1
|
Han Y, Liu X, Qu S, Duan X, Xiang Y, Jiang N, Yang S, Fang X, Xu L, Wen H, Yu Y, Huang S, Huang J, Zhu K. Tissue geometry spatiotemporally drives bacterial infections. Cell 2025; 188:3459-3476.e21. [PMID: 40262607 DOI: 10.1016/j.cell.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Epithelial tissues serve as the first line of host against bacterial infections. The self-organization of epithelial tissues continuously adapts to the architecture and mechanics of microenvironments, thereby dynamically impacting the initial niche of infections. However, the mechanism by which tissue geometry regulates bacterial infection remains poorly understood. Here, we showed geometry-guided infection patterns of bacteria in epithelial tissues using bioengineering strategies. We discovered that cellular traction forces play a crucial role in the regulation of bacterial invasive sites and marginal infection patterns in epithelial monolayers through triggering co-localization of mechanosensitive ion channel protein Piezo1 with bacteria. Further, we developed precise mechanobiology-based strategies to potentiate the antibacterial efficacy in animal models of wound and intestinal infection. Our findings demonstrate that tissue geometry exerts a key impact on mediating spatiotemporal infections of bacteria, which has important implications for the discovery and development of alternative strategies against bacterial infections.
Collapse
Affiliation(s)
- Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, China
| | - Shaoqi Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yunqing Xiang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Nan Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuyu Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xu Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Liang Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Hui Wen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yue Yu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shuqiang Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Petrovic S, Beovic B, Tomic V, Bitenc M, Malovrh MM, Dimitric V, Luznik D, Miklavcic M, Bozic T, Gabrovec T, Sadikov A, Rozman A. Bronchial bacterial colonization and the susceptibility of isolated bacteria in patients with lung malignancy. Radiol Oncol 2025; 59:147-152. [PMID: 40014784 PMCID: PMC11867552 DOI: 10.2478/raon-2025-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/19/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Postoperative pneumonia (POP) remains a leading cause of mortality following lung surgery. Recent studies have confirmed that the respiratory tract below the vocal cords is not sterile and often harbours potentially pathogenic microorganisms (PPMs), putting patients with lung malignancies at an increased risk for pulmonary infections. PATIENTS AND METHODS The study analysed 149 patients who underwent bronchoscopy for lung lesions suspected to be lung cancer. Protected specimen brush (PSB) samples were obtained during bronchoscopy prior to any specific treatment. Bacterial identification and antimicrobial susceptibility testing were conducted on the isolated strains. RESULTS Bacterial colonization was detected in 88.6% of patients, with 21.5% carrying PPMs. Notably, patients with type 2 diabetes exhibited a higher rate of PPM colonization compared to others. Antibiotic susceptibility testing showed no significant differences in efficacy between amoxicillin with clavulanic acid and first-generation cephalosporin in both colonized patients and those with PPMs. Importantly, no multidrug-resistant bacteria were identified. CONCLUSIONS Our findings indicate a slightly lower PPM colonization rate compared to previous studies, possibly due to the unique geographic characteristics of the study population. The absence of significant differences in bacterial susceptibility between the two tested antibiotics highlights the need for further research to refine perioperative infection management strategies.
Collapse
Affiliation(s)
- Sabrina Petrovic
- Surgery Bitenc, Medical Centre Ljubljana (MCL), Ljubljana, Slovenia
| | - Bojana Beovic
- Clinic for Infectious Diseases and Fever Conditions, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Viktorija Tomic
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
| | - Marko Bitenc
- Surgery Bitenc, Medical Centre Ljubljana (MCL), Ljubljana, Slovenia
| | - Mateja Marc Malovrh
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
| | | | - Dane Luznik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Tamara Bozic
- Surgery Bitenc, Medical Centre Ljubljana (MCL), Ljubljana, Slovenia
| | - Tina Gabrovec
- Surgery Bitenc, Medical Centre Ljubljana (MCL), Ljubljana, Slovenia
| | - Aleksander Sadikov
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Ales Rozman
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Meyer JJ, Culbreath K, Ager E, Esmaili N, Fowler WC, Gilligan P, Fowler AM. Evaluation of the Microbiology of Removed Punctal Plugs and Intracanalicular Devices. Eye Contact Lens 2025; 51:25-29. [PMID: 39485916 DOI: 10.1097/icl.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE The purpose of this observational study was to characterize the microorganisms colonizing punctal plugs and intracanalicular stents. METHODS Devices were removed from participants who previously underwent placement of punctal plugs for tear insufficiency and lacrimal stents for dacryocystorhinostomy and canalicular reconstruction procedures. After removal of the devices, they were cultured for organisms both with and without sonication to loosen any biofilms or adherent microorganisms. Primary outcome measures included culture positivity, identification of isolated microorganisms, recovery of microorganisms from culture after sonication, and clinical evidence of ocular infection. RESULTS There were no cases of clinical infection. A total of 181 specimens were processed (174 punctal plugs, seven intracanalicular stents), of which 98 (54%) were culture positive. Of the punctal plugs, 92 (52.9%) were culture positive, including 42 with a single organism isolated, whereas 22 yielded two organisms, 7 yielded three organisms, and the remaining 21 yielded a polymicrobial culture with four or more organisms. The most common isolates from punctal plugs were coagulase negative staphylococci (27.6%), diphtheroids (16.4%), and streptococcus viridans (10.2%). Those plugs with polymicrobial culture results grew a mixture of organisms most consistent with skin or upper respiratory flora. Of the intracanalicular stents, 6 (85.6%) were culture positive. CONCLUSIONS Punctal plugs and intracanalicular devices can become colonized with bacteria composed of oropharyngeal flora, skin flora, and other rare but potentially significant pathogens.
Collapse
Affiliation(s)
- Jay J Meyer
- Department of Ophthalmology (J.J.M., N.E., W.C.F., A.M.F.), University of North Carolina, Chapel Hill, NC; Department of Ophthalmology (J.J.M.), University of Auckland, Auckland, New Zealand; Tricore Reference Laboratories (K.C.), Albuquerque, NM; Brooke Army Medical Center (E.A.), San Antonio, TX; Medical College of Wisconsin Department of Ophthalmology (N.E.), Milwaukee, WI; Campbell University School of Medicine (W.C.F.), Lillington, NC; Department of Pathology-Laboratory Medicine (P.G.), University of North Carolina School of Medicine, Chapel Hill, NC; and Department of Ophthalmology (A.M.F.), Duke University, Durham, NC
| | | | | | | | | | | | | |
Collapse
|
4
|
ADEQUATE Paediatric Trial Group. Randomised multicentre effectiveness trial of rapid syndromic testing by panel assay in children presenting to European emergency departments with acute respiratory infections-trial protocol for the ADEQUATE Paediatric trial. BMJ Open 2024; 14:e076338. [PMID: 38670622 PMCID: PMC11057286 DOI: 10.1136/bmjopen-2023-076338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Syndromic panel assays, that is, using one test to simultaneously target multiple pathogens with overlapping signs and symptoms, have been integrated into routine paediatric care over the past decade, mainly for more severely ill and hospitalised patients. Their wider availability and short turnaround times open the possibility to apply them to non-hospitalised patients as well. In this context, it is important to trial how clinicians make use of pathogen detection data and if their early availability influences management decisions, particularly antibiotic use and hospitalisation. METHODS AND ANALYSIS Advanced Diagnostics for Enhanced QUality of Antibiotic prescription in respiratory Tract infections in Emergency rooms is an individually randomised, controlled, open-label effectiveness trial comparing the impact of a respiratory pathogen panel assay (BIOFIRE Respiratory Panel 2.1plus) used as a rapid syndromic test on nasopharyngeal swabs in addition to the standard of care versus standard of care alone. The trial will 1:1 randomise 520 participants under the age of 18 at 7 paediatric emergency departments in 5 European countries. Inclusion criteria for the trial consist of two sets, with the first describing respiratory tract infections in paediatric patients and the second describing the situation of potential management uncertainty in which test results may immediately affect management decisions. Enrolment started in July 2021 and is expected to be completed in early 2024. We will perform a two-sample t-test assuming a pooled variance estimate to compare the log-transformed mean time on antibiotic treatment (in hours) and number of days alive out of the hospital within 14 days after study enrolment between the control and intervention arms. ETHICS AND DISSEMINATION The trial protocol and materials were approved by research ethics committees in all participating countries. The respiratory pathogen panel assay is CE marked (assessed to meet European regulations) and FDA (United States Food and Drug Administration) cleared for diagnostic use. Participants and caregivers provide informed consent prior to study procedures commencing. The trial results will be published in peer-reviewed journals and at national and international conferences. Key messages will also be disseminated via press and social media where appropriate. TRIAL REGISTRATION NUMBER NCT04781530.
