1
|
Phommanivong V, Kanda S, Shimono T, Lamaningao P, Darcy AW, Mishima N, Phaytanavanh B, Nishiyama T. Co-circulation of the dengue with chikungunya virus during the 2013 outbreak in the southern part of Lao PDR. Trop Med Health 2016; 44:24. [PMID: 27524929 PMCID: PMC4973078 DOI: 10.1186/s41182-016-0020-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
Background During the 2013 outbreak, 4638 infection cases and 32 deaths have been recorded in the southern part of Laos. In recent years, the chikungunya virus (CHIKV) emerged in the part of the country bordering Cambodia. Dengue virus (DENV) and CHIKV are transmitted by common mosquito vectors. Both diseases have similar clinical presentations; therefore, CHIKV infections might go undiagnosed in DENV-endemic areas. Thus, rapid detection and accurate diagnosis are crucial for differentiating between the two viruses (DENV and CHIKV). In this study, we demonstrated that CHIKV and two serotypes of DENV are circulating in Laos. In addition, we encountered patients that had been concurrently infected with multiple DENV serotypes or DENV and CHIKV. Methods Plasma samples were collected from 40 patients with suspected DENV infections during an outbreak between July and August 2013. The reverse transcription polymerase chain reaction was performed to detect the four DENV serotypes and CHIKV using specific primers. Specifically, the complete envelope gene sequences of the viruses were sequenced and subjected to phylogenetic analysis. Results Forty acute-phase plasma samples from patients with suspected dengue infections were tested for the presence of DENV viral RNA using molecular methods. Among the 40 samples, 14 samples were positive for DENV, 2 samples were positive for both viruses (DENV-2 and DENV-3), whereas DENV-1 and DENV-4 were not detected during the study period. We also encountered 10 samples that were positive for CHIKV. Of the 10 CHIKV-positive samples, 3 samples were co-infected by DENV-2, and 2 samples were co-infected by DENV-3. Phylogenetic analysis revealed that the 2013 dengue outbreak in Laos involved DENV-2 genotype Asian I and DENV-3 genotype II. Moreover, the Laotian CHIKV strains grouped together with those isolated during outbreaks on the Indian Ocean Islands within the East Central South African genotype. Conclusions These findings revealed that two serotypes (DENV-2 and DENV-3) and CHIKV were detected. Furthermore, infection of multiple DENV serotypes and CHIKV was also observed in the 2013 dengue outbreak. This is the first documented evidence of co-infection with CHIKV and one of two DENV serotypes.
Collapse
Affiliation(s)
- Viengvaly Phommanivong
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Seiji Kanda
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Takaki Shimono
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Pheophet Lamaningao
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Andrew Waleluma Darcy
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | - Nobuyuki Mishima
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| | | | - Toshimasa Nishiyama
- Department of Public Health, Kansai Medical University, 2-5-1, Shinmachi, Hirakata-shi, Osaka, 573-1010 Japan
| |
Collapse
|
2
|
Li W, Chen S, Li JY. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Prog Neurobiol 2015; 134:161-77. [PMID: 26408505 DOI: 10.1016/j.pneurobio.2015.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed.
Collapse
Affiliation(s)
- Wen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden.
| |
Collapse
|
3
|
Ding D, Xu L, Xu H, Li X, Liang Q, Zhao Y, Wang Y. Mash1 efficiently reprograms rat astrocytes into neurons. Neural Regen Res 2014; 9:25-32. [PMID: 25206740 PMCID: PMC4146312 DOI: 10.4103/1673-5374.125326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 01/25/2023] Open
Abstract
To date, it remains poorly understood whether astrocytes can be easily reprogrammed into neurons. Mash1 and Brn2 have been previously shown to cooperate to reprogram fibroblasts into neurons. In this study, we examined astrocytes from 2-month-old Sprague-Dawley rats, and found that Brn2 was expressed, but Mash1 was not detectable. Thus, we hypothesized that Mash1 alone could be used to reprogram astrocytes into neurons. We transfected a recombinant MSCV-MASH1 plasmid into astrocytes for 72 hours, and saw that all cells expressed Mash1. One week later, we observed the changes in morphology of astrocytes, which showed typical neuronal characteristics. Moreover, β-tubulin expression levels were significantly higher in astrocytes expressing Mash1 than in control cells. These results indicate that Mash1 alone can reprogram astrocytes into neurons.
