1
|
Chen H, LaFlamme CW, Wang YD, Blan AW, Koehler N, Mendonca Moraes R, Olszewski AR, Almanza Fuerte EP, Bonkowski ES, Bajpai R, Lavado A, Pruett-Miller SM, Mefford HC. Patient-derived models of UBA5-associated encephalopathy identify defects in neurodevelopment and highlight potential therapeutic avenues. Sci Transl Med 2025; 17:eadn8417. [PMID: 40333994 DOI: 10.1126/scitranslmed.adn8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in endoplasmic reticulum (ER) homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy, and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures from two patients with compound heterozygous variants in UBA5. Both shared the same missense variant, which encodes a hypomorphic allele (p.A371T), along with a nonsense variant (p.G267* or p.A123fs*4). Single-cell RNA sequencing of 100-day organoids identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and reduction in size of patient-derived organoids. Mechanistically, we showed that ER homeostasis is perturbed along with an exacerbated unfolded protein response pathway in engineered U87-MG cells and patient-derived organoids expressing UBA5 pathogenic variants. We also assessed two potential therapeutic modalities that augmented UBA5 protein abundance to rescue aberrant molecular and cellular phenotypes. We assessed SINEUP, a long noncoding RNA that augments translation efficiency, and CRISPRa, a modified CRISPR-Cas9 approach to augment transcription efficiency to increase UBA5 protein production. Our study provides a humanized model that allows further investigations of UBA5 variants in the brain and highlights promising approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aidan W Blan
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nikki Koehler
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renata Mendonca Moraes
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Athena R Olszewski
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alfonso Lavado
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
3
|
Chen H, Wang YD, Blan AW, Almanza-Fuerte EP, Bonkowski ES, Bajpai R, Pruett-Miller SM, Mefford HC. Patient derived model of UBA5-associated encephalopathy identifies defects in neurodevelopment and highlights potential therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577254. [PMID: 38328212 PMCID: PMC10849720 DOI: 10.1101/2024.01.25.577254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Aidan W. Blan
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edith P. Almanza-Fuerte
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily S. Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Barreda-Manso MA, Soto A, Muñoz-Galdeano T, Reigada D, Nieto-Díaz M, Maza RM. MiR-138-5p Upregulation during Neuronal Maturation Parallels with an Increase in Neuronal Survival. Int J Mol Sci 2023; 24:16509. [PMID: 38003699 PMCID: PMC10671628 DOI: 10.3390/ijms242216509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Neuronal maturation is a process that plays a key role in the development and regeneration of the central nervous system. Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal neuronal maturation are less understood. Among the mechanisms influencing such neuronal maturation processes, apoptosis plays a key role. Several regulators have been described to modulate apoptosis, including post-transcriptional regulation by microRNAs. This study aimed to analyze endogenous expression changes of miR-138-5p, as well as its main validated pro-apoptotic target caspase3, during the maturation of neuronal cultures and their response under apoptotic challenge. Our results point out that the observed opposite expression of miR-138-5p and its target caspase3 might modulate apoptosis favoring neuronal survival at distinct maturation stages. The unchanged expression of miR-138-5p in mature neurons contrasts with the significant downregulation in immature neurons upon apoptotic stimulation. Similarly, immunoblot and individual cellular assays confirmed that during maturation, not only the expression but processing of CASP-3 and caspase activity is reduced after apoptotic stimulation which results in a reduction of neuronal death. Further studies would be needed to determine a more detailed role of miR-138-5p in apoptosis during neuronal maturation and the synergistic action of several microRNAs acting cooperatively on caspase3 or other apoptotic targets.
Collapse
Affiliation(s)
- María Asunción Barreda-Manso
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
- Research Unit, Functional Exploration and Neuromodulation of the Central Nervous System (FENNSI) Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Altea Soto
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| | - Teresa Muñoz-Galdeano
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| | - David Reigada
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| | - Manuel Nieto-Díaz
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| | - Rodrigo M. Maza
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| |
Collapse
|
5
|
Sawaya AP, Vecin NM, Burgess JL, Ojeh N, DiBartolomeo G, Stone RC, Pastar I, Tomic-Canic M. Calreticulin: a multifunctional protein with potential therapeutic applications for chronic wounds. Front Med (Lausanne) 2023; 10:1207538. [PMID: 37692787 PMCID: PMC10484228 DOI: 10.3389/fmed.2023.1207538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Calreticulin is recognized as a multifunctional protein that serves an essential role in diverse biological processes that include wound healing, modification and folding of proteins, regulation of the secretory pathway, cell motility, cellular metabolism, protein synthesis, regulation of gene expression, cell cycle regulation and apoptosis. Although the role of calreticulin as an endoplasmic reticulum-chaperone protein has been well described, several studies have demonstrated calreticulin to be a highly versatile protein with an essential role during wound healing. These features make it an ideal molecule for treating a complex, multifactorial diseases that require fine tuning, such as chronic wounds. Indeed, topical application of recombinant calreticulin to wounds in multiple models of wound healing has demonstrated remarkable pro-healing effects. Among them include enhanced keratinocyte and fibroblast migration and proliferation, induction of extracellular matrix proteins, recruitment of macrophages along with increased granulation tissue formation, all of which are important functions in promoting wound healing that are deregulated in chronic wounds. Given the high degree of diverse functions and pro-healing effects, application of exogenous calreticulin warrants further investigation as a potential novel therapeutic option for chronic wound patients. Here, we review and highlight the significant effects of topical application of calreticulin on enhancing wound healing and its potential as a novel therapeutic option to shift chronic wounds into healing, acute-like wounds.
Collapse
Affiliation(s)
- Andrew P. Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Gabrielle DiBartolomeo
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
6
|
Gao L, Jin N, Ye Z, Ma T, Huang Y, Li H, Du J, Li Z. A possible connection between reactive oxygen species and the unfolded protein response in lens development: From insight to foresight. Front Cell Dev Biol 2022; 10:820949. [PMID: 36211466 PMCID: PMC9535091 DOI: 10.3389/fcell.2022.820949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
The lens is a relatively special and simple organ. It has become an ideal model to study the common developmental characteristics among different organic systems. Lens development is a complex process influenced by numerous factors, including signals from the intracellular and extracellular environment. Reactive oxygen species (ROS) are a group of highly reactive and oxygen-containing molecules that can cause endoplasmic reticulum stress in lens cells. As an adaptive response to ER stress, lens cells initiate the unfolded protein response (UPR) to maintain normal protein synthesis by selectively increasing/decreasing protein synthesis and increasing the degradation of misfolded proteins. Generally, the UPR signaling pathways have been well characterized in the context of many pathological conditions. However, recent studies have also confirmed that all three UPR signaling pathways participate in a variety of developmental processes, including those of the lens. In this review, we first briefly summarize the three stages of lens development and present the basic profiles of ROS and the UPR. We then discuss the interconnections between lens development and these two mechanisms. Additionally, the potential adoption of human pluripotent stem-cell-based lentoids in lens development research is proposed to provide a novel perspective on future developmental studies.
