1
|
Marczylo EL, Jackson S, Bell C, Andrews D, Clift MJD, Crawford I, Fejer G, Ferguson RMW, Fisher MC, Goode EJ, Isaac J, Kinnersley R, Morrissey JA, Pozdniakova S, Viegas C, Ward A, Wouters IM, Coulon F, Nasir ZA, Douglas P. Promoting global collaboration to improve bioaerosol exposure assessment and understanding of associated health impacts: outcomes from a series of workshops. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40372930 DOI: 10.1099/mic.0.001561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
We are surrounded, in both indoor and outdoor environments, by air containing particles of biological origin (bioaerosols). We constantly inhale them, and, depending upon their size, they deposit in different parts of our airways. Despite their ubiquitous nature and our constant exposure, bioaerosol diversity and composition of the environment are not well characterized, and we understand little about which bioaerosols we are exposed to and how this impacts our health, either positively or negatively. Indoor/Outdoor Bioaerosols Interface and Relationships Network (BioAirNet), a Clean Air Programme-funded network, has recognized the need for the bioaerosol community to reflect on the current challenges facing bioaerosol exposure assessment and the determination of the associated cellular/molecular responses driving specific health outcomes. A series of online workshops for the bioaerosol community were hosted by BioAirNet in September 2022, which aimed to bring together global expertise to discuss the current challenges impeding improved assessment of bioaerosol exposure and understanding of the downstream cellular and molecular mechanisms driving health outcomes by discussing these challenges; considering where we need to be, where we are now and how we get there. Professional facilitation was key to their success, enabling the multidisciplinary bioaerosol community to explore and address these challenges within a focused and productive environment to prioritize themes and agree on action plans for continued momentum following the workshops. These themes were as follows: (1) conceptual model; (2) stakeholder mapping; (3) knowledge transfer; (4) writing project and (5) conference-type event, collectively covering research, knowledge mobilization and networking activities. A subsequent in-person follow-up workshop was held in November 2023. It provided an opportunity to share progress on the five themes, critique what had already been done and act as a launch-pad to progress the actions further. Delegates also had the opportunity to share ongoing or upcoming work, particularly projects requiring input from others, to encourage collaborative working and sharing expertise. The use of facilitated workshops is a valuable tool for all scientific communities to collectively explore and successfully address key issues within their field.
Collapse
Affiliation(s)
- Emma L Marczylo
- Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
- Centre for Environmental Health and Sustainability, University of Leicester, University Road, Leicester, LE1 7RH, UK
- School of Public Health, Imperial College London, Michael Uren Building Engineering Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Simon Jackson
- School of Biomedical Science, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Christine Bell
- Centre for Facilitation, Liversedge, Yorkshire, WF15 8AZ, UK
| | - Daniel Andrews
- Centre for Facilitation, Liversedge, Yorkshire, WF15 8AZ, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Swansea University Medical School, Faculty of Medicine, Health and Life Sciences, Singleton Park Campus, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Ian Crawford
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Gyorgy Fejer
- School of Biomedical Science, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | | | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, W12 0BZ, London, UK
| | - Emma-Jane Goode
- Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - James Isaac
- Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Rob Kinnersley
- Chief Scientist's Group, Environmental Agency, Horizon House, Deanery Rd, Bristol, BS1 5AH, UK
| | - Julie A Morrissey
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Sofya Pozdniakova
- AIRLAB, ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Carla Viegas
- Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Andrew Ward
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Inge M Wouters
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Frederic Coulon
- Cranfield University, Faculty of Engineering and Applied Sciences, Cranfield, MK43 0AL, UK
| | - Zaheer A Nasir
- Cranfield University, Faculty of Engineering and Applied Sciences, Cranfield, MK43 0AL, UK
| | - Philippa Douglas
- Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
- Chief Scientist's Group, Environmental Agency, Horizon House, Deanery Rd, Bristol, BS1 5AH, UK
- Centre for Environmental Health and Sustainability, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
2
|
Li Y, Song X, Zhang Z, An C, Wang Y, Yang Y, Wen Y. Interfacial sorption of 17β-E2 on nano-microplastics: Effects of particle size, functional groups and hydrochemical conditions. ENVIRONMENTAL RESEARCH 2025; 270:120977. [PMID: 39880108 DOI: 10.1016/j.envres.2025.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Nano-microplastics and 17β-E2 have been frequently detected as emerging high-concern pollutants in aquatic systems, and their interaction at the solid/liquid interface has become a research focus in environmental studies. The interfacial sorption kinetics and equilibrium characteristics of 17β-estradiol (17β-E2) on nano-polystyrene (Nano-PS) with different particle sizes and organic functional group modifications were systematically investigated in aqueous environments in this study. The interfacial interaction mechanism between Nano-PS particles and 17β-E2 was elucidated by utilizing SEM, FTIR, XPS and BET techniques. The experimental results demonstrated that the interfacial sorption kinetics of 17β-E2 on different Nano-PS were rapid, in accordance with the pseudo-first-order models. Both Langmuir and Freundlich models provided a nice description of 17β-E2 sorption equilibrium on Nano-PS, indicating that physical effects predominantly governed the interfacial interactions. Modification of Nano-PS by -OH and -NH2 resulted in increase in polarity, decrease in hydrophobicity and reduction in the sorption capacity for 17β-E2, suggesting that hydrophobic partitioning primarily controlled the interfacial interaction between Nano-PS and 17β-E2. Furthermore, the superior sorption capacity of PS100-OH relative to PS100-NH2 can primarily be attributed to the enhanced hydrogen bonding capability provided by the -OH group. The sorption capacity of 17β-E2 by the same Nano-PS was inversely proportional to the particle size, indicating that a smaller particle size possessed larger specific surface area, thereby providing more active sites and facilitating more pore filling. Low temperature promoted the sorption process and increased the sorption capacity. This study established a scientific foundation for better assessment of the environmental behavior arising from co-pollution of nano-microplastics and endocrine disruptors (EDCs).
Collapse
Affiliation(s)
- Yuhan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, Jilin, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, Liaoning, China.
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Chengdu, 610000, Sichuan, China
| | - Changwei An
- Key Laboratory of Biomedical & Chemical Engineering of Liaoning Province, Liaoning Institute of Science and Technology, Benxi, 117004, Liaoning, China
| | - Yunlong Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, Liaoning, China
| | - Yuesuo Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, Jilin, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, Liaoning, China.
| |
Collapse
|
3
|
Jia Y, Huang Q, Song R, Tang Y, Feng M, Lu J. Effects of fermented bamboo fiber on intestinal health and fecal pollutants in weaned piglets. Front Nutr 2025; 12:1538560. [PMID: 40236635 PMCID: PMC11998670 DOI: 10.3389/fnut.2025.1538560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Weaning stress adversely affects piglet growth and development, thereby reducing the economic efficiency of pig farming operations. Furthermore, pig feces are a major source of environmental pollution, underscoring the need for effective strategies to mitigate fecal output at its source. Methods This study investigated the effects of dietary supplementation with fermented bamboo fiber (FBF) on growth performance, intestinal barrier integrity, gut microbiota composition, and fecal pollutant levels in weaned piglets. A total of 144 Duroc × Landrace × Yorkshire piglets, weaned at 21 days of age, were randomly assigned to 4 groups, with six replicates per group and 6 piglets per replicate. The control group (CON) received a basal diet, while the three treatment groups were fed the basal diet supplemented with 1, 1.5, and 2% FBF, respectively. The trial lasted 30 days. Results The findings revealed that FBF supplementation fortified the intestinal barrier, modulated colonic microbial communities, and decreased fecal pollutant levels. Among the treatment groups, supplementation with 1.5% FBF produced the most significant improvements in piglets' growth performance and intestinal barrier function, as well as the strongest microbial interactions and the greatest reduction in fecal pollutants. Discussion These results suggest that FBF supplementation can alleviate weaning stress and mitigate the environmental impact of pig feces, with 1.5% identified as the optimal supplementation level.
Collapse
Affiliation(s)
- Yubiao Jia
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qiuming Huang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Rui Song
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yanling Tang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mengxin Feng
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jianjun Lu
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Morgado-Gamero WB, Hernandez L, Medina J, De Moya I, Gallego-Cartagena E, Parody A, Agudelo-Castañeda D. Antibiotic-resistant bacteria aerosol in a Caribbean coastal city: Pre- and post- COVID-19 lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178158. [PMID: 39721525 DOI: 10.1016/j.scitotenv.2024.178158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
This study assessed the prevalence and spatial distribution of viable ultrafine and fine antibiotic-resistant bacteria aerosols (ARB) in the Metropolitan Area of Barranquilla, Colombia, pre- and post-lockdown (September 2019 to December 2020). Samples were systematically collected from urban, suburban, and rural sites using a six-stage viable cascade impactor. We employed logistic regression and Bayesian Neural Network Classifiers to analyze meteorological variables' influence on antibiotic resistance persistence. The lockdown led to a significant decrease (76 %) in overall bacterial aerosol concentrations, likely due to reduced human activity. The most significant reduction (82 %) was observed at Peace Square. Bacillus cereus was the most prevalent species, showing high concentrations at all sampling sites. Other species, like Leifsonia aquatica and Staphylococcus lentus, were linked to wastewater effluents and agricultural activities. Despite the overall decrease in bacterial aerosols, antibiotic-resistant bacteria remained high, particularly in highly impacted urban areas like the Barranquilla Riverwalk. Bacillus cereus exhibited resistance to multiple antibiotics, including commonly used ones like Ampicillin and Penicillin G. Resistance to newer antibiotics like Vancomycin was rare. Peace Square, a high-traffic urban area, showed elevated resistance rates in the deeper respiratory regions compared to other locations. Our findings indicate that while overall concentration levels decreased, the threat of antibiotic resistance in bacterial bioaerosols persists, emphasizing the need for continuous monitoring and targeted public health interventions in urban areas.
Collapse
Affiliation(s)
- Wendy B Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura Hernandez
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Faculty of Basic Sciences, Universidad del Atlantico, Puerto Colombia, Colombia
| | - Jhorma Medina
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | - Iuleder De Moya
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | | | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Dayana Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia.
| |
Collapse
|
5
|
Ding L, Zhang Q, Yu L, Jiang R, Yao C, Wang C, Li Q. Decay of Airborne Bacteria from Cattle Farm Under A-Band Ultraviolet Radiation. Animals (Basel) 2024; 14:3649. [PMID: 39765553 PMCID: PMC11672824 DOI: 10.3390/ani14243649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inspired by the effects of solar or UV radiation on the decay of airborne bacteria during their transport, this study investigated the effect of UVA on the decay of airborne bacteria from cattle houses and analyzed the potential use of UVA to reduce indoor airborne bacteria under laboratory conditions. Airborne bacteria from the cattle source were generated and released into a small-scale test chamber (1.5 m3) with different strategies according to the different objectives in decay tests and simulated sterilization tests. Increasing with the UVA radiation gradients (0, 500, 1000, 1500 μW cm-2), the average decay rate of total curable airborne bacteria ranged from 2.7% to 61.6% in decay tests. Under the combination of different UVA radiation intensities (2000 μW cm-2 in maximum) and radiation durations (60 min in maximum), simulated sterilization tests were conducted to examine the potential use of UVA radiation for air sterilization in animal houses. With the dynamic inactive rate (DIR) ranging from 17.2% to 62.4%, we proved that UVA may be an alternative way to reduce the indoor airborne bacteria in cattle houses if applied properly. Similar effects would be achieved using either a high radiation intensity with a short radiation duration or a low radiation intensity with a long radiation duration.