Collapse
Affiliation(s)
- Daofang Ding
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leqin Xu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Li
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianqian Liang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjian Zhao
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Velkey JM, O'Shea KS. Expression of Neurogenin 1 in mouse embryonic stem cells directs the differentiation of neuronal precursors and identifies unique patterns of down-stream gene expression. Dev Dyn 2013; 242:230-53. [PMID: 23288605 DOI: 10.1002/dvdy.23920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Delineating the cascades of growth and transcription factor expression that shape the developing nervous system will improve our understanding of its molecular histogenesis and suggest strategies for cell replacement therapies. In the current investigation, we examined the ability of the proneural gene, Neurogenin1 (Neurog1; also Ngn1, Neurod3), to drive differentiation of pluripotent embryonic stem cells (ESC). RESULTS Transient expression of Neurog1 in ESC was sufficient to initiate neuronal differentiation, and produced neuronal subtypes reflecting its expression pattern in vivo. To begin to address the molecular mechanisms involved, we used microarray analysis to identify potential down-stream targets of Neurog1 expressed at sequential stages of neuronal differentiation. CONCLUSIONS ESC expressing Neurogenin1 begin to withdraw from cycle and form precursors that differentiate exclusively into neurons. This work identifies unique patterns of gene expression following expression of Neurog1, including genes and signaling pathways involved in process outgrowth and cell migration, regional differentiation of the nervous system, and cell cycle.
Collapse
Affiliation(s)
- J Matthew Velkey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
5
|
[Rhesus monkey embryonic stem cells differentiation, proliferation and allotransplantation]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:43-8. [PMID: 22345007 DOI: 10.3724/sp.j.1141.2012.01043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the characteristics of rhesus monkey embryonic stem cells and to promote their clinical application, the differentiation and proliferation of rosettes neural stem cells from GFP marked rhesus monkey embryonic stem cells were studied The results showed that: 1) A stable and high-efficient neural differentiation system was established. More than 95% of the embryonic stem cells were differentiated into neural stem cells on the 12(th) days of differentiation; 2) the rosettes neural stem cells differentiated from the rhesus monkey embryonic stem cells could maintain their rosettes-shape by proliferating with bFGF/EGF; 3) the neural stem cells could differentiate into neurons after transplanted into the rhesus monkey brain. In conclusion, the rosettes neural stem cells differentiated from rhesus monkey embryonic stem cells could maintain their characteristics after proliferation with bFGF/EGF and they could survive and differentiate into neurons after transplanted into the rhesus monkey brain, which strongly supports the clinical application of neural stem cells in the future.
Collapse
|
6
|
Ooka H, Kanda S, Okazaki H, Suzuki H, Mishima K, Saito I, Yagi M, Tomoda K, Nishiyama T. Characterization of side population (SP) cells in murine cochlear nucleus. Acta Otolaryngol 2012; 132:693-701. [PMID: 22667338 DOI: 10.3109/00016489.2012.657358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CONCLUSION We characterized side population (SP) cells in the cochlear nucleus (CN). Some genes of stem/progenitor markers in sorted SP cells were identified by microarray analysis and RT-PCR. Furthermore, some cells in the CN also demonstrated self-renewal and clonal expansion activities. These results suggest that tissue stem/ progenitor like cells would be identified and characterized as a slow cycling and immaturity in SP cells of CN. OBJECTIVES SP cells were sorted and characterized as regards their activity in the CN in order to identify the tissue progenitor/stem cells in the auditory nervous system. METHODS Bromodeoxyuridine (BrdU)-injected mice were prepared and the long-term BrdU-retaining cells were detected by flow cytometry. Gene expression of SP and MP cells was analyzed by microarray analysis and RT-PCR. SP cells were cultured in conditioned medium to expand stem/progenitor cells in vitro and to estimate the spheroid-forming activity of stem cells. RESULTS In all, 1% of cells in the CN were detected as BrdU-positive. SP cells were detected at a frequency of 4.4% and expressed stem/progenitor markers, Abcb1b, Abcg2, Sca1, Notch1, Notch4, Hes1, and Jag1 in microarray analysis. Expression of Abcb1b, Abcg2, Sca1,Oct3/4, and Sox2 as determined by RT-PCR was supported by the microarray data. CN cells also had sphere-forming activity in young mice, but this activity was decreased by aging.