Collapse
Affiliation(s)
- Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, The Chinese PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Huang
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaohui Li,
| |
Collapse
|
7
|
Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington's Disease. Int J Mol Sci 2022; 23:780. [PMID: 35054963 PMCID: PMC8775980 DOI: 10.3390/ijms23020780] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulation of misfolded proteins is a common phenomenon of several neurodegenerative diseases. The misfolding of proteins due to abnormal polyglutamine (PolyQ) expansions are linked to the development of PolyQ diseases including Huntington's disease (HD). Though the genetic basis of PolyQ repeats in HD remains prominent, the primary molecular basis mediated by PolyQ toxicity remains elusive. Accumulation of misfolded proteins in the ER or disruption of ER homeostasis causes ER stress and activates an evolutionarily conserved pathway called Unfolded protein response (UPR). Protein homeostasis disruption at organelle level involving UPR or ER stress response pathways are found to be linked to HD. Due to dynamic intricate connections between ER and mitochondria, proteins at ER-mitochondria contact sites (mitochondria associated ER membranes or MAMs) play a significant role in HD development. The current review aims at highlighting the most updated information about different UPR pathways and their involvement in HD disease progression. Moreover, the role of MAMs in HD progression has also been discussed. In the end, the review has focused on the therapeutic interventions responsible for ameliorating diseased states via modulating either ER stress response proteins or modulating the expression of ER-mitochondrial contact proteins.
Collapse
Affiliation(s)
- Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad 500078, Telangana, India; (P.K.); (V.K.); (A.S.); (A.T.); (V.C.)
| | | | | | | | | | | |
Collapse
|
8
|
Almami IS, Aldubayan MA, Felemban SG, Alyamani N, Howden R, Robinson AJ, Pearson TDZ, Boocock D, Algarni AS, Garner AC, Griffin M, Bonner PLR, Hargreaves AJ. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Arch Toxicol 2020; 94:3861-3875. [PMID: 32749514 PMCID: PMC7603472 DOI: 10.1007/s00204-020-02852-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Organophosphate compounds (OPs) induce both acute and delayed neurotoxic effects, the latter of which is believed to involve their interaction with proteins other than acetylcholinesterase. However, few OP-binding proteins have been identified that may have a direct role in OP-induced delayed neurotoxicity. Given their ability to disrupt Ca2+ homeostasis, a key aim of the current work was to investigate the effects of sub-lethal neurite outgrowth inhibitory levels of OPs on the Ca2+-dependent enzyme tissue transglutaminase (TG2). At 1-10 µM, the OPs phenyl saligenin phosphate (PSP) and chlorpyrifos oxon (CPO) had no effect cell viability but induced concentration-dependent decreases in neurite outgrowth in differentiating N2a neuroblastoma cells. The activity of TG2 increased in cell lysates of differentiating cells exposed for 24 h to PSP and chlorpyrifos oxon CPO (10 µM), as determined by biotin-cadaverine incorporation assays. Exposure to both OPs (3 and/or 10 µM) also enhanced in situ incorporation of the membrane permeable substrate biotin-X-cadaverine, as indicated by Western blot analysis of treated cell lysates probed with ExtrAvidin peroxidase and fluorescence microscopy of cell monolayers incubated with FITC-streptavidin. Both OPs (10 µM) stimulated the activity of human and mouse recombinant TG2 and covalent labelling of TG2 with dansylamine-labelled PSP was demonstrated by fluorescence imaging following SDS-PAGE. A number of TG2 substrates were tentatively identified by mass spectrometry, including cytoskeletal proteins, chaperones and proteins involved protein synthesis and gene regulation. We propose that the elevated TG2 activity observed is due to the formation of a novel covalent adduct between TG2 and OPs.
Collapse
Affiliation(s)
- Ibtesam S Almami
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, College of Science, Qassim University, Al-Qassim, Saudi Arabia
| | - Maha A Aldubayan
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia
| | - Shatha G Felemban
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Medical Laboratory Science, Fakeeh College for Medical Science, Jeddah, Saudi Arabia
| | - Najiah Alyamani
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Richard Howden
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alexander J Robinson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Life Sciences, School of Health Sciences, Birmingham City University, City South Campus, Edgbaston, B15 3TN, UK
| | - Tom D Z Pearson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David Boocock
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - A Christopher Garner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Martin Griffin
- Department of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Philip L R Bonner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
9
|
Clark EM, Nonarath HJT, Bostrom JR, Link BA. Establishment and validation of an endoplasmic reticulum stress reporter to monitor zebrafish ATF6 activity in development and disease. Dis Model Mech 2020; 13:dmm.041426. [PMID: 31852729 PMCID: PMC6994954 DOI: 10.1242/dmm.041426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Induction of endoplasmic reticulum (ER) stress is associated with diverse developmental and degenerative diseases. Modified ER homeostasis causes activation of conserved stress pathways at the ER called the unfolded protein response (UPR). ATF6 is a transcription factor activated during ER stress as part of a coordinated UPR. ATF6 resides at the ER and, upon activation, is transported to the Golgi apparatus, where it is cleaved by proteases to create an amino-terminal cytoplasmic fragment (ATF6f). ATF6f translocates to the nucleus to activate transcriptional targets. Here, we describe the establishment and validation of zebrafish reporter lines for ATF6 activity. These transgenic lines are based on a defined and multimerized ATF6 consensus site, which drives either eGFP or destabilized eGFP, enabling dynamic study of ATF6 activity during development and disease. The results show that the reporter is specific for the ATF6 pathway, active during development and induced in disease models known to engage UPR. Specifically, during development, ATF6 activity is highest in the lens, skeletal muscle, fins and gills. The reporter is also activated by common chemical inducers of ER stress, including tunicamycin, thapsigargin and brefeldin A, as well as by heat shock. In models for amyotrophic lateral sclerosis and cone dystrophy, ATF6 reporter expression is induced in spinal cord interneurons or photoreceptors, respectively, suggesting a role for ATF6 response in multiple neurodegenerative diseases. Collectively our results show that these ATF6 reporters can be used to monitor ATF6 activity changes throughout development and in zebrafish models of disease. This article has an associated First Person interview with the first author of the paper. Summary: In this study, we validate transgenic zebrafish generated to specifically report the activity of ATF6, representing a major branch of the endoplasmic reticulum stress pathway with functions in development and disease.
Collapse
Affiliation(s)
- Eric M Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Hannah J T Nonarath
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| |
Collapse
|
10
|
Passemard S, Perez F, Gressens P, El Ghouzzi V. Endoplasmic reticulum and Golgi stress in microcephaly. Cell Stress 2019; 3:369-384. [PMID: 31832602 PMCID: PMC6883743 DOI: 10.15698/cst2019.12.206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.