Collapse
Affiliation(s)
- ADEQUATE Paediatric Trial Group
- Antimicrobial Resistance Research Group, Centre for Neonatal and Paediatric Infection, St George's University of London, London, UK
| |
Collapse
|
5
|
Zakhour J, El Ayoubi LW, Kanj SS. Metallo-beta-lactamases: mechanisms, treatment challenges, and future prospects. Expert Rev Anti Infect Ther 2024; 22:189-201. [PMID: 38275276 DOI: 10.1080/14787210.2024.2311213] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Metallo-beta-lactamases (MBLs) are responsible for resistance to almost all beta-lactam antibiotics. Found predominantly in Gram-negative bacteria, they severely limit treatment options. Understanding the epidemiology, risk factors, treatment, and prevention of infections caused by MBL-producing organisms is essential to reduce their burden. AREAS COVERED The origins and structure of MBLs are discussed. We describe the mechanisms of action that differentiate MBLs from other beta-lactamases. We discuss the global epidemiology of MBL-producing organisms and their impact on patients' outcomes. By exposing the mechanisms of transmission of MBLs among bacterial populations, we emphasize the importance of infection prevention and control. EXPERT OPINION MBLs are spreading globally and challenging the majority of available antibacterial agents. Genotypic tests play an important role in the identification of MBL production. Phenotypic tests are less specific but may be used in low-resource settings, where MBLs are more predominant. Infection prevention and control are critical to reduce the spread of organisms producing MBL in healthcare systems. New combinations such as avibactam-aztreonam and new agents such as cefiderocol have shown promising results for the treatment of infections caused by MBL-producing organisms. New antibiotic and non-antibiotic agents are being developed and may improve the management of infections caused by MBL-producing organisms.
Collapse
Affiliation(s)
- Johnny Zakhour
- Internal Medicine Department, Henry Ford Hospital, Detroit, MI, USA
| | - L'Emir Wassim El Ayoubi
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Messias ACMC, Gama AR, de Almeida Prado LS, da Silva PAN, Galvão Filho AR, Coelho CJ, Avelino MAG, Vieira JDG, Carneiro LC. Detection of Oxacillin/Cefoxitin Resistance in Staphylococcus aureus Present in Recurrent Tonsillitis. Microorganisms 2023; 11:615. [PMID: 36985189 PMCID: PMC10055619 DOI: 10.3390/microorganisms11030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Recurrent tonsillitis is one of the most common diseases in childhood, caused many times by ß-lactam-resistant S. aureus. The objective of this study was to investigate an alternative method to identify resistance to oxacillin/cefoxitin in S. aureus from hospitalized children with recurrent tonsillitis. METHODS The samples of S. aureus came from patients with recurrent tonsillitis and were used in 16S rRNA sequencing and an antibiogram test for identification and verifying resistance, after which HSI methodology were applied for separation of S. aureus resistances. RESULTS The S. aureus isolated showed sensitivity to oxacillin/cefoxitin and the diagnostic images show a visual description of the resistance different groups formed, that may be related to sensitivity and resistance to oxacillin/cefoxitin, characterizing the MRSA S. aureus. CONCLUSIONS Samples that showed phenotypic resistance to oxacillin/cefoxitin were clearly separated from samples that did not show this resistance. A PLS-DA model predicted the presence of resistance to oxacillin/cefoxitin in S. aureus samples and it was possible to observe the pixels classified as MRSA. The HSI was able to successfully discriminate samples in replicas that were sensitive and resistant, based on the calibration model it received.
Collapse
Affiliation(s)
| | - Aline Rodrigues Gama
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, 235 Street, Goiânia 74605-020, GO, Brazil
| | | | | | | | - Clarimar José Coelho
- Engineering School, Pontifical Catholic University of Goiás, Avenue Universitária, Goiânia 74175-120, GO, Brazil
| | | | - José Daniel Gonçalves Vieira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, 235 Street, Goiânia 74605-020, GO, Brazil
| | - Lilian Carla Carneiro
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, 235 Street, Goiânia 74605-020, GO, Brazil
| |
Collapse
|
7
|
Argyropoulos CD, Skoulou V, Efthimiou G, Michopoulos AK. Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:477-533. [PMID: 36467894 PMCID: PMC9703444 DOI: 10.1007/s11869-022-01286-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The nature and airborne dispersion of the underestimated biological agents, monitoring, analysis and transmission among the human occupants into building environment is a major challenge of today. Those agents play a crucial role in ensuring comfortable, healthy and risk-free conditions into indoor working and leaving spaces. It is known that ventilation systems influence strongly the transmission of indoor air pollutants, with scarce information although to have been reported for biological agents until 2019. The biological agents' source release and the trajectory of airborne transmission are both important in terms of optimising the design of the heating, ventilation and air conditioning systems of the future. In addition, modelling via computational fluid dynamics (CFD) will become a more valuable tool in foreseeing risks and tackle hazards when pollutants and biological agents released into closed spaces. Promising results on the prediction of their dispersion routes and concentration levels, as well as the selection of the appropriate ventilation strategy, provide crucial information on risk minimisation of the airborne transmission among humans. Under this context, the present multidisciplinary review considers four interrelated aspects of the dispersion of biological agents in closed spaces, (a) the nature and airborne transmission route of the examined agents, (b) the biological origin and health effects of the major microbial pathogens on the human respiratory system, (c) the role of heating, ventilation and air-conditioning systems in the airborne transmission and (d) the associated computer modelling approaches. This adopted methodology allows the discussion of the existing findings, on-going research, identification of the main research gaps and future directions from a multidisciplinary point of view which will be helpful for substantial innovations in the field.
Collapse
Affiliation(s)
| | - Vasiliki Skoulou
- B3 Challenge Group, Chemical Engineering, School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Georgios Efthimiou
- Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Apostolos K. Michopoulos
- Energy & Environmental Design of Buildings Research Laboratory, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
8
|
Alves D, Lopes H, Machado I, Pereira MO. Colistin conditioning surfaces combined with antimicrobial treatment to prevent ventilator-associated infections. BIOFOULING 2022; 38:547-557. [PMID: 35903005 DOI: 10.1080/08927014.2022.2088284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Biofilm formation on endotracheal tubes (ETT) is an important factor in the development of ventilator-associated pneumonia (VAP). This work aimed to investigate the effectiveness of colistin (COL) against the early stages of biofilm formation by Pseudomonas aeruginosa. Two strategies were used: pre-conditioning the adhesion surfaces with COL before biofilm formation and growing biofilms in its presence. The combined effect of treating P. aeruginosa 24-hours old biofilms with Ciprofloxacin (CIP) or colistin (COL) on clean and COL-conditioned surfaces was also assessed. Random deposition of COL residues altered the physico-chemical properties of the adhesion surfaces and impaired biofilm formation. Moreover, as a consequence of the reduced amount of biofilms attached to COL conditioned surfaces, adhered cells became more exposed to the subsequent action of CIP or COL, suggesting a combined outcome of prophylactic and therapeutic COL-based strategies. Results highlighted the promising use of COL to prevent the establishment of biofilms on ETT.
Collapse
Affiliation(s)
- Diana Alves
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Hélder Lopes
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Idalina Machado
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Lebastard M, Beurlet‐Lafarge S, Gomes E, Le Boedec K. Association between quantitative bacterial culture of bronchoalveolar lavage fluid and antibiotic requirement in dogs with lower respiratory tract signs. J Vet Intern Med 2022; 36:1444-1453. [PMID: 35616218 PMCID: PMC9308423 DOI: 10.1111/jvim.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Historically, positive bacterial cultures from the lower respiratory tract (LRT) have been considered clinically relevant when quantitative bacterial cultures of bronchoalveolar lavage fluid (BALF) were >1700 colony forming units (cfu)/mL. However, this threshold might not accurately predict a requirement for antibiotics. OBJECTIVES To study whether quantitative BALF bacterial culture results were predictive of antibiotic requirement in dogs with LRT signs. ANIMALS Thirty-three client-owned dogs. METHODS Cross-sectional study. Dogs with positive quantitative bacterial culture of BALF were included. Dogs were divided into 2 groups, depending on whether they had a LRT infection requiring antibiotics (LRTI-RA) or LRT disease not requiring antibiotics (LRTD-NRA), based on thoracic imaging features, presence of intracellular bacteria on BALF cytology, and response to treatment. Predictive effect of cfu/mL and BALF total nucleated cell count (TNCC) on antibiotic requirement, adjusting for ongoing or prior antibiotic therapy and age, were studied using logistic regression. RESULTS Twenty-two and 11 dogs were included in the LRTI-RA and LRTD-NRA groups, respectively. The cfu/mL was not significantly predictive of antibiotic requirement, independent of ongoing or prior antibiotic treatment and age (LRTI-RA: median, 10 000 cfu/mL; range, 10-3 × 108 ; LRTD-NRA: median, 10 000 cfu/mL; range, 250-1.3 × 109 ; P = .27). The TNCC was not significantly predictive of antibiotic requirement when only dogs with bronchial disease were considered (LRTI-RA: median, 470 cells/μL; range, 240-2260; LRTD-NRA: median, 455 cells/μL; range, 80-4990; P = .57). CONCLUSION AND CLINICAL IMPORTANCE The cfu/mL is an inappropriate measure for determining whether antibiotics are of benefit in dogs with LRT signs.