Collapse
Affiliation(s)
- Luyu Ding
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Qing Zhang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Ligen Yu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Ruixiang Jiang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Chunxia Yao
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Chaoyuan Wang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Qifeng Li
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| |
Collapse
|
6
|
El-Bestawy E, Ibrahim MM, Shalaby ESA. Quantitative and qualitative analysis of bioaerosols emissions from the domestic eastern wastewater treatment plant, Alexandria, Egypt. Sci Rep 2024; 14:30479. [PMID: 39681559 DOI: 10.1038/s41598-024-79645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Bioaerosol studies showed that wastewater treatment plants (WWTPs) are a significant source of bioaerosol emissions. In this study, 170 samples of total bacteria, total coliform, and total fungi were collected from 10 sites within a domestic WWTP, Alexandria, Egypt, using the sedimentation technique. According to the Index of Microbial Air Contamination (IMA) classes, the total bacteria range was 108-5120 CFU/dm2/hour, and all samples were classified as "very poor" except one sample of an office, which was classified as "poor." The total coliform range was 0-565 CFU/dm2/hour, and 6 samples were classified as "very poor," while one sample was classified as "poor." The total fungi range was 0-209 CFU/dm2/hour, and 9 samples were classified as "very poor," while 4 samples were classified as "poor." After the conversion to CFU/m3, the counts of total bacteria, total coliforms, and total fungi were 897 - 42.7 × 103, 0-4.71 × 103, and 0-2.69 × 103 CFU/m3, respectively. Several identified bioaerosols have been reported before as a cause of human infections. They included Lysinibacillus fusiformis, Bacillus cereus, Alcaligenes faecalis, Klebsiella sp., Escherichia coli, Aspergillus spp., Penicillium spp., Rhizopus sp., Candida sp., and Rhodotorula sp. These results indicated an increased health risk to WWTP staff, which needs more attention and more efficient control measures.
Collapse
Affiliation(s)
- Ebtesam El-Bestawy
- Department of Environmental Studies, Institute of Graduate Studies & Research (IGSR), Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| | - Mohammed Mahmoud Ibrahim
- Department of Environmental Studies, Institute of Graduate Studies & Research (IGSR), Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt
| | - El Sayed Ahmed Shalaby
- Department of Environmental Studies, Institute of Graduate Studies & Research (IGSR), Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
7
|
Bani A, Whitby C, Colbeck I, Dumbrell AJ, Ferguson RMW. Rapid In-Field Detection of Airborne Pathogens Using Loop-Mediated Isothermal Amplification (LAMP). Microorganisms 2024; 12:2578. [PMID: 39770780 PMCID: PMC11678261 DOI: 10.3390/microorganisms12122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple human and plant pathogens are dispersed and transmitted as bioaerosols (e.g., Mycobacterium tuberculosis, SARS-CoV-2, Legionella pneumophila, Aspergillus fumigatus, Phytophthora spp., and Fusarium graminearum). Rapid, on-site methods to detect airborne pathogens would greatly enhance our ability to monitor exposure and trigger early mitigation measures across different settings. Analysis of air samples for microorganisms in a regulatory context is often based on culture-based methods, which are slow, lack specificity, and are not suitable for detecting viruses. Molecular methods (based on nucleic acids) could overcome these challenges. For example, loop-mediated isothermal amplification (LAMP) is rapid, sensitive, specific, and may detect microbial pathogens from air samples in under 60 min. However, the low biomass in air samples makes recovering sufficient nucleic acids for detection challenging. To overcome this, we present a simple method for concentrating bioaerosols collected through liquid impingement (one of the most common methods for bioaerosol collection). This method paired with LAMP (or other molecular approaches) offers simple, rapid, and sensitive detection of pathogens. We validated this method using three airborne pathogens (Mycobacterium tuberculosis, Legionella pneumophila, and Aspergillus fumigatus), and we were able to detect fewer than five cells in a 15 mL liquid impinger air sample in under 60 min. This simple method offers rapid pathogen detection without the use of specialist equipment, and it can be used across healthcare, education, environmental monitoring, and military settings.
Collapse
Affiliation(s)
- Alessia Bani
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; (A.B.); (C.W.); (I.C.); (A.J.D.)
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby DE22 1GB, UK
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; (A.B.); (C.W.); (I.C.); (A.J.D.)
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; (A.B.); (C.W.); (I.C.); (A.J.D.)
| | - Alex J. Dumbrell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; (A.B.); (C.W.); (I.C.); (A.J.D.)
| | - Robert M. W. Ferguson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; (A.B.); (C.W.); (I.C.); (A.J.D.)
| |
Collapse
|
8
|
Kumar P, Tiwari S, Uguz S, Li Z, Gonzalez J, Wei L, Samuel RS, Zhang Y, Yang X. Bioaerosols downwind from animal feeding operations: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135825. [PMID: 39326148 DOI: 10.1016/j.jhazmat.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Bioaerosols originating from animal feeding operations (AFOs) may carry pathogens, allergens, and other hazardous biocomponents, such as endotoxins, posing a potential risk to community health and the environment when dispersed downwind. This review summarizes and synthesizes existing literature data on bioaerosols downwind from three major types of AFOs (swine, poultry, and cattle), covering their composition, concentration, dispersion patterns, measurement methodologies, potential health effects, and mitigation strategies. While many of these bioaerosols are typically detected only near AFOs, evidence indicates that certain bioaerosols, particularly viruses, can travel up to tens of kilometers downwind and remain infectious. Despite the critical importance of these bioaerosols, a refined modeling framework to simulate their transport and fate in downwind air has not yet been developed, nor have source attribution methods been established to track their origins in complex agricultural environments where multiple bioaerosols could co-exist. Therefore, it is imperative to further research downwind bioaerosols from AFOs, including their assessment, modeling, source attribution, and mitigation, to address the public health and environmental challenges associated with animal agriculture.
Collapse
Affiliation(s)
- Pradeep Kumar
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Shalini Tiwari
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Seyit Uguz
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA; Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16240, Turkey
| | - Zonggang Li
- Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jose Gonzalez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lin Wei
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Yuanhui Zhang
- Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xufei Yang
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
9
|
Plaza PI, Lambertucci SA. Unsustainable production patterns and disease emergence: The paradigmatic case of Highly Pathogenic Avian Influenza H5N1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175389. [PMID: 39134272 DOI: 10.1016/j.scitotenv.2024.175389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Current food production systems are causing severe environmental damage, including the emergence of dangerous pathogens that put humans and wildlife at risk. Several dangerous pathogens (e.g., the 2009 A(H1N1) Influenza Virus, Nipah virus) have emerged associated with the dominant intensive food production systems. In this article, we use the case of the emergence and spillover of the Highly Pathogenic Avian Influenza virus H5N1 (hereafter, H5N1) to illustrate how intensive food production methods provide a breeding ground for dangerous pathogens. We also discuss how emerging pathogens, such as H5N1, may affect not only ecosystem health but also human well-being and the economy. The current H5N1 panzootic (2020-2024) is producing a catastrophic impact: the millions of domestic birds affected by this virus have led to significant economic losses globally, and wild birds and mammals have suffered alarming mortalities, with the associated loss of their material and non-material ecosystem services. Transformative actions are required to reduce the emergence and impact of pathogens such as H5N1; we particularly need to reconsider the ways we are producing food. Governments should redirect funds to the promotion of alternative production systems that reduce the risk of new emerging pathogens and produce environmentally healthy food. These systems need to have a positive relationship with nature rather than being systems based on business as usual to the detriment of the environment. Sustainable food production systems may save many lives, economies, and biodiversity, together with the ecosystem services species provide.
Collapse
Affiliation(s)
- Pablo I Plaza
- Grupo de Investigaciones en Biología de la Conservación, Laboratorio Ecotono, INIBIOMA, Universidad Nacional del Comahue - CONICET, Quintral 1250 (R8400FRF), San Carlos de Bariloche, Argentina.
| | - Sergio A Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, Laboratorio Ecotono, INIBIOMA, Universidad Nacional del Comahue - CONICET, Quintral 1250 (R8400FRF), San Carlos de Bariloche, Argentina
| |
Collapse
|
10
|
Cheng L, Zhang X, Wang C, Deng O, Gu B. Whole-chain intensification of pig and chicken farming could lower emissions with economic and food production benefits. NATURE FOOD 2024; 5:939-950. [PMID: 39472730 DOI: 10.1038/s43016-024-01067-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024]
Abstract
Intensified monogastric livestock management could conserve feed inputs and mitigate some of the environmental and climate challenges associated with animal production. In this study, we used data from 166 countries to model the environmental, climate and economic impacts of pig and chicken intensification. We found that whole-chain intensification could reduce annual nitrogen and greenhouse gas emissions by 49% (4.6 Tg) and 68% (554 Tg CO2-equivalent), respectively. These changes translate to 5.0 Tg lower nitrogen fertilizer input for feed production, resulting in an overall benefit of US$93 billion. Integrated crop-livestock optimization under intensive management could release 27 Mha of cropland and provide additional food for 310 million people. A judicious promotion of intensification could alleviate global pressures related to food security, environment and climate change.
Collapse
Affiliation(s)
- Luxi Cheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China
| | - Xiuming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Chen Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ouping Deng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Shin S, Yoon WS, Lee HS, Jo JH, Byeon SH. Airborne concentrations of bacteria and mold in Korean public-use facilities: measurement, systematic review, meta-analysis, and probabilistic human inhalation risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54854-54872. [PMID: 39215918 DOI: 10.1007/s11356-024-34749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Bioaerosols adversely affect human health posing risk to users of public facilities in Korea. Between October 2021 and May 2022, airborne bacteria and mold were measured in 1,243 public-use facilities across 23 categories. A systematic review and meta-analysis were performed on these and other studies from June 2004 to May 2021, and the non-carcinogenic risks to humans were assessed using Monte Carlo simulations. For bacteria, the maximum 95th percentile concentration was 584.4 cfu/m3 and 1384.8 cfu/m3 for mold. The heterogeneity statistic I2 was over 50% in all facilities, and for subway station bacteria, there was a significant difference according to the measurement method. The 95th percentile of hazard by population group was 8.83 × 10-2 to 3.42 × 10-1 for bacteria, and 1.31 × 10-1 to 3.55 × 10-1 for mold. The probability of a hazard quotient exceeding 1 for some population groups was derived from exposure to bacteria and mold in the air resulting from the use of all public facilities. The most powerful explanatory factor for risk was exposure time to the facility, both within (up to 0.922 for bacteria and up to 0.960 for mold) and between populations (up to 0.543 for bacteria and 0.483 for mold). This study identified populations at risk of bioaerosol exposure in Korean public-use facilities and estimated the influencing factors, highlighting the need for comprehensive improvement in bioaerosol control in public-use facilities.