Collapse
Affiliation(s)
- Sandrine Passemard
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas'Hospital, London, United Kingdom
| | | |
Collapse
|
11
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
12
|
Naughton M, McMahon J, Healy S, FitzGerald U. Profile of the unfolded protein response in rat cerebellar cortical development. J Comp Neurol 2019; 527:2910-2924. [PMID: 31132146 DOI: 10.1002/cne.24718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The unfolded protein response (UPR) has been reported during normal development of cortical neurons and cerebellar white matter and may also contribute to the pathogenesis of neurological conditions, such as Marinesco-Sjogren syndrome and Borna virus infection, which result in cerebellar defects. The UPR is initiated when the processing capacity of the endoplasmic reticulum (ER) is overwhelmed. Misfolded proteins accumulate and can activate ER stress sensors; PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activated transcription factor 6 (ATF6) and their downstream targets glucose-regulated protein 78 (GRP78), glucose-regulated protein 94 (GRP94) and protein disulfide isomerase (PDI). In order to provide a fuller appreciation of the possible importance of ER stress-associated proteins in the context of cerebellar disease, we have profiled the expression of ER stress sensors and their downstream targets in the developing cerebellar cortex in postnatal rat. Activation of PERK and IRE1 stress sensors was observed for the first time in normally developing granule cell precursors. A second proliferative pPERK-positive population was also detected in the internal granular layer (IGL). In general, the density of UPR protein-positive cells was found to decrease significantly when profiles in early and late postnatal ages were compared. These data may be relevant to studies of medulloblastoma and warrant further investigation.
Collapse
Affiliation(s)
- Michelle Naughton
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jill McMahon
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Sinéad Healy
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
14
|
The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells. Stem Cells Int 2019; 2019:1608787. [PMID: 31191665 PMCID: PMC6525796 DOI: 10.1155/2019/1608787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks.
Collapse
|
15
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz‐Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 2019; 286:241-278. [PMID: 30027602 PMCID: PMC7379631 DOI: 10.1111/febs.14608] [Citation(s) in RCA: 649] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Antonio Carlesso
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Chetan Chintha
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | | | - Dimitrios Doultsinos
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Brian Leuzzi
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Nicole McCarthy
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | - Luigi Montibeller
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Sanket More
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Alexandra Papaioannou
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Franziska Püschel
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Maria Livia Sassano
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Josip Skoko
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Patrizia Agostinis
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Jackie de Belleroche
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Leif A. Eriksson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Simone Fulda
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | | | - Sandra Healy
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Cristina Muñoz‐Pinedo
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Markus Rehm
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Eric Chevet
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Afshin Samali
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| |
Collapse
|
16
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
17
|
Hillary RF, FitzGerald U. A lifetime of stress: ATF6 in development and homeostasis. J Biomed Sci 2018; 25:48. [PMID: 29801500 PMCID: PMC5968583 DOI: 10.1186/s12929-018-0453-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Activating transcription factor 6 (ATF6) is an endoplasmic reticulum (ER)-localised protein and member of the leucine zipper family of transcription factors. Best known for its role in transducing signals linked to stress to the endoplasmic reticulum, the 50 kDa activated form of ATF6 is now emerging as a major regulator of organogenesis and tissue homeostasis. Responsible for the correct folding, secretion and membrane insertion of a third of the proteome in eukaryotic cells, the ER encompasses a dynamic, labyrinthine network of regulators, chaperones, foldases and cofactors. Such structures are crucial to the extensive protein synthesis required to undergo normal development and maintenance of tissue homeostasis. When an additional protein synthesis burden is placed on the ER, ATF6, in tandem with ER stress transducers inositol requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), slows the pace of protein translation and induces the production of stress-reducing chaperones and foldases. MAIN TEXT In the context of development and tissue homeostasis, however, distinct cellular impacts have been attributed to ATF6. Drawing on data published from human, rodent, fish, goat and bovine research, this review first focuses on ATF6-mediated regulation of osteo- and chondrogenesis, ocular development as well as neuro- and myelinogenesis. The purported role of ATF6 in development of the muscular and reproductive systems as well as adipo- and lipogenesis is then described. With relevance to cardiac disease, cancer and brain disorders, the importance of ATF6 in maintaining tissue homeostasis is the subject of the final section. CONCLUSION In conclusion, the review encourages further elucidation of ATF6 regulatory operations during organogenesis and tissue homeostasis, to spawn the development of ATF6-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Robert F Hillary
- Galway Neuroscience Centre, Cúram Centre for Research in Medical Devices, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, Cúram Centre for Research in Medical Devices, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
Murao N, Nishitoh H. Role of the unfolded protein response in the development of central nervous system. J Biochem 2017; 162:155-162. [PMID: 28903548 DOI: 10.1093/jb/mvx047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
The unfolded protein response (UPR) is an intracellular homeostatic signalling pathway that is induced by accumulated misfolded/unfolded proteins in the endoplasmic reticulum (ER). The UPR is closely associated with the development of disease in several tissues, including the central nervous system (CNS), in response to ER stress. More recently, the unique features and importance of the UPR have been revealed in neural stem cells (NSCs) and differentiated CNS cells [neurons and glial cells (astrocytes and oligodendrocytes)]. Although several UPR signalling pathways dynamically change in each CNS cell during brain development, the role of UPR signalling in CNS cells (especially NSCs and glial cells) under pathological or physiological conditions is poorly understood. Here, we discuss and summarize the recent progress in understanding how the UPR regulates the proliferation, differentiation, maturation and viability of CNS cells.
Collapse
Affiliation(s)
- Naoya Murao
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Miyazaki 889-1692, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Miyazaki 889-1692, Japan
| |
Collapse
|
19
|
Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci 2017; 36:10245-10256. [PMID: 27707963 DOI: 10.1523/jneurosci.0669-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. SIGNIFICANCE STATEMENT Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing the ER in DYT1 mice by increasing the amount of misfolded proteins. This resulted in the generation of a reduced number of animals, evidence of abnormal ER protein processing and dysregulation of translational control pathways. The work described here proposes a shared mechanism for different forms of dystonia, links for the first time known biological pathways to dystonia pathogenesis, and uncovers potential pharmacological targets for its treatment.
