1
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. Nat Commun 2024; 15:10184. [PMID: 39580490 PMCID: PMC11585574 DOI: 10.1038/s41467-024-54581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display metabolic and transcriptional diversity along with recalcitrance to antibiotics and host immune defenses. Here, we present an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. BaSSSh-seq captures extensive transcriptional heterogeneity during biofilm compared to planktonic growth. We quantify and visualize transcriptional regulatory networks across heterogeneous biofilm subpopulations and identify gene sets that are associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detects alterations in biofilm metabolism, stress response, and virulence induced by distinct immune cell populations. This work facilitates the exploration of biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
Affiliation(s)
- Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Aguilar Suárez R, Kohlstedt M, Öktem A, Neef J, Wu Y, Ikeda K, Yoshida KI, Altenbuchner J, Wittmann C, van Dijl JM. Metabolic Profile of the Genome-Reduced Bacillus subtilis Strain IIG-Bs-27-39: An Attractive Chassis for Recombinant Protein Production. ACS Synth Biol 2024; 13:2199-2214. [PMID: 38981062 PMCID: PMC11264325 DOI: 10.1021/acssynbio.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
The Gram-positive bacterium Bacillus subtilis is extensively used in the industry for the secretory production of proteins with commercial value. To further improve its performance, this microbe has been the subject of extensive genome engineering efforts, especially the removal of large genomic regions that are dispensable or even counterproductive. Here, we present the genome-reduced B. subtilis strain IIG-Bs-27-39, which was obtained through systematic deletion of mobile genetic elements, as well as genes for extracellular proteases, sporulation, flagella formation, and antibiotic production. Different from previously characterized genome-reduced B. subtilis strains, the IIG-Bs-27-39 strain was still able to grow on minimal media. We used this feature to benchmark strain IIG-Bs-27-39 against its parental strain 168 with respect to heterologous protein production and metabolic parameters during bioreactor cultivation. The IIG-Bs-27-39 strain presented superior secretion of difficult-to-produce staphylococcal antigens, as well as higher specific growth rates and biomass yields. At the metabolic level, changes in byproduct formation and internal amino acid pools were observed, whereas energetic parameters such as the ATP yield, ATP/ADP levels, and adenylate energy charge were comparable between the two strains. Intriguingly, we observed a significant increase in the total cellular NADPH level during all tested conditions and increases in the NAD+ and NADP(H) pools during protein production. This indicates that the IIG-Bs-27-39 strain has more energy available for anabolic processes and protein production, thereby providing a link between strain physiology and production performance. On this basis, we conclude that the genome-reduced strain IIG-Bs-27-39 represents an attractive chassis for future biotechnological applications.
Collapse
Affiliation(s)
- Rocío Aguilar Suárez
- Department
of Medical Microbiology, University Medical
Center Groningen-University of Groningen, 9700RB Groningen, The Netherlands
| | - Michael Kohlstedt
- Institute
for Systems Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Ayşegül Öktem
- Department
of Medical Microbiology, University Medical
Center Groningen-University of Groningen, 9700RB Groningen, The Netherlands
| | - Jolanda Neef
- Department
of Medical Microbiology, University Medical
Center Groningen-University of Groningen, 9700RB Groningen, The Netherlands
| | - Yuzheng Wu
- Department
of Science, Technology and Innovation, Kobe
University, 657-8501 Kobe, Japan
| | - Kaiya Ikeda
- Department
of Science, Technology and Innovation, Kobe
University, 657-8501 Kobe, Japan
| | - Ken-Ichi Yoshida
- Department
of Science, Technology and Innovation, Kobe
University, 657-8501 Kobe, Japan
| | - Josef Altenbuchner
- Institute
for Industrial Genetics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Christoph Wittmann
- Institute
for Systems Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University Medical
Center Groningen-University of Groningen, 9700RB Groningen, The Netherlands
| |
Collapse
|
3
|
Zhang SQ, Leung KM, Lai GKK, Griffin SDJ. Complete genome sequences of two closely related isolates of Staphylococcus saprophyticus isolated from human fingertips. Microbiol Resour Announc 2024; 13:e0042524. [PMID: 38917453 PMCID: PMC11256794 DOI: 10.1128/mra.00425-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Complete genomes of two closely related isolates of Staphylococcus saprophyticus from human fingertips, SZ.YL11 and SZ.PL35w, were established through hybrid assembly. Each possesses a single circular chromosome and a circular plasmid, totaling 2,611,553 and 2,611,619 bp, respectively (with G + C 33.14% for both).