Collapse
Affiliation(s)
- Saemi Shin
- Research Institute of Health Sciences, Korea University, Seoul, Korea
| | - Won Suck Yoon
- Allergy and Immunology Center, Korea University, Seoul, Korea
| | - Hyo Seon Lee
- Allergy and Immunology Center, Korea University, Seoul, Korea
| | - Jeong Heum Jo
- National Institute of Environmental Research, Incheon, Korea
| | - Sang-Hoon Byeon
- School of Health and Environmental Science, Korea University, Seoul, Korea.
| |
Collapse
|
12
|
Wang Z, Sun J, Yang P, Zhang W, Jiang Y, Liu Q, Yang Y, Hao R, Guo G, Huo W, Zhang Q, Li Q. Molecular Analysis of Indole and Skatole Decomposition Metabolism in Acinetobacter piscicola p38 Utilizing Biochemical and Omics Approaches. Microorganisms 2024; 12:1792. [PMID: 39338467 PMCID: PMC11434297 DOI: 10.3390/microorganisms12091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Indole and skatole (3-methylindole, C9H9N) are common nitrogen-containing heterocyclic pollutants found in waste, wastewater treatment plants, and public restrooms and are the most notorious compounds in animal feces. Biodegradation was considered a feasible method for the removal of indole and skatole, but a comprehensive understanding of the metabolic pathways under both aerobic and anaerobic conditions was lacking, and the functional genes responsible for skatole biodegradation remained a mystery. Through metagenomic and gene cluster functional analysis, Acinetobacter piscicola p38 (NCBI: CP167896), genes 1650 (styrene monooxygenase: ACDW34_08180), and 1687 (styrene monooxygenase: ACDW34_08350) were identified as having the potential to degrade indole and skatole. The heterologous expression results demonstrate that the genes 1650 and 1651 (flavin reductase: ACDW34_08185), when combined, are capable of degrading indole, while the genes 1687 and 1688 (flavin reductase: ACDW34_08355), in combination, can degrade indole as well as skatole. These reactions necessitate the involvement of flavin reductase and NAD(P)H to catalyze the oxygenation process. This work aimed to provide new experimental evidence for the biodegradation of indole and skatole. This study offered new insights into our understanding of skatole degradation. The Acinetobacter_piscicola p38 strain provided an effective bacterial resource for the bioremediation of fecal indole and skatole.
Collapse
Affiliation(s)
- Zhonghao Wang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Jiajin Sun
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Pu Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Wanjun Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Yihong Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Yunqi Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Qiang Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030800, China;
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| |
Collapse
|
13
|
Ye Z, Ji B, Peng Y, Song J, Zhao T, Wang Z. Screening and Characterization of Probiotics Isolated from Traditional Fermented Products of Ethnic-Minorities in Northwest China and Evaluation Replacing Antibiotics Breeding Effect in Broiler. Pol J Microbiol 2024; 73:275-295. [PMID: 39213263 PMCID: PMC11398283 DOI: 10.33073/pjm-2024-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, Lactobacillus fermentum DM7-6 (DM7-6), Lactobacillus plantarum DM9-7 (DM9-7), and Bacillus subtilis YF9-4 (YF9-4) were isolated from traditional fermented products. The survival rate of DM7-6, DM9-7, and YF9-4 in simulated intestinal gastric fluid reached 61.29%, 44.82%, and 55.26%, respectively. These strains had inhibition ability against common pathogens, and the inhibition zone diameters were more than 7 mm. Antioxidant tests showed these strains had good scavenging capacity for superoxide anion, hydroxyl radical and DPPH, and the total reduction capacity reached 65%. Then DM7-6, DM9-7 and YF9-4 were fed to broilers to study the effects on antioxidant capacity, immune response, biochemical indices, tissue morphology, and gut microbiota. 180 healthy broilers were allocated randomly into six experimental groups. SOD, GSH-Px, and T-AOC in broilers serum were detected, and the results showed probiotics significantly improve antioxidant capacity compared to CK group, while antibiotics showed the opposite result. Besides, IgA, IgM, IgG, TNF-α, and IL-2 indicated it could significantly improve immunity by adding probiotics in broilers diets. However, antibiotics reduced immunoglobulin levels and enhanced inflammation index. Biochemical indicators and tissue morphology showed probiotics had a protective effect on metabolic organs. Gut microbiota analysis proved antibiotics could significantly decrease microbial community diversity and increase the proportion of opportunistic pathogens, while probiotics could improve the diversity of gut microbiota and promote the colonization of beneficial microorganisms. In summary, probiotics DM7-6, DM9-7, and YF9-4 can improve the broiler's health by improving antioxidant capacity and immune function, regulating gut microbiota, and can be used as alternative probiotics for antibiotics-free breeding of broilers.
Collapse
Affiliation(s)
- Ze Ye
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Bin Ji
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Yinan Peng
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Jie Song
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Tingwei Zhao
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
- School of Life Science, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
14
|
Bender BG, Crooks J, Gerald JK, Hudson B, King DK, Kobernick A, Liu AH, Lowe AA, Morgan W, Nez P, Phan H, Wightman P, Gerald LB. Childhood asthma exacerbations on the Navajo Nation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2173-2175.e1. [PMID: 38697473 PMCID: PMC11391854 DOI: 10.1016/j.jaip.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Bruce G Bender
- Division of Biostatistics, Department of Pediatrics, Center for Health Promotion, National Jewish Health, Denver, Colo.
| | - James Crooks
- Division of Biostatistics, Department of Pediatrics, Center for Health Promotion, National Jewish Health, Denver, Colo
| | - Joe K Gerald
- Advanced Nursing and Science Division, College of Nursing, Department of Public Health Practice, Policy and Translational Research, Pulmonary and Sleep Medicine, The Zuckerman College of Public Health, Center for Population Science and Discovery, University of Arizona, Tucson, Ariz
| | - Bryan Hudson
- Division of Biostatistics, Department of Pediatrics, Center for Health Promotion, National Jewish Health, Denver, Colo
| | - Diane K King
- Center for Behavioral Health Research and Services, University of Alaska Anchorage, Anchorage, Alaska
| | - Aaron Kobernick
- Section of Allergy and Immunology, Department of Dermatology, University of Utah, Salt Lake City, Utah
| | - Andrew H Liu
- The Breathing Institute, Childrens Hospital Colorado, University of Colorado, Denver, Colo
| | - Ashley A Lowe
- Advanced Nursing and Science Division, College of Nursing, Department of Public Health Practice, Policy and Translational Research, Pulmonary and Sleep Medicine, The Zuckerman College of Public Health, Center for Population Science and Discovery, University of Arizona, Tucson, Ariz
| | - Wayne Morgan
- Advanced Nursing and Science Division, College of Nursing, Department of Public Health Practice, Policy and Translational Research, Pulmonary and Sleep Medicine, The Zuckerman College of Public Health, Center for Population Science and Discovery, University of Arizona, Tucson, Ariz
| | - Peter Nez
- Division of Biostatistics, Department of Pediatrics, Center for Health Promotion, National Jewish Health, Denver, Colo
| | - Hanna Phan
- Clinical Pharmacy, University of Michigan, Ann Arbor, Mich
| | - Patrick Wightman
- Advanced Nursing and Science Division, College of Nursing, Department of Public Health Practice, Policy and Translational Research, Pulmonary and Sleep Medicine, The Zuckerman College of Public Health, Center for Population Science and Discovery, University of Arizona, Tucson, Ariz
| | - Lynn B Gerald
- Office of Population Health Sciences, Office of the Vice Chancellor for Health Affairs, University of Illinois Chicago, Chicago, Ill
| |
Collapse
|
15
|
Ding L, Zhang Q, Wang C, Yao C, Shan F, Li Q. A Clean and Health-Care-Focused Way to Reduce Indoor Airborne Bacteria in Calf House with Long-Wave Ultraviolet. Microorganisms 2024; 12:1472. [PMID: 39065239 PMCID: PMC11279370 DOI: 10.3390/microorganisms12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term exposure to a relatively high concentration of airborne bacteria emitted from intensive livestock houses could potentially threaten the health and welfare of animals and workers. There is a dual effect of air sterilization and promotion of vitamin D synthesis for the specific bands of ultraviolet light. This study investigated the potential use of A-band ultraviolet (UVA) tubes as a clean and safe way of reducing airborne bacteria and improving calf health. The composition and emission characteristics of airborne bacteria were investigated and used to determine the correct operating regime of UVA tubes in calf houses. Intermittent exceedances of indoor airborne bacteria were observed in closed calf houses. The measured emission intensity of airborne bacteria was 1.13 ± 0.09 × 107 CFU h-1 per calf. Proteobacteria were the dominant microbial species in the air inside and outside calf houses. After UVA radiation, the indoor culturable airborne bacteria decreased in all particle size ranges of the Anderson sampler, and it showed the highest reduction rate in the size range of 3.3-4.7 μm. The results of this study would enrich the knowledge of the source characteristics of the airborne bacteria in intensive livestock farming and contribute to the environmental control of cattle in intensive livestock production.
Collapse
Affiliation(s)
- Luyu Ding
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Qing Zhang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Chaoyuan Wang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Chunxia Yao
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Feifei Shan
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qifeng Li
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| |
Collapse
|
16
|
Pohl E, Lee SR. Local and Global Public Health and Emissions from Concentrated Animal Feeding Operations in the USA: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:916. [PMID: 39063493 PMCID: PMC11276819 DOI: 10.3390/ijerph21070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Up to 1.6 million tons of waste is produced annually by each of more than 21,000 concentrated animal feeding operations (CAFOs) located in the United States (USA). These operations give rise to externalities, including adverse local and global health impacts from CAFO waste emissions, which can potentially outweigh their economic viability. However, a shortage of evidence synthesis research exclusively on the impacts of USA-based CAFO waste emissions may hinder effective policy development. This scoping review (ScR) study, adhering to the guidelines from the Joanna Briggs Institute, conducted a search in databases including Scopus, Web of Science, PubMed, and Embase in May 2020, resulting in ten publications that met the inclusion criteria. The results suggest possible exposure of CAFO workers to multidrug-resistant Staphylococcus aureus (MDRSA), campylobacteriosis, and cryptosporidiosis. Communities near CAFOs experienced higher rates of adverse health impacts compared to those in non-CAFO areas, with patterns suggesting that proximity may correlate with increased odds of detrimental health effects. Implicit global health threats include methicillin-resistant Staphylococcus aureus (MRSA), MDRSA, campylobacteriosis, tuberculosis, and cryptosporidiosis. These studies provide foundational insights into CAFO proximity, density patterns, and adverse public health effects, indicating a need for evidence-informed environmental health policies to minimize local and global risks.
Collapse
Affiliation(s)
- Elise Pohl
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sang-Ryong Lee
- Aero-Soil Laboratory, Department of Biological and Environmental Science, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
17
|
Zhang X, Ma Z, Hao P, Ji S, Gao Y. Characteristics and health impacts of bioaerosols in animal barns: A comprehensive study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116381. [PMID: 38676963 DOI: 10.1016/j.ecoenv.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Bioaerosols produced during animal production have potential adverse effects on the health of workers and animals. Our objective was to investigate characteristics, antibiotic-resistance genes (ARGs), and health risks of bioaerosols in various animal barns. Poultry and swine barns had high concentrations of airborne bacteria (11156 and 10917 CFU/m3, respectively). Acinetobacter, Clostridium sensu stricto, Corynebacterium, Pseudomonas, Psychrobacter, Streptococcus, and Staphylococcus were dominant pathogenic bacteria in animal barns, with Firmicutes being the most abundant bacterial phylum. Based on linear discriminant analysis effect size (LEfSe), there were more discriminative biomarkers in cattle barns than in poultry or swine barns, although the latter had the highest abundance of bacterial pathogens and high abundances of ARGs (including tetM, tetO, tetQ, tetW sul1, sul2, ermA, ermB) and intI1). Based on network analyses, there were higher co-occurrence patterns between bacteria and ARGs in bioaerosol from swine barns. Furthermore, in these barns, relative abundance of bacteria in bioaerosol samples was greatly affected by environmental factors, mainly temperature, relative humidity, and concentrations of CO2, NH3, and PM2.5. This study provided novel data regarding airborne bio-contaminants in animal enclosures and an impetus to improve management to reduce potential health impacts on humans and animals.