Collapse
|
20
|
Tsuyama T, Tsubouchi A, Usui T, Imamura H, Uemura T. Mitochondrial dysfunction induces dendritic loss via eIF2α phosphorylation. J Cell Biol 2017; 216:815-834. [PMID: 28209644 PMCID: PMC5346966 DOI: 10.1083/jcb.201604065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/30/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are key contributors to the etiology of diseases associated with neuromuscular defects or neurodegeneration. How changes in cellular metabolism specifically impact neuronal intracellular processes and cause neuropathological events is still unclear. We here dissect the molecular mechanism by which mitochondrial dysfunction induced by Prel aberrant function mediates selective dendritic loss in Drosophila melanogaster class IV dendritic arborization neurons. Using in vivo ATP imaging, we found that neuronal cellular ATP levels during development are not correlated with the progression of dendritic loss. We searched for mitochondrial stress signaling pathways that induce dendritic loss and found that mitochondrial dysfunction is associated with increased eIF2α phosphorylation, which is sufficient to induce dendritic pathology in class IV arborization neurons. We also observed that eIF2α phosphorylation mediates dendritic loss when mitochondrial dysfunction results from other genetic perturbations. Furthermore, mitochondrial dysfunction induces translation repression in class IV neurons in an eIF2α phosphorylation-dependent manner, suggesting that differential translation attenuation among neuron subtypes is a determinant of preferential vulnerability.
Collapse
Affiliation(s)
- Taiichi Tsuyama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Asako Tsubouchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Ebrahimie E, Moussavi Nik SH, Newman M, Van Der Hoek M, Lardelli M. The Zebrafish Equivalent of Alzheimer's Disease-Associated PRESENILIN Isoform PS2V Regulates Inflammatory and Other Responses to Hypoxic Stress. J Alzheimers Dis 2017; 52:581-608. [PMID: 27031468 DOI: 10.3233/jad-150678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dominant mutations in the PRESENILIN genes PSEN1 and PSEN2 cause familial Alzheimer's disease (fAD) that usually shows onset before 65 years of age. In contrast, genetic variation at the PSEN1 and PSEN2 loci does not appear to contribute to risk for the sporadic, late onset form of the disease (sAD), leading to doubts that these genes play a role in the majority of AD cases. However, a truncated isoform of PSEN2, PS2V, is upregulated in sAD brains and is induced by hypoxia and high cholesterol intake. PS2V can increase γ-secretase activity and suppress the unfolded protein response (UPR), but detailed analysis of its function has been hindered by lack of a suitable, genetically manipulable animal model since mice and rats lack this PRESENILIN isoform. We recently showed that zebrafish possess an isoform, PS1IV, that is cognate to human PS2V. Using an antisense morpholino oligonucleotide, we can block specifically the induction of PS1IV that normally occurs under hypoxia. Here, we exploit this ability to identify gene regulatory networks that are modulated by PS1IV. When PS1IV is absent under hypoxia-like conditions, we observe changes in expression of genes controlling inflammation (particularly sAD-associated IL1B and CCR5), vascular development, the UPR, protein synthesis, calcium homeostasis, catecholamine biosynthesis, TOR signaling, and cell proliferation. Our results imply an important role for PS2V in sAD as a component of a pathological mechanism that includes hypoxia/oxidative stress and support investigation of the role of PS2V in other diseases, including schizophrenia, when these are implicated in the pathology.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia.,School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia.,School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, Australia
| | - Seyyed Hani Moussavi Nik
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mark Van Der Hoek
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, Australia
| | - Michael Lardelli
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
22
|
Chandrahas VK, Han J, Kaufman RJ. Coordinating Organismal Metabolism During Protein Misfolding in the ER Through the Unfolded Protein Response. Curr Top Microbiol Immunol 2017; 414:103-130. [PMID: 28900680 DOI: 10.1007/82_2017_41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle responsible for folding of secretory and membrane proteins. Perturbance in ER homeostasis caused by various intrinsic/extrinsic stimuli challenges the protein-folding capacity of the ER, leading to an ER dysfunction, called ER stress. Cells have developed a defensive response to adapt and/or survive in the face of ER stress that may be detrimental to cell function and survival. When exposed to ER stress, the cell activates a complex and elaborate signaling network that includes translational modulation and transcriptional induction of genes. In addition to these autonomous responses, recent studies suggest that the stressed tissue secretes peptides or unknown factors that transfer the signal to other cells in the same or different organs, leading the organism as a whole to cope with challenges in a non-autonomous manner. In this review, we discuss the mechanisms by which cells adapt to ER stress challenges autonomously and transfer the stress signal to non-stressed cells in different organs.
Collapse
Affiliation(s)
- Vishwanatha K Chandrahas
- Degenerative Diseases Program, Sanford_Burnham_Prebys Medical Discovery Institute, 92037, La Jolla, CA, USA
| | - Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Chungcheongnam-do, Republic of Korea.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford_Burnham_Prebys Medical Discovery Institute, 92037, La Jolla, CA, USA.
| |
Collapse
|
23
|
Sareddy GR, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi RK. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene 2016; 36:2423-2434. [PMID: 27893719 DOI: 10.1038/onc.2016.395] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Glioma stem cells (GSCs) have a central role in glioblastoma (GBM) development and chemo/radiation resistance, and their elimination is critical for the development of efficient therapeutic strategies. Recently, we showed that lysine demethylase KDM1A is overexpressed in GBM. In the present study, we determined whether KDM1A modulates GSCs stemness and differentiation and tested the utility of two novel KDM1A-specific inhibitors (NCL-1 and NCD-38) to promote differentiation and apoptosis of GSCs. The efficacy of KDM1A targeting drugs was tested on purified GSCs isolated from established and patient-derived GBMs using both in vitro assays and in vivo orthotopic preclinical models. Our results suggested that KDM1A is highly expressed in GSCs and knockdown of KDM1A using shRNA-reduced GSCs stemness and induced the differentiation. Pharmacological inhibition of KDM1A using NCL-1 and NCD-38 significantly reduced the cell viability, neurosphere formation and induced apoptosis of GSCs with little effect on differentiated cells. In preclinical studies using orthotopic models, NCL-1 and NCD-38 significantly reduced GSCs-driven tumor progression and improved mice survival. RNA-sequencing analysis showed that KDM1A inhibitors modulate several pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that KDM1A inhibitors induce activation of the unfolded protein response (UPR) pathway. These results strongly suggest that selective targeting of KDM1A using NCL-1 and NCD-38 is a promising therapeutic strategy for elimination of GSCs.
Collapse
Affiliation(s)
- G R Sareddy
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - S Viswanadhapalli
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P Surapaneni
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| | - A Brenner
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,The Department of Hematology and Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R K Vadlamudi
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Izumi K, Brett M, Nishi E, Drunat S, Tan ES, Fujiki K, Lebon S, Cham B, Masuda K, Arakawa M, Jacquinet A, Yamazumi Y, Chen ST, Verloes A, Okada Y, Katou Y, Nakamura T, Akiyama T, Gressens P, Foo R, Passemard S, Tan EC, El Ghouzzi V, Shirahige K. ARCN1 Mutations Cause a Recognizable Craniofacial Syndrome Due to COPI-Mediated Transport Defects. Am J Hum Genet 2016; 99:451-9. [PMID: 27476655 DOI: 10.1016/j.ajhg.2016.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth.
