1
|
Yang Y, Wang T, Xiao M, Hou Z, Liu Y, Zhang K, Yang L, Sun S. Polysaccharides as submucosal injection materials (SIMs) in endoscopic resection: A comprehensive review. Carbohydr Polym 2025; 355:123360. [PMID: 40037734 DOI: 10.1016/j.carbpol.2025.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Submucosal injection materials (SIMs) play a vital role in the endoscopic treatment of benign and early malignant gastrointestinal lesions by effectively elevating lesions while significantly reducing the risks of thermal injury and bleeding. However, the traditional use of normal saline (NS) presents challenges due to its rapid absorption, which necessitates frequent reapplications and complicates procedural efficiency. Therefore, there is a pressing need for ideal SIMs that are cost-effective, readily available, and suitable for personalized therapy, while also demonstrating excellent biocompatibility and physicochemical stability. Recent advancements have highlighted the potential of polysaccharide-based natural polymers, such as sodium hyaluronate, cellulose, starch derivatives, chitosan, and sodium alginate, due to their superior biocompatibility and biodegradability. These polysaccharides have exhibited enhanced operational characteristics and therapeutic efficacy in animal and clinical studies. Nevertheless, ongoing research must address several challenges, including optimizing cost-effectiveness, improving mechanical strength and bioactivity, and mitigating intraoperative and postoperative complications. This review systematically examines the progress of polysaccharide-based natural polymers in SIMs, evaluates their current status and challenges in both research and clinical applications, and proposes future directions to enhance their utilization in gastrointestinal endoscopic therapy.
Collapse
Affiliation(s)
- Yaochen Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Miaomiao Xiao
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Liu
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Siyu Sun
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Patel PK, Uppaluri RVS. Adsorption of emerging pollutants utilizing chitosan derivatives: Recent advances and future perspective. Int J Biol Macromol 2025; 299:140203. [PMID: 39848360 DOI: 10.1016/j.ijbiomac.2025.140203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Globalization resulted in technological advancement, and urban population growth. Consequently, pollution emerged as an imminent risk to the survival of all species on Earth. Consequently, on a worldwide basis, sustainability become a major issue for legislators. Inconsistent impacts on both human and animal growth and wellness triggered health issues associated with water contamination through the chronic toxicants. Micropollutants' pollution prompted severe concerns due to their malignant, indestructible, and accumulative properties. The elimination of these toxins from industrial processes has become one of the most significant ecological challenges. A variety of both organic and simulated sorbents are available, and each of these have unique benefits. In the recent years, chitosan and its composite materials have been attempted and have been proven to be applicable for the resolution of many challenging issues related to water pollution. Among various notable benefits of adsorption processes, economic viability, ease of access, and adherence to environmental regulations are notable. Considering the above-mentioned issues, the article targets the assessment of chitosan and its composite materials for relevant environmental applications. Accordingly, the article aims to examine the performance, advantages, and disadvantages of chitosan as an adsorbent.
Collapse
Affiliation(s)
- Prabhat Kumar Patel
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ramagopal V S Uppaluri
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Chemical Engineering Department, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Amur SA, Khuhro Q, Soomro NA, Sharma BP, Nadeem A, Tariq M, Liang H. Synthesis, characterization and computational study of chitosan-modified pH-responsive Mag@ZIF-8/CS drug delivery system loaded with magnolol for sustained drug release and synergistic antibacterial activity. Int J Biol Macromol 2025; 308:142144. [PMID: 40107541 DOI: 10.1016/j.ijbiomac.2025.142144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
ZIF-8 has strong potential for biomedical applications due to its excellent biocompatibility. In this study, 89.67 % of natural drug magnolol (Mag) was loaded in ZIF-8 to form Mag@ZIF-8, which was subsequently modified with chitosan (CS) to obtain Mag@ZIF-8/CS. The prepared materials were characterized using the UV-Vis spectroscopy, FTIR, XRD, DLS, SEM and TEM techniques. Thermal stability of materials was analyzed using Thermos Gravimetric Analysis system. PDI and Z-average hydrodynamic sizes of Mag@ZIF-8/CS and Mag@ZIF-8 were increased compared to ZIF-8. Similarly, Mag@ZIF-8 revealed higher zeta potential (+17.5 ± 2.3 mV) than ZIF-8 (+9.8 ± 0.5 mV), but Mag@ZIF-8/CS exposed -3.2 ± 0.9 mV, in water; however, at pH 4 it was changed to +5 mV. Pure ZIF-8 and Mag@ZIF-8 exhibited a hexagonal morphology, while Mag@ZIF-8/CS had a rotund, flat-like structure, with mean particle size of 101 nm, 123 nm and 343 nm, respectively. Density Functional Theory (DFT) analysis offered a deeper insight into the electronic properties and binding interactions of the composites. Under acidic conditions, drug release from Mag@ZIF-8 was higher (86.4 %) and faster than from Mag@ZIF-8/CS (74 %), when tested at physiological pH 7.4 and 37 °C. This, suggests that CS modification of Mag@ZIF-8 is crucial for achieving prolonged and sustained drug release. Mag@ZIF-8 and Mag@ZIF-8/CS depicted a two-fold increase in antibacterial activity against E. coli and S. aureus, demonstrating a synergistic effect. The MIC value for E. coli and S. aureus were, 35 μg/mL and 20 μg/mL, respectively, confirming the enhanced antibacterial efficacy of the composites. Molecular docking analysis provided deeper insights into the binding interactions between the materials and the E. coli protein 5AZC.
Collapse
Affiliation(s)
- Safdar Ali Amur
- College of Life Science and Technology, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Quratulain Khuhro
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Najaf Ali Soomro
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Bharat Prasad Sharma
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Tariq
- College of Life Science and Technology, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Liang
- College of Life Science and Technology, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Li C, Li J, Bai Y, Zhang K, Wang Z, Zhang Y, Guan Q, Wang S, Li Z, Li Z, Chen L. Polysialic acid-based nanoparticles for enhanced targeting and controlled dexamethasone release in pulmonary inflammation treatment. Int J Biol Macromol 2025; 297:139550. [PMID: 39778853 DOI: 10.1016/j.ijbiomac.2025.139550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions characterized by severe inflammation and respiratory failure. Despite the use of dexamethasone (Dex) in treatment, challenges such as poor solubility and systemic side effects persist, highlighting the need for novel therapeutic approaches. This study introduces an innovative nanoparticle delivery system based on chitosan (CS) and polysialic acid (PSA), engineered via electrostatic assembly, to improve the targeted delivery of Dex to inflamed lung tissues. To enhance drug encapsulation and stability, novel taurine-Vitamin E succinate amphiphilic molecules (TVES and TGVES) were synthesized. The unique ability of PSA to specifically target Siglec-1 receptors on M1 macrophages-key contributors to ALI/ARDS-related inflammation-positions this system as a promising strategy for targeted pulmonary therapies. In vitro targeting of M1 macrophages and in vivo reduction of inflammation demonstrate the potential to transform treatment by delivering therapeutic agents precisely to the site of need. This cutting-edge nanoparticle platform not only holds promise for improving ALI/ARDS outcomes but also paves the way for the application of functional additives like taurine in advanced medical therapies.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory for New Drug Development, Shenyang 110036, China
| | - Jing Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Yujie Bai
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zeyu Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Yifan Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Qingyu Guan
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Shiqi Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory for New Drug Development, Shenyang 110036, China.
| |
Collapse
|
6
|
Du H, Wang Z, Long S, Li Y, Yang D. The advancement of nanosystems for drug delivery in the prevention and treatment of dental caries. Front Cell Infect Microbiol 2025; 15:1546816. [PMID: 40007606 PMCID: PMC11850577 DOI: 10.3389/fcimb.2025.1546816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The dental caries remains a globally prevalent disease. Although its incidence has decrease due to enhancements in sanitation policies and public health measures, the treatment and prevention of dental caries still pose significant challenges. Within the oral cavity, traditional drug delivery systems suffer from limitation such as inadequate tissue penetration, short duration of action at target site, and low specificity, which minimally affect the prevention and treatment of dental caries. Consequently, nanosystem for drug delivery, offering enhanced drug stability, solubility, and bio-availability while reducing side effects, garnering attention increasing attention in the fight against dental caries. Therefore, this review examines the role of nanosystems for drug delivery in combating dental caries by inhibiting bacteria survival, biofilm formation, demineralization, and promoting remineralization, and exploring their potential to become the mainstream means of prevention and treatment of dental caries in future.
Collapse
Affiliation(s)
- Han Du
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Zheng Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Shenglan Long
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Yiding Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Griep P, Gayeski L, Colet R, Zeni J, Valduga E. Recent updates of carotenoid encapsulation by spray-drying technique. J Microencapsul 2025; 42:26-46. [PMID: 39579156 DOI: 10.1080/02652048.2024.2430643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Carotenoids are compounds sensitive to environmental factors such as light, heat, and oxygen, which can result in the loss of their properties due to isomerisation and oxidation. To overcome this problem, spray drying encapsulation has been widely used as a method to protect and stabilise carotenoids in different wall materials. This article summarises the findings and research on spray drying encapsulation of carotenoids over the past 15 years, with an emphasis on the importance of controlling the operational conditions of the drying process and the association of different wall materials (proteins and polysaccharides), promising to increase encapsulation efficiency and stabilise carotenoids, with perspectives and trends in applications. The use of spray drying for carotenoid microencapsulation can open up new opportunities for controlled delivery of beneficial compounds. Based on the study, it is expected to provide information for researchers, professionals, and companies interested in the development of functional food products.
