1
|
Singh A, Pramanik S, Kadi A, Abualsoud BM, Singh M, Ansari MJ, Omri A, Deepak A, Nainwal P, Bellucci S. Chitosan nanoparticles: a versatile frontier in drug delivery and wound healing across multiple routes. Biomed Mater 2025; 20:032008. [PMID: 40315890 DOI: 10.1088/1748-605x/add3e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/02/2025] [Indexed: 05/04/2025]
Abstract
The domain of nanoscience has observed significant advancements over the former two decades. Researchers in nanomedicine field have been rigorously exploring the employment of natural biodegradable polymers for targeted drug delivery (TDD). Chitosan (CS), acquired from the deacetylation of chitin, is a naturally occurring amino polysaccharide, whose features of non-toxicity, prolonged retention time, biocompatibility, increased bioavailability, and biodegradability have hastened extensive study into diverse applications. The presence of amino and hydroxyl groups within CS is crucial for its noteworthy characteristics, comprising mucoadhesion, improvement of permeation, drug's-controlled release,in situgel preparation, and antimicrobial activity. CS nanoparticles (CS NPs) portray a safe and competent class of nanocarrier systems, demonstrating the controlled release of drugs and preciseness in TDD, and are found hopeful for treating wounds. However, safety concerns such as potential toxicity, immune response, and hemocompatibility must be carefully evaluated to ensure their suitability for clinical applications. This article explores the potential of CS NPs as versatile carriers for TDD, reporting essential challenges in both therapeutic domains, and progressing the advancement of innovative treatments. By connecting drug delivery and wound healing, our review addresses a critical convergence, fostering developments that can certainly affect treatment and recovery of patient. The initial part of the review will shed light on the extraction sources and notable attributes of CS. Additionally, we have presented recent research findings on how CS NPs are being utilized for drug delivery via different routes of administration. Further, we have endeavored to represent the latest investigations on the applications of CS NPs in wound healing.
Collapse
Affiliation(s)
- Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak 124021, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Manisha Singh
- Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States of America
| | | | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury ON P3E 2C6, Canada
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
2
|
Al-Agooz A, Ata F, Saleh W, Elmeadawy S. Clinical and radiographic evaluation of melatonin and chitosan loaded nanoparticles in the treatment of periodontal intra-bony defects: A Randomized controlled clinical trial. Clin Oral Investig 2025; 29:280. [PMID: 40312586 PMCID: PMC12045813 DOI: 10.1007/s00784-025-06323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES The current literature lacks the effect of melatonin loaded nanoparticles (LNPs) as local drug delivery (LDD) in the treatment of periodontitis. Hence, the aim of the current study is to investigate the clinical and radiographic effects of melatonin LNPs in patients with periodontal intrabony defects. METHODS The current study was performed on healthy patients with periodontal intrabony defects. The participants were randomly allocated into 3 groups. Group 1 received scaling and root planing (SRP) with melatonin LNPs, group 2 received placebo gel with SRP, and group 3 received SRP and chitosan LNPs. The primary outcomes included the radiographic measurements of the bone defects to evaluate the bone fill after 6 months. The secondary outcomes included the following clinical parameters; clinical attachment level (CAL), periodontal probing depth (PPD), plaque index (PI), and gingival index (GI). The clinical parameters were evaluated at baseline, 3 months, and 6 months. RESULTS The current study included 67 patients with periodontal intrabony defects. All the study groups demonstrated significant improvements in all the clinical outcomes (CAL, PPD, PI, and GI) (P < 0.05). Melatonin LNPs group revealed the most significant improvement of the radiographic outcomes after 6 months including bone defect height and depth, alveolar crest level, and the buccolingual and mesiodistal width of bone defects) (P < 0.05), followed by chitosan group while insignificant changes were detected in the placebo group (P > 0.05). CONCLUSION Melatonin LNPs as a LDD can act as a promising therapeutic modality in treating periodontal intrabony defects through significant improvement of the clinical and radiographic outcomes.
Collapse
Affiliation(s)
- Amira Al-Agooz
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 33516, Egypt
| | - Fatma Ata
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 33516, Egypt
| | - Wafaa Saleh
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 33516, Egypt
| | - Samah Elmeadawy
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 33516, Egypt.
| |
Collapse
|
3
|
Franco PIR, do Carmo Neto JR, Braga YLL, de Lima Pedroso B, Martins JA, Rocha VL, Amaral AC, Martins DB, Ruiz KC, Pereira JX, Machado E Silva JR, Miguel MP. Melatonin-loaded lecithin and chitosan nanoparticles are cytotoxic to 4T1 breast cancer cells and safe in a BALB/c mouse model. Int J Biol Macromol 2025; 311:143401. [PMID: 40268017 DOI: 10.1016/j.ijbiomac.2025.143401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Melatonin is used as an adjuvant therapy in cancer treatment. However, its effectiveness is limited because of its low bioavailability. Polymeric nanoparticles (NPs) made of chitosan and lecithin have been developed to overcome this limitation and optimize localized drug delivery. These lecithin and chitosan-based NPs loaded with melatonin (NP-MEL) were evaluated for their cytotoxic potential in metastatic breast cancer cells and their safety profile in a murine model. Physicochemical characterization revealed efficient melatonin encapsulation (31 %), a positive zeta potential (48.6 mV), and controlled release at physiological pH. NP-MEL exhibited selective cytotoxicity in vitro, with a toxic concentration capable of killing 50 % of the cells (CC50) of 109.53 μg/mL for 4 T1 cancer cells and a significantly higher CC50 of 1460.59 μg/mL for normal VERO cells, resulting in a selectivity index of 13.33. In vivo experiments with BALB/c mice with tumor implantation treated with NP-MEL (2 mg/kg/day for 21 days) showed no significant changes in weight, clinical signs, or biochemical markers of liver and kidney function, except for changes in gamma-glutamyl transferase levels. Histopathological analyses confirmed the preservation of the liver and kidney architecture in the NP-MEL-treated group, in contrast to the moderate-to-severe kidney damage observed in animals treated with empty NPs. These findings highlight the low toxicity and therapeutic potential of NP-MEL as a controlled and targeted-release system for breast cancer treatment, indicating the need for further preclinical investigation.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Bárbara de Lima Pedroso
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Assis Martins
- Laboratório de Nano & Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Viviane Lopes Rocha
- Laboratório de Nano & Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Andre Correa Amaral
- Laboratório de Nano & Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Danieli Brolo Martins
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Katalina Cifuentes Ruiz
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Jonathas Xavier Pereira
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado E Silva
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marina Pacheco Miguel
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil; Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Zewail M, Abbas H, Ali ME, Makled S. Melatonin hyalurosomes as a powerful antioxidant for combating skin damage induced by UV radiation. J Liposome Res 2025:1-16. [PMID: 40167246 DOI: 10.1080/08982104.2025.2484732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Extrinsic skin aging is caused by chronic skin photodamage. The present study aims to inspect the role of nanoencapsulation of melatonin (MEL) in hyalurosomes in combating UVB-induced skin damage to take advantage of the hydrating penetration enhancing and antiaging effects of hyaluronic acid along with the powerful antioxidant effects of MEL. Measurement of particle size, zeta potential, encapsulation efficiency and in vitro MEL release were carried out. The in vivo photoprotective effects of MEL were tested in rats. A histopathological examination was conducted, and antioxidant and anti-inflammatory markers were measured along with estimating the expression of P38 MAPK, P-ERK and P-JNK. Particle size and zeta potential of MEL hyalurosomes were 285.9 nm and -26.3 mV with 95% entrapment efficiency and provided a sustained release profile for 48h. In vivo, results revealed the superior effect of MEL hyalurosomes in protecting skin against UVB-induced damage and reducing the levels of inflammatory mediators like TNF-α and IL6 compared with MEL suspension. However, they had a prominent role in increasing the levels of antioxidants. These findings may be accredited to the effect of nanoencapsulation in enhancing skin penetration and deposition of MEL besides the effect of hyaluronic acid as a powerful antiaging tool.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Farid A, Mohsen A, Nasser B, Alaa H, Abdelaziz M, Mustafa M, Mansour M, Adel N, Magdy S, Mohsen S, Adel S, Ibrahim S, Abdel-Rahman S, Mohamed S, El-Karamany Y. Treatment of Staphylococcus aureus-infected diabetic wounds by melatonin loaded nanocarriers. AMB Express 2025; 15:46. [PMID: 40088373 PMCID: PMC11910460 DOI: 10.1186/s13568-025-01854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