Collapse
|
25
|
Godin JD, Creppe C, Laguesse S, Nguyen L. Emerging Roles for the Unfolded Protein Response in the Developing Nervous System. Trends Neurosci 2016; 39:394-404. [PMID: 27130659 DOI: 10.1016/j.tins.2016.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 01/04/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic signaling pathway triggered by protein misfolding in the endoplasmic reticulum (ER). Beyond its protective role, it plays important functions during normal development in response to elevated demand for protein folding. Several UPR effectors show dynamic temporal and spatial expression patterns that correlate with milestones of the central nervous system (CNS) development. Here, we discuss recent studies suggesting that a dynamic regulation of UPR supports generation, maturation, and maintenance of differentiated neurons in the CNS. We further highlight studies supporting a developmental vulnerability of CNS to UPR dysregulation, which underlies neurodevelopmental disorders. We believe that a better understanding of UPR functions may provide novel opportunities for therapeutic strategies to fight ER/UPR-associated human neurological disorders.
Collapse
Affiliation(s)
- Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France.
| | - Catherine Creppe
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sophie Laguesse
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
26
|
Liu YQ, Zhan LB, Bi TT, Liang LN, Sun XX, Sui H. Neural stem cell neural differentiation in 3D extracellular matrix and endoplasmic reticulum stress microenvironment. RSC Adv 2016. [DOI: 10.1039/c6ra04370d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neural stem cell neural differentiation was protected by nanomatrix and extracellular matrix proteins under the endoplasmic reticulum stress condition.
Collapse
Affiliation(s)
- Yan-Qiu Liu
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Li-Bin Zhan
- School of Basic Medical Sciences
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
- The Second Affiliated Hospital
| | - Ting-Ting Bi
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Li-Na Liang
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Xiao-Xin Sun
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Hua Sui
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| |
Collapse
|
27
|
Yang F, Luo J. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity. Biomolecules 2015; 5:2538-53. [PMID: 26473940 PMCID: PMC4693246 DOI: 10.3390/biom5042538] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.
Collapse
Affiliation(s)
- Fanmuyi Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY 40536, USA.
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY 40536, USA.
| |
Collapse
|
28
|
Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol 2015; 283:157-67. [PMID: 25620058 DOI: 10.1016/j.taap.2014.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1-CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress.
Collapse
|
29
|
Natalini PM, Mateos MV, Ilincheta de Boschero MG, Giusto NM. A novel light-dependent activation of DAGK and PKC in bovine photoreceptor nuclei. Exp Eye Res 2014; 125:142-55. [PMID: 24950064 DOI: 10.1016/j.exer.2014.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
In this work, we describe a selective light-dependent distribution of the lipid kinase 1,2-diacylglycerol kinase (EC 2.7.1.107, DAGK) and the phosphorylated protein kinase C alpha (pPKCα) in a nuclear fraction of photoreceptor cells from bovine retinas. A nuclear fraction enriched in small nuclei from photoreceptor cells (PNF), was obtained when a modified nuclear isolation protocol developed by our laboratory was used. We measured and compared DAGK activity as phosphatidic acid (PA) formation in PNF obtained from retinas exposed to light and in retinas kept in darkness using [γ-(32)P]ATP or [(3)H]DAG. In the absence of exogenous substrates and detergents, no changes in DAGK activity were observed. However, when DAGK activity assays were performed in the presence of exogenous substrates, such as stearoyl arachidonoyl glycerol (SAG) or dioleoyl glycerol (DOG), and different detergents (used to make different DAGK isoforms evident), we observed significant light effects on DAGK activity, suggesting the presence of several DAGK isoforms in PNF. Under conditions favoring DAGKζ activity (DOG, Triton X-100, dioleoyl phosphatidylserine and R59022) we observed an increase in PA formation in PNF from retinas exposed to light with respect to those exposed to darkness. In contrast, under conditions favoring DAGKɛ (SAG, octylglucoside and R59022) we observed a decrease in its activity. These results suggest different physiological roles of the above-mentioned DAGK isoforms. Western blot analysis showed that whereas light stimulation of bovine retinas increases DAGKζ nuclear content, it decreases DAGKɛ and DAGKβ content in PNF. The role of PIP2-phospholipase C in light-stimulated DAGK activity was demonstrated using U73122. Light was also observed to induce enhanced pPKCα content in PNF. The selective distribution of DAGKζ and ɛ in PNF could be a light-dependent mechanism that in vertebrate retina promotes selective DAG removal and PKC regulation.
Collapse
Affiliation(s)
- Paola M Natalini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Mónica G Ilincheta de Boschero
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Buenos Aires, Argentina.
| | - Norma M Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
30
|
Tekko T, Lilleväli K, Luuk H, Sütt S, Truu L, Örd T, Möls M, Vasar E. Initiation and developmental dynamics of Wfs1 expression in the context of neural differentiation and ER stress in mouse forebrain. Int J Dev Neurosci 2014; 35:80-8. [PMID: 24694561 DOI: 10.1016/j.ijdevneu.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 03/22/2014] [Accepted: 03/23/2014] [Indexed: 02/04/2023] Open
Abstract
Wolframin (Wfs1) is a membrane glycoprotein that resides in the endoplasmic reticulum (ER) and regulates cellular Ca(2+) homeostasis. In pancreas Wfs1 attenuates unfolded protein response (UPR) and protects cells from apoptosis. Loss of Wfs1 function results in Wolfram syndrome (OMIM 222300) characterized by early-onset diabetes mellitus, progressive optic atrophy, diabetes insipidus, deafness, and psychiatric disorders. Similarly, Wfs1-/- mice exhibit diabetes and increased basal anxiety. In the adult central nervous system Wfs1 is prominent in central extended amygdala, striatum and hippocampus, brain structures largely involved in behavioral adaptation of the organism. Here, we describe the initiation pattern of Wfs1 expression in mouse forebrain using mRNA in situ hybridization and compare it with Synaptophysin (Syp1), a gene encoding synaptic vesicle protein widely used as neuronal differentiation marker. We show that the expression of Wfs1 starts during late embryonic development in the dorsal striatum and amygdala, then expands broadly at birth, possessing several transitory regions during maturation. Syp1 expression precedes Wfs1 and it is remarkably upregulated during the period of Wfs1 expression initiation and maturation, suggesting relationship between neural activation and Wfs1 expression. Using in situ hybridization and quantitative real-time PCR we show that UPR-related genes (Grp78, Grp94, and Chop) display dynamic expression in the perinatal brain when Wfs1 is initiated and their expression pattern is not altered in the brain lacking functional Wfs1.
