce the intracellular levels of reactive oxygen species (ROS) and increase the survival rate of worms. A downregulation of gst-4::GFP expression suggests a direct action against free radicals. Agave sisalana agro-industrial residue extract (AsRE) can therefore be considered as a source of antioxidant biomolecules, and the use of this agro-industrial residue in a new production process can lead to sustainability and socioeconomic development.
Collapse
|
46
|
Yan JK, Wang C, Yu YB, Wu LX, Chen TT, Wang ZW. Physicochemical characteristics and in vitro biological activities of polysaccharides derived from raw garlic (Allium sativum L.) bulbs via three-phase partitioning combined with gradient ethanol precipitation method. Food Chem 2020; 339:128081. [PMID: 33152874 DOI: 10.1016/j.foodchem.2020.128081] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
In the present study, three-phase partitioning (TPP) coupled with gradient ethanol precipitation (GEP) was developed for the first time to extract and isolate polysaccharides (GPSs) from raw garlic (Allium sativum L.) bulbs. Four kinds of fructose polymers, namely, GPS35, GPS50, GPS65, and GPS80, were obtained at the final ethanol precipitation concentrations of 35%, 50%, 65%, and 80% (v/v), respectively, and their physicochemical characteristics and in vitro biological activities were investigated. Results indicated that GPS80 had higher carbohydrate (86.68% ± 0.90%) and uronic acid (12.89% ± 0.09%) contents, lower weight-average molecular weight (8.93 × 103 Da), and looser surface morphology than the other three GPSs. Furthermore, among the four GPSs, GPS80 exhibited the strongest antioxidant capacities, inhibitory effects on α-amylase and α-glycosidase, and nitric oxide stimulatory activity on RAW264.7 macrophage cells in vitro. Therefore, this study provides a simple and feasible technological strategy for producing bioactive polysaccharides from raw Allium vegetables.
Collapse
Affiliation(s)
- Jing-Kun Yan
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Chun Wang
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Yun-Bo Yu
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Li-Xia Wu
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Ting-Ting Chen
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zi-Wei Wang
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
47
|
Regulating water binding capacity and improving porous carbohydrate matrix's humectant and moisture proof functions by mixture of sucrose ester and Polygonatum sibiricum polysaccharide. Int J Biol Macromol 2020; 147:667-674. [PMID: 31931061 DOI: 10.1016/j.ijbiomac.2020.01.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 02/02/2023]
Abstract
The moisture stability of tobacco shred, a typical porous carbohydrate material, is very important during its processing, storage and smoking, moreover, it is sensitive to environmental conditions. Therefore, effect of sucrose esters (SEs) and sucrose ester/Polygonatum sibiricum polysaccharide mixture (SPMs) on the moisture retention and moisture resistance of tobacco shred was assessed. When SEs were added to tobacco shred, moisture resistance was significantly enhanced, whereas moisture holding capacity was attenuated. Contrarily, the addition of SPMs made moisture retention index (MRI) and moisture proof index (MPI) increase from 1.8910 to 2.1612 and from 1.9489 to 2.0665, respectively, revealing that SPMs improved the moisture retention and moisture proof ability of tobacco shred simultaneously. The monolayer moisture content (M0) was decreased by SEs and increased by SPMs. Low-field nuclear magnetic resonance (LF-NMR) analysis showed that during adsorption, SPMs reduced the interaction between tobacco shred and water via hydrophobic property of SEs; during desorption, SPMs promoted the interaction between tobacco shred and water through hydrophilic binding of polysaccharide, leading to the migration of immobilized water to bound state. The modeling of the isotherms and LF-NMR analysis clarified the mechanism why SPMs could improve moisture stability of tobacco.