One of the complication of diabetes mellitus is chronic wounds. The healing of wounds in diabetic patients is retarded by the elevation in the pro-inflammatory cytokines secretion and free radicles accumulation. Wound management in diabetic patients requires preventing bacterial biofilm development. Due to the wound healing activity of chitosan (CS), lecithin (Le) and melatonin (M), the present study aimed to load melatonin on CS/Le NPs and examine their effect on diabetic wounds infected with Staphylococcus aureus. Melatonin loaded chitosan/lecithin nanoparticles (M-CS/Le NPs) were physically characterized and their antioxidant, anti-inflammatory and antimicrobial activities were examined in vitro. Male Sprague Dawley rats included two division (non-diabetic and diabetic) which were further divided in nine groups. Diabetes induction and follow up throughout the experimental period was confirmed by measuring the levels of fructosamine and blood glucose. Full-thickness wounds was induced in both non-diabetic and diabetic animals followed by infection with Staphylococcus aureus according to the experimental design. The wound healing effect of M-CS/Le NPs was evaluated through measurements of the oxidative stress, inflammatory cytokines and apoptotic proteins. Our results showed the anti-microbial, free radical scavenging and hemolysis inhibition effects of M-CS/Le NPs in vitro. Moreover, the preparation of M-CS/Le NPs decreased the dose of used melatonin (when compared to free melatonin). M-CS/Le NPs significantly decreased the wound area percent in treated infected wounds of both non-diabetic and diabetic rats more than free melatonin or unloaded CS/Le NPs. In conclusion, M-CS/Le NPs promoted the wound healing in Staphylococcus aureus-infected wounds in diabetic rats.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Ayah Mohsen
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Bassant Nasser
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Habiba Alaa
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mariam Abdelaziz
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Maryam Mustafa
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mustafa Mansour
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Nourhan Adel
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Magdy
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Mohsen
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Samah Adel
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sarah Ibrahim
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Sohaila Mohamed
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna El-Karamany
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Wu S, Yang S, Ou L, Zhang H, Wang L, Feng B, Bai Z, Li W, Cheng B, Toh WS, Xia J. Melatonin-Loaded Hydrogel Modulates Circadian Rhythms and Alleviates Oxidative Stress and Inflammation to Promote Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:1607-1620. [PMID: 39854437 DOI: 10.1021/acsabm.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site. This approach enhances the efficacy of melatonin in modulating the wound healing process. We investigated the effects of circadian rhythm disruption on the wound microenvironment under the influence of the melatonin-loaded hydrogel with a focus on its biocompatibility, hemostatic properties, and antioxidant response functions. Additionally, we elucidated the mechanisms by which the melatonin-loaded hydrogel system promotes wound healing. Our findings provide insights into the relationship between circadian rhythm disruption and wound healing, offering a promising strategy for the management of chronic wounds associated with circadian rhythm disorders.
Collapse
Affiliation(s)
- Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Shiwen Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Linlin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Hongjian Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Lu Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Bingyu Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Zeyu Bai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Faculty of Dentistry, National University of Singapore, Singapore 119228, Singapore
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| |
Collapse
|
7
|
Zhang ZJ, Sun W, Wang C, Lai B, Yan JN, Wu HT. Encapsulation of melatonin in zein/pectin composite nanoparticles: Fabrication, characterization, and in vitro release property. Food Chem 2025; 465:142051. [PMID: 39591706 DOI: 10.1016/j.foodchem.2024.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
In this study, the encapsulation of melatonin (MT) in zein nanoparticles was investigated via anti-solvent co-precipitation method with pectin stabilization. Compared with MT-loaded zein nanoparticles (MT-Z NPs), 1.0 mg/mL pectin led to a 92.1 % of MT encapsulation efficiency, a 5.4 % of MT loading, a particle size growth from 111.3 to 294.8 nm, a ζ-potential reduction from +4.8 to -41.4 mV, and an irregular surface shape. Moreover, the hypsochromic and redshifts of the OH and amide I bands, and undetected MT crystalline characteristic peaks in MT-loaded zein/pectin nanoparticles (MT-Z/P NPs) revealed successful MT embedment governed by hydrogen and hydrophobic forces. The binding energies of zein with MT and pectin (-6.89 and - 7.01 kcal/mol) confirmed the stability of complex. MT-Z/P NPs prolonged MT release from 92.3 % to 63.6 % at 6 h in gastrointestinal tract (GIT) compared with MT-Z NPs, which could be a desirable MT delivery material in food industry.
Collapse
Affiliation(s)
- Zhu-Jun Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Bonilla-Vidal L, Espina M, García ML, Baldomà L, Badia J, Gliszczyńska A, Souto EB, Sánchez-López E. Combination of Apigenin and Melatonin with nanostructured lipid carriers as anti-inflammatory ocular treatment. Int J Pharm 2025; 670:125160. [PMID: 39746583 DOI: 10.1016/j.ijpharm.2024.125160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Ocular inflammation is a complex pathology with limited treatment options. While traditional therapies have side effects, novel approaches, such as natural compounds like Apigenin (APG) and Melatonin (MEL) offer promising solutions. APG and MEL, in combination with nanostructured lipid carriers (NLC), may provide a synergistic effect in treating ocular inflammation, potentially improving patient outcomes and reducing adverse effects. NLC could provide chemical protection of these compounds, while offering a sustained release into the ocular surface. Optimized NLC exhibited suitable physicochemical parameters, physical stability, sustained release of APG and MEL, and were biocompatible in vitro with a corneal cell line, and in ovo by using hen's egg chorioallantoic membrane test. In vitro and in vivo studies confirmed the NLC' ability to attenuate inflammation by reducing interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein 1 (MCP-1) cytokine levels and by decreasing inflammation in a rabbit model. These findings suggest that the co-encapsulation of APG and MEL into NLC could represent a promising strategy for managing ocular inflammatory conditions.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Institute of Research of Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Institute of Research of Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield D04 V1W8, Ireland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Nasser M, El-atif MBA, Alaa H, Abdelaziz M, Mustafa M, Masour M, Magdy S, Mohsen S, El Karamany Y, Farid A. Discovering the anti-parasitic activity of melatonin loaded lecithin/chitosan nanoparticles against giardiasis and cryptosporidiosis in Balb/c infected mice. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2025; 14:12. [DOI: 10.1186/s43088-024-00588-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/05/2024] [Indexed: 05/04/2025] Open
Abstract
Abstract
Background
Giardia duodenalis and Cryptosporidium parvum are the primary causes of diarrhea with global attention due to the severe pathophysiological changes leading to mortality. During this study, we explored the biological protozoal contaminants (Giardia and Cryptosporidium spp.) in some areas of the Nile River. Then, we evaluated effectiveness of melatonin (Mel) and melatonin loaded lecithin/chitosan nanoparticles (Mel-LCNPs) against giardiasis and cryptosporidiosis in mice models using parasitological and inflammatory response examination.