Collapse
Affiliation(s)
- Hisashi Ooka
- Regeneration Research Center for Intractable Diseases, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hill GW, Purcell EK, Liu L, Velkey JM, Altschuler RA, Duncan RK. Netrin-1-mediated axon guidance in mouse embryonic stem cells overexpressing neurogenin-1. Stem Cells Dev 2012; 21:2827-37. [PMID: 22512716 DOI: 10.1089/scd.2011.0437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stem cell therapy holds great promise for treating neurodegenerative disease, but major barriers to effective therapeutic strategies remain. A complete understanding of the derived phenotype is required for predicting cell response once introduced into the host tissue. We sought to identify major axonal guidance cues present in neurons derived from the transient overexpression of neurogenin-1 (Neurog1) in mouse embryonic stem cells (ESCs). Neurog1 upregulated the netrin-1 axon guidance receptors DCC (deleted in colorectal cancer) and neogenin (NEO1). Quantitative polymerase chain reaction results showed a 2-fold increase in NEO1 mRNA and a 36-fold increase in DCC mRNA in Neurog1-induced compared with control ESCs. Immunohistochemistry indicated that DCC was primarily expressed on cells positive for the neuronal marker TUJ1. DCC was preferentially localized to the cell soma and growth-cones of induced neurons. In contrast, NEO1 expression showed less specificity, labeling both TUJ1-positive and TUJ1-negative cells as well as uninduced control cells. Axonal outgrowth was directed preferentially toward aggregates of HEK293 cells secreting a recombinant active fragment of netrin-1. These data indicate that DCC and NEO1 are downstream products of Neurog1 and may guide the integration of Neurog1-induced ESCs with target cells secreting netrin-1. Differential expression profiles for netrin receptors could indicate different roles for this guidance cue on neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Gerhard W Hill
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
8
|
Prieto MJ, Gutierrez HC, Arévalo RA, Chiaramoni NS, Alonso SDV. Effect of Risperidone and Fluoxetine on the Movement and Neurochemical Changes of Zebrafish. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojmc.2012.24016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Messmer K, Shen WB, Remington M, Fishman PS. Induction of neural differentiation by the transcription factor neuroD2. Int J Dev Neurosci 2011; 30:105-12. [PMID: 22197973 DOI: 10.1016/j.ijdevneu.2011.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/30/2011] [Accepted: 12/09/2011] [Indexed: 01/08/2023] Open
Abstract
Pro-neural basic helix loop helix (bHLH) transcription factors are involved in many aspects of normal neuronal development, and over-expression of genes for several of these factors has been shown to induce aspects of neuronal differentiation in cell lines and stem cells. Here we show that over-expression of NeuroD2 (ND2), Neurogenin1 and 2 leads to morphological differentiation of N18-RE-105 neuroblastoma cells and increased expression of synaptic proteins. Particularly ND2 induced neurite formation and increases in the expression of synaptic proteins such as synaptotagmin, that is not expressed normally in this cell type, as well as the redistribution of another synaptic protein, SNAP25, to a cell membrane location. Infection of human neural progenitor cells using adeno associated viral (AAV) vectors also promoted neuronal differentiation. Over-expressing cells demonstrated a significant increase in the neuron specific form of tubulin as well as increased expression of synaptotagmin. Genetic modification of neural progenitor cell with bHLH factors such as ND2 may be a viable strategy to enhance differentiation of these cells into replacement neurons for human disease.