Collapse
|
10
|
Stojanovic Z, Gonçalves-Carvalho F, Marín A, Abad Capa J, Domínguez J, Latorre I, Lacoma A, Prat-Aymerich C. Advances in diagnostic tools for respiratory tract infections: from tuberculosis to COVID-19 - changing paradigms? ERJ Open Res 2022; 8:00113-2022. [PMID: 36101788 PMCID: PMC9235056 DOI: 10.1183/23120541.00113-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022] Open
Abstract
Respiratory tract infections (RTIs) are one of the most common reasons for seeking healthcare, but are amongst the most challenging diseases in terms of clinical decision-making. Proper and timely diagnosis is critical in order to optimise management and prevent further emergence of antimicrobial resistance by misuse or overuse of antibiotics. Diagnostic tools for RTIs include those involving syndromic and aetiological diagnosis: from clinical and radiological features to laboratory methods targeting both pathogen detection and host biomarkers, as well as their combinations in terms of clinical algorithms. They also include tools for predicting severity and monitoring treatment response. Unprecedented milestones have been achieved in the context of the COVID-19 pandemic, involving the most recent applications of diagnostic technologies both at genotypic and phenotypic level, which have changed paradigms in infectious respiratory diseases in terms of why, how and where diagnostics are performed. The aim of this review is to discuss advances in diagnostic tools that impact clinical decision-making, surveillance and follow-up of RTIs and tuberculosis. If properly harnessed, recent advances in diagnostic technologies, including omics and digital transformation, emerge as an unprecedented opportunity to tackle ongoing and future epidemics while handling antimicrobial resistance from a One Health perspective.
Collapse
Affiliation(s)
- Zoran Stojanovic
- Pneumology Dept, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Co-first authors
| | - Filipe Gonçalves-Carvalho
- Pneumology Dept, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Co-first authors
| | - Alicia Marín
- Pneumology Dept, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Abad Capa
- Pneumology Dept, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Domínguez
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
| | - Irene Latorre
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
| | - Alicia Lacoma
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
- Co-senior authors
| | - Cristina Prat-Aymerich
- Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Co-senior authors
| |
Collapse
|
11
|
Montagut EJ, Acosta G, Albericio F, Royo M, Godoy-Tena G, Lacoma A, Prat C, Salvador JP, Marco MP. Direct Quantitative Immunochemical Analysis of Autoinducer Peptide IV for Diagnosing and Stratifying Staphylococcus aureus Infections. ACS Infect Dis 2022; 8:645-656. [PMID: 35175740 PMCID: PMC8922274 DOI: 10.1021/acsinfecdis.1c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An immunochemical strategy to detect and quantify AIP-IV, the quorum sensing (QS) signaling molecule produced by Staphylococcus aureus agr type IV, is reported here for the first time. Theoretical calculations and molecular modeling studies have assisted on the design and synthesis of a suitable peptide hapten (AIPIVS), allowing to obtain high avidity and specific antibodies toward this peptide despite its low molecular weight. The ELISA developed achieves an IC50 value of 2.80 ± 0.17 and an LOD of 0.19 ± 0.06 nM in complex media such as 1/2 Tryptic Soy Broth. Recognition of other S. aureus AIPs (I-III) is negligible (cross-reactivity below 0.001%), regardless of the structural similarities. A pilot study with a set of clinical isolates from patients with airways infection or colonization demonstrates the potential of this ELISA to perform biomedical investigations related to the role of QS in pathogenesis and the association between dysfunctional agr or the agr type with unfavorable clinical outcomes. The AIP-IV levels could be quantified in the low nanomolar range in less than 1 h after inoculating agr IV-genotyped isolates in the culture broth, while those genotyped as I-III did not show any immunoreactivity after a 48 h growth, pointing to the possibility to use this technology for phenotyping S. aureus. The research strategy here reported can be extended to the rest of the AIP types of S. aureus, allowing the development of powerful multiplexed chips or point-of-care (PoC) diagnostic devices to unequivocally identify its presence and its agr type on samples from infected patients.
Collapse
Affiliation(s)
- Enrique-J. Montagut
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| | - Gerardo Acosta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
| | - Fernando Albericio
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- Department of Organic Chemistry, Faculty of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, 4000 Durban, South Africa
| | - Miriam Royo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
| | - Gerard Godoy-Tena
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Cristina Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, the Netherlands
| | - Juan-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| | - María-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| |
Collapse
|
12
|
Strain-specific interspecies interactions between co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization. Sci Rep 2022; 12:3374. [PMID: 35233050 PMCID: PMC8888623 DOI: 10.1038/s41598-022-07018-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 01/20/2023] Open
Abstract
Dual species interactions in co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization were examined. The genetic and phenotypic diversity between the isolates was high making the interactions detected strain-specific. Despite this, and the clinical origin of the strains, some interactions were common between some co-isolated pairs. For most pairs, P. aeruginosa exoproducts affected biofilm formation and reduced growth in vitro in its S. aureus counterpart. Conversely, S. aureus did not impair biofilm formation and stimulated swarming motility in P. aeruginosa. Co-culture in a medium that mimics respiratory mucus promoted coexistence and favored mixed microcolony formation within biofilms. Under these conditions, key genes controlled by quorum sensing were differentially regulated in both species in an isolate-dependent manner. Finally, co-infection in the acute infection model in Galleria mellonella larvae showed an additive effect only in the co-isolated pair in which P. aeruginosa affected less S. aureus growth. This work contributes to understanding the complex interspecies interactions between P. aeruginosa and S. aureus by studying strains isolated during acute infection.
Collapse
|
13
|
Application of mNGS in the Etiological Analysis of Lower Respiratory Tract Infections and the Prediction of Drug Resistance. Microbiol Spectr 2022; 10:e0250221. [PMID: 35171007 PMCID: PMC8849087 DOI: 10.1128/spectrum.02502-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lower respiratory tract infections (LRTIs) have high morbidity and mortality rates. However, traditional etiological detection methods have not been able to meet the needs for the clinical diagnosis and prognosis of LRTIs. The rapid development of metagenomic next-generation sequencing (mNGS) provides new insights for the diagnosis and treatment of LRTIs; however, little is known about how to interpret the application of mNGS results in LRTIs. In this study, lower respiratory tract specimens from 46 patients with suspected LRTIs were tested simultaneously using conventional microbiological detection methods and mNGS. Receiver operating characteristic (ROC) curves were used to evaluate the performance of the logarithm of reads per kilobase per million mapped reads [lg(RPKM)], genomic coverage, and relative abundance of the organism in predicting the true-positive pathogenic bacteria. True-positive viruses were identified according to the lg(RPKM) threshold of bacteria. We also evaluated the ability to predict drug resistance genes using mNGS. Compared to that using conventional detection methods, the false-positive detection rate of pathogenic bacteria was significantly higher using mNGS. It was concluded from the ROC curves that the lg(RPKM) and genomic coverage contributed to the identification of pathogenic bacteria, with the performance of lg(RPKM) being the best (area under the curve [AUC] = 0.99). The corresponding lg(RPKM) threshold for identifying the pathogenic bacteria was −1.35. Thirty-five strains of true-positive virus were identified based on the lg(RPKM) threshold of bacteria, with the detection of human gammaherpesvirus 4 being the highest and prone to coinfection with Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. Antimicrobial susceptibility tests (AST) revealed the resistance of bacteria containing drug resistance genes (detected by mNGS). However, the drug resistance genes of some multidrug-resistant bacteria were not detected. As an emerging technology, mNGS has shown many advantages for the unbiased etiological detection and the prediction of antibiotic resistance. However, a correct understanding of mNGS results is a prerequisite for its clinical application, especially for LRTIs. IMPORTANCE LRTIs are caused by hundreds of pathogens, and they have become a great threat to human health due to the limitations of traditional etiological detection methods. As an unbiased approach to detect pathogens, mNGS overcomes such etiological diagnostic challenges. However, there is no unified standard on how to use mNGS indicators (the sequencing reads, genomic coverage, and relative abundance of each organism) to distinguish between pathogens and colonizing microorganisms or contaminant microorganisms. Here, we selected the mNGS indicator with the best identification performance and established a cutoff value for the identification of pathogens in LRTIs using ROC curves. In addition, we also evaluated the accuracy of antibiotic resistance prediction using mNGS.