Results
The number of positive samples for Cryptosporidium was higher than that for Giardia with percentage of 46.67% and 40.0%, respectively. Prior to treatment, the physical characterization (hydrodynamic size and zeta potential) and in vitro characterization of Mel-LCNPs were carried. Mel-LCNPs revealed a hydrodynamic size of 78.8 nm and a zeta potential of − 27.2 mV. Furthermore, they have powerful antioxidant and anti-inflammatory properties, while displaying minimal anticoagulant and cytotoxic effects during in vivo evaluation. Mel was consistently discharged from nanoparticles in a regulated and enduring manner for 36 h. Moreover, Mel in NPs has an entrapment efficiency (EE) of 33.6% and a drug loading capacity (DLC) of 7.2% and significant reduction (100% and 99.4%, respectively) in the shedding of Giardia cysts and Cryptosporidium oocysts. This reduction was higher than that observed with Mel alone or LCNPs alone on the 14th day post-infection. Moreover, mice of group V, which received Mel-LCNP treatment, exhibited significantly normal levels of interleukin-4 (IL-4) and interferon-gamma (IFN-γ) as well as healthy control mice group (group I).
Conclusion
Mel-LCNPs were highly effective preparations against giardiasis and cryptosporidiosis in Balb/c mice experimentally infected with proved antioxidant, anti-inflammatory, and immunological modulatory characteristics.
Collapse
|
10
|
Ma C, Jiang Y, Xiang Y, Li C, Xie X, Zhang Y, You Y, Xie L, Gong J, Sun Y, Tong S, Song Q, Chen J, Xiao W. Metabolic Reprogramming of Macrophages by Biomimetic Melatonin-Loaded Liposomes Effectively Attenuates Acute Gouty Arthritis in a Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410107. [PMID: 39717013 PMCID: PMC11831490 DOI: 10.1002/advs.202410107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Gouty arthritis is characterized by an acute inflammatory response triggered by monosodium urate (MSU) crystals deposited in the joints and periarticular tissues. Current treatments bring little effects owing to serious side effects, necessitating the exploration of new and safer therapeutic options. Macrophages play a critical role in the initiation, progression, and resolution of acute gout, with the cellular profiles closely linked to their activation and polarization. This suggests that metabolic regulation can be of significance in managing gouty inflammation. In this study, it is demonstrated that melatonin, a natural hormone, modulates the metabolic remodeling of inflammatory macrophages by shifting their metabolism from glycolysis to oxidative phosphorylation, further altering functions of the pathogenic macrophage. To improve melatonin delivery to the inflamed sites, macrophage membrane-coated melatonin-loaded liposomes (MLT-MLP) are developed. Benefiting from the inflammation-homing characteristic of macrophage membrane, such engineered liposomes effectively target the inflamed site and demonstrate potent anti-inflammatory effects, achieving an enhanced amelioration of acute gouty arthritis. In conclusion, this study proposes a novel strategy aimed at metabolic reprogramming of macrophages to attenuate the pathological injuries in acute gout, providing a potential therapeutic strategy of gout-associated diseases, especially gouty arthritis.
Collapse
Affiliation(s)
- Chuchu Ma
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Chang Li
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoying Xie
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Yang You
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Laozhi Xie
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Jianing Gong
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yinzhe Sun
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Shiqiang Tong
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Chen
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| |
Collapse
|
11
|
Akdaşçi E, Duman H, Eker F, Bechelany M, Karav S. Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:126. [PMID: 39852740 PMCID: PMC11768082 DOI: 10.3390/nano15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products. Within the context of the antibacterial mechanism of chitosan and chitosan NPs, we present a review that provides an overview of the synthesis methods, including novel procedures, and compiles the applications that have been developed in the field of biomedicine. These applications include wound healing, drug delivery, dental treatment, water purification, agriculture, and food preservation. In addition to this, we focus on the mechanisms of action and the factors that determine the antibacterial activity of chitosan and its derivatives. In conjunction with this line of inquiry, researchers are strongly urged to concentrate their efforts on developing novel and ground-breaking applications of chitosan NPs.
Collapse
Affiliation(s)
- Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Mikhael Bechelany
- European Institute for Membranes (IEM), UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| |
Collapse
|
12
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 PMCID: PMC11723170 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
13
|
Fan X, Ye J, Zhong W, Shen H, Li H, Liu Z, Bai J, Du S. The Promoting Effect of Animal Bioactive Proteins and Peptide Components on Wound Healing: A Review. Int J Mol Sci 2024; 25:12561. [PMID: 39684273 DOI: 10.3390/ijms252312561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the first line of defense to protect the host from external environmental damage. When the skin is damaged, the wound provides convenience for the invasion of external substances. The prolonged nonhealing of wounds can also lead to numerous subsequent complications, seriously affecting the quality of life of patients. To solve this problem, proteins and peptide components that promote wound healing have been discovered in animals, which can act on key pathways involved in wound healing, such as the PI3K/AKT, TGF-β, NF-κ B, and JAK/STAT pathways. So far, some formulations for topical drug delivery have been developed, including hydrogels, microneedles, and electrospinning nanofibers. In addition, some high-performance dressings have been utilized, which also have great potential in wound healing. Here, research progress on the promotion of wound healing by animal-derived proteins and peptide components is summarized, and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaoyu Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Zhong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijuan Shen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhuyuan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shouying Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
14
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
15
|
Saleem M, Syed Khaja AS, Moursi S, Altamimi TA, Alharbi MS, Usman K, Khan MS, Alaskar A, Alam MJ. Narrative review on nanoparticles based on current evidence: therapeutic agents for diabetic foot infection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6275-6297. [PMID: 38639898 DOI: 10.1007/s00210-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Diabetes's effects on wound healing present a major treatment challenge and increase the risk of amputation. When traditional therapies fail, new approaches must be investigated. With their submicron size and improved cellular internalisation, nanoparticles present a viable way to improve diabetic wound healing. They are attractive options because of their innate antibacterial qualities, biocompatibility, and biodegradability. Nanoparticles loaded with organic or inorganic compounds, or embedded in biomimetic matrices such as hydrogels, chitosan, and hyaluronic acid, exhibit excellent anti-inflammatory, antibacterial, and antioxidant properties. Drug delivery systems (DDSs)-more precisely, nanodrug delivery systems (NDDSs)-use the advantages of nanotechnology to get around some of the drawbacks of traditional DDSs. Recent developments show how expertly designed nanocarriers can carry a variety of chemicals, transforming the treatment of diabetic wounds. Biomaterials that deliver customised medications to the wound microenvironment demonstrate potential. Delivery techniques for nanomedicines become more potent than ever, overcoming conventional constraints. Therapeutics for diabetes-induced non-healing wounds are entering a revolutionary era thanks to precisely calibrated nanocarriers that effectively distribute chemicals. This review highlights the therapeutic potential of nanoparticles and outlines the multifunctional nanoparticles of the future that will be used for complete wound healing in diabetics. The investigation of novel nanodrug delivery systems has the potential to revolutionise diabetic wound therapy and provide hope for more efficient and focused therapeutic approaches.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia.
| | | | - Soha Moursi
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Tahani Almofeed Altamimi
- Department of Family Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Kauser Usman
- Department of Internal Medicine, King George's Medical University, Lucknow, India
| | - Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Alwaleed Alaskar
- Department of Diabetes and Endocrinology, King Salman Specialist Hospital, 55211, Hail, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, 55211, Hail, Saudi Arabia
| |
Collapse
|
16
|
Mandal D, Sarmah JK, Harish V, Gupta J. Antioxidant, In Vitro Cytotoxicity, and Anti-diabetic Attributes of a Drug-Free Guar Gum Nanoformulation as a Novel Candidate for Diabetic Wound Healing. Mol Biotechnol 2024:10.1007/s12033-024-01261-z. [PMID: 39212825 DOI: 10.1007/s12033-024-01261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The escalating intersection of diabetes and impaired wound healing poses a substantial societal burden, marked by an increasing prevalence of chronic wounds. Diabetic individuals struggle with hindered recovery, attributed to compromised blood circulation and diminished immune function, resulting in prolonged healing periods and elevated healthcare expenditures. To address this challenge, we report here a drug-free novel guar gum (GG)-based nano-formulation which is effective against diabetic wound healing. Nanoparticles with an average particle size of 32.4 nm display stability with negative zeta potential. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) analysis reveal alterations in thermal properties and molecular structures induced by the nano-particulation process. In vitro studies highlight the antioxidant potential of GGNP through concentration-dependent free radical scavenging activity in DPPH and ABTS assays. The nanoformulation also exhibits inhibitory effects on α-glucosidase and α-amylase enzymes. Cell viability studies have indicated moderate cytotoxicity in L929 cells and significant proliferation and migration in HaCaT cells, suggesting a positive impact on skin cells. In vitro enzymatic activity assessments under hyperglycaemic conditions reveal the potential of GGNP to modulate glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase activities as well as decreasing lipid peroxidation (LPO) levels, showcasing an antioxidant response. These results suggest GGNP as a promising candidate in diabetic wound healing.