Collapse
Affiliation(s)
- Patrícia Griep
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Luana Gayeski
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Jamile Zeni
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| |
Collapse
|
8
|
Badie MA, Teaima MH, El-Nabarawi MA, Badawi NM. Formulation and optimization of surfactant-modified chitosan nanoparticles loaded with cefdinir for novel topical drug delivery: Elevating wound healing efficacy with enhanced antibacterial properties. Int J Pharm 2024; 666:124763. [PMID: 39332464 DOI: 10.1016/j.ijpharm.2024.124763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Burn wounds remain a significant global health concern, frequently exacerbated by bacterial infections that hinder healing and raise morbidity rates. Cefdinir, a third-generation cephalosporin antibiotic, is used to treat various conditions, but it has limitations such as low water solubility, limited bioavailability, and a short biological half-life. This study aimed to fabricate and optimize novel surfactant-based Cefdinir-loaded chitosan nanoparticles (CFD-CSNPs) for enhancing topical CFD delivery and efficacy in burn healing. Box-Behnken Design (BBD) was employed to develop optimized CFD-CSNPs using Design Expert® software, where the independent factors were chitosan concentration, chitosan: sodium tripolyphosphate ratio, pH, and surfactant type. Particle size PS, zeta potential ZP, Polydispersity index PDI, and entrapment efficiency EE% were evaluated as dependent factors. CFD-CSNPs were produced using the ionic gelation method. The optimized formula was determined and then examined for further in vitro and in vivo assessments. The optimized CFD-CSNPs exhibited acceptable PS, PDI, and ZP values. The EE% of CFD from CSNPs reached 57.89 % ± 1.66. TEM analysis revealed spherical morphology. In vitro release studies demonstrated a biphasic release profile up to (75.5 % ± 3.8) over 48 hrs. The optimized CFD-CSNPs showed improved antimicrobial efficacy against the tested microorganisms, exhibiting superior performance for both biofilm prevention and eradication. Enhanced wound healing activity was achieved by the optimized CFD-CSNPs in both in vitro and in vivo studies as confirmed by scratch wound assay and skin burn mice model. The current study advocates the efficacy of the innovative topical application of CFD-CSNPs for wound healing purposes and treatment of wound infections.
Collapse
Affiliation(s)
- Merna A Badie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt.
| |
Collapse
|
9
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
10
|
Li MN, Jia XZ, Yao QB, Zhu F, Huang YY, Zeng XA. Recent advance for animal-derived polysaccharides in nanomaterials. Food Chem 2024; 459:140208. [PMID: 39053112 DOI: 10.1016/j.foodchem.2024.140208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Inspired by the structure characteristics of natural products, the size and morphology of particles are carefully controlled using a bottom-up approach to construct nanomaterials with specific spatial unit distribution. Animal polysaccharide nanomaterials, such as chitosan and chondroitin sulfate nanomaterials, exhibit excellent biocompatibility, degradability, customizable surface properties, and novel physical and chemical properties. These nanomaterials hold great potential for development in achieving a sustainable bio-economy. This paper provides a summary of the latest research results on the preparation of nanomaterials from animal polysaccharides. The mechanism for preparing nanomaterials through the bottom-up method from different sources of animal polysaccharides is introduced. Furthermore, this paper discusses the potential hazards posed by industrial applications to the environment and human health, as well as the challenges and future prospects associated with using animal polysaccharides in nanomaterials.
Collapse
Affiliation(s)
- Meng-Na Li
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Xiang-Ze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Qing-Bo Yao
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Feng Zhu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Yan-Yan Huang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China.
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China.
| |
Collapse
|
11
|
Sharma P, Saurav S, Tabassum Z, Sood B, Kumar A, Malik T, Mohan A, Girdhar M. Applications and interventions of polymers and nanomaterials in alveolar bone regeneration and tooth dentistry. RSC Adv 2024; 14:36226-36245. [PMID: 39534053 PMCID: PMC11555558 DOI: 10.1039/d4ra06092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory diseases exert a significant influence on the periodontium, serving as a primary contributor to the development of periodontitis. The advancement of periodontitis, characterized by manifestations, such as gingival recession, increased periodontal pocket depth and resorption across the alveolar bone, cementum and periodontal ligaments, poses a significant risk of dental detachment. Untreated or delayed treatment further worsens these deleterious outcomes. This emphasizes the critical importance of timely and effective interventions in reducing the consequences associated with periodontitis. Addressing these challenges requires to focus on the fabrication of bioactive materials, particularly scaffolds, as pivotal elements in tissue engineering processes aimed at alveolar bone regeneration. The incorporation of natural polymers, particularly their amalgamation with clays and clay minerals, such as montmorillonite and LAPONITE®, has been identified as a prospective pathway for advancing biomaterials in the realm of dentistry. This amalgamation holds significant potential for the production of biomaterials with enhanced properties, underscoring its relevance and applicability in dental research. This review paper explores the current advancements in natural polymer-based biomaterials employed in various dental applications, including oral caries, regenerative medicine and alveolar bone regeneration. The principal aim of this investigation is to briefly compile and present the existing knowledge while updating information on the utilization of natural polymers in the formulation of biomaterials. Additionally, the paper aims to elucidate their applications within contemporary research trends and developments in the field of odontology. This article extensively delves into pertinent research to assess the progress of nanotechnology in the context of tissue regeneration and the treatment of oral diseases.
Collapse
Affiliation(s)
- Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Bhawana Sood
- School of Physical and Chemical Engineering, Lovely Professional University Phagwara 144401 Punjab India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology New Delhi 110067 India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University Jimma 0000 Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University Phagwara 144401 Punjab India
| |
Collapse
|
12
|
Adwan S, Obeidi T, Al-Akayleh F. Chitosan Nanoparticles Embedded in In Situ Gel for Nasal Delivery of Imipramine Hydrochloride: Short-Term Stage Development and Controlled Release Evaluation. Polymers (Basel) 2024; 16:3062. [PMID: 39518270 PMCID: PMC11548429 DOI: 10.3390/polym16213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Imipramine hydrochloride (IMP), a tricyclic antidepressant used for major depression, enuresis, and neuropathic pain, is limited by gastrointestinal complications, low oral bioavailability (44%), and complex dosing requirements. This study aimed to explore a novel non-invasive nasal delivery system using chitosan nanoparticles (Cs NPs) embedded in an in situ gel to address the limitations of oral IMP administration. Cs NPs loaded with IMP were synthesized via ionic gelation and assessed for precision in drug concentration using a validated HPLC method. The particles were integrated into a thermoresponsive polymer, Pluronic F127, to form an in situ gel suitable for nasal administration. The formulation was characterized for gelation temperature, duration, viscosity, mucoadhesive strength, and overall gel robustness. Drug release kinetics and the controlled release mechanism were studied using ex vivo permeation tests with Franz diffusion cells and nasal sheep mucosa. The optimized nanoparticle formulation (F4-50) exhibited a consistent PS of 141.7 ± 2.2 nm, a zeta potential (ZP) of 16.79 ± 2.1 mV, and a high encapsulation efficiency of 67.71 ± 1.9%. The selected in situ gel formulation, F4-50-P1, demonstrated a gelation temperature of 33.6 ± 0.94 °C and a rapid gelation time of 48.1 ± 0.7 s. Transform-attenuated total reflectance infrared spectroscopy (ATR-IR) confirmed the compatibility and effective encapsulation of IMP within the formulation. The release profile of F4-50 included an initial burst release followed by a sustained release phase, with F4-50-P1 showing improved control over the burst release. The flux rates were 0.50 ± 0.01 mg/cm2/h for F4-50 and 0.33 ± 0.06 mg/cm2/h for F4-50-P1, indicating effective permeation. The developed chitosan nanoparticle-based in situ gel formulation provides a promising approach for the controlled release of IMP, enhancing therapeutic efficacy and patient compliance while mitigating the disadvantages associated with oral delivery.