Collapse
Affiliation(s)
- Triin Tekko
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Department of Developmental Biology, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia.
| | - Hendrik Luuk
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Silva Sütt
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Laura Truu
- Department of Developmental Biology, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia; Competence Centre for Cancer Research, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Tiit Örd
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Märt Möls
- Institute of Mathematical Statistics, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
31
|
Wang X, Wang G, Kunte M, Shinde V, Gorbatyuk M. Modulation of angiogenesis by genetic manipulation of ATF4 in mouse model of oxygen-induced retinopathy [corrected]. Invest Ophthalmol Vis Sci 2013; 54:5995-6002. [PMID: 23942974 DOI: 10.1167/iovs.13-12117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The activation of the unfolded protein response (UPR) and an increase in activating transcription factor 4 (ATF4) has been previously reported in the diabetic retina. Despite this, a direct link between ATF4 and the degree of proliferative retinopathy has not been demonstrated to date. Therefore, the objective of this study was to determine whether ATF4 deficiency could reduce neovascularization in mice with oxygen-induced retinopathy (OIR). METHODS We induced OIR in C57BL/6, ATF4(+/-), and endoplasmic reticulum stress-activated indicator (ERAI) mice and used quantitative RT-PCR and Western blot analysis to evaluate relative gene and protein expression. Histology and microscopy were used to calculate the extent of neovascularization in flat-mounted retinas. RESULTS Experimental data revealed Xbp1 splicing in the retinal ganglia cells, outer plexiform layer, inner nuclear layer, and outer nuclear layer and in pericytes of postdevelopment day 17 ERAI OIR mice, confirming the activation of IRE1 UPR signaling. In naive ATF4-deficient mice, we also observed an elevation in UPR-associated and vascular-associated gene expression (Bip, Atf6, Hif1a, Pik3/Akt, Flt1/Vegfa, and Tgfb1), which may have contributed to the alleviation of hypoxia-driven neovascularization in experimental ATF4(+/-) retinas. The OIR ATF4(+/-) retinas demonstrated reprogramming of the UPR seen at both the mRNA (Atf6 and Bip) and protein (pATF6 and peIf2α) levels, as well as a reduction in vascularization-associated gene expression (Flt1, Vegf1, Hif1, and Tgb1). These changes corresponded to the decline in the rate of neovascularization. CONCLUSIONS Our study validates ATF4 as a prospective therapeutic target to inhibit neovascularization in proliferative retinopathy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, Fort Worth, Texas, USA
| | | | | | | | | |
Collapse
|
32
|
Prell T, Lautenschläger J, Grosskreutz J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 2013; 54:132-43. [DOI: 10.1016/j.ceca.2013.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 12/25/2022]
|
33
|
Vyazovskiy VV, Harris KD. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 2013; 14:443-51. [PMID: 23635871 PMCID: PMC3972489 DOI: 10.1038/nrn3494] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sleep is universal in animals, but its specific functions remain elusive. We propose that sleep's primary function is to allow individual neurons to perform prophylactic cellular maintenance. Just as muscle cells must rest after strenuous exercise to prevent long-term damage, brain cells must rest after intense synaptic activity. We suggest that periods of reduced synaptic input ('off periods' or 'down states') are necessary for such maintenance. This in turn requires a state of globally synchronized neuronal activity, reduced sensory input and behavioural immobility - the well-known manifestations of sleep.
Collapse
Affiliation(s)
- Vladyslav V. Vyazovskiy
- University of Surrey, Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, Guildford, GU2 7XH, UK
| | - Kenneth D. Harris
- University College London (UCL) Institute of Neurology, UCL Department of Neuroscience, Physiology, and Pharmacology, London, WC1E 6DE, UK
| |
Collapse
|
34
|
Favero CB, Henshaw RN, Grimsley-Myers CM, Shrestha A, Beier DR, Dwyer ND. Mutation of the BiP/GRP78 gene causes axon outgrowth and fasciculation defects in the thalamocortical connections of the mammalian forebrain. J Comp Neurol 2013; 521:677-96. [PMID: 22821687 PMCID: PMC3515720 DOI: 10.1002/cne.23199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 05/13/2012] [Accepted: 07/13/2012] [Indexed: 02/05/2023]
Abstract
Proper development of axonal connections is essential for brain function. A forward genetic screen for mice with defects in thalamocortical development previously isolated a mutant called baffled. Here we describe the axonal defects of baffled in further detail and identify a point mutation in the Hspa5 gene, encoding the endoplasmic reticulum chaperone BiP/GRP78. This hypomorphic mutation of BiP disrupts proper development of the thalamocortical axon projection and other forebrain axon tracts, as well as cortical lamination. In baffled mutant brains, a reduced number of thalamic axons innervate the cortex by the time of birth. Thalamocortical and corticothalamic axons are delayed, overfasciculated, and disorganized along their pathway through the ventral telencephalon. Furthermore, dissociated mutant neurons show reduced axon extension in vitro. Together, these findings demonstrate a sensitive requirement for the endoplasmic reticulum chaperone BiP/GRP78 during axon outgrowth and pathfinding in the developing mammalian brain.
Collapse
Affiliation(s)
- Carlita B. Favero
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Rasha N. Henshaw
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Ayushma Shrestha
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - David R. Beier
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Noelle D. Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
35
|
Hölttä-Vuori M, Salo VT, Ohsaki Y, Suster ML, Ikonen E. Alleviation of seipinopathy-related ER stress by triglyceride storage. Hum Mol Genet 2012; 22:1157-66. [PMID: 23250914 DOI: 10.1093/hmg/dds523] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations affecting the N-glycosylation site in Berardinelli-Seip lipodystrophy (BSCL)-associated gene BSCL2/seipin lead to a dominantly inherited spastic paraplegia termed seipinopathy. While the loss of function of seipin leads to severe congenital lipodystrophy, the effects of seipin N-glycosylation mutations on lipid balance in the nervous system are unknown. In this study, we show that expression of seipin N-glycosylation mutant N88S led to decreased triglyceride (TG) content in astrocytoma and motor neuron cell lines. This was corrected by supplementation with exogenous oleic acid. Upon oleic acid loading, seipin N88S protein was relocated from the endoplasmic reticulum (ER) to the surface of lipid droplets and this was paralleled by alleviation of ER stress induced by the mutant protein. This effect was not limited to seipin N88S, as oleic acid loading also reduced tunicamycin-induced ER stress in motor neuron cells. Furthermore, both seipin N88S and tunicamycin-induced ER stress were decreased by inhibiting lipolysis, suggesting that lipid droplets protected neuronal cells from ER stress. In developing zebrafish larvae, seipin N88S expression led to TG imbalance and reduced spontaneous free swimming. Importantly, supplementation with exogenous oleic acid reduced ER stress in the zebrafish head and increased fish motility. We propose that the decreased TG content contributes to the pathology induced by seipin N88S, and that rescuing TG levels may provide a novel therapeutic strategy in seipinopathy.