Collapse
Affiliation(s)
- Debojyoti Mandal
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Jayanta K Sarmah
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 1444111, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 1444111, India.
| |
Collapse
|
17
|
Bonilla-Vidal L, Świtalska M, Espina M, Wietrzyk J, García ML, Souto EB, Gliszczyńska A, Sánchez-López E. Antitumoral melatonin-loaded nanostructured lipid carriers. Nanomedicine (Lond) 2024; 19:1879-1894. [PMID: 39092498 PMCID: PMC11457606 DOI: 10.1080/17435889.2024.2379757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Aim: Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity.Methods: MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and in vitro antitumoral efficacy against various cancer cell lines.Results: Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. In vitro studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells.Conclusion: MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry & Biocatalysis, Wrocław University of Environmental & Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
18
|
Sundram S, Dhiman N, Malviya R, Awasthi R. Synthesis of Novel Acrylamide Graft Copolymer of Acacia nilotica Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3) 2 Factorial Design. Assay Drug Dev Technol 2024; 22:278-307. [PMID: 38962889 DOI: 10.1089/adt.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of Acacia nilotica gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 32 factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. In vitro toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Neerupma Dhiman
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
19
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
20
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
21
|
Andreadi A, Lodeserto P, Todaro F, Meloni M, Romano M, Minasi A, Bellia A, Lauro D. Nanomedicine in the Treatment of Diabetes. Int J Mol Sci 2024; 25:7028. [PMID: 39000136 PMCID: PMC11241380 DOI: 10.3390/ijms25137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Nanomedicine could improve the treatment of diabetes by exploiting various therapeutic mechanisms through the use of suitable nanoformulations. For example, glucose-sensitive nanoparticles can release insulin in response to high glucose levels, mimicking the physiological release of insulin. Oral nanoformulations for insulin uptake via the gut represent a long-sought alternative to subcutaneous injections, which cause pain, discomfort, and possible local infection. Nanoparticles containing oligonucleotides can be used in gene therapy and cell therapy to stimulate insulin production in β-cells or β-like cells and modulate the responses of T1DM-associated immune cells. In contrast, viral vectors do not induce immunogenicity. Finally, in diabetic wound healing, local delivery of nanoformulations containing regenerative molecules can stimulate tissue repair and thus provide a valuable tool to treat this diabetic complication. Here, we describe these different approaches to diabetes treatment with nanoformulations and their potential for clinical application.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Pietro Lodeserto
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Federica Todaro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
| | - Marco Meloni
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Maria Romano
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alessandro Minasi
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alfonso Bellia
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Davide Lauro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| |
Collapse
|
22
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
23
|
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing - A review. Int J Biol Macromol 2024; 267:131335. [PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
24
|
Abdel-Ghani MA, El-Sharawy ME, Zaid EK, Shehabeldin AM, Dessouki SM, Moustapha ME, Metwally AESM, El-Shamaa IS. Low concentrations of soybean lecithin nanoparticles had a positive impact on Holstein bulls' cryopreserved semen. Reprod Domest Anim 2024; 59:e14613. [PMID: 38812417 DOI: 10.1111/rda.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Spermatozoa can experience negative changes when subjected to freezing and thawing, including lowered motility, viability and acrosome response. Herein, the effects of different concentrations of soybean lecithin nanoparticles on cryopreserved Holstein bull semen were examined. Semen was collected, cryopreserved and utilized for sperm kinetic parameter analysis following dilution, equilibration and thawing with 0.5% soybean lecithin (E1), the control extender, and 0.75% (E2), 0.5% (E3), 0.25% (E4) and 0.125% (E5) of lecithin nanoparticles. Results revealed that following dilution, the progressive motility (PM) at E3, E4 and E5 of lecithin nanoparticles was higher (p < .05) than it was for E2. After equilibration, compared to the E1, E2, and E3 values, the PM, vitality, normal morphology, membrane integrity and intact acrosome values at the E5 were consistently greater (p < .05). Comparing the percentages of intact acrosome and membrane integrity at E2 and E3 to E4 and E5, a substantial decrease (p < .05) was seen. Following thawing, the percentage of PM improved at E2 and E5, even though their mean PM values were similar (p > .05) compared to E1, E3 and E4. Vigour and progression parameters of sperm (DAP, DCL, DSL, VAP, VCL, VSL and STR) at E5 were higher (p < .05) than those at E1, E2, E3 and E4. In conclusion, the cryopreserved sperm from Holstein bulls revealed outstanding properties both after equilibration and after thawing with 0.125% lecithin nanoparticles, and they were sensitive to high dosages.
Collapse
Affiliation(s)
- Mohammed A Abdel-Ghani
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, AL-Ahsa, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Mohamed E El-Sharawy
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ebtsam K Zaid
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed M Shehabeldin
- Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sherif M Dessouki
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Moustapha E Moustapha
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abd El-Salam M Metwally
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ibrahim S El-Shamaa
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
25
|
Ding Q, Liu X, Liu X, Chai G, Wang N, Ma S, Zhang L, Zhang S, Yang J, Wang Y, Shen L, Ding C, Liu W. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy. Int J Biol Macromol 2024; 263:130226. [PMID: 38368971 DOI: 10.1016/j.ijbiomac.2024.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
With the improvement of modern living standards, the challenge of diabetic wound healing has significantly impacted the public health system. In this study, our objective was to enhance the bioactivity of taxifolin (TAX) by encapsulating it in liposomes using a thin film dispersion method. Additionally, polyvinyl alcohol/carboxymethyl chitosan-based hydrogels were prepared through repeated freeze-thawing. In vitro and in vivo experiments were conducted to investigate the properties of the hydrogel and its effectiveness in promoting wound healing in diabetic mice. The results of the experiments revealed that the encapsulation efficiency of taxifolin liposomes (TL) was 89.80 ± 4.10 %, with a drug loading capacity of 17.58 ± 2.04 %. Scanning electron microscopy analysis demonstrated that the prepared hydrogels possessed a porous structure, facilitating gas exchange and the absorption of wound exudates. Furthermore, the wound repair experiments in diabetic mice showed that the TL-loaded hydrogels (TL-Gels) could expedite wound healing by suppressing the inflammatory response and promoting the expression of autophagy-related proteins. Overall, this study highlights that TL-Gels effectively reduce wound healing time by modulating the inflammatory response and autophagy-related protein expression, thus offering promising prospects for the treatment of hard-to-heal wounds induced by diabetes.