Collapse
Affiliation(s)
- Kirsten Messmer
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
10
|
Stavridis MP, Collins BJ, Storey KG. Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development 2010; 137:881-90. [PMID: 20179094 PMCID: PMC2834455 DOI: 10.1242/dev.043117] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2010] [Indexed: 12/21/2022]
Abstract
Embryonic stem (ES) cells fluctuate between self-renewal and the threshold of differentiation. Signalling via the fibroblast growth factor (Fgf)/Erk pathway is required to progress from this dynamic state and promote mouse ES cell differentiation. Retinoic acid also induces differentiation in many cellular contexts, but its mechanism of action in relation to Fgf/Erk signalling in ES cells is poorly understood. Here, we show for the first time that endogenous retinoid signalling is required for the timely acquisition of somatic cell fate in mouse ES cells and that exposure to retinoic acid advances differentiation by a dual mechanism: first increasing, but in the long-term decreasing, Fgf signalling. Rapid retinoid induction of Fgf8 and downstream Erk activity on day 1 in differentiation conditions may serve to ensure loss of self-renewal. However, more gradual repression of Fgf4 by retinoic acid is accompanied by an overall reduction in Erk activity on day 2, and the acquisition of neural and non-neural fates is now advanced by inhibition of Fgf signalling. So, although blocking Fgf/Erk activity is known to promote ES cell self-renewal, once cells have experienced a period of such signals, subsequent inhibition of Fgf signalling has the opposite effect and drives differentiation. We further show in the embryo that retinoid repression of Fgf signalling promotes neural differentiation onset in an analogous step in the extending embryonic body axis and so identify attenuation of Fgf signalling by retinoic acid as a conserved fundamental mechanism driving differentiation towards somatic cell fates.
Collapse
Affiliation(s)
| | | | - Kate G. Storey
- Neural Development Group, Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
11
|
CrxOS maintains the self-renewal capacity of murine embryonic stem cells. Biochem Biophys Res Commun 2009; 390:1129-35. [PMID: 19800316 DOI: 10.1016/j.bbrc.2009.09.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 01/14/2023]
Abstract
Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiated morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.
Collapse
|
12
|
Roybon L, Mastracci TL, Ribeiro D, Sussel L, Brundin P, Li JY. GABAergic differentiation induced by Mash1 is compromised by the bHLH proteins Neurogenin2, NeuroD1, and NeuroD2. ACTA ACUST UNITED AC 2009; 20:1234-44. [PMID: 19767311 DOI: 10.1093/cercor/bhp187] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During forebrain development, Mash1 directs gamma-aminobutyric acid (GABA)ergic neuron differentiation ventrally in the ganglionic eminences. Repression of Mash1 in the cortex is necessary to prevent the formation of GABAergic interneurons. Negative regulation of Mash1 has been attributed to members of the Neurogenin family; the genetic ablation of Neurogenin2 (Ngn2) leads to the derepression of Mash1 and the formation of ectopic GABAergic neurons in the cortex. We have developed an in vitro system to clarify the importance of NeuroD proteins in the Mash1 regulatory pathway. Using a neurosphere culture system, we show that the downstream effectors of the Ngn2 pathway NeuroD1 and NeuroD2 can abrogate GABAergic differentiation directed by Mash1. The ectopic expression of either of these genes in Mash1-expressing cells derived from the lateral ganglionic eminence, independently downregulate Mash1 expression without affecting expression of distal less homeodomain genes. This results in a complete loss of the GABAergic phenotype. Moreover, we demonstrate that ectopic expression of Mash1 in cortical progenitors is sufficient to phenocopy the loss of Ngn2 and strongly enhances ectopic GABAergic differentiation. Collectively, our results define the compensatory and cross-regulatory mechanisms that exist among basic helix-loop-helix transcription factors during neuronal fate specification.