Collapse
Affiliation(s)
- Samer Adwan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan;
| | - Teiba Obeidi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan;
| | - Faisal Al-Akayleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutics and Medical Sciences, Petra University, Amman 11196, Jordan;
| |
Collapse
|
13
|
El-Seedi HR, Omara MS, Omar AH, Elakshar MM, Shoukhba YM, Duman H, Karav S, Rashwan AK, El-Seedi AH, Altaleb HA, Gao H, Saeed A, Jefri OA, Guo Z, Khalifa SAM. Updated Review of Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. Bioengineering (Basel) 2024; 11:1095. [PMID: 39593755 PMCID: PMC11591867 DOI: 10.3390/bioengineering11111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles such as silver, gold, and zinc using various plant extracts and microorganisms, including bacteria, fungi, and algae. The phytochemicals and biomolecules responsible for reducing metal ions and stabilizing nanoparticles are discussed. Key process parameters like pH, temperature, and precursor concentration affecting particle size are highlighted. Characterization techniques for confirming the formation and properties of nanoparticles are also mentioned. Applications of biosynthesized nanoparticles in areas such as antibacterial delivery, cancer therapy, biosensors, and environmental remediation are reviewed. Challenges in scaling up production and regulating nanoparticle properties are addressed. Power Point 365 was used for creating graphics. Overall, green biosynthesis is an emerging field with opportunities for developing eco-friendly nanomanufacturing platforms using abundant natural resources. Further work on optimizing conditions, standardizing protocols, and exploring new biosources is needed to realize the full potential of this approach.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32111, Egypt
| | - Mohamed S. Omara
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Abdulrahman H. Omar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Mahmoud M. Elakshar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Yousef M. Shoukhba
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Awg H. El-Seedi
- International IT College of Sweden, Stockholm, Hälsobrunnsgatan 6, Arena Academy, 11361 Stockholm, Sweden;
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ohoud A. Jefri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biology, College of Science, Taibah University, Al-Madinah Al Munawarah 42353, Saudi Arabia
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 11219 Stockholm, Sweden
| |
Collapse
|
14
|
Liu X, Dong Y, Wang C, Guo Z. Application of chitosan as nano carrier in the treatment of inflammatory bowel disease. Int J Biol Macromol 2024; 278:134899. [PMID: 39187100 DOI: 10.1016/j.ijbiomac.2024.134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is characterized by persistent and recurrent gastrointestinal inflammation. Conventional IBD therapies often involve the use of antibiotics, NSAIDs, biological agents, and immunomodulators. While these medications can mitigate acute inflammatory symptoms, their long-term efficacy is frequently compromised due to cumulative toxic effects. In recent years, significant attention has shifted toward nanoparticle (NP)-based therapies as potential alternatives for IBD management. Various drug delivery strategies, including those targeting microbiota interactions, ligand-receptor binding, pH sensitivity, biodegradability, pressure response, and specific charge and size parameters, have been explored and optimized in animal studies. This review provides a comprehensive overview of the current landscape of chitosan NP-mediated drug delivery systems for IBD treatment. Additionally, it will discuss the prevailing challenges and propose future research directions to advance chitosan NP-based therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Yunrui Dong
- Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, China
| | - Chenyu Wang
- Department of General Surgery, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No.616 Bianyangsan Road, Suzhou 234000, Anhui, China.
| |
Collapse
|
15
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Gyurova A, Milkova V, Iliev I, Lazarova-Zdravkova N, Rashev V, Simeonova L, Vilhelmova-Ilieva N. Anti-Coronavirus Activity of Chitosan-Stabilized Liposomal Nanocarriers Loaded with Natural Extracts from Bulgarian Flora. Life (Basel) 2024; 14:1180. [PMID: 39337963 PMCID: PMC11605225 DOI: 10.3390/life14091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Disease's severity, mortality rates, and common failures to achieve clinical improvement during the unprecedented COVID-19 pandemic exposed the emergency need for new antiviral therapeutics with higher efficacy and fewer adverse effects. This study explores the potential to encapsulate multi-component plant extracts in liposomes as optimized delivery systems and to verify if they exert inhibitory effects against human seasonal betacoronavirus OC43 (HCoV-OC43) in vitro. The selection of Sambucus nigra, Potentilla reptans, Allium sativum, Aesculus hippocastanum, and Glycyrrhiza glabra L. plant extracts was based on their established pharmacological and antiviral properties. The physicochemical characterization of extract-loaded liposomes was conducted by DLS and electrokinetics. Encapsulated amounts of the extract were evaluated based on the total flavonoid content (TFC) and total polyphenol content (TPC) by colorimetric methods. The BALB 3T3 neutral red uptake (NRU) phototoxicity/cytotoxicity assay was used to estimate compounds' safety. Photo irritation factors (PIFs) of the liposomes containing extracts were <2 which assigned them as non-phototoxic substances. The antiviral capacities of liposomes containing medicinal plant extracts against HCoV-OC43 were measured by the cytopathic effect inhibition test in susceptible HCT-8 cells. The antiviral activity increased by several times compared to "naked" extracts' activity reported previously. A. hippocastanum extract showed 16 times higher inhibitory properties reaching a selectivity index (SI) of 58.96. Virucidal and virus-adsorption effects were investigated using the endpoint dilution method and ∆lgs comparison with infected and untreated controls. The results confirmed that nanoparticles do not directly affect the viral surface or cell membrane, but only serve as carriers of the active substances and the observed protection is due solely to the intracellular action of the extracts.
Collapse
Affiliation(s)
- Anna Gyurova
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.G.); (V.M.)
| | - Viktoria Milkova
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.G.); (V.M.)
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756 Sofia, Bulgaria;
| | - Nevena Lazarova-Zdravkova
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756 Sofia, Bulgaria;
| | - Viktor Rashev
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria;
| | - Lora Simeonova
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria;
| | - Neli Vilhelmova-Ilieva
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev, 1113 Sofia, Bulgaria;
| |
Collapse
|
17
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
18
|
Benamer-Oudih S, Tahtat D, Nacer Khodja A, Mansouri B, Mahlous M, Guittoum AE, Kebbouche Gana S. Sorption behavior of chitosan nanoparticles for single and binary removal of cationic and anionic dyes from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39976-39993. [PMID: 37284953 DOI: 10.1007/s11356-023-27907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/21/2023] [Indexed: 06/08/2023]
Abstract
In this study, chitosan nanoparticles (ChNs) were used as an adsorbent for single and simultaneous uptake of cationic (methylene blue (MB)) and anionic (methyl orange (MO)) dyes. ChNs were prepared based on the ionic gelation method using sodium tripolyphosphate (TPP) and characterized by zetasizer, FTIR, BET, SEM, XRD, and pHPZC. The studied parameters that affect removal efficiency included pH, time, and dyes' concentration. The results showed that in single-adsorption mode, the removal of MB is better in alkaline pH, contrary to MO uptake which presents higher removal efficiency in acidic media. The simultaneous removal of MB and MO from the mixture solution by ChNs could be achieved under neutral conditions. The adsorption kinetic results showed that adsorption of MB and MO for both single-adsorption and binary adsorption systems comply with the pseudo-second-order model. Langmuir, Freundlich, and Redlich-Peterson isotherms were used for the mathematical description of single-adsorption equilibrium, while non-modified Langmuir and extended Freundlich isotherms were used to fit the co-adsorption equilibrium results. The maximum adsorption capacities of MB and MO in a single dye adsorption system were 315.01 and 257.05 mg/g for MB and MO, respectively. On the other hand, and for binary adsorption system, the adsorption capacities were 49.05 and 137.03 mg/g, respectively. The adsorption capacity of MB decreases in solution containing MO and vice versa, suggesting an antagonistic behavior of MB and MO on ChNs. Overall, ChNs could be a candidate for single and binary removal of MB and MO in dye-containing wastewater.
Collapse
Affiliation(s)
- Samah Benamer-Oudih
- Nuclear Research Center of Algiers, BP-399, Algiers, Algeria.
- Faculty of Sciences, University M'hamed Bougara of Boumerdes, 35000, Boumerdes, Algeria.
| | - Djamel Tahtat
- Nuclear Research Center of Algiers, BP-399, Algiers, Algeria
| | | | | | - Mohamed Mahlous
- Atomic Energy Commission, 02, Boulevard Frantz Fanon, Algiers, Algeria
| | | | - Salima Kebbouche Gana
- Faculty of Sciences, University M'hamed Bougara of Boumerdes, 35000, Boumerdes, Algeria
| |
Collapse
|
19
|
Naskar A, Kilari S, Misra S. Chitosan-2D Nanomaterial-Based Scaffolds for Biomedical Applications. Polymers (Basel) 2024; 16:1327. [PMID: 38794520 PMCID: PMC11125373 DOI: 10.3390/polym16101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan (CS) and two-dimensional nanomaterial (2D nanomaterials)-based scaffolds have received widespread attention in recent times in biomedical applications due to their excellent synergistic potential. CS has garnered much attention as a biomedical scaffold material either alone or in combination with some other material due to its favorable physiochemical properties. The emerging 2D nanomaterials, such as black phosphorus (BP), molybdenum disulfide (MoS2), etc., have taken huge steps towards varying biomedical applications. However, the implementation of a CS-2D nanomaterial-based scaffold for clinical applications remains challenging for different reasons such as toxicity, stability, etc. Here, we reviewed different types of CS scaffold materials and discussed their advantages in biomedical applications. In addition, a different CS nanostructure, instead of a scaffold, has been described. After that, the importance of 2D nanomaterials has been elaborated on in terms of physiochemical properties. In the next section, the biomedical applications of CS with different 2D nanomaterial scaffolds have been highlighted. Finally, we highlighted the existing challenges and future perspectives of using CS-2D nanomaterial scaffolds for biomedical applications. We hope that this review will encourage a more synergistic biomedical application of the CS-2D nanomaterial scaffolds and their utilization clinical applications.