Collapse
|
14
|
Apaza Ticona L, Puerto Madorrán MJ, Hervás Povo B, Ortega Domenech M, Rumbero Sánchez A. Isolation and characterisation of antibacterial and anti-inflammatory compounds from Gnaphalium polycaulon. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114661. [PMID: 34555450 DOI: 10.1016/j.jep.2021.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Gnaphalium polycaulon commonly known as "cudweed" has been used throughout South America as an infusion to treat colds, bronchitis, fever or pneumonia. AIM OF THE STUDY This study aimed to determine the antibacterial and anti-inflammatory activities of the aqueous extract of Gnaphalium polycaulon and identify the related compounds. MATERIALS AND METHODS A bio-guided isolation of the active compounds of Gnaphalium polycaulon was carried out, selecting the fractions depending on their antibacterial, anti-inflammatory and cytotoxic activities. The antibacterial effect was studied against Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus and Streptococcus pneumoniae; and the anti-inflammatory study was performed by measuring the inhibition of NF-κB in BEAS-2B and IMR-90 cell cultures. RESULTS Three compounds were obtained and characterised by nuclear magnetic resonance and mass spectrometry. These compounds are 2-(4-(1-H-tetrazol-1-yl) phenyl)-2-aminopropanoic acid (1), N-phenyl-4-(3-phenyl-1,2,4-thiadiazol-5-yl) piperazine-1-carboxamide (2) and N-(4-ethoxyphenyl)-4-(2-methylimidazo-[1,2-α] pyridine-3-yl) thiazol-2-amine (3). All compounds showed antibacterial activity with MIC values of 44.80-44.85, 0.017-0.021 and 0.0077-0.0079 μM, respectively, in the Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus and Streptococcus pneumoniae strains, while the positive control, Ofloxacin, had a MIC value of 27.64-27.67 μM. This was corroborated through a zone inhibition assay, where compound 3 (11.36-11.67 mm) was much more active than the positive control (Ofloxacin, 23.41-24.12 mm), while compounds 2 (26.47-27.64 mm) and 1 (28.39-29.76 mm) displayed similar antibacterial potential to the positive control. Finally, all the compounds presented NF-κB inhibitory activity, compounds 3 (IC50 = 0.0071-0.0073 μM) and 2 (IC50 = 0.016-0.019 μM) being the most promising. Compound 1 (IC50 = 44.24-44.26 μM) had less anti-inflammatory potential, being also the closest to the values displayed by the positive control (Celastrol, IC50 = 7.41 μM). CONCLUSION In the present study, three compounds were isolated for the first time from the aqueous extract of Gnaphalium polycaulon. Their antibacterial and anti-inflammatory potential was tested and showcased.
Collapse
Affiliation(s)
- L Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid. Cantoblanco, 28049, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid. Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - M J Puerto Madorrán
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid. Cantoblanco, 28049, Madrid, Spain
| | - B Hervás Povo
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid. Cantoblanco, 28049, Madrid, Spain
| | | | - A Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid. Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
15
|
Ordóñez-Mena JM, Fanshawe TR, Foster D, Andersson M, Oakley S, Stoesser N, Walker AS, Hayward G. Frequencies and patterns of microbiology test requests from primary care in Oxfordshire, UK, 2008-2018: a retrospective cohort study of electronic health records to inform point-of-care testing. BMJ Open 2021; 11:e048527. [PMID: 34815274 PMCID: PMC8611454 DOI: 10.1136/bmjopen-2020-048527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES To inform point-of-care test (POCT) development, we quantified the primary care demand for laboratory microbiology tests by describing their frequencies overall, frequencies of positives, most common organisms identified, temporal trends in testing and patterns of cotesting on the same and subsequent dates. DESIGN Retrospective cohort study. SETTING Primary care practices in Oxfordshire. PARTICIPANTS 393 905 patients (65% female; 49% aged 18-49). PRIMARY AND SECONDARY OUTCOME MEASURES The frequencies of all microbiology tests requested between 2008 and 2018 were quantified. Patterns of cotesting were investigated with heat maps. All analyses were done overall, by sex and age categories. RESULTS 1 596 752 microbiology tests were requested. Urine culture±microscopy was the most common of all tests (n=673 612, 42%), was mainly requested without other tests and was the most common test requested in follow-up within 7 and 14 days. Of all urine cultures, 180 047 (27%) were positive and 172 651 (26%) showed mixed growth, and Escherichia coli was the most prevalent organism (132 277, 73% of positive urine cultures). Antenatal urine cultures and blood tests in pregnancy (hepatitis B, HIV and syphilis) formed a common test combination, consistent with their use in antenatal screening. CONCLUSIONS The greatest burden of microbiology testing in primary care is attributable to urine culture ± microscopy; genital and routine antenatal urine and blood testing are also significant contributors. Further research should focus on the feasibility and impact of POCTs for these specimen types.
Collapse
Affiliation(s)
- J M Ordóñez-Mena
- Department of Primary Care Health Sciences, University of Oxford Nuffield, Oxford, Oxfordshire, UK
- NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Thomas R Fanshawe
- Department of Primary Care Health Sciences, University of Oxford Nuffield, Oxford, Oxfordshire, UK
| | - Dona Foster
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Monique Andersson
- Department of Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Sarah Oakley
- Department of Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Nicole Stoesser
- NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Department of Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - A Sarah Walker
- NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Gail Hayward
- Department of Primary Care Health Sciences, University of Oxford Nuffield, Oxford, Oxfordshire, UK
| |
Collapse
|
16
|
Khumalo GP, Sadgrove NJ, Van Vuuren SF, Van Wyk BE. South Africa's Best BARK Medicines Prescribed at the Johannesburg Muthi Markets for Skin, Gut, and Lung Infections: MIC's and Brine Shrimp Lethality. Antibiotics (Basel) 2021; 10:681. [PMID: 34200286 PMCID: PMC8227155 DOI: 10.3390/antibiotics10060681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/03/2022] Open
Abstract
Indigenous trade of medicinal plants in South Africa is a multi-million-rand industry and is still highly relevant in terms of primary health care. The purpose of this study was to identify today's most traded medicinal barks, traditionally and contemporaneously used for dermatological, gastrointestinal, and respiratory tract infections; then, to investigate the antimicrobial activity and toxicity of the respective extracts and interpret outcomes in light of pharmacokinetics. Thirty-one popularly traded medicinal barks were purchased from the Faraday and Kwa Mai-Mai markets in Johannesburg, South Africa. Information on the medicinal uses of bark-based medicines in modern commerce was recorded from randomly selected traders. The minimum inhibitory concentration (MIC) method was used for antimicrobial screening, and brine shrimp lethality was used to determine toxicity. New medicinal uses were recorded for 14 bark species. Plants demonstrating some broad-spectrum activities against tested bacteria include Elaeodendron transvaalense, Erythrina lysistemon, Garcinia livingstonei, Pterocelastrus rostratus, Rapanea melanophloeos, Schotia brachypetala, Sclerocarya birrea, and Ziziphus mucronata. The lowest MIC value of 0.004 mg/mL was observed against Staphylococcus epidermidis for a dichloromethane bark extract of E. lysistemon. The tested medicinal barks were shown to be non-toxic against the Artemia nauplii (brine shrimp) bioassay, except for a methanol extract from Trichilia emetica (69.52% mortality). Bacterial inhibition of bark extracts with minimal associated toxicity is consistent with the safety and valuable use of medicinal barks for local muthi market customers. Antimicrobial outcomes against skin and gastrointestinal pathogens are feasible because mere contact-inhibition is required in vivo; however, MIC values against respiratory pathogens require further explaining from a pharmacokinetics or pharmacodynamics perspective, particularly for ingested rather than smoked therapies.