Collapse
Affiliation(s)
- Laurent Roybon
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
13
|
Shimizu N, Watanabe H, Kubota J, Wu J, Saito R, Yokoi T, Era T, Iwatsubo T, Watanabe T, Nishina S, Azuma N, Katada T, Nishina H. Pax6-5a Promotes Neuronal Differentiation of Murine Embryonic Stem Cells. Biol Pharm Bull 2009; 32:999-1003. [DOI: 10.1248/bpb.32.999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nao Shimizu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Hajime Watanabe
- Center for Integrative Bioscience, Okazaki National Research Institutes
| | - Junko Kubota
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Jinzhan Wu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Ryota Saito
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Tadashi Yokoi
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University
- Department of Ophthalmology, National Center for Child Health and Development
| | - Takumi Era
- Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University
| | - Takeshi Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Takashi Watanabe
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Sachiko Nishina
- Department of Ophthalmology, National Center for Child Health and Development
| | - Noriyuki Azuma
- Department of Ophthalmology, National Center for Child Health and Development
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
14
|
Effect of NeuroD2 expression on neuronal differentiation in mouse embryonic stem cells. Cell Biol Int 2008; 33:174-9. [PMID: 18996208 DOI: 10.1016/j.cellbi.2008.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/26/2008] [Accepted: 10/13/2008] [Indexed: 11/21/2022]
Abstract
A basic helix-loop-helix transcriptional factor, NeuroD2, plays important roles in neuronal differentiation and survival. We introduced the tetracycline-dependent NeuroD2 expression system to embryonic stem (ES) cells and studied the role of NeuroD2 in the neuronal differentiation. The addition of doxycycline induced the expression of NeuroD2 after 24h and the differentiation to neurons after 3 days in ES cells, which are transfected with vectors composed of reverse tetracycline-controlled transactivator with cytomegarovirus promoter and NeuroD2 with tetracycline response element. Treatment with doxycycline for 3 days induced neuronal differentiation, but not within 1 day; furthermore NeuroD2 was detected in the nucleus 3 days after treatment, but also not within 1 day. The results suggest that the expression of NeuroD2 requires an appropriate period of about 3 days to elicit neuronal differentiation in ES cells.
Collapse
|
15
|
The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation. Mol Cell Biol 2008; 28:5312-27. [PMID: 18591252 DOI: 10.1128/mcb.00128-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histone demethylase lysine demethylase 5b (KDM5b) specifically demethylates lysine 4 of histone H3 (meH3K4), thereby repressing gene transcription. KDM5b regulates cell cycle control genes in cancer and is expressed in the early epiblast. This suggests that KDM5b plays a developmental role by maintaining uncommitted progenitors. Here we show that transient overexpression of KDM5b in embryonic stem cells decreases the expression of at least three different modulators of cell fate decisions, Egr1, p27(KIP1), and BMI1, by demethylation of their promoters. Constitutively increased KDM5b expression results in an increased mitotic rate and a decreased global 3meH3K4 but no change in cell identity. Results of two separate differentiation assays, neural differentiation and embryoid body EB (EB) formation, showed that KDM5b reduced the terminally differentiated cells and increased proliferating progenitors. These were achieved by two mechanisms, blocking of the upregulation of cell lineage markers and maintenance of cyclins, that allowed cells to escape differentiation and remain uncommitted. Additionally, EBs maintain high levels of Oct4 and Nanog and can be dissociated to reestablish highly proliferative cultures. The persistence of uncommitted progenitors may be due to the direct regulation of the Tcf/Lef family member mTcf3/hTcf7L1, an upstream regulator of Nanog expression. These findings demonstrate a role for KDM5b in the choice between proliferation and differentiation during development.
Collapse
|
16
|
Li JY, Christophersen NS, Hall V, Soulet D, Brundin P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 2008; 31:146-53. [PMID: 18255164 DOI: 10.1016/j.tins.2007.12.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 01/04/2023]
Abstract
Embryonic stem cells (ESCs) provide hope as a potential regenerative therapy for neurological conditions such as Parkinson's disease and spinal cord injury. Currently, ESC-based nervous system repair faces several problems. One major hurdle is related to problems in generating large and defined populations of the desired types of neurons from human ESCs (hESCs). Moreover, survival of grafted hESC-derived cells has varied and functional recovery in recipient animals has often been disappointing. Importantly, in clinical trials, adverse effects after surgery, including tumors or vigorous immune reactions, must be avoided. Here we highlight attempts to overcome these hurdles with hESCs intended for central nervous system repair. We focus on hESC-derived dopamine-producing neurons that can be grafted in Parkinson's disease and identify critical experiments that need to be conducted before clinical trials can occur.