Collapse
Affiliation(s)
- Maarit Hölttä-Vuori
- Institute of Biomedicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
36
|
Zhang Y, Lu R, Liu W, Wu Y, Qian H, Zhao X, Wang S, Xing G, Yu F, Aschner M. Hormetic effects of acute methylmercury exposure on grp78 expression in rat brain cortex. Dose Response 2012; 11:109-20. [PMID: 23549286 DOI: 10.2203/dose-response.11-055.rongzhu] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study aims to explore the expression of GRP78, a marker of endoplasmic reticulum (ER) stress, in the cortex of rat brains acutely exposed to methylmercury (MeHg). Thirty Sprague-Dawley (SD) rats were randomly divided into six groups, and decapitated 6 hours (h) after intraperitoneal (i.p.) injection of MeHg (2, 4, 6, 8 or 10 mg/kg body weight) or normal saline. Protein and mRNA expression of Grp78 were detected by western blotting and real-time PCR, respectively. The results showed that a gradual increase in GRP78 protein expression was observed in the cortex of rats acutely exposed to MeHg (2, 4 or 6 mg/kg). Protein levels peaked in the 6 mg/kg group (p < 0.05 vs. controls), decreased in the 8 mg/kg group, and bottomed below the control level in the 10 mg/kg group. Parallel changes were noted for Grp78 mRNA expression. It may be implied that acute exposure to MeHg induced hormetic dose-dependent changes in Grp78 mRNA and protein expression, suggesting that activation of ER stress is involved in MeHg-induced neurotoxicity. Low level MeHg exposure may induce GRP78 protein expression to stimulate endogenous cytoprotective mechanisms.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Preventive Medicine, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu L, Liu C, Zhong Y, Apostolou A, Fang S. ER stress response during the differentiation of H9 cells induced by retinoic acid. Biochem Biophys Res Commun 2012; 417:738-743. [PMID: 22197812 DOI: 10.1016/j.bbrc.2011.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/08/2011] [Indexed: 02/05/2023]
Abstract
Endoplasmic reticulum (ER) stress occurs during early embryonic development. The aim of this study is to determine whether ER stress occurs during human embryonic stem cell differentiation induced by retinoic acid (RA). H9 human embryonic stem cells were subjected to RA treatment for up to 29days to induce differentiation. HEK293 cells were treated with RA as a control. The results demonstrate that several ER stress-responsive genes are differentially regulated in H9 and HEK293 cells in response to 5days of RA treatment. GRP78/Bip was upregulated in H9 cells but downregulated in HEK293 cells. eIF2α was downregulated in H9 cells but not in HEK293 cells. Phosphorylation of eIF2α was downregulated in H9 cells but upregulated in HEK293 cells. XBP-1 was downregulated immediately after RA treatment in H9 cells, but its downregulation was much slower in HEK293 cells. Additionally, two ER-resident E3 ubiquitin ligases, gp78 and Hrd1, were both upregulated in H9 cells following 5 days of exposure to RA. Moreover, the protein Bcl2 was undetectable in H9 cells and H9-derived cells but was expressed in HEK293 cells, and it expression in the two types of cells was unaltered by RA treatment. In H9 cells treated with RA for 29 days, GRP78/Bip, XBP-1 and Bcl2 were all upregulated. These results suggest that ER stress is involved in H9 cell differentiation induced by RA.
Collapse
Affiliation(s)
- Lihua Liu
- Clinical Pharmacology Institute, Anhui Medical University, Hefei, Anhui 230032, China
| | | | | | | | | |
Collapse
|
38
|
Cuello S, Ximénez-Embún P, Ruppen I, Schonthaler HB, Ashman K, Madrid Y, Luque-Garcia JL, Cámara C. Analysis of protein expression in developmental toxicity induced by MeHg in zebrafish. Analyst 2012; 137:5302-11. [DOI: 10.1039/c2an35913h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Olsvik PA, Amlund H, Torstensen BE. Dietary lipids modulate methylmercury toxicity in Atlantic salmon. Food Chem Toxicol 2011; 49:3258-71. [DOI: 10.1016/j.fct.2011.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/01/2011] [Accepted: 09/20/2011] [Indexed: 11/29/2022]
|
40
|
Weng WC, Lee WT, Hsu WM, Chang BE, Lee H. Role of glucose-regulated Protein 78 in embryonic development and neurological disorders. J Formos Med Assoc 2011; 110:428-37. [PMID: 21742246 DOI: 10.1016/s0929-6646(11)60064-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/26/2011] [Accepted: 05/05/2011] [Indexed: 12/12/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78) is an important chaperone protein that is predominantly expressed in the endoplasmic reticulum. The multifunctional roles of GRP78 in protein folding, endoplasmic reticulum calcium binding, cytoprotection, and anti-apoptosis, as well as its function as a receptor on the cell surface, disclose its major involvement in physiological and numerous pathological conditions. Recent advances in mouse models targeting GRP78 allele have revealed the essential roles of GRP78 in development and neurological disorders, as well as accurate neural migration and neuroprotection. This review of correlation between GRP78 and embryogenesis and neurological disorders provides further directions for investigation, as well as potential therapeutics for clinical use.
Collapse
Affiliation(s)
- Wen-Chin Weng
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
41
|
Olsvik PA, Brattås M, Lie KK, Goksøyr A. Transcriptional responses in juvenile Atlantic cod (Gadus morhua) after exposure to mercury-contaminated sediments obtained near the wreck of the German WW2 submarine U-864, and from Bergen Harbor, Western Norway. CHEMOSPHERE 2011; 83:552-563. [PMID: 21195448 DOI: 10.1016/j.chemosphere.2010.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 05/30/2023]
Abstract
The main aim of the present work was to investigate the effects of mercury (Hg)-enriched sediments on fish. Sediments near the sunken German WW2 submarine U-864, which according to historical documents included 67 tons of metallic Hg in its cargo, are enriched of Hg leaking from the wreckage. Juvenile Atlantic cod (Gadus morhua) were exposed to two field-collected polluted sediments (U-864: inorganic Hg and Bergen Harbor (Vågen): inorganic Hg, PCB and PAH) or two comparable reference sediments for 5 weeks in the laboratory, and transcriptional responses evaluated in gills and liver. Gills of fish exposed to the Hg-enriched sunken WW2 submarine U-864 sediment contained four fold higher Hg levels compared to the control fish. An increase in Hg content in liver in the U-864 fish was also observed. The transcriptional results showed that calreticulin, HSP70 and heme oxygenase mRNA were significantly up-regulated in gills in fish exposed to the Hg-enriched sediments, whereas calreticulin, heme oxygenase, transferrin and WAP65 were significantly up-regulated and glutathione peroxidase 4B and zona pellucida 3 were significantly down-regulated in liver tissue. In gills and liver of cod exposed to the mixed-contaminated Vågen sediment, CYP1A showed the highest induction. In conclusion, the experiment shows that sediment-bound Hg is available to the fish and affects the transcription of oxidative stress responsive enzymes, suggesting that the Hg-enriched sediments may negatively affect the local wildlife. Furthermore, the mixed contaminated sediments of Vågen affected similar responses in addition to Ah-receptor mediated responses reflecting exposure to PAHs and PCBs.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005 Bergen, Norway.
| | | | | | | |
Collapse
|
42
|
Cardano M, Diaferia GR, Cattaneo M, Dessì SS, Long Q, Conti L, Deblasio P, Cattaneo E, Biunno I. mSEL-1L (Suppressor/enhancer Lin12-like) protein levels influence murine neural stem cell self-renewal and lineage commitment. J Biol Chem 2011; 286:18708-19. [PMID: 21454627 DOI: 10.1074/jbc.m110.210740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L(-/-) NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L(+/+) NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination.