Collapse
Affiliation(s)
- Gugulethu P. Khumalo
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
| | - Nicholas J. Sadgrove
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
- Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3DS, UK
| | - Sandy F. Van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Park Town 2193, South Africa;
| | - Ben-Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
| |
Collapse
|
17
|
van Leenen K, Jouret J, Demeyer P, Vermeir P, Leenknecht D, Van Driessche L, De Cremer L, Masmeijer C, Boyen F, Deprez P, Cox E, Devriendt B, Pardon B. Particulate matter and airborne endotoxin concentration in calf barns and their association with lung consolidation, inflammation, and infection. J Dairy Sci 2021; 104:5932-5947. [PMID: 33612235 DOI: 10.3168/jds.2020-18981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/12/2020] [Indexed: 11/19/2022]
Abstract
Agricultural operations are important sources of organic dust containing particulate matter (PM) and endotoxins, which have possible negative health consequences for both humans and animals. Dust concentrations and composition in calf barns, as well as the potential health effects for these animals, are scarcely documented. The objective of this study was to measure PM fractions and endotoxin concentrations in calf barns and study their associations with lung consolidation, respiratory tract inflammation, and infection in group-housed calves. In this cross-sectional study, samples from 24 dairy farms and 23 beef farms were collected in Belgium from January to April 2017. PM1.0, PM2.5 and PM10 (defined as particulate matter passing through a size-selective inlet with a 50% efficiency cut-off at a 1.0-μm, 2.5-μm, and 10-μm aerodynamic diameter, respectively) were sampled during a 24-h period using a Grimm aerosol spectrometer (Grimm Aerosol Technik Ainring GmbH & Co. KG). Endotoxin concentration was measured in the PM10 fraction. Thoracic ultrasonography was performed and broncho-alveolar lavage fluid was collected for cytology and bacteriology. Average PM concentrations were 16.3 µg/m3 (standard deviation, SD: 17.1; range: 0.20-771), 25.0 µg/m3 (SD: 25.3; range: 0.50-144.9), and 70.3 µg/m3 (SD: 54.5; range: 1.6-251.2) for PM1.0, PM2.5, and PM10, respectively. Mean endotoxin in the PM10 fraction was 4.2 endotoxin units (EU)/µg (SD: 5.50; range: 0.03-30.3). Concentrations in air were 205.7 EU/m3 (SD: 197.5; range: 2.32-901.0). Lung consolidations with a depth of ≥1, ≥3, and ≥6 cm were present in 43.1% (146/339), 27.4% (93/339), and 15.3% (52/339) of the calves, respectively. Exposure to fine (PM1.0) PM fractions was associated with increased odds of lung consolidations of ≥1 cm (odds ratio, OR: 3.3; confidence interval (CI): 1.5-7.1), ≥3 cm (OR: 2.8; CI: 1.2-7.1), and ≥6 cm (OR: 12.3; CI: 1.2-125.0). The odds of having lung consolidations of ≥1 cm (OR: 13.9; CI: 3.4-58.8) and ≥3 cm (OR: 6.7; 1.7-27.0) were higher when endotoxin concentrations in the dust mass exceeded 8.5 EU/µg. Broncho-alveolar lavage fluid neutrophil percentage was positively associated with PM10 concentration, and epithelial cell percentage was negatively associated with this fraction. Concentration of PM2.5 was positively associated with epithelial cell percentage and isolation of Pasteurella multocida. Although concentrations of fine dust are lower in calf barns than in poultry and pig housings, in this study they were associated with pneumonia in calves. Dust control strategies for reducing fine dust fractions in calf barns may benefit human and animal respiratory health.
Collapse
Affiliation(s)
- K van Leenen
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - J Jouret
- Belgian Center for Occupational Hygiene, Tramstraat 59, 9052 Zwijnaarde, Belgium
| | - P Demeyer
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester van Gansberghelaan 115 Bus1, 9820 Merelbeke, Belgium
| | - P Vermeir
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - D Leenknecht
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - L Van Driessche
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - L De Cremer
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - C Masmeijer
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Boyen
- Laboratory for Veterinary Bacteriology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - P Deprez
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - E Cox
- Laboratory for Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Devriendt
- Laboratory for Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
18
|
Genotypic and Phenotypic Characterization of Staphylococcus aureus Isolates from the Respiratory Tract in Mechanically-Ventilated Patients. Toxins (Basel) 2021; 13:toxins13020122. [PMID: 33562023 PMCID: PMC7915691 DOI: 10.3390/toxins13020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a commensal and frequent colonizer of the upper respiratory tract. When mechanical ventilation disrupts natural defenses, S. aureus is frequently isolated from the lower airways, but distinguishing between colonization and infection is difficult. The objectives of this study were (1) to investigate the bacterial genome sequence in consecutive isolates in order to identify changes related to the pathological adaptation to the lower respiratory tract and (2) to explore the relationship between specific phenotypic and genotypic features with the patient’s study group, persistence of the clinical isolate and clinical outcome. A set of 94 clinical isolates were selected and corresponded to 34 patients that were classified as having pneumonia (10), tracheobronchitis (11) and bronchial colonization (13). Clinical strains were phenotypically characterized by conventional identification and susceptibility testing methods. Isolates underwent whole genome sequencing using Illumina HiSeq4000. Genotypic characterization was performed with an in-house pipeline (BacterialTyper). Genomic variation arising within-host was determined by comparing mapped sequences and de novo assemblies. Virulence factors important in staphylococcal colonization and infection were characterized using previously established functional assays. (1) Toxin production was assessed using a THP-1 cytotoxicity assay, which reports on the gross cytotoxicity of individual isolates. In addition, we investigated the expression of the major virulence factor, alpha-toxin (Hla) by Western blot. (2) Adhesion to the important extracellular matrix molecule, fibronectin, was determined using a standardized microtitre plate assay. Finally, invasion experiments using THP-1 and A539 cell lines and selected clinical strains were also performed. Repeated isolation of S. aureus from endotracheal aspirate usually reflects persistence of the same strain. Within-host variation is detectable in this setting, but it shows no evidence of pathological adaptation related to virulence, resistance or niche adaptations. Cytotoxicity was variable among isolates with 14 strains showing no cytotoxicity, with these latter presenting an unaltered Fn binding capacity. No changes on cytotoxicity were reported when comparing study groups. Fn binding capacity was reported for almost all strains, with the exception of two strains that presented the lowest values. Strains isolated from patients with pneumonia presented a lower capacity of adhesion in comparison to those isolated during tracheobronchitis (p = 0.002). Hla was detected in 71 strains (75.5%), with most of the producer strains in pneumonia and bronchial colonization group (p = 0.06). In our cohort, Hla expression (presence or absence) in sequential isolates was usually preserved (70%) although in seven cases the expression varied over time. No relationship was found between low cytotoxicity and intracellular persistence in invasion experiments. In our study population, persistent S. aureus isolation from airways in ventilated patients does not reflect pathological adaptation. There is an important diversity of sequence types. Cytotoxicity is variable among strains, but no association with study groups was found, whereas isolates from patients with pneumonia had lower adhesion capability. Favorable clinical outcome correlated with increased bacterial adhesion in vitro. Most of the strains isolated from the lower airways were Hla producers and no correlation with an adverse outcome was reported. The identification of microbial factors that contribute to virulence is relevant to optimize patient management during lower respiratory tract infections.
Collapse
|
19
|
Clark SE. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr Opin Immunol 2020; 66:42-49. [PMID: 32416468 PMCID: PMC7665980 DOI: 10.1016/j.coi.2020.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
The human body is host to several distinct microbial communities. Disruption of these communities increases susceptibility to a wide range of diseases, including respiratory tract infections. While commensal bacteria in the gut contribute to this effect, recent studies point to a role for commensals occupying the upper respiratory tract through direct pathogen killing and by modifying nasal and lung immune homeostasis. Clinical trials exploring 'probiotic' respiratory tract commensals are an exciting development in this area. Upper respiratory tract microbiome sequencing has revealed that destabilization of this community precedes infection, indicating that microbiome profiling of individuals has predictive value. Further investigation of respiratory tract commensal-host interactions will be critical to translate bacterial-mediated protection toward new therapeutic approaches for respiratory tract disease.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
20
|
Lacoma A, Usón L, Mendoza G, Sebastián V, Garcia-Garcia E, Muriel-Moreno B, Domínguez J, Arruebo M, Prat C. Novel intracellular antibiotic delivery system against Staphylococcus aureus: cloxacillin-loaded poly(d,l-lactide-co-glycolide) acid nanoparticles. Nanomedicine (Lond) 2020; 15:1189-1203. [DOI: 10.2217/nnm-2019-0371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: First, to compare in vitro minimum inhibitory concentrations (MIC) of free cloxacillin and cloxacillin-containing nanoparticles (NP) against methicillin-susceptible (MSSA) and resistant Staphylococcus aureus (MRSA) and second, to assess NP antimicrobial activity against intracellular S. aureus. Methods: Poly(d,l-lactide-co-glycolide) acid (PLGA)-NP were loaded with cloxacillin and physico-chemically characterized. MICs were determined for reference strains Newman-(MSSA) and USA300-(MRSA). Murine alveolar macrophages were infected, and bacterial intracellular survival was assessed after incubating with free-cloxacillin or PLGA-cloxacillin-NP. Results & conclusion: For both isolates, MICs for antibiotic-loaded-NP were lower than those obtained with free cloxacillin, indicating that the drug encapsulation improves antimicrobial activity. A sustained antibiotic release was demonstrated when using the PLGA-cloxacillin-NP. When considering the lowest concentrations, the use of drug-loaded NP enabled a higher reduction of intracellular bacterial load.