Collapse
Affiliation(s)
- Xiqing Zhang
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Zhenhua Ma
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Peng Hao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Shaoze Ji
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Yunhang Gao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China.
| |
Collapse
|
18
|
Plewa-Tutaj K, Krzyściak P, Dobrzycka A. Mycological air contamination level and biodiversity of airborne fungi isolated from the zoological garden air - preliminary research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43066-43079. [PMID: 38890249 PMCID: PMC11222260 DOI: 10.1007/s11356-024-33926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The aim of this paper was to evaluate the degree of mycological air contamination and determine the taxonomic diversity of airborne fungi residing in the air of 20 different animal facilities in a zoological garden. The concentrations of fungi in the zoological garden were measured using a MAS-100 air sampler. The collected microorganisms were identified using the combination of molecular and morphological methods. The fungal concentration ranged from 50 to 3.65 × 104 CFU/m3 during the whole study. The quantitative analysis of the fungal aerosol showed that the obtained concentration values were lower than the recommended permissible limits (5 × 104 CFU/m3 for fungi). Environmental factors, including temperature and relative humidity, exerted a varying effect on the presence and concentration of isolated fungi. Relative humidity was shown to correlate positively with the concentration of fungal spores in the air of the facilities studied (rho = 0.57, p < 0.0021). In parallel, no significant correlation was established between temperature and total fungal concentration (rho = - 0.1, p < 0.2263). A total of 112 fungal strains belonging to 50 species and 10 genera were isolated. Penicillium was the dominant genera, including 58.9% of total fungal strains, followed by Aspergillus 25.89%, Cladosporium 3.57%, Talaromyces 3.57%, Mucor 1.78%, Schizophyllum 1.78%, Syncephalastrum 0.89%, Alternaria 0.89%, Absidia 0.89%, and Cunninghamella 0.89%. Our preliminary studies provide basic information about the fungal concentrations, as well as their biodiversity in zoological garden. Further studies are needed to generate additional data from long-term sampling in order to increase our understanding of airborne fungal composition in the zoological garden.
Collapse
Affiliation(s)
- Kinga Plewa-Tutaj
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Wrocław, 51-148, Poland.
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Chair of Microbiology, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Aleksandra Dobrzycka
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Wrocław, 51-148, Poland
| |
Collapse
|
19
|
de Rooij MMT, Erbrink HJ, Smit LAM, Wouters IM, Hoek G, Heederik DJJ. Short-term residential exposure to endotoxin emitted from livestock farms in relation to lung function in non-farming residents. ENVIRONMENTAL RESEARCH 2024; 243:117821. [PMID: 38072102 DOI: 10.1016/j.envres.2023.117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Evidence on the public health relevance of exposure to livestock farm emissions is increasing. Research mostly focused on chemical air pollution, less on microbial exposure, while endotoxins are suggested relevant bacterial components in farm emissions. Acute respiratory health effects of short-term exposure to livestock-related air pollution has been shown for NH3 and PM10, but has not yet been studied for endotoxin. We aimed to assess associations between lung function and short-term exposure to livestock farming emitted endotoxin in co-pollutant models with NH3 and PM10. METHODS In 2014/2015, spirometry was conducted in 2308 non-farming residents living in a rural area in the Netherlands. Residential exposure to livestock farming emitted endotoxin during the week prior to spirometry was estimated by dispersion modelling. The model was applied to geo-located individual barns within 10 km of each home address using provincial farm data and local hourly meteorological conditions. Regional week-average measured concentrations of NH3 and PM10 were obtained through monitoring stations. Lung function parameters (FEV1, FVC, FEV1/FVC, MMEF) were expressed in %-predicted value based on GLI-2012. Exposure-response analyses were performed by linear regression modelling. RESULTS Week-average endotoxin exposure was negatively associated with FVC, independently from regional NH3 and PM10 exposure. A 1.1% decline in FVC was estimated for an increase of endotoxin exposure from 10th to 90th percentile. Stratified analyses showed a larger decline (3.2%) for participants with current asthma and/or COPD. FEV1 was negatively associated with week-average endotoxin exposure, but less consistent after co-pollutant adjustment. FEV1/FVC and MMEF were not associated with week-average endotoxin exposure. CONCLUSIONS Lower lung function in non-farming residents was observed in relation to short-term residential exposure to livestock farming emitted endotoxin. This study indicates the probable relevance of exposure to microbial emissions from livestock farms considering public health besides chemical air pollution, necessitating future research incorporating both.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
20
|
Gigot C, Lowman A, Ceryes CA, Hall DJ, Heaney CD. Industrial Hog Operation Workers' Perspectives on Occupational Exposure to Zoonotic Pathogens: A Qualitative Pilot Study in North Carolina, USA. New Solut 2024; 33:209-219. [PMID: 38062664 DOI: 10.1177/10482911231217055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Industrial hog operation (IHO) workers face a range of occupational hazards, including exposure to zoonotic pathogens such as livestock-associated antimicrobial-resistant Staphylococcus aureus and swine-origin influenza viruses with epidemic or pandemic potential. To better understand this population's occupational exposure to zoonotic pathogens, we conducted a community-driven qualitative research study in eastern North Carolina. We completed in-depth interviews with ten IHO workers and used thematic analysis to identify and analyze patterns of responses. Workers described direct and indirect occupational contact with hogs, with accompanying potential for dermal, ingestion, and inhalation exposures to zoonotic pathogens. Workers also described potential take-home pathways, wherein they could transfer livestock-associated pathogens and other contaminants from IHOs to their families and communities. Findings warrant future research, and suggest that more restrictive policies on antimicrobials, stronger health and safety regulations, and better policies and practices across all IHOs could afford greater protection against worker and take-home zoonotic pathogen exposures.
Collapse
Affiliation(s)
- Carolyn Gigot
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amy Lowman
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Caitlin A Ceryes
- Department of Health Sciences, Towson University, Towson, MD, USA
| | - Devon J Hall
- Rural Empowerment Association for Community Help, Warsaw, NC, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Community Science and Innovation for Environmental Justice Initiative, Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
| |
Collapse
|
21
|
Perricone V, Schokker D, Bossers A, de Bruijn A, Kar SK, Te Pas MFW, Rebel JMJ, Wouters IM, de Jong IC. Dietary strategies can increase cloacal endotoxin levels and modulate the resident microbiota in broiler chickens. Poult Sci 2024; 103:103312. [PMID: 38100944 PMCID: PMC10762469 DOI: 10.1016/j.psj.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Endotoxins released from poultry feces have been associated with impaired human health. Because endotoxins are released from gram-negative intestinal bacteria, it was hypothesized that dietary strategies may influence endotoxin excretion via modulation of gut microbiota. We therefore tested dietary strategies that could potentially reduce cloacal endotoxin levels in broiler chickens. One-day-old male Ross 308 (N = 1,344) broilers were housed in 48 pens (N = 8 pens/treatment, 28 chickens per pen) and fed 1 of 6 diets for 35 days (d) in a 3-phase feeding program: a basic diet (CON) that served as the reference diet, or basic diet supplemented with butyrate (BUT), inulin (INU), medium-chain fatty acids (MCFA) or Original XPC™LS (XPC), or a high-fiber-low-protein (HF-LP) diet. A significant (P < 0.05) increase in cloacal endotoxin concentration at d 35 was observed in BUT as compared to CON. Analysis of cloacal microbiota showed a trend (P < 0.07) for a higher gram-negative/gram-positive ratio and for a higher relative abundance of gram-negative bacteria at d 35 (P ≤ 0.08) in BUT and HF-LP as compared to CON. A significant (P < 0.05) increase in average daily gain (ADG) and improved feed conversion ratio (P < 0.05) were observed in MCFA during the grower phase (d 14-28), and a significant (P < 0.05) increase in average daily feed intake (ADFI) was observed in MCFA during d 0 to 28. Broilers fed HF-LP had a significantly (P < 0.05) higher FCR and lower ADG throughout the rearing period. No treatment effects were found on footpad dermatitis, but BUT had worst hock burn scores at d 35 (P < 0.01) and MCFA had worst cleanliness scores at d 21 but not at d 35 (treatment*age P < 0.05), while INU had better cleanliness as compared to CON at d 35 (P < 0.05). In conclusion, especially BUT and HF-LP were able to modulate resident microbiota and BUT also increased cloacal endotoxin levels, which was opposite to our hypothesis. The present study indicates that cloacal endotoxin release can be affected by the diet but further study is needed to find dietary treatments that can reduce cloacal endotoxin release.
Collapse
Affiliation(s)
- Vera Perricone
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - Dirkjan Schokker
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands; Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA Lelystad, the Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA Lelystad, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TD Utrecht, the Netherlands
| | - Anne de Bruijn
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - Soumya K Kar
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - Marinus F W Te Pas
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - Johanna M J Rebel
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands; Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA Lelystad, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TD Utrecht, the Netherlands
| | - Ingrid C de Jong
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands.
| |
Collapse
|
22
|
Zhang D, Ji H, Wang S, Liu Y, Chen M, Liu H. Lactobacillus-driven feed fermentation regulates microbiota metabolism and reduces odor emission from the feces of pigs. mSystems 2023; 8:e0098823. [PMID: 38032191 PMCID: PMC10734501 DOI: 10.1128/msystems.00988-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Our present study showed that dietary supplementation with feed fermented by Lactobacillus could promote the growth performance of pigs, regulate the microbiota, and inhibit the growth of harmful bacteria. It could prevent the accumulation of toxic substances and reduce odor emission from pig feces, thereby reducing environmental pollution. In addition, one key triumph of the present study was the isolation of Weissella cibaria ZWC030, and the strain could inhibit the production of skatole in vitro in our present results.
Collapse
Affiliation(s)
- Dongyan Zhang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Ji
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sixin Wang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yajuan Liu
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Meixia Chen
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
23
|
Yu X, Han Y, Liu J, Cao Y, Wang Y, Wang Z, Lyu J, Zhou Z, Yan Y, Zhang Y. Distribution characteristics and potential risks of bioaerosols during scattered farming. iScience 2023; 26:108378. [PMID: 38025774 PMCID: PMC10679821 DOI: 10.1016/j.isci.2023.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
In most economically underdeveloped areas, scattered farming and human‒livestock cohabitation are common. However, production of bioaerosols and their potential harm in these areas have not been previously researched. In this study, bioaerosol characteristics were analyzed in scattered farming areas in rural Northwest China. The highest bacteria, fungi, and Enterobacteria concentrations were 125609 ± 467 CFU/m³, 25175 ± 10305 CFU/m³, and 4167 ± 592 CFU/m³, respectively. Most bioaerosols had particle sizes >3.3 μm. A total of 71 bacterial genera and 16 fungal genera of potential pathogens were identified, including zoonotic potential pathogenic genera. Moreover, our findings showed that the scattered farming pattern of human‒animal cohabitation can affect the indoor air environment in the surrounding area, leading to chronic respiratory diseases in the occupants. Therefore, relevant government departments and farmers should enhance their awareness of bioaerosol risks and consider measures that may be taken to reduce them.
Collapse
Affiliation(s)
- Xuezheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zixuan Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Jinxin Lyu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ziyu Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ying Yan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yuxiang Zhang
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| |
Collapse
|
24
|
Meyer S, Hüttig N, Zenk M, Jäckel U, Pöther D. Bioaerosols in swine confinement buildings: A metaproteomic view. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:684-697. [PMID: 37919246 PMCID: PMC10667663 DOI: 10.1111/1758-2229.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Swine confinement buildings represent workplaces with high biological air pollution. It is suspected that individual components of inhalable air are causatives of chronic respiratory disease that are regularly detected among workers. In order to understand the relationship between exposure and stress, it is necessary to study the components of bioaerosols in more detail. For this purpose, bioaerosols from pig barns were collected on quartz filters and analysed via a combinatorial approach of 16S rRNA amplicon sequencing and metaproteomics. The study reveals the presence of peptides from pigs, their feed and microorganisms. The proportion of fungal peptides detected is considered to be underrepresented compared to bacterial peptides. In addition, the metaproteomic workflow enabled functional predictions about the discovered peptides. Housekeeping proteins were found in particular, but also evidence for the presence of bacterial virulence factors (e.g., serralysin-like metalloprotease) as well as plant (e.g., chitinase) and fungal allergens (e.g., alt a10). Metaproteomic analyses can thus be used to identify factors that may be relevant to the health of pig farmers. Accordingly, such studies could be used in the future to assess the adverse health potential of an occupationally relevant bioaerosol and help consider defined protective strategies for workers.