Collapse
Affiliation(s)
- Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xuexia Liu
- Traditional Chinese Medicine Hospital of Wuzhou, Guangzhou 543099, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun 130118, China
| | - Yanjun Wang
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Chuanbo Ding
- Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
26
|
Duarte JL, Di Filippo LD, de Faria Mota Oliveira AEM, Sábio RM, Marena GD, Bauab TM, Duque C, Corbel V, Chorilli M. Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:104-114. [PMID: 38264062 PMCID: PMC10804528 DOI: 10.3762/bjnano.15.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
Plant-based insecticides offer advantages such as negligible residual effects, reduced risks to both humans and the environment, and immunity to resistance issues that plague conventional chemicals. However, the practical use of monoterpenes in insect control has been hampered by challenges including their poor solubility and stability in aqueous environments. In recent years, the application of nanotechnology-based formulations, specifically nanoemulsions, has emerged as a prospective strategy to surmount these obstacles. In this study, we developed and characterized nanoemulsions based on cymene and myrcene and assessed their toxicity both in vitro using human keratinocytes (HaCAT) cells and in an in vivo model involving Galleria mellonella larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito Aedes aegypti, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited a hydrodynamic diameter of approximately 98 nm and a zeta potential of -25 mV. The myrcene-based nanoemulsion displayed a hydrodynamic diameter of 118 nm and a zeta potential of -20 mV. Notably, both nanoemulsions demonstrated stability over 60 days, accompanied by controlled release properties and low toxicity towards HaCAT cells and Galleria mellonella larvae. Moreover, the nanoemulsions exhibited significant lethality against third-instar Aedes aegypti larvae at a concentration of 50 mg/L. In conclusion, the utilization of nanoemulsions encapsulating cymene and myrcene presents a promising avenue for overcoming the limitations associated with poor solubility and stability of monoterpenes. This study sheds light on the potential of the nanoemulsions as effective and environmentally friendly insecticides in the ongoing battle against mosquito-borne diseases.
Collapse
Affiliation(s)
- Jonatas L Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Rafael Miguel Sábio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo, Brazil
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School - São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av Agropolis, 34 394 Montpellier, France
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave). Avenida Brasil, 4365 Manguinhos, Rio de Janeiro – RJ, CEP: 21040-360, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
27
|
Atwan QS, Al-Ogaidi I. Improving the targeted delivery of curcumin to esophageal cancer cells via a novel formulation of biodegradable lecithin/chitosan nanoparticles with downregulated miR-20a and miR-21 expression. NANOTECHNOLOGY 2024; 35:135103. [PMID: 38096580 DOI: 10.1088/1361-6528/ad15b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds' delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring the absence of detrimental residues or undesirable reactions under varying conditions. (3) Low-temperature incorporation: Curcumin is incorporated into the formulation at temperatures approximating 50 °C. The formulation comprises lecithin (LE), chitosan (CH), an eco-friendly emulsifying agent, and olive oil as the solvent for curcumin. Nanoscale conversion is achieved through ultrasonication and probe sonication (20 kHz). Transmission electron microscopy (TEM) reveals spherical nanoparticles with diameters ranging from 29.33 nm and negative zeta potentials within the -28 to -34 mV range. Molecular studies involve the design of primers for miR20a and miR21. Our findings showcase a remarkable encapsulation efficiency of 91.1% for curcumin, as determined through a linear equation. The curcumin-loaded nanoformulation demonstrates potent anticancer activity, effectively activating the apoptosis pathway in cancer cells at the minimum inhibitory concentration. These results underscore the potential of our nanoformulation as a compelling, cancer-selective treatment strategy, preserving the integrity of normal cells, and thus, warranting further exploration in the field of cancer therapy.
Collapse
Affiliation(s)
- Qusay S Atwan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Israa Al-Ogaidi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
28
|
Xiong Y, Chu X, Yu T, Knoedler S, Schroeter A, Lu L, Zha K, Lin Z, Jiang D, Rinkevich Y, Panayi AC, Mi B, Liu G, Zhao Y. Reactive Oxygen Species-Scavenging Nanosystems in the Treatment of Diabetic Wounds. Adv Healthc Mater 2023; 12:e2300779. [PMID: 37051860 DOI: 10.1002/adhm.202300779] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Diabetic wounds are characterized by drug-resistant bacterial infections, biofilm formation, impaired angiogenesis and perfusion, and oxidative damage to the microenvironment. Given their complex nature, diabetic wounds remain a major challenge in clinical practice. Reactive oxygen species (ROS), which have been shown to trigger hyperinflammation and excessive cellular apoptosis, play a pivotal role in the pathogenesis of diabetic wounds. ROS-scavenging nanosystems have recently emerged as smart and multifunctional nanomedicines with broad synergistic applicability. The documented anti-inflammatory and pro-angiogenic ability of ROS-scavenging treatments predestines these nanosystems as promising options for the treatment of diabetic wounds. Yet, in this context, the therapeutic applicability and efficacy of ROS-scavenging nanosystems remain to be elucidated. Herein, the role of ROS in diabetic wounds is deciphered, and the properties and strengths of nanosystems with ROS-scavenging capacity for the treatment of diabetic wounds are summarized. In addition, the current challenges of such nanosystems and their potential future directions are discussed through a clinical-translational lens.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Tao Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625, Hanover, Lower Saxony, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
29
|
Landim MG, Carneiro MLB, Joanitti GA, Anflor CTM, Marinho DD, Rodrigues JFB, de Sousa WJB, Fernandes DDO, Souza BF, Ombredane AS, do Nascimento JCF, Felice GDJ, Kubota AMA, Barbosa JSC, Ohno JH, Amoah SKS, Pena LJ, Luz GVDS, de Andrade LR, Pinheiro WO, Ribeiro BM, Formiga FR, Fook MVL, Rosa MFF, Peixoto HM, Luiz Carregaro R, Rosa SDSRF. A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations. DISCOVER NANO 2023; 18:118. [PMID: 37733165 PMCID: PMC10514013 DOI: 10.1186/s11671-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - José Filipe Bacalhau Rodrigues
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | | | | | - John Hideki Ohno
- MCI Ultrasonica LTDA, Av. Campinas, 367 - Arraial Paulista, Taboão da Serra, São Paulo, Brazil
| | - Solomon Kweku Sagoe Amoah
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Lia Fook
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | |
Collapse
|
30
|
Born LJ, Bengali S, Hsu ATW, Abadchi SN, Chang KH, Lay F, Matsangos A, Johnson C, Jay SM, Harmon JW. Chitosan Particles Complexed with CA5-HIF-1α Plasmids Increase Angiogenesis and Improve Wound Healing. Int J Mol Sci 2023; 24:14095. [PMID: 37762397 PMCID: PMC10531456 DOI: 10.3390/ijms241814095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Wound therapies involving gene delivery to the skin have significant potential due to the advantage and ease of local treatment. However, choosing the appropriate vector to enable successful gene expression while also ensuring that the treatment's immediate material components are conducive to healing itself is critical. In this study, we utilized a particulate formulation of the polymer chitosan (chitosan particles, CPs) as a non-viral vector for the delivery of a plasmid encoding human CA5-HIF-1α, a degradation resistant form of HIF-1α, to enhance wound healing. We also compared the angiogenic potential of our treatment (HIF/CPs) to that of chitosan particles containing only the plasmid backbone (bb/CPs) and the chitosan particle vector alone (CPs). Our results indicate that chitosan particles exert angiogenic effects that are enhanced with the human CA5-HIF-1α-encoded plasmid. Moreover, HIF/CPs enhanced wound healing in diabetic db/db mice (p < 0.01), and healed tissue was found to contain a significantly increased number of blood vessels compared to bb/CPs (p < 0.01), CPs (p < 0.05) and no-treatment groups (p < 0.01). Thus, this study represents a method of gene delivery to the skin that utilizes an inherently pro-wound-healing polymer as a vector for plasmid DNA that has broad application for the expression of other therapeutic genes.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sameer Bengali
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angela Ting Wei Hsu
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sanaz Nourmohammadi Abadchi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kai-Hua Chang
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Frank Lay
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aerielle Matsangos
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher Johnson
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| | - John W. Harmon
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Garg SS, Dubey R, Sharma S, Vyas A, Gupta J. Biological macromolecules-based nanoformulation in improving wound healing and bacterial biofilm-associated infection: A review. Int J Biol Macromol 2023; 247:125636. [PMID: 37392924 DOI: 10.1016/j.ijbiomac.2023.125636] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