Collapse
|
48
|
Sung TJ, Wang YY, Liu KL, Chou CH, Lai PS, Hsieh CW. Pholiota nameko Polysaccharides Promotes Cell Proliferation and Migration and Reduces ROS Content in H 2O 2-Induced L929 Cells. Antioxidants (Basel) 2020; 9:antiox9010065. [PMID: 31936888 PMCID: PMC7022505 DOI: 10.3390/antiox9010065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 01/02/2023] Open
Abstract
Pholiota nameko, a type of edible and medicinal fungus, is currently grown extensively for food and traditional medicine in China and Japan. It possesses various biological activities, such as anti-inflammatory, anti-hyperlipidemia and antitumor activities. However, P. nameko has rarely been discussed in the field of dermatology; identifying its biological activities could be beneficial in development of a new natural ingredient used in wound care. To evaluate its in vitro wound healing activities, the present study assessed the antioxidant and anti-collagenase activities of P. nameko polysaccharides (PNPs) prepared through fractional precipitation (40%, 60% and 80% (v/v)); the assessments were conducted using reducing power, hydroxyl radical scavenging activity, dichloro-dihydro-fluorescein diacetate and collagenase activity assays. The ability of PNPs to facilitate L929 fibroblast cell proliferation and migration was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scratch assays. The findings indicated that, among all fractions, PNP-80 showed the best antioxidant and anti-collagenase activity, as measured by their reducing power (IC50 of PNP-80 was 2.43 ± 0.17 mg/mL), the hydroxyl radical scavenging (IC50 of PNP-80 was 2.74 ± 0.11 mg/mL) and collagenase activity assay, and significantly reduced cellular ROS content, compared with that of H2O2-induced L929 cells. Moreover, PNP-80 significantly promoted L929 fibroblast proliferation and migration, compared with the control group. Overall, we suggested that PNP-80 could be a promising candidate for further evaluation of its potential application on wound healing.
Collapse
Affiliation(s)
- Tzu-Jung Sung
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Yu-Ying Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Kai-Lun Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Chun-Hsu Chou
- Dr. Jou Biotech Co., Ltd., No.21, Lugong S. 2nd Rd., Lukang Township, Changhua Country 505, Taiwan;
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0385 (ext. 5031); Fax: +886-4-2287-6211
| |
Collapse
|
49
|
Hu YN, Sung TJ, Chou CH, Liu KL, Hsieh LP, Hsieh CW. Characterization and Antioxidant Activities of Yellow Strain Flammulina velutipes (Jinhua Mushroom) Polysaccharides and Their Effects on ROS Content in L929 Cell. Antioxidants (Basel) 2019; 8:antiox8080298. [PMID: 31405147 PMCID: PMC6720607 DOI: 10.3390/antiox8080298] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Yellow strain Flammulina velutipes, which is known as Jinhua mushroom in Taiwan, has become popular among customers due to its distinct texture that is utterly different from white strain F. velutipes. However, there has been little study on the physicochemical properties, antioxidant activities, and biological functions of yellow strain F. velutipes polysaccharides (FVYs). The specific aims of this study are to evaluate and compare the physicochemical properties, antioxidant activities, and biological functions of FVYs and white strain F. velutipes polysaccharides (FVWs) in order to select the strain appropriate for cosmetic ingredient. The FVYs and FVWs were prepared by fractional precipitation (40%, 60%, and 80%). According to the results, FVY-80 showed the greatest antioxidant activities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 2.22 mg/mL) and 2,2' -azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical assay (IC50 = 2.04 mg/mL). None of the fractions exhibited cytotoxicity toward L929 cell under a concentration of 500 μ g/mL. FVY-80 significantly reduced the reactive oxygen species (ROS) content in L929 cell by 55.96%, as compared with the H2O2-induced L929 cell, according to the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. In conclusion, we suggest that FVY-80 is the best source for a cosmetics ingredient.
Collapse
Affiliation(s)
- Yu-Ning Hu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Tzu-Jung Sung
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Chun-Hsu Chou
- DR JOU BIOTECH CO., LTD, No.21, Lugong S. 2nd Rd., Lukang Township, Changhua Country 505, Taiwan
| | - Kai-Lun Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Liang-Po Hsieh
- Department of Neurology, Cheng Ching General Hospital, Taichung 404, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| |
Collapse
|