Collapse
Affiliation(s)
- Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Laura Usón
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Gracia Mendoza
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Victor Sebastián
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Esther Garcia-Garcia
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Beatriz Muriel-Moreno
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jose Domínguez
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Manuel Arruebo
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Bhasme P, Wei Q, Xu A, Naqvi STA, Wang D, Ma LZ. Evaluation and characterization of the predicted diguanylate cyclase-encoding genes in Pseudomonas aeruginosa. Microbiologyopen 2020; 9:e975. [PMID: 32012489 PMCID: PMC7066473 DOI: 10.1002/mbo3.975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Opportunistic pathogen Pseudomonas aeruginosa can cause acute and chronic infections in humans. It is notorious for its resistance to antibiotics due to the formation of biofilms. Cyclic‐di‐GMP is a bacterial second messenger that plays important roles during biofilm development. There are 40 genes in P. aeruginosa predicted to participate in c‐di‐GMP biosynthesis or degradation. It is time‐consuming for the functional characterization of these genes. Here, we cloned 16 genes from P. aeruginosa PAO1 that are predicted to encode diguanylate cyclases (DGCs, responsible for c‐di‐GMP biosynthesis) and constructed their corresponding in‐frame deletion mutants. We evaluated the methods to measure the intracellular c‐di‐GMP concentration by using deletion mutants and PAO1 strains containing a plasmid expressing one of the 16 genes, respectively. Functional outputs of all PAO1‐derived stains were also detected and evaluated, including biofilm formation, production of exopolysaccharide, swimming and swarming motilities. Our data showed that measuring the c‐di‐GMP level only characterized a few DGC by using either pCdrA::gfp as a reporter or LC/MS/MS. Functional output results indicated that overexpression of a DGC gave more pronounced phenotypes than the corresponding deletion mutant and suggested that the swimming motility assay could be a quick way to briefly estimate a predicted DGC for further studies. The overall evaluation suggested 15 out of 16 predicted DGCs were functional DGCs, wherein six were characterized to encode DGCs previously. Altogether, we have provided not only a cloning library of 16 DGC‐encoding genes and their corresponding in‐frame deletion mutants but also paved ways to briefly characterize a predicted DGC.
Collapse
Affiliation(s)
- Pramod Bhasme
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anming Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Syed Tatheer Alam Naqvi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Alsamhary K, Al-Enazi N, Alshehri WA, Ameen F. Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb Pathog 2019; 139:103928. [PMID: 31843547 DOI: 10.1016/j.micpath.2019.103928] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022]
Abstract
In this study, flavonoid tricetin was used as a reducing and capping agent for the synthesis of gold nanoparticles (AuNPs). Further, the antibacterial efficacy of the synthesised AuNPs was evaluated against the opportunistic bacterial pathogens that cause respiratory infections. The optimum levels for the synthesis of AuNPs were found to be pH 8, temperature 30 °C, tricetin 125 μM and chloroauric acid 250 μM. The tricetin synthesised AuNPs exhibited in spherical shape with an average size of 12 nm. FT-IR results confirmed that the hydroxyl (OH) and carbonyl (CO) groups of tricetin were mainly participated in the synthesis of AuNPs. The opportunistic bacterial pathogens isolated from immunocompromised patients suffering with different respiratory infections were identified as Staphylococcus aureus, Enterobacter xiangfangensis, Bacillus licheniformis, Escherichia fergusonii, Acinetobacter pittii, Pseudomonas aeruginosa, Aeromonas enteropelogenes and Proteus mirabilis. The antibacterial studies confirmed the broad-spectrum antibacterial activity of AuNPs against the tested Gram-positive and Gram-negative bacteria. The synthesised AuNPs showed high biocompatibility on primary normal human dermal fibroblast (NHDF-c) cells up to 50 μM mL-1. Best of our knowledge, this is the first report on the synthesis of AuNPs using tricetin, which may be a potential antibacterial nanomedicine to treat bacterial infections.
Collapse
Affiliation(s)
- Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
| | - Nouf Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Wafa A Alshehri
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
23
|
Lacoma A, Mateo L, Blanco I, Méndez MJ, Rodrigo C, Latorre I, Villar-Hernandez R, Domínguez J, Prat C. Impact of Host Genetics and Biological Response Modifiers on Respiratory Tract Infections. Front Immunol 2019; 10:1013. [PMID: 31134083 PMCID: PMC6513887 DOI: 10.3389/fimmu.2019.01013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/23/2019] [Indexed: 12/26/2022] Open
Abstract
Host susceptibility to respiratory tract infections (RTI) is dependent on both genetic and acquired risk factors. Repeated bacterial and viral RTI, such as pneumonia from encapsulated microorganisms, respiratory tract infections related to respiratory syncytial virus or influenza, and even the development of bronchiectasis and asthma, are often reported as the first symptom of primary immunodeficiencies. In the same way, neutropenia is a well-known risk factor for invasive aspergillosis, as well as lymphopenia for Pneumocystis, and mycobacterial infections. However, in the last decades a better knowledge of immune signaling networks and the introduction of next generation sequencing have increased the number and diversity of known inborn errors of immunity. On the other hand, the use of monoclonal antibodies targeting cytokines, such as tumor necrosis factor alpha has revealed new risk groups for infections, such as tuberculosis. The use of biological response modifiers has spread to almost all medical specialties, including inflammatory diseases and neoplasia, and are being used to target different signaling networks that may mirror some of the known immune deficiencies. From a clinical perspective, the individual contribution of genetics, and/or targeted treatments, to immune dysregulation is difficult to assess. The aim of this article is to review the known and newly described mechanisms of impaired immune signaling that predispose to RTI, including new insights into host genetics and the impact of biological response modifiers, and to summarize clinical recommendations regarding vaccines and prophylactic treatments in order to prevent infections.
Collapse
Affiliation(s)
- Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Lourdes Mateo
- Servei de Reumatologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Blanco
- Clinical Genetics and Genetic Counseling Program, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
| | - Maria J Méndez
- Servei de Pediatria, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació GermansTrias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Rodrigo
- Servei de Pediatria, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Facultat de Medicina, Unitat Docent Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Latorre
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Raquel Villar-Hernandez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Jose Domínguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Cristina Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, Barcelona, Spain
| |
Collapse
|
24
|
Rifampicin-Loaded Mesoporous Silica Nanoparticles for the Treatment of Intracellular Infections. Antibiotics (Basel) 2019; 8:antibiotics8020039. [PMID: 30979069 PMCID: PMC6628058 DOI: 10.3390/antibiotics8020039] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases remain a major burden in today’s world, causing high mortality rates and significant economic losses, with >9 million deaths per year predicted by 2030. Invasion of host cells by intracellular bacteria poses treatment challenges due to the poor permeation of antimicrobials into the infected cells. To overcome these limitations, mesoporous silica nanoparticles (MSNP) loaded with the antibiotic rifampicin were investigated as a nanocarrier system for the treatment of intracellular bacterial infection with specific interest in the influence of particle size on treatment efficiency. An intracellular infection model was established using small colony variants (SCV) of S. aureus in macrophages to systemically evaluate the efficacy of rifampicin-loaded MSNP against the pathogen as compared to a rifampicin solution. As hypothesized, the superior uptake of MSNP by macrophages resulted in an enhanced treatment efficacy of the encapsulated rifampicin as compared to free antibiotic. This study provides a potential platform to improve the performance of currently available antibiotics against intracellular infections.