Collapse
Affiliation(s)
| | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.N.); (S.K.)
| |
Collapse
|
20
|
Marquis M, Zykwinska A, Novales B, Leroux I, Schleder C, Pichon J, Cuenot S, Rouger K. Human muscle stem cell responses to mechanical stress into tunable 3D alginate matrices. Int J Biol Macromol 2024; 266:130823. [PMID: 38492703 DOI: 10.1016/j.ijbiomac.2024.130823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Preclinical data acquired for human muscle stem (hMuStem) cells indicate their great repair capacity in the context of muscle injury. However, their clinical potential is limited by their moderate ability to survive after transplantation. To overcome these limitations, their encapsulation within protective environment would be beneficial. In this study, tunable calcium-alginate hydrogels obtained through molding method using external or internal gelation were investigated as a new strategy for hMuStem cell encapsulation. The mechanical properties of these hydrogels were characterized in their fully hydrated state by compression experiments using Atomic Force Microscopy. Measured elastic moduli strongly depended on the gelation mode and calcium/alginate concentrations. Values ranged from 1 to 12.5 kPa and 3.9 to 25 kPa were obtained for hydrogels prepared following internal and external gelation, respectively. Also, differences in mechanical properties of hydrogels resulted from their internal organization, with an isotropic structure for internal gelation, while external mode led to anisotropic one. It was further shown that viability, morphological and myogenic differentiation characteristics of hMuStem cells incorporated within alginate hydrogels were preserved after their release. These results highlight that hMuStem cells encapsulated in calcium-alginate hydrogels maintain their functionality, thus allowing to develop muscle regeneration protocols to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Mélanie Marquis
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France.
| | - Agata Zykwinska
- Ifremer, MASAE, Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Bruno Novales
- INRAE, BIA, Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Isabelle Leroux
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Cindy Schleder
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Julien Pichon
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 44322 Nantes cedex 3, France
| | - Karl Rouger
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| |
Collapse
|
21
|
Abo-Ser MM, Toson ESA, El-Bindary AA, Schlatter G, Shoueir KR. Smart chitosan nanogel for targeted doxorubicin delivery, ensuring precise release, and minimizing side effects in Ehrlich ascites carcinoma-bearing mice. Int J Biol Macromol 2024; 267:131390. [PMID: 38582473 DOI: 10.1016/j.ijbiomac.2024.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In recent decades, bio-polymeric nanogels have become a forefront in medical research as innovative in-vivo drug carriers. This study introduces a pH-sensitive chitosan nanoparticles/P(N-Isopropylacrylamide-co-Acrylic acid) nanogel (CSNPs/P(NIPAm-co-AAc)), making significant advancements. The nanogel effectively encapsulated doxorubicin hydrochloride (Dx. HCl), a model drug, within its compartments through electrostatic binding. Comparing nano chitosan (CSNPs) before and after integrating copolymerized P(NIPAm-co-AAc), highlighting an improved and adaptable nanogel structure with responsive behaviors. The intraperitoneal delivery of Dx-loaded nanogel (Dx@N.gel) to Ehrlich ascites carcinoma (Eh)-bearing mice at doses equivalent to 1.5 and 3 mg/kg of Dx per day for 14 days exhibited superiority over the administration of free Dx. Dx@N.gel demonstrated heightened anticancer activity, significantly improving mean survival rates in Eh mice. The nanogel's multifaceted defense mechanism mitigated oxidative stress, inhibited lipid peroxidation, and curbed nitric oxide formation induced by free Dx. It effectively countered hepatic DNA deterioration, normalized elevated liver and cardiac enzyme levels, and ameliorated renal complications. This pH-responsive CSNPs/P(NIPAm-co-AAc) nanogel loaded with Dx represents a paradigm shift in antitumor drug delivery. Its efficacy and ability to minimize side effects, contrasting sharply with those of free Dx, offer a promising future where potent cancer therapies seamlessly align with patient well-being.
Collapse
Affiliation(s)
- Magy M Abo-Ser
- Department of Chemistry, Faculty of Science, Damietta University, 34517 Damietta, Egypt
| | - El-Shahat A Toson
- Department of Chemistry, Faculty of Science, Damietta University, 34517 Damietta, Egypt
| | - Ashraf A El-Bindary
- Department of Chemistry, Faculty of Science, Damietta University, 34517 Damietta, Egypt
| | - Guy Schlatter
- ICPEES, Institut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé, CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Kamel R Shoueir
- ICPEES, Institut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé, CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France; Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
22
|
Krumova E, Benkova D, Stoyancheva G, Dishliyska V, Miteva-Staleva J, Kostadinova A, Ivanov K, El-Sayed K, Staneva G, Elshoky HA. Exploring the mechanism underlying the antifungal activity of chitosan-based ZnO, CuO, and SiO 2 nanocomposites as nanopesticides against Fusarium solani and Alternaria solani. Int J Biol Macromol 2024; 268:131702. [PMID: 38643917 DOI: 10.1016/j.ijbiomac.2024.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Chitosan-based nanocomposites (CS NCs) are gaining considerable attention as multifaceted antifungal agents. This study investigated the antifungal activity of NCs against two phytopathogenic strains: Fusarium solani (F. solani) and Alternaria solani (A. solani). Moreover, it sheds light on their underlying mechanisms of action. The NCs, CS-ZnO, CS-CuO, and CS-SiO2, were characterized using advanced methods. Dynamic and electrophoretic light scattering techniques revealed their size range (60-170 nm) and cationic nature, as indicated by the positive zeta potential values (from +16 to +22 mV). Transmission electron microscopy revealed the morphology of the NCs as agglomerates formed between the chitosan and oxide components. X-ray diffraction patterns confirmed crystalline structures with specific peaks indicating their constituents. Antifungal assessments using the agar diffusion technique demonstrated significant inhibitory effects of the NCs on both fungal strains (1.5 to 4-fold), surpassing the performance of the positive control, nystatin. Notably, the NCs exhibited superior antifungal potency, with CS-ZnO NCs being the most effective. A. solani was the most sensitive strain to the studied agents. Furthermore, the tested NCs induced oxidative stress in fungal cells, which elevated stress biomarker levels, such as superoxide dismutase (SOD) activity and protein carbonyl content (PCC), 2.5 and 6-fold for the most active CS-CuO in F. solani respectively. Additionally, they triggered membrane lipid peroxidation up to 3-fold higher compared to control, a process that potentially compromises membrane integrity. Laurdan fluorescence spectroscopy highlighted alterations in the molecular organization of fungal cell membranes induced by the NCs. CS-CuO NCs induced a membrane rigidifying effect, while CS-SiO2 and CS-ZnO could rigidify membranes in A. solani and fluidize them in F. solani. In summary, this study provides an in-depth understanding of the interactions of CS-based NCs with two fungal strains, showing their antifungal activity and offering insights into their mechanisms of action. These findings emphasize the potential of these NCs as effective and versatile antifungal agents.
Collapse
Affiliation(s)
- Ekaterina Krumova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Dayana Benkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Galina Stoyancheva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Jeny Miteva-Staleva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Kamen Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Kh El-Sayed
- Faculty of Engineering, Galala University, Attaka 51745, Suez, Egypt; Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Hisham A Elshoky
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt; Tumor Biology Research Program, Department of Research, Children's Cancer Hospital, Cairo 11441, Egypt.
| |
Collapse
|
23
|
Mohsen M, Abdel Gaber SA, Shoueir KR, El-Kemary M, Abo El-Yazeed WS. Synthesis of Cross-Linked and Sterilized Water-Soluble Electrospun Nanofiber Biomatrix of Streptomycin-Imbedded PVA/CHN/β-CD for Wound Healing. ACS OMEGA 2024; 9:10058-10068. [PMID: 38463317 PMCID: PMC10918800 DOI: 10.1021/acsomega.3c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The diagnosis and prognosis of chronic wounds are demanding and require objective assessment. Because of their potential medicinal applications, the syntheses of biopolymeric chitosan (CHN) structure and PVA-based mixed electrospun nanofibers with biomimetic features were thoroughly investigated. This study created different formulas, including a guest molecule and capping agent, using supporting PVA as a vehicle. CHN was used as a biomodifier, and beta-cyclodextrin (ß-CD) as a smoother and more efficiently entraps streptomycin (STP) compared with the silver sheet wound dressing. The relevant analyses showed that the size distribution increased with the incorporation of PVA, CHN, and ß-CD to 120.3, 161.9, and 192.02 nm. The webs boosted particle size and released content stability to 96.4% without compromising the nanofiber structure. Examining the synergistic effects of the PVA/CHN/STP/ß-CD nanoformulation against pathogenic strains of S. aureus, P. aeruginosa, and Aspergillus niger, clean zones were 47 ± 3.4, 45 ± 3.0, and 49 ± 3.7 mm were produced. PVA/CHN/STP/ß-CD formula exhibited a 98.9 ± 0.6% cell viability and wound closure of 100% at 72 h. The results reveal that the PVA/CHN/STP/ß-CD formula is promising for medical applications, especially in wound healing, compared with the silver sheet.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Wafaa S Abo El-Yazeed
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura ,Egypt
| |
Collapse
|
24
|
Gavande V, Nagappan S, Seo B, Lee WK. A systematic review on green and natural polymeric nanofibers for biomedical applications. Int J Biol Macromol 2024; 262:130135. [PMID: 38354938 DOI: 10.1016/j.ijbiomac.2024.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Electrospinning is the simplest technique to produce ultrathin nanofibers, which enables the use of nanotechnology in various applications. Nanofibrous materials produced through electrospinning have garnered significant attention in biomedical applications due to their unique properties and versatile potential. In recent years, there has been a growing emphasis on incorporating sustainability principles into material design and production. However, electrospun nanofibers, owing to their reliance on solvents associated with significant drawbacks like toxicity, flammability, and disposal challenges, frequently fall short of meeting environmentally friendly standards. Due to the limited solvent choices and heightened concerns for safety and hygiene in modern living, it becomes imperative to carefully assess the implications of employing electrospun nanofibers in diverse applications and consumer products. This systematic review aims to comprehensively assess the current state of research and development in the field of "green and natural" electrospun polymer nanofibers as well as more fascinating and eco-friendly commercial techniques, solvent preferences, and other green routes that respect social and legal restrictions tailored for biomedical applications. We explore the utilization of biocompatible and biodegradable polymers sourced from renewable feedstocks, eco-friendly processing techniques, and the evaluation of environmental impacts. Our review highlights the potential of green and natural electrospun nanofibers to address sustainability concerns while meeting the demanding requirements of various biomedical applications, including tissue engineering, drug delivery, wound healing, and diagnostic platforms. We analyze the advantages, challenges, and future prospects of these materials, offering insights into the evolving landscape of environmentally responsible nanofiber technology in the biomedical field.