A chronic wound is a serious complication associated with diabetes mellitus and is difficult to heal due to high glucose levels, oxidative stress, and biofilm-associated microbial infection. The structural complexity of microbial biofilm makes it impossible for antibiotics to penetrate the matrix, hence conventional antibiotic therapies became ineffective in clinical settings. This demonstrates an urgent need to find safer alternatives to reduce the prevalence of chronic wound infection associated with microbial biofilm. A novel approach to address these concerns is to inhibit biofilm formation using biological-macromolecule based nano-delivery system. Higher drug loading efficiency, sustained drug release, enhanced drug stability, and improved bioavailability are advantages of employing nano-drug delivery systems to prevent microbial colonization and biofilm formation in chronic wounds. This review covers the pathogenesis, microbial biofilm formation, and immune response to chronic wounds. Furthermore, we also focus on macromolecule-based nanoparticles as wound healing therapies to reduce the increased mortality associated with chronic wound infections.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Rupal Dubey
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Punjab, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Punjab, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
32
|
Alaa H, Abdelaziz M, Mustafa M, Mansour M, Magdy S, Mohsen S, El-Karamany Y, Farid A. Therapeutic effect of melatonin-loaded chitosan/lecithin nanoparticles on hyperglycemia and pancreatic beta cells regeneration in streptozotocin-induced diabetic rats. Sci Rep 2023; 13:10617. [PMID: 37391460 PMCID: PMC10313733 DOI: 10.1038/s41598-023-36929-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
Nanotechnology is used to overcome fundamental flaws in today's marketed pharmaceuticals that obstruct therapy, like restricted solubility and quick release of drugs into the bloodstream. In both human and animal researches, melatonin was demonstrated to regulate glucose levels. Despite the fact that melatonin is quickly transported through the mucosa, its sensitivity to be oxidized creates a difficulty in achieving the required dose. Additionally, due to its variable absorption and poor oral bioavailability necessitates the development of alternative delivery methods. The study aimed to synthesize melatonin loaded chitosan/lecithin (Mel-C/L) nanoparticles to be assessed in the treatment of streptozotocin (STZ)-induced diabetes in rats. The antioxidant, anti-inflammatory, and cytotoxicity properties of nanoparticles were estimated to determine the safety of manufactured nanoparticles for in vivo studies. In addition, Mel-C/L nanoparticles were administered to rats for eight weeks after inducing hyperglycemia. The therapeutic effect of Mel-C/L nanoparticles was assessed in all experimental groups by detecting insulin and blood glucose levels; observing improvements in liver and kidney functions as well as histological and immunohistochemical evaluation of rats' pancreatic sections. The results proved that Mel-C/L nanoparticles showed remarkable anti-inflammatory, anti-coagulant, and anti-oxidant effects, in addition to its efficiency in reducing blood glucose levels of STZ-induced diabetic rats and great ability to promote the regeneration of pancreatic beta (β)-cells. Furthermore, Mel-C/L nanoparticles elevated the insulin level; and decreased the elevated levels of urea, creatinine and cholesterol. In conclusion, nanoparticles application decreased the administrated melatonin dose that in turn can diminish the side effects of free melatonin administration.
Collapse
Affiliation(s)
- Habiba Alaa
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mariam Abdelaziz
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Maryam Mustafa
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mustafa Mansour
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Magdy
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Mohsen
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna El-Karamany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Alyaa Farid
- Immunology Division, Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
33
|
Çakan D, Uşaklıoğlu S. The Effect of Melatonin on Nasal Septal Wound Healing in an Experimental Animal Model. Facial Plast Surg 2023; 39:148-154. [PMID: 35882370 DOI: 10.1055/a-1910-0748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The purpose of our study was to examine the effect of melatonin (MLT) on wound healing in the nasal septum. Twenty-two Sprague-Dawley rats of the male sex were included in this experimental study. Nasal septal perforation (NSP), about 2 mm in diameter, was formed in each rat. MLT was applied topically to the subjects in the study group and saline was applied topically to the subjects in the control group once a day for 14 days. On day 14, the rats were sacrificed and the nasal septums of the subjects were resected for pathological evaluation. In the NSP area, degeneration and regeneration of nasal septal epithelium; degeneration and regeneration of the septal cartilage; number of cells involved in wound healing such as acute inflammatory cells (leukocytes), fibroblast, eosinophil, and giant cell; capillary vessel intensity; granulation tissue formation; and collagen intensity parameters were evaluated histopathologically. The macroscopic size and histopathologic examination results of NSPs were statistically analyzed. In the MLT group, the epithelium regeneration, cartilage regeneration, fibroblast number, collagen density, vascularity, and granulation formation were significantly higher, and the epithelial degeneration and acute inflammatory cells density were significantly lower, in the NSP area (p < 0.05). In addition, macroscopic healing was significantly higher in the MLT group (p = 0.044 and <0.05). Local application of MLT accelerates nasal septal wound healing. With this feature, the usage of MLT can be promising to prevent the formation of NSP.
Collapse
Affiliation(s)
- Doğan Çakan
- ENT Department, Cerrrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Semih Uşaklıoğlu
- ENT Department, University of Health Sciences Istanbul Haseki Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
34
|
Liu M, Wei X, Zheng Z, Li Y, Li M, Lin J, Yang L. Recent Advances in Nano-Drug Delivery Systems for the Treatment of Diabetic Wound Healing. Int J Nanomedicine 2023; 18:1537-1560. [PMID: 37007988 PMCID: PMC10065433 DOI: 10.2147/ijn.s395438] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Diabetes mellitus (DM) induced wound healing impairment remains a serious health problem and burden on the clinical obligation for high amputation rates. Based on the features of wound microenvironment, biomaterials loading specific drugs can benefit diabetic wound treatment. Drug delivery systems (DDSs) can carry diverse functional substances to the wound site. Nano-drug delivery systems (NDDSs), benefiting from their features related to nano size, overcome limitations of conventional DDSs application and are considered as a developing process in the wound treatment field. Recently, a number of finely designed nanocarriers efficiently loading various substances (bioactive and non-bioactive factors) have emerged to circumvent constraints faced by traditional DDSs. This review describes various recent advances of nano-drug delivery systems involved in mitigating diabetes mellitus-based non-healing wounds.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yicheng Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Lei Yang, Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People’s Republic of China, Tel +86-20-6164-1841, Email
| |
Collapse
|
35
|
Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules 2023; 28:molecules28041963. [PMID: 36838951 PMCID: PMC9959713 DOI: 10.3390/molecules28041963] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan's properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs' morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account.
Collapse
|
36
|
Ahmed KK, Wongrakpanich A. Particles-based medicated wound dressings: a comprehensive review. Ther Deliv 2023; 13:489-505. [PMID: 36779372 DOI: 10.4155/tde-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Wound healing is a dynamic process that is controlled by many factors. The interest in developing wound dressings capable of providing the required environment for the proper wound healing process is ever expanding, and particles occupy a sizable share of the research area. This comprehensive review reports 10 years of research in terms of current advances, delivery system evaluation, outcomes and future directions. The review follows a clearly defined method of article search and screening. Retrieved papers are reviewed regarding the materials, formulation development, and in vitro/in vivo testing of particles-based wound dressings. The review summarized the current status of medicated wound dressing research, identifies gaps to be addressed, and represents a reference for researchers working on wound dressings.
Collapse
Affiliation(s)
- Kawther Khalid Ahmed
- University of Baghdad, College of Pharmacy, Department of Pharmaceutics, Bab-almoadham, P.O.Box 14026, Baghdad, Iraq
- University of Iowa College of Pharmacy, IA, USA
| | - Amaraporn Wongrakpanich
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| |
Collapse
|
37
|
Gancitano G, Reiter RJ. The Multiple Functions of Melatonin: Applications in the Military Setting. Biomedicines 2022; 11:biomedicines11010005. [PMID: 36672513 PMCID: PMC9855431 DOI: 10.3390/biomedicines11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide the reader with a general overview on the rationale for the use of melatonin by military personnel. This is a technique that is being increasingly employed to manage growing psycho-physical loads. In this context, melatonin, a pleotropic and regulatory molecule, has a potential preventive and therapeutic role in maintaining the operational efficiency of military personnel. In battlefield conditions in particular, the time to treatment after an injury is often a major issue since the injured may not have immediate access to medical care. Any drug that would help to stabilize a wounded individual, especially if it can be immediately administered (e.g., per os) and has a very high safety profile over a large range of doses (as melatonin does) would be an important asset to reduce morbidity and mortality. Melatonin may also play a role in the oscillatory synchronization of the neuro-cardio-respiratory systems and, through its epigenetic action, poses the possibility of restoring the main oscillatory waves of the cardiovascular system, such as the Mayer wave and RSA (respiratory sinus arrhythmia), which, in physiological conditions, result in the oscillation of the heartbeat in synchrony with the breath. In the future, this could be a very promising field of investigation.