Collapse
Affiliation(s)
- Jia-Yi Li
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
17
|
From bench to bed: the potential of stem cells for the treatment of Parkinson's disease. Cell Tissue Res 2007; 331:323-36. [PMID: 18034267 DOI: 10.1007/s00441-007-0541-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 10/23/2007] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the most common movement disorder. The neuropathology is characterized by the loss of dopamine neurons in the substantia nigra pars compacta. Transplants of fetal/embryonic midbrain tissue have exhibited some beneficial clinical effects in open-label trials. Neural grafting has, however, not become a standard treatment for several reasons. First, the supply of donor cells is limited, and therefore, surgery is accompanied by difficult logistics. Second, the extent of beneficial effects has varied in a partly unpredictable manner. Third, some patients have exhibited graft-related side effects in the form of involuntary movements. Fourth, in two major double-blind placebo-controlled trials, there was no effect of the transplants on the primary endpoints. Nevertheless, neural transplantation continues to receive a great deal of interest, and now, attention is shifting to the idea of using stem cells as starting donor material. In the context of stem cell therapy for PD, stem cells can be divided into three categories: neural stem cells, embryonic stem cells, and other tissue-specific types of stem cells, e.g., bone marrow stem cells. Each type of stem cell is associated with advantages and disadvantages. In this article, we review recent advances of stem cell research of direct relevance to clinical application in PD and highlight the pros and cons of the different sources of cells. We draw special attention to some key problems that face the translation of stem cell technology into the clinical arena.
Collapse
|
18
|
Lou X, Zhang Y, Yuan C. Multipotent stem cells from the young rat inner ear. Neurosci Lett 2007; 416:28-33. [PMID: 17350759 DOI: 10.1016/j.neulet.2006.12.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/01/2006] [Accepted: 12/16/2006] [Indexed: 01/01/2023]
Abstract
The terminal mitosis of hair cells (HCs) and supporting cells (SCs) in mammalian cochlea occurred during middle embryonic development. Most hearing loss results from the incapacity of the cochlear sensory epithelium to replace lost hear cells. Deafness due to hair cells loss is normally irreversible. The present study showed that cells acutely dissociated from the cochlea of young rat, cultured with EGF and FGF2, developed into otospheres that showed expression of nestin and incorporation of 5'-Bromo-2-deoxyuridine (BrdU). The subcultured otospheres maintained for up to 10 passages. In addition, the cochlea sphere-derivatives contributed to a variety of cell types. They were found to differentiate to neuron, glia, hair cell and supporting cell phenotypes. The results suggest that the young rat inner ear cells have self-renewal capability and multipotent differentiation potential. This work raises the possibility that inner ear cells in the early post-natal rat have the character of pluripotent stem cells and might be a source for cell replacement therapy in the inner ear.
Collapse
Affiliation(s)
- Xiangxin Lou
- School of Life Science, East China Normal University, Shanghai, PR China.
| | | | | |
Collapse
|
19
|
Hamada M, Yoshikawa H, Ueda Y, Kurokawa MS, Watanabe K, Sakakibara M, Tadokoro M, Akashi K, Aoki H, Suzuki N. Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury. Neurobiol Dis 2006; 22:509-22. [PMID: 16497507 DOI: 10.1016/j.nbd.2005.12.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 10/25/2005] [Accepted: 12/19/2005] [Indexed: 12/12/2022] Open
Abstract
ES cells transfected with the MASH1 gene yielded purified spinal motoneuron precursors expressing HB9 and Islet1. The cells lacked the expression of Nogo receptor that was of great advantage for axon growth after transplantation to an injured spinal cord. After transplantation, mice with the complete transection of spinal cord exhibited excellent improvement of the motor functions. Electrophysiological assessment confirmed the quantitative recovery of motor-evoked potential in the transplanted spinal cord. In the grafted spinal cord, gliosis was inhibited and Nogo receptor expression was scarcely detected. The transplanted cells labeled with GFP showed extensive outgrowth of axons positive for neurofilament middle chain, connected to each other and expressed Synaptophysin, Lim1/2 and Islet1. Thus, the in vivo differentiation into mature spinal motoneurons and the reconstitution of neuronal pathways were suggested. The grafted cell population was purified for neurons and was free from teratoma development. These therapeutic strategies may contribute to a potent treatment for spinal cord injury in future.