Collapse
Affiliation(s)
- Vishal Gavande
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Saravanan Nagappan
- Industry-University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea
| | - Bongkuk Seo
- Advanced Industrial Chemistry Research Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
25
|
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024; 12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Articular osteochondral (OC) defects are a global clinical problem characterized by loss of full-thickness articular cartilage with underlying calcified cartilage through to the subchondral bone. While current surgical treatments can relieve pain, none of them can completely repair all components of the OC unit and restore its original function. With the rapid development of three-dimensional (3D) printing technology, admirable progress has been made in bone and cartilage reconstruction, providing new strategies for restoring joint function. 3D printing has the advantages of fast speed, high precision, and personalized customization to meet the requirements of irregular geometry, differentiated composition, and multi-layered boundary layer structures of joint OC scaffolds. This review captures the original published researches on the application of 3D printing technology to the repair of entire OC units and provides a comprehensive summary of the recent advances in 3D printed OC scaffolds. We first introduce the gradient structure and biological properties of articular OC tissue. The considerations for the development of 3D printed OC scaffolds are emphatically summarized, including material types, fabrication techniques, structural design and seed cells. Especially from the perspective of material composition and structural design, the classification, characteristics and latest research progress of discrete gradient scaffolds (biphasic, triphasic and multiphasic scaffolds) and continuous gradient scaffolds (gradient material and/or structure, and gradient interface) are summarized. Finally, we also describe the important progress and application prospect of 3D printing technology in OC interface regeneration. 3D printing technology for OC reconstruction should simulate the gradient structure of subchondral bone and cartilage. Therefore, we must not only strengthen the basic research on OC structure, but also continue to explore the role of 3D printing technology in OC tissue engineering. This will enable better structural and functional bionics of OC scaffolds, ultimately improving the repair of OC defects.
Collapse
Affiliation(s)
- Ge Liu
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Jingrun Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Junlei Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhenhua Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Deiwei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
26
|
Guler E, Yekeler HB, Parviz G, Aydin S, Asghar A, Dogan M, Ikram F, Kalaskar DM, Cam ME. Vitamin B 12-loaded chitosan-based nanoparticle-embedded polymeric nanofibers for sublingual and transdermal applications: Two alternative application routes for vitamin B 12. Int J Biol Macromol 2024; 258:128635. [PMID: 38065445 DOI: 10.1016/j.ijbiomac.2023.128635] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024]
Abstract
Alzheimer's disease (AD) is a neurodegeneration type that is biologically recognizable via β-amyloid plaques and tau neurofibril tangles. Global estimation for the total count of individuals enduring AD will rise up to 131 million by 2050. Investigations suggested the existence of a direct proportion between the likelihood of AD occurrence and vitamin B12 (VB12) hypovitaminosis. Approved VB12 administrations, intramuscular and oral, each has serious defects broaching the demand for alternative routes. This work developed VB12-loaded chitosan/tripolyphosphate/polyvinyl alcohol (CS/TPP/PVA) nanoparticles (NPs) embedded in polyvinylpyrrolidone (PVP) and polyvinylpyrrolidone/polycaprolactone (PVP/PCL) nanofibrous (NFs) produced by pressurized gyration (PG) for sublingual and transdermal routes, respectively. Biomaterials were investigated morphologically, chemically, and thermally. Moreover, degradation, disintegration, release behavior, and release kinetics were analyzed. The effectiveness and safety of nanomaterials were assessed and proven with the alamarBlue test on the Aβ1-42-induced SH-SY5Y model. The final evaluation suggested the feasibility, safety, and effectiveness of produced systems. Consequently, two alternative VB12 application routes were developed with high effectivity and low toxicity with the power of nanotechnology.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, İstanbul Kent University, İstanbul 34406, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, İstanbul 34722, Türkiye; UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF London, UK; MecNano Technologies, Cube Incibation, Teknopark İstanbul, İstanbul 34906, Türkiye
| | - Humeyra Betul Yekeler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, İstanbul 34722, Türkiye; UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF London, UK; MecNano Technologies, Cube Incibation, Teknopark İstanbul, İstanbul 34906, Türkiye
| | - Gita Parviz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, İstanbul 34722, Türkiye; MecNano Technologies, Cube Incibation, Teknopark İstanbul, İstanbul 34906, Türkiye
| | - Saliha Aydin
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye
| | - Asima Asghar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Murat Dogan
- Sivas Cumhuriyet University, Pharmacy Faculty, Pharmaceutical Biotechnology Department, Sivas, Türkiye
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan.
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF London, UK
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, İstanbul Kent University, İstanbul 34406, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, İstanbul 34722, Türkiye; UCL Division of Surgery and Interventional Sciences, Rowland Hill Street, NW3 2PF London, UK; MecNano Technologies, Cube Incibation, Teknopark İstanbul, İstanbul 34906, Türkiye; Biomedical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, İstanbul 34854, Türkiye; SFA R&D Laboratories, Teknopark İstanbul, İstanbul 34906, Türkiye; ATA BIO Technology, Teknopol İstanbul, İstanbul 34930, Türkiye.
| |
Collapse
|
27
|
Li Q, Zhang L, Liao W, Liu J, Gao Y. Effects of chitosan molecular weight and mass ratio with natural blue phycocyanin on physiochemical and structural stability of protein. Int J Biol Macromol 2024; 256:128508. [PMID: 38040145 DOI: 10.1016/j.ijbiomac.2023.128508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Phycocyanin (PC), an algae-extracted colorant, has extensive applications for its water-solubility and fresh blue shade. When PC is added to acidified media, dispersions are prone to aggregate and decolorize into cloudy systems. For palliating this matter, chitosan with high, medium, and low molecular weights (HMC, MMC, and LMC) were adopted in PC dispersions, and their protective effects were compared based on physiochemical stabilities. The optimal mass ratio between chitosan and PC was identified as 1:5 based on preliminary evaluations and was supported by the higher ζ-potential (31.0-32.1 mV), lower turbidity (39.6-43.6 NTU), and polyacrylamide gel electrophoresis results. Through interfacial and antioxidant capacity analyses, LMC was found to display a higher affinity to PC, which was also confirmed by SEM images and the maximum increase in transition temperature of their complex (155.70 °C) in DSC measurements. The mechanism of electrostatic interaction reinforced by hydrophobic effects and hydrogen bonding was elucidated by FT-IR and Raman spectroscopy. Further comprehensive stability evaluations revealed that, without light exposure, LMC kept PC from internal secondary structure to external blueness luster to the maximum extent. While with light exposure, LMC was not so flexible as HMC, to protect chromophores from attack of free radicals.
Collapse
Affiliation(s)
- Qike Li
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenyan Liao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jinfang Liu
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
28
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
29
|
Hilițanu LN, Mititelu-Tarțău L, Popa EG, Bucă BR, Gurzu IL, Fotache PA, Pelin AM, Pricop DA, Pavel LL. Chitosan Soft Matter Vesicles Loaded with Acetaminophen as Promising Systems for Modified Drug Release. Molecules 2023; 29:57. [PMID: 38202640 PMCID: PMC10780230 DOI: 10.3390/molecules29010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Our study was designed to acquire, characterize and evaluate the biocompatibility of novel lipid vesicles loaded with acetaminophen (APAP) and coated with chitosan (CS). We investigated the in vitro and in vivo drug release kinetics from these systems, and we conducted assessments for both in vitro hemocompatibility and in vivo biocompatibility. For the in vivo biocompatibility evaluation, the mice were randomly divided into four groups of six animals and were treated orally as follows: control group: 0.1 mL/10 g body weight of double-distilled water; CS group: 0.1 mL/10 g body weight 1% CS solution; APAP group: 150 mg/kg body weight APAP; APAP-v group: 150 mg/kg body weight APAP-loaded lipid vesicles. The impact of APAP-v on various hematological, biochemical, and immune parameters in mice were assessed, and the harvested tissues were subjected to histopathological examination. The innovative formulations effectively encapsulating APAP within soft vesicles exhibited reasonable stability in solution and prolonged drug release in both in vitro and in vivo studies. The in vitro hemolysis test involving APAP-loaded vesicles revealed no signs of damage to red blood cells. The mice treated with APAP-v showed neither significant variances in hematological, biochemical, and immune parameters, nor structural changes in the examined organ samples, compared to the control group. APAP-v administration led to prolonged drug release. We can conclude that the APAP-v are innovative carrier systems for modifying drug release, making them promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Loredana Nicoleta Hilițanu
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.N.H.); (B.R.B.); (P.A.F.)
| | - Liliana Mititelu-Tarțău
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.N.H.); (B.R.B.); (P.A.F.)
| | - Eliza Grațiela Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Beatrice Rozalina Bucă
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.N.H.); (B.R.B.); (P.A.F.)
| | - Irina Luciana Gurzu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Paula Alina Fotache
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.N.H.); (B.R.B.); (P.A.F.)