Collapse
Affiliation(s)
- Giuseppe Gancitano
- 1st Carabinieri Paratrooper Regiment “Tuscania”, Italian Ministry of Defence, 57127 Livorno, Italy
- Correspondence:
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
38
|
Qin W, Wu Y, Liu J, Yuan X, Gao J. A Comprehensive Review of the Application of Nanoparticles in Diabetic Wound Healing: Therapeutic Potential and Future Perspectives. Int J Nanomedicine 2022; 17:6007-6029. [PMID: 36506345 PMCID: PMC9733571 DOI: 10.2147/ijn.s386585] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic wounds are one of the most challenging public health issues of the 21st century due to their inadequate vascular supply, bacterial infections, high levels of oxidative stress, and abnormalities in antioxidant defenses, whereas there is no effective treatment for diabetic wounds. Due to the distinct properties of nanoparticles, such as their small particle size, elevated cellular uptake, low cytotoxicity, antibacterial activity, good biocompatibility, and biodegradability. The application of nanoparticles has been widely used in the treatment of diabetic wound healing due to their superior anti-inflammatory, antibacterial, and antioxidant activities. These nanoparticles can also be loaded with various agents, such as organic molecules (eg, exosomes, small molecule compounds, etc.), inorganic molecules (metals, nonmetals, etc.), or complexed with various biomaterials, such as smart hydrogels (HG), chitosan (CS), and hyaluronic acid (HA), to augment their therapeutic potential in diabetic wounds. This paper reviews the therapeutic potential and future perspective of nanoparticles in the treatment of diabetic wounds. Together, nanoparticles represent a promising strategy in the treatment of diabetic wound healing. The future direction may be to develop novel nanoparticles with multiple effects that not only act in wound healing at all stages of diabetes but also provide a stable physiological environment throughout the wound-healing process.
Collapse
Affiliation(s)
- Wenqi Qin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
39
|
Ahmad MZ, Alasiri AS, Ahmad J, Alqahtani AA, Abdullah MM, Abdel-Wahab BA, Pathak K, Saikia R, Das A, Sarma H, Alzahrani SA. Green Synthesis of Titanium Dioxide Nanoparticles Using Ocimum sanctum Leaf Extract: In Vitro Characterization and Its Healing Efficacy in Diabetic Wounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227712. [PMID: 36431808 PMCID: PMC9699599 DOI: 10.3390/molecules27227712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Diabetes mellitus is one of the most prevalent metabolic disorders characterized by hyperglycemia due to impaired glucose metabolism. Overproduction of free radicals due to chronic hyperglycemia may cause oxidative stress, which delays wound healing in diabetic conditions. For people with diabetes, this impeded wound healing is one of the predominant reasons for mortality and morbidity. The study aimed to develop an Ocimum sanctum leaf extract-mediated green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) and further incorporate them into 2% chitosan (CS) gel for diabetic wound healing. UV-visible spectrum analysis recorded the sharp peak at 235 and 320 nm, and this was the preliminary sign for the biosynthesis of TiO2 NPs. The FTIR analysis was used to perform a qualitative validation of the biosynthesized TiO2 nanoparticles. XRD analysis indicated the crystallinity of TiO2 NPs in anatase form. Microscopic investigation revealed that TiO2 NPs were spherical and polygonal in shape, with sizes ranging from 75 to 123 nm. The EDX analysis of green synthesized NPs showed the presence of TiO2 NPs, demonstrating the peak of titanium ion and oxygen. The hydrodynamic diameter and polydispersity index (PDI) of the TiO2 NPs were found to be 130.3 nm and 0.237, respectively. The developed TiO2 NPs containing CS gel exhibited the desired thixotropic properties with pseudoplastic behavior. In vivo wound healing studies and histopathological investigations of healed wounds demonstrated the excellent wound-healing efficacy of TiO2 NPs containing CS gel in diabetic rats.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ali S. Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
- Correspondence:
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Md Margub Abdullah
- Advanced Materials and Nano-Research Centre, Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Himangshu Sarma
- Sophisticated Analytical Instrument Facility (SAIF), Girijananda Chowdhury Institute of Pharmaceutical Science (GIPS), Guwahati 781017, Assam, India
| | - Seham Abdullah Alzahrani
- Pharmacy Department, Khamis Mushait General Hosptial, King Khalid Rd, Al Shifa, Khamis Mushait 62433, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022; 20:448. [PMID: 36242051 PMCID: PMC9569062 DOI: 10.1186/s12951-022-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
41
|
Development of a Curcumin-Loaded Lecithin/Chitosan Nanoparticle Utilizing a Box-Behnken Design of Experiment: Formulation Design and Influence of Process Parameters. Polymers (Basel) 2022; 14:polym14183758. [PMID: 36145903 PMCID: PMC9505816 DOI: 10.3390/polym14183758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022] Open
Abstract
Curcumin (CUR) has impressive pharmacologic properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activity. However, the pharmaceutical application of CUR is limited due to its poor aqueous solubility and low bioavailability. The development of novel formulations has attracted considerable attention to the idea of applying nanobiotechnology to improve the therapeutic efficacy of these challenging compounds. In this study, CUR-loaded lecithin−chitosan nanoparticles (CUR/LCSNPs) were developed and optimized by the concentration of chitosan, lecithin, and stirring speed by a 3-factorial Box-Behnken statistical design, resulting in an optimal concentration of chitosan (A) and lecithin (B) with a 1200 rpm stirring speed (C), with applied constraints of minimal average particle size (Y1), optimal zeta potential (Y2), and maximum entrapment efficiency (%EE) (Y3). The mean particle size of the checkpoint formulation ranged from 136.44 ± 1.74 nm to 267.94 ± 3.72, with a zeta potential of 18.5 ± 1.39 mV to 36.8 ± 3.24 mV and %EE of 69.84 ± 1.51% to 78.50 ± 2.11%. The mean particle size, zeta potential, %EE, and % cumulative drug release from the optimized formulation were 138.43 ± 2.09 nm, +18.98 ± 0.72 mV, 77.39 ± 1.70%, and 86.18 ± 1.5%, respectively. In vitro drug release followed the Korsmeyer−Peppas model with Fickian diffusion (n < 0.45). The optimized technique has proven successful, resulting in a nanoformulation that can be used for the high loading and controlled release of lipophilic drugs.