Collapse
Affiliation(s)
- Mari Hamada
- Department of Immunology and Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wynder C, Hakimi MA, Epstein JA, Shilatifard A, Shiekhattar R. Recruitment of MLL by HMG-domain protein iBRAF promotes neural differentiation. Nat Cell Biol 2006; 7:1113-7. [PMID: 16227968 DOI: 10.1038/ncb1312] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 09/14/2005] [Indexed: 12/25/2022]
Abstract
Differentiation of progenitor cells into post-mitotic neurons requires the engagement of mechanisms by which the repressive effects of the neuronal silencer, RE-1 silencing transcription factor (REST), can be overcome. Previously, we described a high-mobility group (HMG)-containing protein, BRAF35, which is a component of a co-repressor complex that is required for the repression of REST-responsive genes. Here, we show that the BRAF35 family member inhibitor of BRAF35 (iBRAF) activates REST-responsive genes through the modulation of histone methylation. In contrast to BRAF35, iBRAFexpression leads to the abrogation of REST-mediated transcriptional repression and the resultant activation of neuronal-specific genes. Analysis of P19 cells during neuronal differentiation revealed an increased concentration of iBRAF at the promoter of neuronal-specific genes coincident with augmented expression of synapsin, recruitment of the methyltransferase MLL and enhanced trimethylation of histone H3 lysine 4 (H3K4). Importantly, ectopic expression of iBRAF is sufficient to induce neuronal differentiation through recruitment of MLL, resulting in increased histone H3K4 trimethylation and activation of neuronal-specific genes. Moreover, depletion of iBRAF abrogates recruitment of MLL and enhancement of histone H3K4 trimethylation. Together, these results indicate that the HMG-domain protein iBRAF has a key role in the initiation of neuronal differentiation.
Collapse
|
21
|
Matsui JI, Parker MA, Ryals BM, Cotanche DA. Regeneration and replacement in the vertebrate inner ear. Drug Discov Today 2005; 10:1307-12. [PMID: 16214675 DOI: 10.1016/s1359-6446(05)03577-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Deafness affects more than 40 million people in the UK and the USA, and many more world-wide. The primary cause of hearing loss is damage to or death of the sensory receptor cells in the inner ear, the hair cells. Birds can readily regenerate their cochlear hair cells but the mammalian cochlea has shown no ability to regenerate after damage. Current research efforts are focusing on gene manipulation, gene therapy and stem cell transplantation for repairing or replacing damaged mammalian cochlear hair cells, which could lead to therapies for treating deafness in humans.
Collapse
Affiliation(s)
- Jonathan I Matsui
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
22
|
Megiorni F, Mora B, Indovina P, Mazzilli MC. Expression of neuronal markers during NTera2/cloneD1 differentiation by cell aggregation method. Neurosci Lett 2005; 373:105-9. [PMID: 15567562 DOI: 10.1016/j.neulet.2004.09.070] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/14/2004] [Accepted: 09/28/2004] [Indexed: 11/25/2022]
Abstract
Human teratocarcinoma NTera2/cloneD1 (NT2) cells are able to generate postmitotic neurons in response to retinoic acid (RA) and for this reason these cells provide an important tool to study human neurogenesis in vitro. We have obtained neurons by treating NT2 aggregated cells with RA for solely 14 days. RT-PCR assays showed that NT2 cells express mRNAs of several neural bHLH genes such as Hes1, Ngn1, Mash1, NeuroD, Math1 and Pax6, just in the early days of RA exposure. In particular, we reported for the first time that RA treatment was followed by a modulation of endogenous Ngn1 and Math1 transcripts. RT-PCR and Western blotting experiments also demonstrated expression of typical neuronal markers such as GluR, MAP2, Tau and NeuN. Knowledge of the expression pattern of the different neuronal genes during NT2 commitment could be used to investigate alterations in the molecular pathways involved in the human neuronal differentiation.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Experimental Medicine and Pathology, La Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | | | | | | |
Collapse
|