| | - Ana-Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800010 Galati, Romania;
| | - Daniela Angelica Pricop
- Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania, RECENT AIR, Laboratory of Astronomy and Astrophysics, Astronomical Observatory, Physics, ‘Al. I. Cuza’ University, 700506 Iasi, Romania;
| | - Liliana Lăcrămioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800010 Galati, Romania;
| |
Collapse
|
30
|
Abenaim L, Conti B. Chitosan as a Control Tool for Insect Pest Management: A Review. INSECTS 2023; 14:949. [PMID: 38132623 PMCID: PMC10744275 DOI: 10.3390/insects14120949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Chitosan, a polysaccharide derived from the deacetylation of chitin, is a versatile and eco-friendly biopolymer with several applications. Chitosan is recognized for its biodegradability, biocompatibility, and non-toxicity, beyond its antimicrobial, antioxidant, and antitumoral activities. Thanks to its properties, chitosan is used in many fields including medicine, pharmacy, cosmetics, textile, nutrition, and agriculture. This review focuses on chitosan's role as a tool in insect pest control, particularly for agriculture, foodstuff, and public health pests. Different formulations, including plain chitosan, chitosan coating, chitosan with nematodes, chitosan's modifications, and chitosan nanoparticles, are explored. Biological assays using these formulations highlighted the use of chitosan-essential oil nanoparticles as an effective tool for pest control, due to their enhanced mobility and essential oils' prolonged release over time. Chitosan's derivatives with alkyl, benzyl, and acyl groups showed good activity against insect pests due to improved solubility and enhanced activity compared to plain chitosan. Thus, the purpose of this review is to provide the reader with updated information concerning the use and potential applications of chitosan formulations as pest control tools.
Collapse
Affiliation(s)
- Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | | |
Collapse
|
31
|
Jafari H, Namazi H. pH-sensitive biosystem based on laponite RD/chitosan/polyvinyl alcohol hydrogels for controlled delivery of curcumin to breast cancer cells. Colloids Surf B Biointerfaces 2023; 231:113585. [PMID: 37837689 DOI: 10.1016/j.colsurfb.2023.113585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this study, a pH-responsive hydrogels based on laponite rapid dispersion (Lap®)/chitosan (CS)/polyvinyl alcohol (PVA) designed and was used for controlled delivery of the anticancer drug curcumin (CUR). First, it was accomplished by dissolving CUR in Lap® dispersion under the influence of the pH of the environment. Then, in the presence of Lap®CUR cross-linking was incorporated between CS and PVA polymers. The structural features of Lap®CUR/CS@PVA hydrogels are characterized using FT-IR, XRD, SEM/EDS, TEM, TGA, Zeta potential, and XPS. The in vitro drug release profiles confirmed a pH-responsive controlled release of CUR in acidic pH for all hydrogels. During 12 h, the cumulative release of CUR from Lap®CUR/0.1CS@PVA hydrogel was 27.9% and 12.3%, at pH 5.5 and 7.4, respectively. While during three days the release rate reached 48.5% and 18.5%. The CUR release kinetic from hydrogels also suggests that the kinetic data well fitted to the Korsmeyer-Peppas, diffusion-controlled and Fickian diffusion. Furthermore, in vitro cytotoxicity and DAPI staining study clearly illustrated that Lap®CUR/0.1CS@PVA hydrogel had lower cytotoxicity than CUR against MDA-MB 231 cancer cells, which confirmed the controlled release of drug through hydrogels. Meanwhile, in vitro hemolysis, antioxidant and antibacterial tests revealed that the prepared hydrogels have good blood compatibility, excellent antioxidant properties, and antibacterial activity. Based on the obtained results, the designed hydrogels could be potentially applied as pH-controlled drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Hessam Jafari
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
32
|
Milkova V, Vilhelmova-Ilieva N, Gyurova A, Kamburova K, Dimitrov I, Tsvetanova E, Georgieva A, Mileva M. Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection. Neurol Int 2023; 15:1320-1338. [PMID: 37987456 PMCID: PMC11340743 DOI: 10.3390/neurolint15040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
An object of the present study was the development of liposomes loaded with the medicine Veklury® (remdesivir) stabilized by electrostatic adsorption of polysaccharide film formed from chitosans with different physicochemical characteristics and hyaluronic acid. The functionalization of the structures was achieved through the inclusion of an aptamer (oligonucleotide sequence) with specific affinity to the spike protein of the human coronavirus HCoV-OC43. The hydrodynamic size, electrokinetic potential and stability of the structures were evaluated at each step in the procedure. The encapsulation efficiency and loaded amount of remdesivir (99% and 299 µg/mL) were estimated by UV-vis spectroscopy. Our investigations showed manifestation of promising tendencies for prolonged periods of the drug release and increased effectiveness of its antiviral action. Among all studied versions of the delivery system, the most distinguished and suitable in a model coronavirus therapy are the liposomes formed from chitosan oligosaccharides. The cytotoxicity of the liposomes was determined against the HCT-8 cell line. A cytopathic effect inhibition test was used for the assessment of the antiviral activity of the compounds. The virucidal activity and the effect on the viral adsorption of the samples were reported by the end-point dilution method, and the alteration in viral titer was determined as Δlgs compared to untreated controls. The redox-modulating properties of the nanoparticles were studied in vitro in certain/several/a few chemical model systems. Our investigations showed a manifestation of promising tendencies for a prolonged effect of the drug release and increased effectiveness of its antiviral action.
Collapse
Affiliation(s)
- Viktoria Milkova
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, 1113 Sofia, Bulgaria
| | - Neli Vilhelmova-Ilieva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.T.); (A.G.)
| | - Anna Gyurova
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, 1113 Sofia, Bulgaria
| | - Kamelia Kamburova
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, 1113 Sofia, Bulgaria
| | - Ivaylo Dimitrov
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.T.); (A.G.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.T.); (A.G.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milka Mileva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.T.); (A.G.)
| |
Collapse
|
33
|
Shankar S, Joshi S, Srivastava RK. A review on heavy metal biosorption utilizing modified chitosan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1350. [PMID: 37861930 DOI: 10.1007/s10661-023-11963-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Heavy metal pollution in water bodies is a global concern. The prominent source of metal contamination in aqueous streams and groundwater is wastewater containing heavy metal ions. Elevated concentrations of heavy metals in water bodies can have a negative impact on water quality and public health. The most effective way to remove metal contaminants from drinking water is thought to be adsorption. A deacetylated derivative of chitin, chitosan, has a wide range of commercial uses since it is biocompatible, nontoxic, and biodegradable. Due to its exceptional adsorption behavior toward numerous hazardous heavy metals from aqueous solutions, chitosan and its modifications have drawn a lot of interest in recent years. Due to its remarkable adsorption behavior toward a range of dangerous heavy metals, chitosan is a possible agent for eliminating metals from aqueous solutions. The review has focused on the ideas of biosorption, its kinds, architectures, and characteristics, as well as using modified (physically and chemically modified) chitosan, blends, and composites to remove heavy metals from water. The main objective of the review is to describe the most important aspects of chitosan-based adsorbents that might be beneficial for enhancing the adsorption capabilities of modified chitosan and promoting the usage of this material in the removal of heavy metal pollutants.
Collapse
Affiliation(s)
- Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Science, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Sarita Joshi
- Department of Environmental Science, School of Vocational Studies and Applied Science, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| | - Rajeev Kumar Srivastava
- Department of Environmental Science, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
34
|
Elmanfaloty R, Shoueir KR, Yousif B. Intriguing and Facile Preparation Approach of CdO Nanorod-Based Abundant Chitosan for Symmetric Supercapacitors. ACS OMEGA 2023; 8:35682-35692. [PMID: 37810675 PMCID: PMC10552095 DOI: 10.1021/acsomega.3c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Abundant chitosan was rationally used for the green fabrication of cadmium oxide nanorods (CdO nanorods) owing to its environmentally benign characteristics, bioavailability, low cost, etc. However, the primary unsubstituted amino group of chitosan interacts with the surface of Cd salt at higher temperatures, resulting in CdO nanorod formation. A one-step hydrothermal technique was adopted in the presence of chitosan. Optical, structural, and morphology techniques characterized CdO nanorods. According to X-ray diffraction crystallography, CdO is well crystallized in the face-centered cubic lattice with an Fm-3m (225) space group. The AC@CdO nanoelectrode demonstrated an outstanding gravimetric capacitance of 320 F g-1 at a current density of 0.5 A g-1, nearly three-fold that of ordinary AC electrodes. The AC electrode and the AC@CdO nanoelectrode retain 90 and 93% of their initial specific capacitance after 10,000 galvanostatic charge discharge cycles. The AC@CdO nanoelectrode has a lower equivalent series resistance value than the AC electrode. Moreover, AC@CdO symmetric supercapacitor devices achieve excellent results in terms of specific energy, specific power, and capacitance retention.