Collapse
Affiliation(s)
- Susann Meyer
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Nicole Hüttig
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Marianne Zenk
- Research Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Udo Jäckel
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | | |
Collapse
|
25
|
Pertegal V, Riquelme E, Lozano-Serra J, Cañizares P, Rodrigo MA, Sáez C, Lacasa E. Cleaning technologies integrated in duct flows for the inactivation of pathogenic microorganisms in indoor environments: A critical review of recent innovations and future challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118798. [PMID: 37591101 DOI: 10.1016/j.jenvman.2023.118798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Pathogenic microorganisms are a major concern in indoor environments, particularly in sensitive facilities such as hospitals, due to their potential to cause nosocomial infections. This study evaluates the concentration of airborne bacteria and fungi in the University Hospital Complex of Albacete (Spain), comparing the results with recent literature. Staphylococcus is identified as the most prevalent bacterial genus with a percentage distribution of 35%, while Aspergillus represents the dominant fungal genus at 34%. The lack of high Technology Readiness Levels (TRL 6, TRL 7) for effective indoor air purification requires research efforts to bridge this knowledge gap. A screening of disinfection technologies for pathogenic airborne microorganisms such as bacteria and fungi is conducted. The integration of filtration, irradiation or and (electro)chemical gas treatment systems in duct flows is discussed to enhance the design of the air-conditioning systems for indoor air purification. Concerns over microbial growth have led to recent studies on coating commercial fibrous air filters with antimicrobial particles (silver nanoparticles, iron oxide nanowires) and polymeric materials (polyaniline, polyvinylidene fluoride). Promising alternatives to traditional short-wave UV-C energy for disinfection include LED and Far-UVC irradiation systems. Additionally, research explores the use of TiO2 and TiO2 doped with metals (Ag, Cu, Pt) in filters with photocatalytic properties, enabling the utilization of visible or solar light. Hybrid photocatalysis, combining TiO2 with polymers, carbon nanomaterials, or MXene nanomaterials, enhances the photocatalytic process. Chemical treatment systems such as aerosolization of biocidal agents (benzalkonium chloride, hydrogen peroxide, chlorine dioxide or ozone) with their possible combination with other technologies such as adsorption, filtration or photocatalysis, are also tested for gas disinfection. However, the limited number of studies on the use of electrochemical technology poses a challenge for further investigation into gas-phase oxidant generation, without the formation of harmful by-products, to raise its TRL for effectively inactivating airborne microorganisms in indoor environments.
Collapse
Affiliation(s)
- Víctor Pertegal
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071, Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area. University Hospital Complex of Albacete, C/ Hermanos Falcó 37, 02006, Albacete, Spain
| | - Julia Lozano-Serra
- Clinical Parasitology and Microbiology Area. University Hospital Complex of Albacete, C/ Hermanos Falcó 37, 02006, Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071, Albacete, Spain.
| |
Collapse
|
26
|
Liu J, Ge J, Kang X, Tian H. Bioaerosol-related studies in wastewater treatment plant with anaerobic-anoxic-oxic processes: Characterization, source analysis, control measures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117760. [PMID: 37031601 DOI: 10.1016/j.jenvman.2023.117760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Sewage in wastewater treatment plants (WWTPs) can produce fugitive bioaerosols that pose a health risk to employees and residents. This study aimed to fugitive bioaerosols from two WWTPs with anaerobic-anoxic-oxic (AAO) processes, and bioaerosols control measures were proposed based on the results of these studies. It was found that the bioaerosols were mainly composed of microorganisms from dominant genera such as Romboutsia, Rubellimicrobium, Sphingomonas, Acidea, Cryptotrichosporon and water-soluble ions dominated by SO42-. Moreover, total suspended particulate (TSP), relative humidity (RH), wind speed (WS), Ca2+, NH4+, Na+, Cl-, NO3-, and K+ had positive effects on most dominant genera, while temperature (T) and SO42- had negative effects on most dominant genera. The source analysis showed that the bioaerosols in the indoor treatment facility's fine screen room and sludge dewatering plant mainly originated from sewage or sludge, and those in the aeration tank of the outdoor treatment facility mainly originated from the background air of WWTPs . By combining the characteristics of bioaerosols and the results of source analysis, targeted control measures were proposed from three aspects: source reduction of bioaerosol fugitives, control of bioaerosol propagation, and collection and treatment systems. This study provides the theoretical basis and ideas for controlling bioaerosols in WWTPs with AAO processes.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Jingyun Ge
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xinyue Kang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Hongyu Tian
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
27
|
Liu T, Li G, Liu Z, Xi L, Ma W, Gao X. Characteristics of aerosols from swine farms: A review of the past two-decade progress. ENVIRONMENT INTERNATIONAL 2023; 178:108074. [PMID: 37441818 DOI: 10.1016/j.envint.2023.108074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of large-scale and intensive swine production, the emission of aerosols from swine farms has become a growing concern, attracting extensive attention. While aerosols are found in various environments, those from swine farms are distinguished from human habitats, such as residential, suburban, and urban areas. In order to gain a comprehensive understanding of aerosols from swine farms, this paper reviewed relevant studies conducted between 2000 and 2022. The main components, concentrations, and size distribution of the aerosols were systematically reviewed. The differences between aerosols from swine farms and human living and working environments were compared. Finally, the sources, influencing factors, and reduction technologies for aerosols from swine farms were thoroughly elucidated. The results demonstrated that the concentrations of aerosols inside swine farms varied considerably, and most exceeded safety thresholds. However, further exploration is needed to fully understand the difference in airborne microorganism community structure and particles with small sizes (<1 μm) between swine farms and human living and working environments. More airborne bacterial and viruses were adhered to large particles in swine houses, while the proportion of airborne fungi in the respirable fraction was similar to that of human living and working environments. In addition, swine farms have a higher abundance and diversity of potential pathogens, airborne resistant microorganisms and resistant genes compared to the human living and working environments. The aerosols of swine farms mainly originated from sources such as manure, feed, swine hair and skin, secondary production, and waste treatment. According to the source analysis and factors influencing aerosols in swine farms, various technologies could be employed to mitigate aerosol emissions, and some end-of-pipe technologies need to be further improved before they are widely applied. Swine farms are advised not to increase aerosol concentration in human living and working environments, in order to decrease the impact of aerosols from swine farms on human health and restrain the spread of airborne potential pathogens. This review provides critical insights into aerosols of swine farms, offering guidance for taking appropriate measures to enhance air quality inside and surrounding swine farms.
Collapse
Affiliation(s)
- Tongshuai Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Guoming Li
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia, Athens, GA 30602, USA.
| | - Zhilong Liu
- Henan University of Animal Husbandry and Economy Library, Zhengzhou, Henan 450046, China
| | - Lei Xi
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Wei Ma
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Xuan Gao
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| |
Collapse
|
28
|
Lotterman A, Baliatsas C, de Rooij MMT, Huss A, Jacobs J, Dückers M, Boender GJ, McCarthy C, Heederik D, Hagenaars TJ, Yzermans CJ, Smit LAM. Increased risk of pneumonia amongst residents living near goat farms in different livestock-dense regions in the Netherlands. PLoS One 2023; 18:e0286972. [PMID: 37405987 PMCID: PMC10321607 DOI: 10.1371/journal.pone.0286972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Previous studies, performed between 2009-2019, in the Netherlands observed an until now still unexplained increased risk for pneumonia among residents living close to goat farms. Since data were collected in the provinces Noord-Brabant and Limburg (NB-L), an area with relatively high air pollution levels and proximity to large industrial areas in Europe, the question remains whether the results are generalizable to other regions. In this study, a different region, covering the provinces Utrecht, Gelderland, and Overijssel (UGO) with a similar density of goat farms, was included to assess whether the association between goat farm proximity and pneumonia is consistently observed across the Netherlands. METHODS Data for this study were derived from the Electronic Health Records (EHR) of 21 rural general practices (GPs) in UGO, for 2014-2017. Multi-level analyses were used to compare annual pneumonia prevalence between UGO and data derived from rural reference practices ('control area'). Random-effects meta-analysis (per GP practice) and kernel analyses were performed to study associations of pneumonia with the distance between goat farms and patients' home addresses. RESULTS GP diagnoses of pneumonia occurred 40% more often in UGO compared to the control area. Meta-analysis showed an association at a distance of less than 500m (~70% more pneumonia compared to >500m) and 1000m (~20% more pneumonia compared to >1000m). The kernel-analysis for three of the four individual years showed an increased risk up to a distance of one or two kilometers (2-36% more pneumonia; 10-50 avoidable cases per 100,000 inhabitants per year). CONCLUSIONS The positive association between living in the proximity of goat farms and pneumonia in UGO is similar to the previously found association in NB-L. Therefore, we concluded that the observed associations are relevant for regions with goat farms in the entire country.
Collapse
Affiliation(s)
- Aniek Lotterman
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Christos Baliatsas
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | - Myrna M. T. de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - José Jacobs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Michel Dückers
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | | | | | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - C. Joris Yzermans
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
29
|
Ghosh A, Kumar S, Das J. Impact of leachate and landfill gas on the ecosystem and health: Research trends and the way forward towards sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117708. [PMID: 36913859 DOI: 10.1016/j.jenvman.2023.117708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Globally, a whopping increase in solid waste (SW) generation and the risks posed by climate change are major concerns. A wide spread practice for disposal of municipal solid waste (MSW) is landfill, which swells with population and urbanization. Waste, if treated properly, can be used to produce renewable energy. The recent global event COP 27 mainly stressed on production of renewable energy to achieve the Net Zero target. The MSW landfill is the most significant anthropogenic source of methane (CH4) emission. On one side, CH4 is a greenhouse gas (GHG), and on the other it is a main component of biogas. Wastewater that collects due to rainwater percolation in landfills creates landfill leachate. There is a need to understand global landfill management practices thoroughly for implementation of better practices and policies related to this threat. This study critically reviews recent publications on leachate and landfill gas. The review discusses leachate treatment and landfill gas emissions, focusing on the possible reduction technology of CH4 emission and its impact on the environment. Mixed leachate will benefit from the combinational therapy method because of its intricate combination. Implementation of circular material management, entrepreneurship ideas, blockchain, machine learning, LCA usage in waste management, and economic benefits from CH4 production have been emphasized. Bibliometric analysis of 908 articles from the last 37 years revealed that industrialized nations dominate this research domain, with the United States having the highest number of citations.