Collapse
|
25
|
Sava Gallis DF, Butler KS, Agola JO, Pearce CJ, McBride AA. Antibacterial Countermeasures via Metal-Organic Framework-Supported Sustained Therapeutic Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7782-7791. [PMID: 30682243 DOI: 10.1021/acsami.8b21698] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Long-term antimicrobial therapies are necessary to treat infections caused by virulent intracellular pathogens, including biothreat agents. Current treatment plans include injectable therapeutics given multiple times daily over a period for up to 8 weeks. Here, we present a metal-organic framework (MOF), zeolitic imidazolate framework-8 (ZIF-8), as a robust platform to support the sustained release of ceftazidime, an important antimicrobial agent for many critical bacterial infections. Detailed material characterization confirms the successful encapsulation of ceftazidime within the ZIF-8 matrix, indicating sustained drug release for up to a week. The antibacterial properties of ceftazidime@ZIF-8 particles were confirmed against Escherichia coli, chosen here as a representative of Gram-negative bacteria infection model in a proof-of-concept study. Further, we showed that this material system is compatible with macrophage and lung epithelial cell lines, relevant targets for antibacterial therapy for pulmonary and intracellular infections. A promising methodology to enhance the treatment of intracellular infections is to deliver the antibiotic cargo intracellularly. Importantly, this is the first study to unequivocally demonstrate direct MOF particle internalization using confocal microscopy via 3D reconstructions of z-stacks, taking advantage of the intrinsic emission properties of ZIF-8. This is an important development as it circumvents the need to use any staining dyes and addresses current methodology limitations concerning false impression of cargo uptake in the event of the carrier particle breakdown within biological media.
Collapse
Affiliation(s)
| | | | - Jacob O Agola
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | | | | |
Collapse
|
26
|
Shapiro NI, Self WH, Rosen J, Sharp SC, Filbin MR, Hou PC, Parekh AD, Kurz MC, Sambursky R. A prospective, multi-centre US clinical trial to determine accuracy of FebriDx point-of-care testing for acute upper respiratory infections with and without a confirmed fever. Ann Med 2018; 50:420-429. [PMID: 29775092 DOI: 10.1080/07853890.2018.1474002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND FebriDx is a 10-minute disposable point-of-care test designed to identify clinically significant systemic host immune responses and aid in the differentiation of bacterial and viral respiratory infection by simultaneously detecting C-reactive protein (CRP) and myxovirus resistance protein A (MxA) from a fingerstick blood sample. FebriDx diagnostic accuracy was evaluated in the emergency room and urgent care setting. METHODS A prospective, multicentre, observational cohort study of acute upper respiratory tract infections (URIs), with and without a confirmed fever at the time of enrolment, was performed to evaluate the diagnostic accuracy of FebriDx to identify clinically significant bacterial infection with host response and acute pathogenic viral infection. The reference method consisted of an algorithm with physician override that included bacterial cell culture, respiratory PCR panels for viral and atypical pathogens, procalcitonin, and white blood cell count. RESULTS Among 220 patients enrolled, 100% reported fever 100.5°F within the last 72 hours while 55% had a measured hyperthermia (T > 100.4) at the time of enrolment. FebriDx demonstrated a sensitivity of 95% (95% CI: 77-100%), specificity of 94% (88-98%), PPV of 76% (59-87%), and a NPV of 99% (93-100%). CONCLUSION FebriDx may identify clinically significant bacterial URI's and supports outpatient antibiotic decisions. Key messages FebriDx is an outpatient POC test designed to identify a clinically significant systemic host immune response and aid in the differentiation of viral and bacterial infection through rapid measurement of MxA and CRP from a fingerstick blood sample. FebriDx test was determined to be an accurate test, with a 85% sensitivity, 93% specificity and 97% NPV to rule out bacterial infection for any patient presenting with symptoms and reported fever within the prior 3 days, and when confirming fever (hyperthermia) at the time of testing, the test was even more sensitive (95%) and specific (94%) with a 99% NPV. FebriDx may support antibiotic stewardship by rapidly identifying clinically significant bacterial URIs.
Collapse
Affiliation(s)
- Nathan I Shapiro
- a Emergency Medicine , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Wesley H Self
- b Emergency Medicine , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Jeffrey Rosen
- c Clinical Research of South Florida , Coral Gables , FL , USA
| | | | - Michael R Filbin
- e Emergency Medicine , Massachusetts General Hospital Institute for Patient Care , Boston , USA
| | - Peter C Hou
- f Emergency Medicine , Brigham and Women's Hospital , Boston , MA , USA
| | - Amisha D Parekh
- g Emergency Medicine , New York Methodist Hospital , Brooklyn , NY , USA
| | - Michael C Kurz
- h Emergency Medicine , University of Alabama School of Medicine , Birmingham , AL , USA
| | | |
Collapse
|
27
|
Lacoma A, Gomes-Fernandes M, Mesalles E, Arméstar F, Prat C. Persistent Isolation of Staphylococcus aureus in Mechanically-ventilated Patients: Impact of Host-Pathogen Factors on Outcome. Arch Bronconeumol 2018; 55:158-160. [PMID: 29980308 DOI: 10.1016/j.arbres.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain
| | - Meissiner Gomes-Fernandes
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain; CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Eduard Mesalles
- Intensive Care Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Unit, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
28
|
Ly TDA, Edouard S, Badiaga S, Tissot-Dupont H, Hoang VT, Pommier de Santi V, Brouqui P, Raoult D, Gautret P. Epidemiology of respiratory pathogen carriage in the homeless population within two shelters in Marseille, France, 2015-2017: cross sectional 1-day surveys. Clin Microbiol Infect 2018; 25:249.e1-249.e6. [PMID: 29777925 PMCID: PMC7128312 DOI: 10.1016/j.cmi.2018.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022]
Abstract
Objectives To assess risk factors for respiratory tract infection symptoms and signs in sheltered homeless people in Marseille during the winter season, including pathogen carriage. Methods Data on 479 male participants within two shelters who completed questionnaires and a total of 950 nasal and pharyngeal samples were collected during the winters of 2015–2017. Respiratory pathogen carriage including seven viruses and four bacteria was assessed by quantitative PCR. Results The homeless population was characterized by a majority of individuals of North African origin (300/479, 62.6%) with a relatively high prevalence of chronic homelessness (175/465, 37.6%). We found a high prevalence of respiratory symptoms and signs (168/476, 35.3%), a very high prevalence of bacterial carriage (313/477, 65.6%), especially Haemophilus influenzae (280/477, 58.7%), and a lower prevalence of virus carriage (51/473, 10.8%) with human rhinovirus being the most frequent (25/473, 5.3%). Differences were observed between the microbial communities of the nose and throat. Duration of homelessness (odds ratio (OR) 1.77, p 0.017), chronic respiratory diseases (OR 5.27, p <0.0001) and visiting countries of origin for migrants (OR 1.68, p 0.035) were identified as independent risk factors for respiratory symptoms and signs. A strong association between virus (OR 2.40, p 0.012) or Streptococcus pneumoniae (OR 2.32, p 0.014) carriage and respiratory symptoms and signs was also found. Conclusions These findings allowed identification of the individuals at higher risk for contracting respiratory tract infections to better target preventive measures aimed at limiting the transmission of these diseases in this setting.
Collapse
Affiliation(s)
- T D A Ly
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - S Edouard
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - S Badiaga
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - H Tissot-Dupont
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - V T Hoang
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - V Pommier de Santi
- French Military Centre for Epidemiology and Public Health Marseille, France
| | - P Brouqui
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - D Raoult
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - P Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
29
|
Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:215-225. [PMID: 29128664 DOI: 10.1016/j.nano.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
The aim of this study was to develop PEGylated phosphatidylcholine (PC)-rich nanovesicles (phosphatiosomes) carrying ciprofloxacin (CIPX) for lung targeting to eradicate extracellular and intracellular methicillin-resistant Staphylococcus aureus (MRSA). Soyaethyl morphonium ethosulfate (SME) was intercalated in the nanovesicle surface with the dual goals of achieving strengthened bactericidal activity of CIPX-loaded phosphatiosomes and delivery to the lungs. The isothermal titration calorimetry (ITC) results proved the strong association of SME phosphatiosomes with pulmonary surfactant. We demonstrated a superior anti-MRSA activity of SME phosphatiosomes compared to plain phosphatiosomes and to free CIPX. A synergistic effect of CIPX and SME nanocarriers was found in the biofilm eradication. SME phosphatiosomes were readily engulfed by the macrophages, restricting the intracellular MRSA count by 1-2 log units. SME phosphatiosomes efficiently accumulated in the lungs after intravenous injection. In a rat model of lung infection, the MRSA burden in the lungs could be decreased by 8-fold after SME nanosystem application.