Collapse
Affiliation(s)
- Rania
A. Elmanfaloty
- Department
of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Department
of Electronics and Communications Engineering, Alexandria Higher Institute of Engineering and Technology, Alexandria 21311, Egypt
| | - Kamel R. Shoueir
- Institute
of Nanoscience & Nanotechnology, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Bedir Yousif
- Electrical
Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Electrical
Engineering Department, Faculty of Engineering and Information Technology, Onaizah Colleges, Onaizah, Al Qassim 51911, Saudi Arabia
| |
Collapse
|
35
|
Qu S, Ma X, Yu S, Wang R. Chitosan as a biomaterial for the prevention and treatment of dental caries: antibacterial effect, biomimetic mineralization, and drug delivery. Front Bioeng Biotechnol 2023; 11:1234758. [PMID: 37840659 PMCID: PMC10570529 DOI: 10.3389/fbioe.2023.1234758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Dental caries is a chronic, progressive disease caused by plaque, influenced by multiple factors and can damage the hard tissues of the teeth. In severe cases, it can also lead to the onset and development of other oral diseases, seriously affecting patients' quality of life. The creation of effective biomaterials for the prevention and treatment of dental caries has become one of the relentless goals of many researchers, with a focus on inhibiting the production of cariogenic plaque and retaining beneficial bacteria, guiding and promoting the reconstruction of dental hard tissues, and delaying the progression of existing caries. Chitosan is a natural cationic polymer extracted from the shells of crustaceans and shellfish. Since its discovery, chitosan has shown to have various biological functions such as antibacterial, biomimetic mineralization, drug delivery, etc., making it one of the most promising biopolymers for new caries prevention and materials of prostheses. Therefore, this article provides an overview of the anti-caries applications of chitosan, which mainly covers the basic research on the application of chitosan in caries prevention and treatment since 2010, with a focus on categorizing and summarizing the following characteristics of chitosan as a caries prevention material, including its antibacterial effect, biomimetic mineralization effect and delivery ability of caries prevention drugs and vaccines. It also explores the limitations of current research on chitosan as a caries prevention biomaterial and the difficulties that need to be focused on and overcome in the future to provide theoretical reference for the clinical implementation of chitosan as a caries prevention biomaterial.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
36
|
Zacaron TM, Silva MLSE, Costa MP, Silva DME, Silva AC, Apolônio ACM, Fabri RL, Pittella F, Rocha HVA, Tavares GD. Advancements in Chitosan-Based Nanoparticles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:3849. [PMID: 37765701 PMCID: PMC10536410 DOI: 10.3390/polym15183849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and lung cancer, emerging respiratory diseases, particularly those caused by members of the coronavirus family, have contributed to a significant number of deaths on a global scale over the last two decades. Therefore, several studies have been conducted to optimize the efficacy of treatments against these diseases, focusing on pulmonary drug delivery using nanomedicine. Thus, the development of nanocarriers has emerged as a promising alternative to overcome the limitations of conventional therapy, by increasing drug bioavailability at the target site and reducing unwanted side effects. In this context, nanoparticles composed of chitosan (CS) show advantages over other nanocarriers because chitosan possesses intrinsic biological properties, such as anti-inflammatory, antimicrobial, and mucoadhesive capacity. Moreover, CS nanoparticles have the potential to enhance drug stability, prolong the duration of action, improve drug targeting, control drug release, optimize dissolution of poorly soluble drugs, and increase cell membrane permeability of hydrophobic drugs. These properties could optimize the performance of the drug after its pulmonary administration. Therefore, this review aims to discuss the potential of chitosan nanoparticles for pulmonary drug delivery, highlighting how their biological properties can improve the treatment of pulmonary diseases, including their synergistic action with the encapsulated drug.
Collapse
Affiliation(s)
- Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | | | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Dominique Mesquita e Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Ana Carolina Morais Apolônio
- Postgraduate Program in Dentistry, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Helvécio Vinícius Antunes Rocha
- Laboratory of Micro and Nanotechnology—Farmanguinhos, FIOCRUZ—Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, Rio de Janeiro, Brazil;
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| |
Collapse
|
37
|
Li Y, Meng Q, Chen S, Ling P, Kuss MA, Duan B, Wu S. Advances, challenges, and prospects for surgical suture materials. Acta Biomater 2023; 168:78-112. [PMID: 37516417 DOI: 10.1016/j.actbio.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
As one of the long-established and necessary medical devices, surgical sutures play an essentially important role in the closing and healing of damaged tissues and organs postoperatively. The recent advances in multiple disciplines, like materials science, engineering technology, and biomedicine, have facilitated the generation of various innovative surgical sutures with humanization and multi-functionalization. For instance, the application of numerous absorbable materials is assuredly a marvelous progression in terms of surgical sutures. Moreover, some fantastic results from recent laboratory research cannot be ignored either, ranging from the fiber generation to the suture structure, as well as the suture modification, functionalization, and even intellectualization. In this review, the suture materials, including natural or synthetic polymers, absorbable or non-absorbable polymers, and metal materials, were first introduced, and then their advantages and disadvantages were summarized. Then we introduced and discussed various fiber fabrication strategies for the production of surgical sutures. Noticeably, advanced nanofiber generation strategies were highlighted. This review further summarized a wide and diverse variety of suture structures and further discussed their different features. After that, we covered the advanced design and development of surgical sutures with multiple functionalizations, which mainly included surface coating technologies and direct drug-loading technologies. Meanwhile, the review highlighted some smart and intelligent sutures that can monitor the wound status in a real-time manner and provide on-demand therapies accordingly. Furthermore, some representative commercial sutures were also introduced and summarized. At the end of this review, we discussed the challenges and future prospects in the field of surgical sutures in depth. This review aims to provide a meaningful reference and guidance for the future design and fabrication of innovative surgical sutures. STATEMENT OF SIGNIFICANCE: This review article introduces the recent advances of surgical sutures, including material selection, fiber morphology, suture structure and construction, as well as suture modification, functionalization, and even intellectualization. Importantly, some innovative strategies for the construction of multifunctional sutures with predetermined biological properties are highlighted. Moreover, some important commercial suture products are systematically summarized and compared. This review also discusses the challenges and future prospects of advanced sutures in a deep manner. In all, this review is expected to arouse great interest from a broad group of readers in the fields of multifunctional biomaterials and regenerative medicine.
Collapse
Affiliation(s)
- Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Qi Meng
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China.
| |
Collapse
|
38
|
AlSalem HS, Abdulsalam NM, Khateeb NA, Binkadem MS, Alhadhrami NA, Khedr AM, Abdelmonem R, Shoueir KR, Nadwa EH. Enhance the oral insulin delivery route using a modified chitosan-based formulation fabricated by microwave. Int J Biol Macromol 2023; 247:125779. [PMID: 37442506 DOI: 10.1016/j.ijbiomac.2023.125779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Chitosan (Cs) was subjected to ball milling and subsequently functionalized with Dinitro salicylic acid (Cs-DNS) to enhance the efficacy of oral insulin delivery. The hydrodynamic spherical particle sizes exhibited 33.29 ± 5.08 nm for modified Cs-DNS NPs. Irrespective of insulin entrapment, zeta potential measurements revealed positively charged Cs-DNS NPs (+ 35 ± 3.5 mV). The entrapment performance (EP%) was evaluated in vitro, and insulin release patterns at various pH levels. The EP% for Cs-DNS NPs was 99.3 ± 1.6. Cs- DNS NPs retained a considerable amount of insulin (92 %) in an acidic medium, and significant quantities were released at increasing pH values over time. In vivo investigations, the diabetic rats which taken insulin-incorporated NPs had lower serum glucose levels (SGL) after 3 h to (39.4 ± 0.6 %) for Cs- DNS NPs. For insulin-incorporated Cs- DNS NPs, the bioavailability (BA%) and pharmacological availability (PA%) were 17.5 ± 0.31 % and 8.6 ± 0.8 %, respectively. The assertion above highlights the significance and effectiveness of modified chitosan in promoting insulin delivery, decreasing SGL levels, and guaranteeing safety.
Collapse
Affiliation(s)
- Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Nisreen M Abdulsalam
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdul Aziz University, P.O. Box 42807, Jeddah 21551, Saudi Arabia
| | - Najla A Khateeb
- Clinical Nutrition Department, College of Applied Medical Sciences-King Saud bin Abdulaziz University for Health Sciences, P.O. Box 2477. Mail Code 527, Al Ahsa 31982, Saudi Arabia
| | - Mona S Binkadem
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
| | - Nahlah A Alhadhrami
- Chemistry Department, Faculty of Science, Taibah University, P.O. Box 30002, Medina 42353, Saudi Arabia.