Collapse
Affiliation(s)
- Arpita Ghosh
- Indian Institute of Management Sirmaur, Paonta Sahib, 173 025, Himachal Pradesh, India
| | - Sunil Kumar
- College of Sciences and Engineering, University of Tasmania, Launceston Campus, Australia Private Bag 51, Hobart, TAS, 7001, Australia.
| | - Jit Das
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713 209, India
| |
Collapse
|
30
|
Goode E, Marczylo E. A scoping review: What are the cellular mechanisms that drive the allergic inflammatory response to fungal allergens in the lung epithelium? Clin Transl Allergy 2023; 13:e12252. [PMID: 37357550 PMCID: PMC10234180 DOI: 10.1002/clt2.12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/27/2023] Open
Abstract
Allergic airway disease (AAD) is a collective term for respiratory disorders that can be exacerbated upon exposure to airborne allergens. The contribution of fungal allergens to AAD has become well established over recent years. We conducted a comprehensive review of the literature using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to better understand the mechanisms involved in the allergic response to fungi in airway epithelia, identify knowledge gaps and make recommendations for future research. The search resulted in 61 studies for final analysis. Despite heterogeneity in the models and methods used, we identified major pathways involved in fungal allergy. These included the activation of protease-activated receptor 2, the EGFR pathway, adenosine triphosphate and purinergic receptor-dependent release of IL33, and oxidative stress, which drove mucin expression and goblet cell metaplasia, Th2 cytokine production, reduced barrier integrity, eosinophil recruitment, and airway hyperresponsiveness. However, there were several knowledge gaps and therefore we recommend future research should focus on the use of more physiologically relevant methods to directly compare key allergenic fungal species, clarify specific mechanisms of fungal allergy, and assess the fungal allergy in disease models. This will inform disease management and future interventions, ultimately reducing the burden of disease.
Collapse
Affiliation(s)
| | - Emma Marczylo
- Toxicology DepartmentUK Health Security AgencyChiltonUK
| |
Collapse
|
31
|
Deelaman W, Choochuay C, Pongpiachan S. Source appointment and health risk assessment of polycyclic aromatic hydrocarbons in paddy grain from Thailand and Laos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32737-32750. [PMID: 36469262 DOI: 10.1007/s11356-022-24451-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Rice is a staple meal for the majority of Asians. However, human exposure to polycyclic aromatic hydrocarbons from paddy grain is largely unknown in Thailand and Laos. Therefore, information on the quantitative measurement and assessment of the health problems caused by PAHs was analyzed. The results showed that the concentrations of total PAHs in paddy grain in Thailand and Laos were 38.86 ± 5.13 and 11.35 ± 1.96 ng g-1, respectively. The highest concentration of PAHs in Thailand was B[k]F, whereas D[a,h]A was found to be the highest in Laos. A p-value less than 0.05 was defined, which showed B[b]F and B[k]F from Thailand and Laos were significant, which indicated that they could be from a different pollutant source. The main finding of this study, which was supported by the diagnostic ratios of PAHs and HCA, was that the primary source of PAHs was assumed to be incomplete combustion of petroleum products, which was caused by the burning of industrial fuels or vehicle exhausts, as well as open burning. The findings suggest that these two nations have similar PAH origins. Agricultural waste burning and transportation emissions are well-known sources of PAHs in Thailand and Laos. The cancer risk assessment method was based on the accumulation of PAHs from paddy grains. An ILCR of 1.0E-06 to 1.0E-04 was considered a tolerable limit of cancer risk, while a risk > 1.0E-04 was considered a concern in terms of cancer risk. The findings indicated that while PAH emissions exist, their contribution to global toxicity may be anticipated to be low in inhalation exposure. The higher values of ingestion and dermal risk estimated were regarded as the tolerable limit of cancer risk in children and adults from both countries, indicating that cancer risk in both nations falls within the "acceptable level" range.
Collapse
Affiliation(s)
- Woranuch Deelaman
- Division of Environmental Science and Technology, Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, 10800, Thailand
| | - Chomsri Choochuay
- Faculty of Environmental Management, Prince of Songkla University Hat-Yai Campus, Songkhla, 90110, Thailand.
| | - Siwatt Pongpiachan
- NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), 118 Moo 3, Sereethai Road, Klong-Chan, Bangkok, 10240, Bangkapi, Thailand
| |
Collapse
|
32
|
Slough BG, Reid DG, Schultz DS, Leung MC. Little brown bat activity patterns and conservation implications in agricultural landscapes in boreal Yukon, Canada. Ecosphere 2023. [DOI: 10.1002/ecs2.4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Affiliation(s)
| | - Donald G. Reid
- Wildlife Conservation Society Canada Whitehorse Yukon Canada
| | - Dafna S. Schultz
- Department of Resource and Environmental Management Dalhousie University Halifax Nova Scotia Canada
| | | |
Collapse
|
33
|
Kang WY, Kim EY, Choi S, Choi BS. Acute exacerbation of chronic obstructive pulmonary disease in a slaughterhouse. Occup Med (Lond) 2023; 73:49-52. [PMID: 36282619 DOI: 10.1093/occmed/kqac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the case of a 52-year-old male who presented with two episodes of acute exacerbations (AE) of chronic obstructive pulmonary disease (COPD) during work, while suspending live chickens for slaughter. The patient was exposed to high levels of bioaerosols, including endotoxins and microorganisms. Endotoxins can induce bronchoconstriction and airway inflammation, and COPD patients are more vulnerable to airway infections caused by microorganisms inhaled with bioaerosols. This study suggests that a high level of bioaerosols may induce airway infections, resulting in acute exacerbations of COPD.
Collapse
Affiliation(s)
- W Y Kang
- Department of Research for Occupational Health, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, Incheon, 21417, Republic of Korea
| | - E Y Kim
- Department of Research for Occupational Health, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, Incheon, 21417, Republic of Korea
| | - S Choi
- Department of Research for Occupational Health, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, Incheon, 21417, Republic of Korea
| | - B S Choi
- Department of Research for Occupational Health, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, Incheon, 21417, Republic of Korea
| |
Collapse
|
34
|
Ayala-Ramirez M, MacNell N, McNamee LE, McGrath JA, Akhtari FS, Curry MD, Dunnon AK, Fessler MB, Garantziotis S, Parks CG, Fargo DC, Schmitt CP, Motsinger-Reif AA, Hall JE, Miller FW, Schurman SH. Association of distance to swine concentrated animal feeding operations with immune-mediated diseases: An exploratory gene-environment study. ENVIRONMENT INTERNATIONAL 2023; 171:107687. [PMID: 36527873 PMCID: PMC10962257 DOI: 10.1016/j.envint.2022.107687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Concentrated animal feeding operations (CAFOs) are a source of environmental pollution and have been associated with a variety of health outcomes. Immune-mediated diseases (IMD) are characterized by dysregulation of the normal immune response and, while they may be affected by gene and environmental factors, their association with living in proximity to a CAFO is unknown. OBJECTIVES We explored gene, environment, and gene-environment (GxE) relationships between IMD, CAFOs, and single nucleotide polymorphisms (SNPs) of prototypical xenobiotic response genes AHR, ARNT, and AHRR and prototypical immune response gene PTPN22. METHODS The exposure analysis cohort consisted of 6,464 participants who completed the Personalized Environment and Genes Study Health and Exposure Survey and a subset of 1,541 participants who were genotyped. We assessed the association between participants' residential proximity to a CAFO in gene, environment, and GxE models. We recombined individual associations in a transethnic model using METAL meta-analysis. RESULTS In White participants, ARNT SNP rs11204735 was associated with autoimmune diseases and rheumatoid arthritis (RA), and ARNT SNP rs1889740 was associated with RA. In a transethnic genetic analysis, ARNT SNPs rs11204735 and rs1889740 and PTPN22 SNP rs2476601 were associated with autoimmune diseases and RA. In participants living closer than one mile to a CAFO, the log-distance to a CAFO was associated with autoimmune diseases and RA. In a GxE interaction model, White participants with ARNT SNPs rs11204735 and rs1889740 living closer than eight miles to a CAFO had increased odds of RA and autoimmune diseases, respectively. The transethnic model revealed similar GxE interactions. CONCLUSIONS Our results suggest increased risk of autoimmune diseases and RA in those living in proximity to a CAFO and a potential role of the AHR-ARNT pathway in conferring risk. We also report the first association of ARNT SNPs rs11204735 and rs1889740 with RA. Our findings, if confirmed, could allow for novel genetically-targeted or other preventive approaches for certain IMD.
Collapse
Affiliation(s)
- Montserrat Ayala-Ramirez
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Nathaniel MacNell
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Lucy E McNamee
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - John A McGrath
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Matthew D Curry
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Askia K Dunnon
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop D2-01, Durham, NC 27709, USA.
| | - Stavros Garantziotis
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, BG 109 RM 109 MSC CU-01, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop A3-05, Durham, NC 27709, USA.
| | - David C Fargo
- Office of Scientific Computing, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop B3-01, Durham, NC 27709, USA.
| | - Charles P Schmitt
- Office of Data Science, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop K2-02, Durham, NC 27709, USA.
| | - Alison A Motsinger-Reif
- PEGS Co-PI, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, RTP 101, Research Triangle Park, NC 27709, USA.
| | - Janet E Hall
- PEGS Co-PI, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, BG 101 RM A222 MSC A2-03. 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Frederick W Miller
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, RTP 101 David P. Rall Building, Research Triangle Park, NC 27709, USA.
| | - Shepherd H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
35
|
van Kersen W, Bossers A, de Steenhuijsen Piters WAA, de Rooij MMT, Bonten M, Fluit AC, Heederik D, Paganelli FL, Rogers M, Viveen M, Bogaert D, Leavis HL, Smit LAM. Air pollution from livestock farms and the oropharyngeal microbiome of COPD patients and controls. ENVIRONMENT INTERNATIONAL 2022; 169:107497. [PMID: 36088872 DOI: 10.1016/j.envint.2022.107497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Air pollution from livestock farms is known to affect respiratory health of patients with chronic obstructive pulmonary disease (COPD). The mechanisms behind this relationship, however, remain poorly understood. We hypothesise that air pollutants could influence respiratory health through modulation of the airway microbiome. Therefore, we studied associations between air pollution exposure and the oropharyngeal microbiota (OPM) composition of COPD patients and controls in a livestock-dense area. Oropharyngeal swabs were collected from 99 community-based (mostly mild) COPD cases and 184 controls (baseline), and after 6 and 12 weeks. Participants were non-smokers or former smokers. Annual average livestock-related outdoor air pollution at the home address was predicted using dispersion modelling. OPM composition was analysed using 16S rRNA-based sequencing in all baseline samples and 6-week and 12-week repeated samples of 20 randomly selected subjects (n = 323 samples). A random selection of negative control swabs, taken every sampling day, were also included in the downstream analysis. Both farm-emitted endotoxin and PM10 levels were associated with increased OPM richness in COPD patients (p < 0.05) but not in controls. COPD case-control status was not associated with community structure, while correcting for known confounders (multivariate PERMANOVA p > 0.05). However, members of the genus Streptococcus were more abundant in COPD patients (Benjamini-Hochberg adjusted p < 0.01). Moderate correlation was found between ordinations of 20 subjects analysed at 0, 6, and 12 weeks (Procrustes r = 0.52 to 0.66; p < 0.05; Principal coordinate analysis of Bray-Curtis dissimilarity), indicating that the OPM is relatively stable over a 12 week period and that a single sample sufficiently represents the OPM. Air pollution from livestock farms is associated with OPM richness of COPD patients, suggesting that the OPM of COPD patients is susceptible to alterations induced by exposure to air pollutants.