Collapse
Affiliation(s)
- Marina Cardano
- Doctorate School of Molecular Medicine, Università degli Studi di Milano, 20100 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Evidence for an instructive role of apoptosis during the metamorphosis of Hydractinia echinata (Hydrozoa). ZOOLOGY 2011; 114:11-22. [DOI: 10.1016/j.zool.2010.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/09/2010] [Accepted: 09/19/2010] [Indexed: 12/30/2022]
|
44
|
De Cegli R, Romito A, Iacobacci S, Mao L, Lauria M, Fedele AO, Klose J, Borel C, Descombes P, Antonarakis SE, di Bernardo D, Banfi S, Ballabio A, Cobellis G. A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes. Genome Biol 2010; 11:R64. [PMID: 20569505 PMCID: PMC2911112 DOI: 10.1186/gb-2010-11-6-r64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/03/2010] [Accepted: 06/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background Dosage imbalance is responsible for several genetic diseases, among which Down syndrome is caused by the trisomy of human chromosome 21. Results To elucidate the extent to which the dosage imbalance of specific human chromosome 21 genes perturb distinct molecular pathways, we developed the first mouse embryonic stem (ES) cell bank of human chromosome 21 genes. The human chromosome 21-mouse ES cell bank includes, in triplicate clones, 32 human chromosome 21 genes, which can be overexpressed in an inducible manner. Each clone was transcriptionally profiled in inducing versus non-inducing conditions. Analysis of the transcriptional response yielded results that were consistent with the perturbed gene's known function. Comparison between mouse ES cells containing the whole human chromosome 21 (trisomic mouse ES cells) and mouse ES cells overexpressing single human chromosome 21 genes allowed us to evaluate the contribution of single genes to the trisomic mouse ES cell transcriptome. In addition, for the clones overexpressing the Runx1 gene, we compared the transcriptome changes with the corresponding protein changes by mass spectroscopy analysis. Conclusions We determined that only a subset of genes produces a strong transcriptional response when overexpressed in mouse ES cells and that this effect can be predicted taking into account the basal gene expression level and the protein secondary structure. We showed that the human chromosome 21-mouse ES cell bank is an important resource, which may be instrumental towards a better understanding of Down syndrome and other human aneuploidy disorders.
Collapse
Affiliation(s)
- Rossella De Cegli
- Telethon Institute of Genetics and Medicine, Via P, Castellino 111, Napoli, 80131, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sun J, Zhang Y, Thiyagarajan V, Qian PY, Qiu JW. Protein expression during the embryonic development of a gastropod. Proteomics 2010; 10:2701-11. [DOI: 10.1002/pmic.200900846] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Abstract
Recently, we have generated transgenic mice (designated as SJLB) carrying human N279K mutant tau, one of the tau mutations causing parkinsonism linked to chromosome 17 (FTDP-17). SJLB mice mimic some features of behavioral alterations and neuronal pathology of patients with Alzheimer's disease. To investigate how tau dysfunctions cause these features, we examined the expression and phosphorylation levels in SJLB mouse hippocampal proteins using a phosphosensor dye in two-dimensional poly acrylamide gel electrophoresis analysis and mass spectrometry. Calreticulin and tubulin beta4 are significantly more phosphorylated, and heat shock cognate 71 kDa protein, tubulin beta2, vacuolar ATP synthase catalytic subunit A, alpha-internexin, alpha-enolase, ubiquitin carboxyl-terminal hydrolase isozyme L1, and complexin-2 are significantly less phosphorylated in SJLB mice than control mice. These proteins could be new targets for elucidating underlying mechanisms and therapeutic intervention in neurodegenerative diseases.
Collapse
|
47
|
INDHUMATHI C, CAI Y, GUAN Y, OPAS M. 3D boundary extraction of confocal cellular images using higher order statistics. J Microsc 2009; 235:209-20. [DOI: 10.1111/j.1365-2818.2009.03203.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Cho YM, Jang YS, Jang YM, Chung SM, Kim HS, Lee JH, Jeong SW, Kim IK, Kim JJ, Kim KS, Kwon OJ. Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med 2009; 41:440-52. [PMID: 19322020 DOI: 10.3858/emm.2009.41.6.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
When we treated rat bone marrow stromal cells (rBMSCs) with neuronal differentiation induction media, typical unfolded protein response (UPR) was observed. BIP/GRP78 protein expression was time-dependently increased, and three branches of UPR were all activated. ATF6 increased the transcription of XBP1 which was successfully spliced by IRE1. PERK was phosphorylated and it was followed by eIF2alpha phosphorylation. Transcription of two downstream targets of eIF2alpha, ATF4 and CHOP/GADD153, were transiently up-regulated with the peak level at 24 h. Immunocytochemical study showed clear coexpression of BIP and ATF4 with NeuN and Map2, respectively. UPR was also observed during the neuronal differentiation of mouse embryonic stem (mES) cells. Finally, chemical endoplasmic reticulum (ER) stress inducers, thapsigargin, tunicamycin, and brefeldin A, dose-dependently increased both mRNA and protein expressions of NF-L, and, its expression was specific to BIP-positive rBMSCs. Our results showing the induction of UPR during neuronal differentiations of rBMSCs and mES cells as well as NF-L expression by ER stress inducers strongly suggest the potential role of UPR in neuronal differentiation.
Collapse
Affiliation(s)
- Yoon Mi Cho
- Department of Biochemistry, 2MRC for Cell Death Disease Research Center, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Okada K, Hashimoto S, Funae Y, Imaoka S. Hydroxylated Polychlorinated Biphenyls (PCBs) Interact with Protein Disulfide Isomerase and Inhibit Its Activity. Chem Res Toxicol 2009; 22:899-904. [DOI: 10.1021/tx800476j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kazushi Okada
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan, and Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Shoko Hashimoto
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan, and Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yoshihiko Funae
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan, and Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Susumu Imaoka
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan, and Department of Chemical Biology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
50
|
Transcriptional control of the calreticulin gene in health and disease. Int J Biochem Cell Biol 2009; 41:531-8. [DOI: 10.1016/j.biocel.2008.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 11/22/2022]
|