| | - Abdalla M Khedr
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science & Technology, 6th October, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Eman Hassan Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72345, Saudi Arabia; Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| |
Collapse
|
39
|
Herdiana Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers (Basel) 2023; 15:3485. [PMID: 37631542 PMCID: PMC10460071 DOI: 10.3390/polym15163485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Gastroesophageal Reflux Disease (GERD) is a chronic ailment that results from the backward flow of stomach acid into the esophagus, causing heartburn and acid regurgitation. This review explores nanotechnology as a novel treatment approach for GERD. Chitosan nanoparticles (CSNPs) offer several advantages, including biocompatibility, biodegradability, and targeted drug delivery capabilities. CSNPs have been extensively studied due to their ability to encapsulate and release medications in a controlled manner. Different nanoparticle (NP) delivery systems, including gels, microspheres, and coatings, have been developed to enhance drug retention, drug targeting, and controlled release in the esophagus. These nanoparticles can target specific molecular pathways associated with acid regulation, esophageal tissue protection, and inflammation modulation. However, the optimization of nanoparticle formulations faces challenges, including ensuring stability, scalability, and regulatory compliance. The future may see CSNPs combined with other treatments like proton pump inhibitors (PPIs) or mucosal protectants for a synergistic therapeutic approach. Thus, CSNPs provide exciting opportunities for novel GERD treatment strategies.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
40
|
Mu R, Zhang H, Zhang Z, Li X, Ji J, Wang X, Gu Y, Qin X. Trans-cinnamaldehyde loaded chitosan based nanocapsules display antibacterial and antibiofilm effects against cavity-causing Streptococcus mutans. J Oral Microbiol 2023; 15:2243067. [PMID: 37546377 PMCID: PMC10402844 DOI: 10.1080/20002297.2023.2243067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Background Dental caries is a multifactorial disease, and the bacteria such as Streptococcus mutans (S. mutans) is one of the risk factors. The poor effect of existing anti-bacterial is mainly related to drug resistance, the short time of drug action, and biofilm formation. Methods To address this concern, we report here on the cinnamaldehyde (CA) loaded chitosan (CS) nanocapsules (CA@CS NC) sustained release CA for antibacterial treatment. The size, ζ-potential, and morphology were characterized. The antibacterial activities in vitro were studied by growth curve assay, pH drop assay, biofilm assay, and qRT-PCR In addition, cytotoxicity assay, organ index, body weight, and histopathology results were analyzed to evaluate the safety and biocompatibility in a rat model. Results CA@CS NC can adsorb the bacterial membrane due to electronic interaction, releasing CA slowly for a long time. At the same time, it has reliable antibacterial activity against S. mutans and downregulated the expression levels of QS, virulence, biofilm, and adhesion genes. In addition, it greatly reduced the cytotoxicity of CA and significantly inhibited dental caries in rats without obvious toxicity. Conclusion Our results showed that CA@CS NC had antibacterial and antibiofilm effects on S. mutans and inhibit dental caries. Besides, it showed stronger efficacy and less toxicity, and was able to adsorb bacteria releasing CA slowly, providing a new nanomaterial solution for the treatment of dental caries.
Collapse
Affiliation(s)
- Ran Mu
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Hanyi Zhang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Zhiyuan Zhang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xinyue Li
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Jiaxuan Ji
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xinyue Wang
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Yu Gu
- School of Stomatology, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xiaofei Qin
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| |
Collapse
|
41
|
Basawa R, Kabra S, Khile DA, Faruk Abbu RU, Parekkadan SJ, Thomas NA, Kim SK, Raval R. Repurposing chitin-rich seafood waste for warm-water fish farming. Heliyon 2023; 9:e18197. [PMID: 37519647 PMCID: PMC10372652 DOI: 10.1016/j.heliyon.2023.e18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
The pisciculture industry has grown multi-fold over the past few decades. However, a surge in development and nutrient demand has led to the establishment of numerous challenges. Being a potential solution, chitosan has gained attention as a bio nanocomposite for its well-acclaimed properties including biodegradability, non-toxicity, immunomodulatory effects, antimicrobial activity, and biocompatibility. This biopolymer and its derivatives can be transformed into various structures, like micro and nanoparticles, for various purposes. Consequently, with regards to these properties chitin and its derivatives extend their application into drug delivery, food supplementation, vaccination, and preservation. This review focuses on the clinical advancements made in fish biotechnology via chitosan and its derivatives and highlights its prospective expansion into the pisciculture industry-in particular, warm-water species.
Collapse
Affiliation(s)
- Renuka Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Serin Joby Parekkadan
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Se Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Erica 55 Hanyangdae-ro, Sangnol-gu, Ansan-si 11558, Gyeonggi-do, Republic of Korea
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
42
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
43
|
Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polym Bull (Berl) 2023:1-25. [PMID: 37362954 PMCID: PMC10073797 DOI: 10.1007/s00289-023-04755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha 752050 India
| | - Sarbari Acharya
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| | - Anwesha Kanungo
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
44
|
Khalaf EM, Abood NA, Atta RZ, Ramírez-Coronel AA, Alazragi R, Parra RMR, Abed OH, Abosaooda M, Jalil AT, Mustafa YF, Narmani A, Farhood B. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol 2023; 231:123354. [PMID: 36681228 DOI: 10.1016/j.ijbiomac.2023.123354] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi, 31001 Anbar, Iraq
| | - Noor Adil Abood
- Medical Laboratory Techniques, Al-Ma'moon University, Baghdad, Iraq
| | - Raghad Z Atta
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Laboratory of Psychometrics, Comparative psychology and Ethology, Catholic University of Cuenca, Cuenca, Ecuador
| | - Reem Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Osama H Abed
- Dentistry Department, Al-Rasheed University College, Baghdad, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
45
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
46
|
Wang SY, Herrera-Balandrano DD, Jiang YH, Shi XC, Chen X, Liu FQ, Laborda P. Application of chitosan nanoparticles in quality and preservation of postharvest fruits and vegetables: A review. Compr Rev Food Sci Food Saf 2023; 22:1722-1762. [PMID: 36856034 DOI: 10.1111/1541-4337.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Chitosan is an interesting alternative material for packaging development due to its biodegradability. However, its poor mechanical properties and low permeability limit its actual applications. Chitosan nanoparticles (CHNPs) have emerged as a suitable solution to overcome these intrinsic limitations. In this review, all studies regarding the use of CHNPs to extend the shelf life and improve the quality of postharvest products are covered. The characteristics of CHNPs and their combinations with essential oils and metals, along with their effects on postharvest products, are compared and discussed throughout the manuscript. CHNPs enhanced postharvest antioxidant capacity, extended shelf life, increased nutritional quality, and promoted tolerance to chilling stress. Additionally, the CHNPs reduced the incidence of postharvest phytopathogens. In most instances, smaller CHNPs (<150 nm) conferred higher benefits than larger ones (>150 nm). This was likely a result of the greater plant tissue penetrability and surface area of the smaller CHNPs. The CHNPs were either applied after preparing an emulsion or incorporated into a film, with the latter often exhibiting greater antioxidant and antimicrobial activities. CHNPs were used to encapsulate essential oils, which could be released over time and may enhance the antioxidant and antimicrobial properties of the CHNPs. Even though most applications were performed after harvest, preharvest application had longer lasting effects.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
47
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
48
|
One-pot microwave synthesis of chitosan-stabilized silver nanoparticles entrapped polyethylene oxide nanofibers, with their intrinsic antibacterial and antioxidant potency for wound healing. Int J Biol Macromol 2023; 235:123704. [PMID: 36801282 DOI: 10.1016/j.ijbiomac.2023.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Different physical and chemical techniques could be used to prepare chitosan/Silver nanoparticle (CHS/AgNPs) nanocomposite. The microwave heating reactor was rationally adopted as a benign tool for preparing CHS/AgNPs owing to less energy consumption and shorter time required for completing the nucleation and growth particles. UV-Vis, FTIR, and XRD, provided conclusive evidence of the AgNPs creation, while TEM micrographs elucidated that the size was spherical (20 nm). CHS/AgNPs were embedded in polyethylene oxide (PEO) nanofiber via electrospinning, and their biological properties, cytotoxicity evaluation, antioxidant, and antibacterial activity assays were investigated. The generated nanofibers have mean diameters of 130.9 ± 9.5, 168.7 ± 18.8, and 186.8 ± 8.19 nm for PEO, PEO/ CHS, and PEO/ CHS (AgNPs), respectively. Because of the tiny AgNPs particle size loaded in PEO/CHS (AgNPs) fabricated nanofiber, good antibacterial activity with ZOI against E. coli was 51.2 ± 3.2, and S. aureus was 47.2 ± 2.1 for PEO/ CHS (AgNPs) nanofibers. Non-toxicity was observed against Human Skin Fibroblast and Keratinocytes cell lines (>93.5 %), which justifies its great antibacterial potential to remove or prevent infection in wounds with fewer adverse effects.
Collapse
|
49
|
Waiprib Y, Ingrungruengluet P, Worawattanamateekul W. Nanoparticles Based on Chondroitin Sulfate from Tuna Heads and Chitooligosaccharides for Enhanced Water Solubility and Sustained Release of Curcumin. Polymers (Basel) 2023; 15:polym15040834. [PMID: 36850119 PMCID: PMC9965308 DOI: 10.3390/polym15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This study aimed to separate chondroitin sulfate (CS) from the heads of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares), by-products derived from canned tuna processing, via a biological process. The use of 1% w/w papain and an incubation time of 48 h resulted in a degree of hydrolysis of 93.75 ± 2.94% and a CS content of 59.53 ± 1.77 mg/100 g. The FTIR spectra of extracted CS products exhibited identical functional groups found in commercially available CS. The molecular weights of CS extracted from skipjack and yellowfin tuna heads were 11.0 kDa and 7.7 kDa, respectively. Subsequently, a CH:CS ratio of 3:2 for CS and chitooligosaccharides (CH) was chosen as the optimal ratio for the preparation of spherical nanoparticles, with %EE, mean particle size, PDI, and zeta potential values of 50.89 ± 0.66%, 128.90 ± 3.29 nm, 0.27 ± 0.04, and -12.47 ± 2.06, respectively. The CU content was enhanced to 127.21 ± 1.66 μg/mL. The release of CU from this particular nanosystem involved mainly a drug diffusion mechanism, with a burst release in the first 3 h followed by a sustained release of CU over 24 h. The DPPH and ABTS scavenging activity results confirmed the efficient encapsulation of CU into CHCS nanoparticles. This study will provide a theoretical basis for CS derived from tuna head cartilages to be used as a functional component with specific functional properties in food and biomedical applications.
Collapse
Affiliation(s)
- Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-814592125
| | | | | |
Collapse
|
50
|
High-internal-phase emulsions stabilized solely by chitosan hydrochloride: Fabrication and effect of pH on stabilization mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|