Collapse
Affiliation(s)
- Warner van Kersen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marc Bonten
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ad C Fluit
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Malbert Rogers
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco Viveen
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Debby Bogaert
- University Medical Center Utrecht, Utrecht, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen L Leavis
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Development of a Novel Bioaerosol Chamber to Determine Survival Rates of Airborne Staphylococci. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large amounts of microorganisms are emitted from animal houses into the environment via exhaust air. To assess the potential risks, the spread of microorganisms can be simulated with computer models. Such modeling usually does not take into account die-off rates, since there are hardly any reliable data so far on how long microorganisms can survive in outdoor air. Previous studies were conducted almost exclusively in closed chambers and usually only took into account the influence of individual environmental factors such as temperature or humidity. Therefore, a novel bioaerosol chamber was developed to quantify the survival rates of Staphylococci specific to livestock under outdoor air conditions. For evaluation, the survival rates of Staphylococcus xylosus were determined as a function of temperature, relative humidity, ozone concentration, and global radiation. Survival rates decreased with increasing temperature, decreasing relative humidity, increasing global radiation intensity, and increasing ozone concentration. At 12 min in the airborne state, die-off rates of more than 90% were observed, especially at high global radiation levels > 400 W/m2. The novel bioaerosol chamber enabled the investigation of the survival rates of airborne microorganisms over a certain period of time in a quasi-closed system and yet under real outdoor air conditions.
Collapse
|
37
|
Anees-Hill S, Douglas P, Pashley CH, Hansell A, Marczylo EL. A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151716. [PMID: 34800445 PMCID: PMC8919338 DOI: 10.1016/j.scitotenv.2021.151716] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 05/08/2023]
Abstract
Fungal spores make up a significant proportion of organic matter within the air. Allergic sensitisation to fungi is associated with conditions including allergic fungal airway disease. This systematic review analyses outdoor fungal spore seasonality across Europe and considers the implications for health. Seventy-four studies met the inclusion criteria, the majority of which (n = 64) were observational sampling studies published between 1978 and 2020. The most commonly reported genera were the known allergens Alternaria and Cladosporium, measured in 52 and 49 studies, respectively. Both displayed statistically significant increased season length in south-westerly (Mediterranean) versus north-easterly (Atlantic and Continental) regions. Although there was a trend for reduced peak or annual Alternaria and Cladosporium spore concentrations in more northernly locations, this was not statistically significant. Peak spore concentrations of Alternaria and Cladosporium exceeded clinical thresholds in nearly all locations, with median peak concentrations of 665 and 18,827 per m3, respectively. Meteorological variables, predominantly temperature, precipitation and relative humidity, were the main factors associated with fungal seasonality. Land-use was identified as another important factor, particularly proximity to agricultural and coastal areas. While correlations of increased season length or decreased annual spore concentrations with increasing average temperatures were reported in multi-decade sampling studies, the number of such studies was too small to make any definitive conclusions. Further, up-to-date studies covering underrepresented geographical regions and fungal taxa (including the use of modern molecular techniques), and the impact of land-use and climate change will help address remaining knowledge gaps. Such knowledge will help to better understand fungal allergy, develop improved fungal spore calendars and forecasts with greater geographical coverage, and promote increased awareness and management strategies for those with allergic fungal disease.
Collapse
Affiliation(s)
- Samuel Anees-Hill
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester LE1 7LW, UK; The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK.
| | - Philippa Douglas
- The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK; Environmental Hazards and Emergencies Department, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire OX11 0RQ, UK.
| | - Catherine H Pashley
- The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK; Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK.
| | - Anna Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester LE1 7LW, UK; The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK.
| | - Emma L Marczylo
- The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK; Toxicology Department, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire OX11 0RQ, UK.
| |
Collapse
|
38
|
van der Eijk JA, Rommers JM, van Hattum T, Parmentier HK, Stockhofe-Zurwieden N, Aarnink AJ, Rebel JM. Respiratory health of broilers following chronic exposure to airborne endotoxin. Res Vet Sci 2022; 147:74-82. [DOI: 10.1016/j.rvsc.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
39
|
Isolation and Screening of Odor-Reducing Microbes from Swine Manure and Its Role in Reducing Ammonia Release in Combination with Surfactant Foam. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Swine farming facilities have increased the production of malodorous gases, which negatively affects people. Hence, we developed a new feasible bio-foam technology wherein long-lasting surfactant foam, including bacteria, were sprayed on swine manure. The surfactant foam acted as a physical barrier, suppressing NH3 release, and the aqueous-phase bacteria formed after foam breaking infiltrated in manure and degraded NH3. In this study, we first isolated NH3-degrading bacteria from swine manure. A bacterial consortium was prepared using the effective NH3-degrading strains Saccharomyces cerevisiae NRRL Y-12632 (99.88%) (TP1), Lactococcus lactis subsp. hordniae NBRC100931T (99.93%) (TP3), and Lactobacillus argentoratensis DSM 16365T (100%) (TP5). The surfactant foam used in this study was a dry foam (foam quality 98.5–99.0% and foam density 0.025–0.026 g/cm3), with a foam expansion of 110–112 and high foamability. Large bubbles were generated with a bubble density of 1 bubble/cm2 and a foam lamella thickness of 0.12 mm. In a lab-scale study, foam was sprayed onto NH3-contaminated soil or real swine manure, which reduced the NH3 emission from the source (soil/manure) almost completely (97–100%), but NH3 was re-emitted after foam breaking (5 h: open reactor, 7 h: closed reactor). After loading the bacteria on the foam, the initial NH3 odor suppression was similar to that of the foam alone. However, NH3 was effectively reduced by microbial degradation even after foam breaking. Complete odor degradation was observed after 3 days (72 h; 90–100% reduction) for the NH3-contaminated soil, and 97.7% NH3 in the swine manure was reduced in 24 h. Furthermore, the reagent cost for preparing stable foam was reasonable, indicating its possible field extension.
Collapse
|
40
|
Compendium of analytical methods for sampling, characterization and quantification of bioaerosols. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Xu J, Xie G, Li X, Wen X, Cao Z, Ma B, Zou Y, Zhang N, Mi J, Wang Y, Liao X, Wu Y. Sodium butyrate reduce ammonia and hydrogen sulfide emissions by regulating bacterial community balance in swine cecal content in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112827. [PMID: 34571416 DOI: 10.1016/j.ecoenv.2021.112827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Reducing the production of odor during swine breeding has attracted attention. Ammonia (NH3) and hydrogen sulfide (H2S) contributed to the odor emissions from swine breeding because NH3 emissions are high and hydrogen sulfide (H2S) has a low odor threshold. Sodium butyrate reduces the odor emissions caused by NH3 and H2S, but the corresponding mechanism is unclear. After mixing the feces of six fattening pigs, the mixture was used to process in vitro fermentation experiment. The purpose was researching the effect of sodium butyrate reduced NH3 and H2S emissions in swine cecal contents. The control group was denoted CK, and the treatment groups with different sodium butyrate concentrations (0.015%, 0.030% and 0.150%) were denoted L, M and H. The NH3, H2S, total gas production and physicochemical indexes were measured, and the bacterial communities in the fermented product were analyzed by 16 S rDNA sequencing. The results showed that group M reduced NH3, H2S and total gas production by 17.96%, 12.26% and 30.30%, respectively. Sodium butyrate promoted SO42- accumulation and lowered the pH. Importantly, sodium butyrate decreased the relative abundance of bacteria positively correlated with NH3 and H2S production, but increased the negatively correlated ones. Proteobacteria made a greater contribution to reducing emissions than did other bacterial phyla. Our results showed that adding 0.030% sodium butyrate can significantly reduce NH3 and H2S production, which occurred via alterations in the physicochemical indicators to adjust the abundance of the bacteria related to odor production, including Proteobacteria.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | | | - Xinhua Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Cao
- WENS Foodstuff Group Co., Ltd., Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
42
|
Axelrod K, Samburova V, Khlystov AY. Relative abundance of saccharides, free amino acids, and other compounds in specific pollen species for source profiling of atmospheric aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149254. [PMID: 34375869 DOI: 10.1016/j.scitotenv.2021.149254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Though studies in bioaerosols are being conducted with increasing frequency over the past decade, the total breadth of knowledge on bioaerosols and their role in atmospheric processes is still minimal. In order to better characterize the chemical composition of fresh biological aerosol for purposes of source apportionment and tracing in the atmosphere, several plant pollen species were selected for detailed chemical analyses. For this purpose, different pollen species were purchased and collected around Reno, Nevada, USA, for further extraction and detailed chemical analysis. These species included aspen, corn, pecan, ragweed, eastern cottonwood, paper mulberry, rabbitbrush, bitterbrush, lodgepole pine, and Jeffrey pine. Saccharides, free amino acids, and various other polar compounds (e.g., anhydrosugars and resin acids) were quantitatively analyzed using gas chromatography and ultra-high performance liquid chromatography coupled with mass spectrometry techniques (GC-MS and UPLC-MS), with the purpose to identify differences and nuances in chemical composition of specific pollen species. The saccharides β-d-fructose, α-d-glucose, and β-d-glucose were ubiquitously found across all pollen samples (10), and sucrose was found in five samples. d-galactose was also found in pine species. Total saccharides were 4.0 to 29% of total dry weight across all samples. Total free amino acids were 0.29% to 15% of total dry weight across all samples, with the most common amino acid being proline. Chemical profiles (including both saccharides and amino acids) of surface-deposited aerosol in the Lake Tahoe area correlated most closely with pine pollen than other analyzed pollen species, indicating that chemical profiles of pollen can be used to infer its contribution to local aerosols.
Collapse
Affiliation(s)
- Kevin Axelrod
- Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Vera Samburova
- Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Andrey Y Khlystov
- Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA.
| |
Collapse
|
43
|
Morgado-Gamero WB, Parody A, Medina J, Rodriguez-Villamizar LA, Agudelo-Castañeda D. Multi-antibiotic resistant bacteria in landfill bioaerosols: Environmental conditions and biological risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118037. [PMID: 34482243 DOI: 10.1016/j.envpol.2021.118037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/31/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Landfills, as well as other waste management facilities are well-known bioaerosols sources. These places may foment antibiotic-resistance in bacterial bioaerosol (A.R.B.) due to inadequate pharmaceutical waste disposal. This issue may foster the necessity of using last-generation antibiotics with extra costs in the health care system, and deaths. The aim of this study was to reveal the multi-antibiotic resistant bacterial bioaerosol emitted by a sanitary landfill and the surrounding area. We evaluated the influence of environmental conditions in the occurrence of A.R.B. and biological risk assessment. Antibiotic resistance found in the bacteria aerosols was compared with the AWaRE consumption classification. We used the BIOGAVAL method to assess the workers' occupational exposure to antibiotic-resistant bacterial bioaerosols in the landfill. This study confirmed the multi-antibiotic resistant in bacterial bioaerosol in a landfill and in the surrounding area. Obtained mean concentrations of bacterial bioaerosols, as well as antibiotic-resistant in bacterial bioaerosol (A.R.B.), were high, especially for fine particles that may be a threat for human health. Results suggest the possible risk of antibiotic-resistance interchange between pathogenic and non-pathogenic species in the landfill facilities, thus promoting antibiotic multi-resistance genes spreading into the environment.
Collapse
Affiliation(s)
- Wendy B Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla, Colombia.
| | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Cra 46 No. 48-170, Barranquilla, Colombia.
| | - Jhorma Medina
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla, Colombia.
| | | | - Dayana Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Km 5 via Puerto, Colombia.
| |
Collapse
|
44
|
Grzyb J, Pawlak K. Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56615-56627. [PMID: 34061267 PMCID: PMC8500874 DOI: 10.1007/s11356-021-14594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.