Collapse
|
42
|
Jiang T, Li Q, Qiu J, Chen J, Du S, Xu X, Wu Z, Yang X, Chen Z, Chen T. Nanobiotechnology: Applications in Chronic Wound Healing. Int J Nanomedicine 2022; 17:3125-3145. [PMID: 35898438 PMCID: PMC9309282 DOI: 10.2147/ijn.s372211] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Wounds occur when skin integrity is broken and the skin is damaged. With progressive changes in the disease spectrum, the acute wounds caused by mechanical trauma have been become less common, while chronic wounds triggered with aging, diabetes and infection have become more frequent. Chronic wounds now affect more than 6 million people in the United States, amounting to 10 billion dollars in annual expenditure. However, the treatment of chronic wounds is associated with numerous challenges. Traditional remedies for chronic wounds include skin grafting, flap transplantation, negative-pressure wound therapy, and gauze dressing, all of which can cause tissue damage or activity limitations. Nanobiotechnology — which comprises a diverse array of technologies derived from engineering, chemistry, and biology — is now being applied in biomedical practice. Here, we review the design, application, and clinical trials for nanotechnology-based therapies for chronic wound healing, highlighting the clinical potential of nanobiotechnology in such treatments. By summarizing previous nanobiotechnology studies, we lay the foundation for future wound care via a nanotech-based multifunctional smart system.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qianyun Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zihan Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
43
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022; 20:md20060396. [PMID: 35736199 PMCID: PMC9228111 DOI: 10.3390/md20060396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The continuous advances in surgical procedures require continuous research regarding materials with surgical applications. Biopolymers are widely studied since they usually provide a biocompatible, biodegradable, and non-toxic material. Among them, chitosan is a promising material for the development of formulations and devices with surgical applications due to its intrinsic bacteriostatic, fungistatic, hemostatic, and analgesic properties. A wide range of products has been manufactured with this polymer, including scaffolds, sponges, hydrogels, meshes, membranes, sutures, fibers, and nanoparticles. The growing interest of researchers in the use of chitosan-based materials for tissue regeneration is obvious due to extensive research in the application of chitosan for the regeneration of bone, nervous tissue, cartilage, and soft tissues. Chitosan can serve as a substance for the administration of cell-growth promoters, as well as a support for cellular growth. Another interesting application of chitosan is hemostasis control, with remarkable results in studies comparing the use of chitosan-based dressings with traditional cotton gauzes. In addition, chitosan-based or chitosan-coated surgical materials provide the formulation with antimicrobial activity that has been highly appreciated not only in dressings but also for surgical sutures or meshes.
Collapse
|
44
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
45
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
46
|
Pegorin Brasil GS, de Barros PP, Miranda MCR, de Barros NR, Junqueira JC, Gomez A, Herculano RD, de Mendonça RJ. Natural latex serum: characterization and biocompatibility assessment using Galleria mellonella as an alternative in vivo model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:705-726. [PMID: 34927570 DOI: 10.1080/09205063.2021.2014027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Natural latex serum (NLS) is one of the natural rubber latex fractions from Hevea brasiliensis tree, which is formed by centrifuged serum and is composed of proteins, acids, nucleotides, salts and carbohydrates. The proteins present in NLS have demonstrated several interesting biological properties, including angiogenic, healing, osteogenic, anti-inflammatory, antimicrobial, in addition to inducing neovascularization, bone formation and osseointegration. Thus, we proposed to characterize NLS by physicochemical techniques and to investigate the biocompatibility by toxicological assays and safety test in Galleria mellonella. Infrared spectrum showed vibrational bands characteristic of amide I, II and III that are linked to the protein content, which was confirmed by the High Performance Liquid Chromatography profile and by the Electrophoresis analysis. This material did not exhibit hemolytic (rate <0.5%) and cytotoxic effects (viability >70%) and was able to enhance the proliferation of fibroblasts (>600%) after 3 days. The pronounced proliferative effect observed in fibroblast cells can be explained by the presence of the fibroblast growth factor (FGF) like protein revealed by the Western blot test. Moreover, NLS did not provoke toxic effects (survival ∼ 80%) on the G. mellonella model, indicating that it is a biocompatible and safe material.
Collapse
Affiliation(s)
- Giovana Sant'Ana Pegorin Brasil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Biotechnology and Bioprocess Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
- Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caico, Rio Grande do Norte, Brazil
| | | | | | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocess Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
47
|
Eid HM, Ali AA, Ali AMA, Eissa EM, Hassan RM, Abo El-Ela FI, Hassan AH. Potential Use of Tailored Citicoline Chitosan-Coated Liposomes for Effective Wound Healing in Diabetic Rat Model. Int J Nanomedicine 2022; 17:555-575. [PMID: 35153481 PMCID: PMC8828492 DOI: 10.2147/ijn.s342504] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Purpose This study aimed to formulate citicoline-loaded chitosan-coated liposomes (CT-CS-LPs) for topical administration and evaluated for wound healing in a diabetic animal model. Methods CT-LPs were formulated via a thin-film hydration approach and coated with chitosan (CS). Box-Behnken statistical design investigated the effects of lipid amount, chitosan concentration, and cholesterol amount on vesicle diameter, surface charge, and entrapment efficiency. The potential of the optimized CT-CS-LPs gel for wound healing was further evaluated in streptozocin-induced diabetic rats. The different healing stages were evaluated by several techniques, including general and special staining techniques, in addition to antibody immunohistochemistry. Results The optimized CT-CS-LPs obtained had a mean size of 211.6 nm, a 50.7% entrapment efficiency, and a positive surface charge of 32.1 mV. In addition, the optimized CT-CS-LPs exhibited in vitro sustained release behavior. The in vivo experiments revealed that treatment with the optimized CT-CS-LPs boosts the healing process of the skin wound in diabetic rats by reducing inflammation, accelerating re-epithelization, angiogenesis, fibroblast proliferation, and connective tissue remodeling, leading to rapid wound closure. Conclusion Chitosan-coated liposomes containing citicoline have emerged as a potential approach for promoting the healing process in diabetic rats. However, the therapeutic effectiveness of the suggested approach in diabetic patients needs to be investigated.
Collapse
Affiliation(s)
- Hussein M Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
- Correspondence: Adel A Ali, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt, Tel +20822317958, Email ;
| | - Ahmed M Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Essam M Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Amira H Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
48
|
Renuka RR, Julius A, Yoganandham ST, Umapathy D, Ramadoss R, Samrot AV, Vijay DD. Diverse nanocomposites as a potential dressing for diabetic wound healing. Front Endocrinol (Lausanne) 2022; 13:1074568. [PMID: 36714604 PMCID: PMC9874089 DOI: 10.3389/fendo.2022.1074568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a programmed process of continuous events which is impaired in the case of diabetic patients. This impaired process of healing in diabetics leads to amputation, longer hospitalisation, immobilisation, low self-esteem, and mortality in some patients. This problem has paved the way for several innovative strategies like the use of nanotechnology for the treatment of wounds in diabetic patients. The use of biomaterials, nanomaterials have advanced approaches in tissue engineering by designing multi-functional nanocomposite scaffolds. Stimuli-responsive scaffolds that interact with the wound microenvironment and controlled release of bioactive molecules have helped in overcoming barriers in healing. The use of different types of nanocomposite scaffolds for faster healing of diabetic wounds is constantly being studied. Nanocomposites have helped in addressing specific issues with respect to healing and improving angiogenesis. Method: A literature search was followed to retrieve the articles on strategies for wound healing in diabetes across several databases like PubMed, EMBASE, Scopus and Cochrane database. The search was performed in May 2022 by two researchers independently. They keywords used were "diabetic wounds, nanotechnology, nanocomposites, nanoparticles, chronic diabetic wounds, diabetic foot ulcer, hydrogel". Exclusion criteria included insulin resistance, burn wound, dressing material.
Collapse
Affiliation(s)
- Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India
- *Correspondence: Remya Rajan Renuka, ; Danis D. Vijay,
| | - Angeline Julius
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - Suman Thodhal Yoganandham
- Department of Environmental Engineering, Institute of Industrial Technology Changwon National University, Changwon, Gyeongsangnamdo, Republic of Korea
- School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, Republic of Korea
| | - Dhamodharan Umapathy
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, Madhuranthagam, Tamilnadu, India
| | - Ramya Ramadoss
- Department of Oral Biology, Saveetha Dental College, Chennai, Tamilnadu, India
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Danis D. Vijay
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, Madhuranthagam, Tamilnadu, India
- *Correspondence: Remya Rajan Renuka, ; Danis D. Vijay,
| |
Collapse
|
49
|
Yener S, Akbulut KG, Karakuş R, Erdoğan D, Acartürk F. Development of melatonin loaded pectin nanoparticles for the treatment of inflammatory bowel disease: In vitro and in vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|