Collapse
|
30
|
Lacoma A, Cano V, Moranta D, Regueiro V, Domínguez-Villanueva D, Laabei M, González-Nicolau M, Ausina V, Prat C, Bengoechea JA. Investigating intracellular persistence of Staphylococcus aureus within a murine alveolar macrophage cell line. Virulence 2017; 8:1761-1775. [PMID: 28762868 PMCID: PMC5810471 DOI: 10.1080/21505594.2017.1361089] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: Staphylococcus aureus is a particularly difficult pathogen to eradicate from the respiratory tract. Previous studies have highlighted the intracellular capacity of S.aureus in several phagocytic and non-phagocytic cells. The aim of this study was to define S.aureus interaction within a murine alveolar macrophage cell line. Methods: Cell line MH-S was infected with Newman strain. Molecular mechanisms involved in phagocytosis were explored. To assess whether S.aureus survives intracellularly quantitative (gentamicin protection assays and bacterial plating) and qualitative analysis (immunofluorescence microscopy) were performed. Bacterial colocalization with different markers of the endocytic pathway was examined to characterize its intracellular trafficking. Results: We found that S.aureus uptake requires host actin polymerization, microtubule assembly and activation of phosphatidylinositol 3-kinase signaling. Time course experiments showed that Newman strain was able to persist within macrophages at least until 28.5 h post infection. We observed that intracellular bacteria are located inside an acidic subcellular compartment, which co-localizes with the late endosome/lysosome markers Lamp-1, Rab7 and RILP. Colocalization counts with TMR-dextran might reflect a balance between bacterial killing and intracellular survival. Conclusions: This study indicates that S.aureus persists and replicates inside murine alveolar macrophages, representing a privileged niche that can potentially offer protection from antimicrobial activity and immunological host defense mechanisms.
Collapse
Affiliation(s)
- A Lacoma
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - V Cano
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - D Moranta
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - V Regueiro
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - D Domínguez-Villanueva
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain
| | - M Laabei
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain
| | - M González-Nicolau
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - V Ausina
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - C Prat
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - J A Bengoechea
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain.,d Consejo Superior de Investigaciones Científicas , Madrid , Spain.,e Centre for Experimental Medicine , Queen's University Belfast , UK
| |
Collapse
|
31
|
The Bordetella Bps Polysaccharide Is Required for Biofilm Formation and Enhances Survival in the Lower Respiratory Tract of Swine. Infect Immun 2017; 85:IAI.00261-17. [PMID: 28559403 DOI: 10.1128/iai.00261-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Additionally, B. bronchiseptica is capable of establishing long-term or chronic infections in swine. Bacterial biofilms are increasingly recognized as important contributors to chronic bacterial infections. Recently the polysaccharide locus bpsABCD has been demonstrated to serve a critical role in the development of mature biofilms formed by the sequenced laboratory strain of B. bronchiseptica We hypothesized that swine isolates would also have the ability to form mature biofilms and the bpsABCD locus would serve a key role in this process. A mutant containing an in-frame deletion of the bpsABCD structural genes was constructed in a wild-type swine isolate and found to be negative for poly-N-acetylglucosamine (PNAG)-like material by immunoblot assay. Further, the bpsABCD locus was found to be required for the development and maintenance of the three-dimensional structures under continuous-flow conditions. To investigate the contribution of the bpsABCD locus to the pathogenesis of B. bronchiseptica in swine, the KM22Δbps mutant was compared to the wild-type swine isolate for the ability to colonize and cause disease in pigs. The bpsABCD locus was found to not be required for persistence in the upper respiratory tract of swine. Additionally, the bpsABCD locus did not affect the development of anti-Bordetella humoral immunity, did not contribute to disease severity, and did not mediate protection from complement-mediated killing. However, the bpsABCD locus was found to enhance survival in the lower respiratory tract of swine.
Collapse
|
32
|
Cazzola M, Rogliani P, Aliberti S, Blasi F, Matera MG. An update on the pharmacotherapeutic management of lower respiratory tract infections. Expert Opin Pharmacother 2017; 18:973-988. [PMID: 28480770 DOI: 10.1080/14656566.2017.1328497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Our knowledge about lower respiratory tract infections (LRTIs) has improved substantially in the last years, but the management of respiratory infections is still a challenge and we are still far from using precision medicine in their treatment. Areas covered: The approaches developed in recent years to improve the pharmacotherapeutic management of LRTIs, such as novel diagnostic assays to facilitate medical decision-making, attempts for selecting an optimal empiric antibiotic regimen, and the role of new and possibly unproven adjunctive therapies, are described. Expert opinion: Early and appropriate antibiotics remain the cornerstone in the treatment of LRTIs. The updated trend is to apply antimicrobial stewardship principles and initiatives to optimize both the management and the outcomes of LTRIs. Biomarkers, mainly C-reactive protein (CRP) and procalcitonin (PCT), can improve the diagnostic and prognostic assessment of LRTIs and aid to guide antibiotic therapy. The widespread use of antimicrobial agents has greatly contributed to faster development of antibiotic resistance and the emergence of opportunistic pathogens, which substitute the indigenous microbiota. However, very few new antibiotics in development to overcome existing resistance and ensure continued success in the treatment of LRTIs have been approved, likely because antibiotic stewardship programs discourage the use of new agents.
Collapse
Affiliation(s)
- Mario Cazzola
- a Department of Systems Medicine , Università degli Studi di Roma "Tor Vergata" , Rome , Italy
| | - Paola Rogliani
- a Department of Systems Medicine , Università degli Studi di Roma "Tor Vergata" , Rome , Italy
| | - Stefano Aliberti
- b Department of Pathophysiology and Transplantation , Università degli Studi di Milano, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Francesco Blasi
- b Department of Pathophysiology and Transplantation , Università degli Studi di Milano, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Maria Gabriella Matera
- c Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
33
|
Gomes-Fernandes M, Laabei M, Pagan N, Hidalgo J, Molinos S, Villar Hernandez R, Domínguez-Villanueva D, Jenkins ATA, Lacoma A, Prat C. Accessory gene regulator (Agr) functionality in Staphylococcus aureus derived from lower respiratory tract infections. PLoS One 2017; 12:e0175552. [PMID: 28410390 PMCID: PMC5391941 DOI: 10.1371/journal.pone.0175552] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/28/2017] [Indexed: 01/09/2023] Open
Abstract
Objective Characterization of Staphylococcus aureus clinical isolates derived from lower respiratory tract infections (LRTIs), and correlation between the functionality of the accessory gene regulator (Agr) and genotypic and phenotypic characteristics, clinical variables and clinical outcome. Methods S aureus isolates derived from LRTIs and control groups (nasal carriage and bacteraemia) were genotyped using StaphyType DNA microarray. Agr activity was evaluated using the CAMP synergistic haemolysis assay and the Vesicle Lysis Test (VLT). Discordant strains were analysed by quantitative reverse-transcriptase real-time PCR (qRT-PCR). Results Agr was functional in 79.7% and 84.5% of strains according to the CAMP and VLT assays respectively. Higher concordance with RNAIII expression measured by qRT-PCR was observed with the VLT assay (76.2%) compared with the CAMP assay (23.8%). No statistically significant differences were observed in Agr functionality between the study groups, nor the phenotypical/genotypical bacterial characteristics. No association between increased mortality/respiratory complications and Agr function was observed. Conclusions Agr activity was high (82.2%) in isolates from LRTIs suggesting the importance of this global regulator in lower respiratory tract colonisation and infection. However, equally high Agr activity was observed in isolates derived from nasal carriage and bacteraemia, contradictory to previous observations. Agr functionality measured by the VLT assay was superior to CAMP assay.
Collapse
Affiliation(s)
- Meissiner Gomes-Fernandes
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Maisem Laabei
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Natalia Pagan
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jessica Hidalgo
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Sònia Molinos
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Raquel Villar Hernandez
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Dídac Domínguez-Villanueva
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias, CIBER, Instituto de Salud Carlos III, Badalona, Spain
| | - Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias, CIBER, Instituto de Salud Carlos III, Badalona, Spain
- * E-mail:
| |
Collapse
|
34
|
Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases? Drug Deliv Transl Res 2016; 7:179-187. [DOI: 10.1007/s13346-016-0349-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|