Collapse
Affiliation(s)
- Jacek Grzyb
- Department of Microbiology and Biomonitoring, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland.
| | - Krzysztof Pawlak
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland
| |
Collapse
|
45
|
Effects of Air Pollutants on Airway Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189905. [PMID: 34574829 PMCID: PMC8465980 DOI: 10.3390/ijerph18189905] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter (PM) and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms such as shortness of breath, a tight chest, coughing, and wheezing. Patients with COPD often experience exacerbations and worsening of symptoms, which may result in hospitalization and disease progression. PM varies in terms of composition, and can include solid and liquid particles of various sizes. PM concentrations are higher in urban areas. Ozone is one of the most toxic photochemical air pollutants. In general, air pollution decreases quality of life and life expectancy. It exacerbates acute and chronic respiratory symptoms in patients with chronic airway diseases, and increases the morbidity and risk of hospitalization associated with respiratory diseases. However, the mechanisms underlying these effects remain unclear. Therefore, we reviewed the impact of air pollutants on airway diseases such as asthma and COPD, focusing on their underlying mechanisms.
Collapse
|
46
|
Huang R, Guo Z, Gao S, Ma L, Xu J, Yu Z, Bu D. Assessment of veterinary antibiotics from animal manure-amended soil to growing alfalfa, alfalfa silage, and milk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112699. [PMID: 34454356 DOI: 10.1016/j.ecoenv.2021.112699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Using animal manure as organic fertilizer to grow fodder crops is causing public health concerns because animal manure is the major reservoir of veterinary antibiotics. In this study, we used a mathematical model to estimate the risk of human exposure to veterinary antibiotics when using swine manure as organic fertilizer to grow alfalfa (Medicago sativa L.). Alfalfa was planted in a greenhouse and fertilized with swine manure spiked with oxytetracycline (OTC, at 0, 150, and 1500 mg/kg of manure), ofloxacin (OFL, at 0, 15, and 150 mg/kg), or sulfamonomethoxine (SMM, at 0, 5, 15 and 150 mg/kg). Alfalfa was harvested at the budding stage and ensiled for 60 days. Results showed that OTC and OFL could be detected in the alfalfa root, stem, and leaf with a concentration ranging from 8.85 to 59.17 μg OTC /kg and from 1.50 to 4.10 μg OFL/kg dry matter, but SMM could only be detected in the root ranging from 29.10 to 63.75 μg/kg dry matter. The ensiling for 60 days decreased the OFL concentration by 68.7% but only slightly decreased the OTC concentration. The maximum daily exposures of humans to OTC and OFL through liquid milk consumption were estimated to be 5.84E-8 and 1.63E-8 μg, respectively, both of which are well below the intake levels of OTC (72 μg) and OFL (54 μg) mandated by the European Union. The results of the present study indicate that using swine manure as organic fertilizer to grow alfalfa poses a limited risk for human exposure to veterinary antibiotics through the consumption of liquid milk.
Collapse
Affiliation(s)
- Rongcai Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zitai Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianchu Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; World Agroforestry Center, East and Central Asia, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing 100081, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China.
| |
Collapse
|
47
|
Riccardi C, Di Filippo P, Pomata D, Simonetti G, Castellani F, Uccelletti D, Bruni E, Federici E, Buiarelli F. Comparison of analytical approaches for identifying airborne microorganisms in a livestock facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147044. [PMID: 34088133 DOI: 10.1016/j.scitotenv.2021.147044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
An intensive study, applied to a site characterized by multiple sources of microorganisms, was aimed at understanding the best approach to study bioaerosol. Culture-based, molecular biological, and chemical methods were applied to Particulate Matter (PM) samples collected in a livestock facility, during spring and autumn seasons, in two different outdoor areas. The first one was close to a place where feed was stored and handled and the second next to an open cowshed. Qualitative analysis of bacteria was performed by sequencing techniques applied to DNA extracted from both isolated culturable bacteria and particulate matter samples. Quantification of microorganisms was achieved through three distinct approaches. Microorganism colonies were counted, after incubation at 28 °C, and expressed as colony-forming units (CFU) per m3. Chemical method consisted in the identification of individual biomarkers, and their conversion to number of microorganisms per m3, using proper conversion factors. Finally, qPCR was applied to DNA extracted from PM samples, and the results were expressed as total amount of bacteria present in the bioaerosol (UG/m3). The presence of airborne sterols was also studied to broaden the knowledge of bioaerosol components in atmosphere. Small seasonal differences and major sampling site differences occurred. Obviously, culture-dependent method identified less and different bacteria, than culture-independent approach. The chemical approach and the culture independent metagenomic method were in good agreement. As expected, CFU/m3 accounted for not more than 0.3% of bacteria calculated as the average of chemical and culture independent metagenomic methods. The complexity of the obtained results shows that the different approaches are complementary to obtain an exhaustive description of bioaresol in terms of concentration, speciation, viability, pathogenicity.
Collapse
Affiliation(s)
| | | | | | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Erika Bruni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | |
Collapse
|
48
|
Coffman VR, Hall DJ, Pisanic N, Nadimpalli M, McCormack M, Diener‐West M, Davis MF, Heaney CD. Personal protective equipment use during industrial hog operation work activities and acute lung function changes in a prospective worker cohort, North Carolina 2014-2015. Am J Ind Med 2021; 64:688-698. [PMID: 34091939 DOI: 10.1002/ajim.23260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Occupational activities related to industrial hog operation (IHO) worker lung function are not well defined. Therefore, we aimed to identify IHO work activities associated with diminished respiratory function and the effectiveness, if any, of personal protective equipment (PPE) use on IHOs. METHODS From 2014 to 2015, 103 IHO workers were enrolled and followed for 16 weeks. At each biweekly visit, work activities and PPE use were self-reported via questionnaire and lung function measurements were collected via spirometry. Generalized linear and linear fixed-effects models were fitted to cross-sectional and longitudinal data. RESULTS Increasing years worked on an IHO were associated with diminished lung function, but baseline and longitudinal work activities were largely inconsistent in direction and magnitude. Unexpectedly, a -0.3 L (95% confidence interval: -0.6, -0.04) difference in forced expiratory volume in the first second (FEV1 ) was estimated when workers wore PPE consistently (≥80% of the time at work) versus those weeks they did not. In post-hoc analyses, we found that coveralls and facemasks were worn less consistently when workers experienced worse barn conditions and had more contact with pigs, but coveralls were worn more consistently as cleaning activities increased. CONCLUSIONS Similar to past studies, baseline estimates were likely obscured by healthy worker effect bias, but showed decrements in worker lung function as years of work increased. A challenge to disentangling the effect of work activities on lung function was the discovery that IHO workers used PPE differently according to the work task. These data suggest that interventions may be targeted toward improving barn conditions so that workers can consistently utilize IHO-provided PPE.
Collapse
Affiliation(s)
- Vanessa R. Coffman
- Division of Epidemiology and Biostatistics, School of Public Health University of Illinois at Chicago Chicago Illinois USA
| | - Devon J. Hall
- Rural Empowerment Association for Community Help (REACH) Warsaw North Carolina USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Maya Nadimpalli
- Department of Civil and Environmental Engineering Tufts University Medford Massachusetts USA
- Center for Integrated Management of Antimicrobial Resistance (CIMAR) Tufts University Boston Massachusetts USA
| | - Meredith McCormack
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- School of Medicine Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for Global Health Johns Hopkins University Baltimore Maryland USA
| | - Marie Diener‐West
- Johns Hopkins Center for Global Health Johns Hopkins University Baltimore Maryland USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- School of Nursing Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for Clinical Trials and Evidence Synthesis, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Meghan F. Davis
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- School of Medicine Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for Global Health Johns Hopkins University Baltimore Maryland USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
49
|
Li Z, Zheng W, Wang Y, Li B, Wang Y. Spatiotemporal variations in the association between particulate matter and airborne bacteria based on the size-resolved respiratory tract deposition in concentrated layer feeding operations. ENVIRONMENT INTERNATIONAL 2021; 150:106413. [PMID: 33582563 DOI: 10.1016/j.envint.2021.106413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Bacterial loading aggravates the health and environmental hazards of particulate matter (PM), particularly in concentrated animal feeding operations. Understanding the association between PM and airborne bacteria is conducive to accurately assessing occupational exposure, providing fundamental data for exposure mitigation via engineering solutions, and providing information regarding the physical properties influencing the transmission of airborne microorganisms at emission sources. In this work, we conducted a joint study to systematically determine the concentrations and size distributions of PM and airborne bacteria, and establish the quantitative relationship between PM and airborne bacteria in laying hen houses. The association between PM and airborne bacteria was expressed as the load of airborne bacteria on PM in terms of the identical particle size interval based on the size-resolved respiratory tract deposition. The concentrations and size distributions of PM and airborne bacteria in laying hen houses were affected by the in-house space (upper and lower), chicken activity (day and night), and outside temperature. The size distributions of PM and airborne bacteria indicated that the mass concentration of large particles decreased with increasing outside temperature, while the concentration of airborne bacteria loaded on the small particles increased with increasing outside temperature. The results indicated that particles with diameters ranging from 2.1 to 4.7 μm carried the most airborne bacteria. Therefore, particles with diameters ranging from 2.1 to 4.7 μm should be the focus of future experimental research on occupational exposure, air quality improvement, and the airborne transmission of PM and airborne microorganisms originating from concentrated layer feeding operations.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yuxin Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
50
|
Coffman VR, Hall DJ, Pisanic N, Love DC, Nadimpalli M, McCormack M, Diener-West M, Davis MF, Heaney CD. Self-reported work activities, eye, nose, and throat symptoms, and respiratory health outcomes among an industrial hog operation worker cohort, North Carolina, USA. Am J Ind Med 2021; 64:403-413. [PMID: 33616247 PMCID: PMC8046736 DOI: 10.1002/ajim.23236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Respiratory disease among industrial hog operation (IHO) workers is well documented; however, it remains unclear whether specific work activities are more harmful and if personal protective equipment (PPE), as used by workers, can reduce adverse health outcomes. METHODS IHO workers (n = 103) completed baseline and up to eight bi-weekly study visits. Workers reported typical (baseline) and transient (bi-weekly) work activities, PPE use, and physical health symptoms. Baseline and longitudinal associations were assessed using generalized logistic and fixed-effects logistic regression models, respectively. RESULTS At baseline, reports of ever versus never drawing pig blood, applying pesticides, and increasing years worked at any IHO were positively associated with reports of eye, nose, and/or throat irritation. Over time, transient exposures, associated with dustiness in barns, cleaning of barns, and pig contact were associated with increased odds of sneezing, headache, and eye or nose irritation, particularly in the highest categories of exposure. When PPE was used, workers had lower odds of symptoms interfering with sleep (odds ratio [OR]: 0.1; 95% confidence interval [CI]: 0.01-0.8), and eye or nose irritation (OR: 0.1; 95% CI: 0.02-0.9). Similarly, when they washed their hands eight times or more per shift (median frequency) versus less frequently, the odds of any respiratory symptom were reduced (OR: 0.3; 95% CI: 0.1-0.8). CONCLUSIONS In this healthy volunteer worker population, increasingly unfavorable IHO activities were associated with self-reported eye, nose, throat, and respiratory health symptoms. Strong protective associations were seen between PPE use and handwashing and the odds of symptoms, warranting further investigation.
Collapse
Affiliation(s)
- Vanessa R Coffman
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Devon J Hall
- Rural Empowerment Association for Community Help (REACH), Warsaw, North Carolina, USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - David C Love
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maya Nadimpalli
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts University, Boston, Massachusetts, USA
| | - Meredith McCormack
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Center for Global Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marie Diener-West
- Johns Hopkins Center for Global Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins School of Nursing, Baltimore, Maryland, USA
- Johns Hopkins Center for Clinical Trials and Evidence Synthesis, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Institute for Clinical and Translational Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Meghan F Davis
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Center for Global Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Education and Research Center for Occupational Safety and Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, The Johns Hopkins University Water Institute, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|