Collapse
Affiliation(s)
- S. Q. Zhang
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong, China
| | - K. M. Leung
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong, China
| | - G. K. K. Lai
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong, China
| | - S. D. J. Griffin
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong, China
| |
Collapse
|
4
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601229. [PMID: 38979200 PMCID: PMC11230364 DOI: 10.1101/2024.06.28.601229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display vast metabolic and transcriptional diversity along with high recalcitrance to antibiotics and host immune defenses. Investigating the complex heterogeneity within biofilm has been hindered by the lack of a sensitive and high-throughput method to assess stochastic transcriptional activity and regulation between bacterial subpopulations, which requires single-cell resolution. We have developed an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. We validated the ability of BaSSSh-seq to capture extensive transcriptional heterogeneity during biofilm compared to planktonic growth. Application of new computational tools revealed transcriptional regulatory networks across the heterogeneous biofilm subpopulations and identification of gene sets that were associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detected alterations in biofilm metabolism, stress response, and virulence that were tailored to distinct immune cell populations. This work provides an innovative platform to explore biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
|
5
|
Öktem A, Pranoto DA, van Dijl JM. Post-translational secretion stress regulation in Bacillus subtilis is controlled by intra- and extracellular proteases. N Biotechnol 2024; 79:71-81. [PMID: 38158017 DOI: 10.1016/j.nbt.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The Gram-positive bacterium Bacillus subtilis is a prolific producer of industrial enzymes that are effectively harvested from the fermentation broth. However, the high capacity of B. subtilis for protein secretion has so far not been exploited to the full due to particular bottlenecks, including product degradation by extracellular proteases and counterproductive secretion stress responses. To unlock the Bacillus secretion pathway for difficult-to-produce proteins, various cellular interventions have been explored, including genome engineering. Our previous research has shown a superior performance of genome-reduced B. subtilis strains in the production of staphylococcal antigens compared to the parental strain 168. This was attributed, at least in part, to redirected secretion stress responses, including the presentation of elevated levels of the quality control proteases HtrA and HtrB that also catalyse protein folding. Here we show that this relates to the elimination of two homologous serine proteases, namely the cytosolic protease AprX and the extracellular protease AprE. This unprecedented posttranslational regulation of secretion stress effectors, like HtrA and HtrB, by the concerted action of cytosolic and extracellular proteases has important implications for the biotechnological application of microbial cell factories. In B. subtilis, this conclusion is underscored by extracellular degradation of the staphylococcal antigen IsaA by both AprX and AprE. Extracellular activity of the cytosolic protease AprX is remarkable since it shows that not only extracellular, but also intracellular proteases impact extracellular product levels. We therefore conclude that intracellular proteases represent new targets for improved recombinant protein production in microbial cell factories like B. subtilis.
Collapse
Affiliation(s)
- Ayşegül Öktem
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Dicky A Pranoto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
6
|
Vaculík O, Bernatová S, Rebrošová K, Samek O, Šilhan L, Růžička F, Šerý M, Šiler M, Ježek J, Zemánek P. Rapid identification of pathogens in blood serum via Raman tweezers in combination with advanced processing methods. BIOMEDICAL OPTICS EXPRESS 2023; 14:6410-6421. [PMID: 38420303 PMCID: PMC10898560 DOI: 10.1364/boe.503628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 03/02/2024]
Abstract
Pathogenic microbes contribute to several major global diseases that kill millions of people every year. Bloodstream infections caused by these microbes are associated with high morbidity and mortality rates, which are among the most common causes of hospitalizations. The search for the "Holy Grail" in clinical diagnostic microbiology, a reliable, accurate, low cost, real-time, and easy-to-use diagnostic method, is one of the essential issues in clinical practice. These very critical conditions can be met by Raman tweezers in combination with advanced analysis methods. Here, we present a proof-of-concept study based on Raman tweezers combined with spectral mixture analysis that allows for the identification of microbial strains directly from human blood serum without user intervention, thus eliminating the influence of a data analyst.
Collapse
Affiliation(s)
- Ondřej Vaculík
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Katarína Rebrošová
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's, University Hospital, Pekařská 53, Brno, 65691, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Lukáš Šilhan
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's, University Hospital, Pekařská 53, Brno, 65691, Czech Republic
| | - Mojmír Šerý
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Jan Ježek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| |
Collapse
|
7
|
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023; 11:1614. [PMID: 37375116 PMCID: PMC10305407 DOI: 10.3390/microorganisms11061614] [Citation(s) in RCA: 222] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilm is complex and consists of bacterial colonies that reside in an exopolysaccharide matrix that attaches to foreign surfaces in a living organism. Biofilm frequently leads to nosocomial, chronic infections in clinical settings. Since the bacteria in the biofilm have developed antibiotic resistance, using antibiotics alone to treat infections brought on by biofilm is ineffective. This review provides a succinct summary of the theories behind the composition of, formation of, and drug-resistant infections attributed to biofilm and cutting-edge curative approaches to counteract and treat biofilm. The high frequency of medical device-induced infections due to biofilm warrants the application of innovative technologies to manage the complexities presented by biofilm.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
| | - James Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA;
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
8
|
Boero E, Gorham RD, Francis EA, Brand J, Teng LH, Doorduijn DJ, Ruyken M, Muts RM, Lehmann C, Verschoor A, van Kessel KPM, Heinrich V, Rooijakkers SHM. Purified complement C3b triggers phagocytosis and activation of human neutrophils via complement receptor 1. Sci Rep 2023; 13:274. [PMID: 36609665 PMCID: PMC9822988 DOI: 10.1038/s41598-022-27279-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.
Collapse
Affiliation(s)
- Elena Boero
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.425088.3GSK, 53100 Siena, Italy
| | - Ronald D. Gorham
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.417555.70000 0000 8814 392XSanofi, Waltham, MA 02451 USA
| | - Emmet A. Francis
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Jonathan Brand
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Lay Heng Teng
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Dennis J. Doorduijn
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maartje Ruyken
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Remy M. Muts
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Lehmann
- grid.5330.50000 0001 2107 3311Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Admar Verschoor
- grid.15474.330000 0004 0477 2438Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Kok P. M. van Kessel
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Volkmar Heinrich
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Suzan H. M. Rooijakkers
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
9
|
Han J, Poma A. Molecular Targets for Antibody-Based Anti-Biofilm Therapy in Infective Endocarditis. Polymers (Basel) 2022; 14:3198. [PMID: 35956712 PMCID: PMC9370930 DOI: 10.3390/polym14153198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Infective endocarditis (IE) is a heart disease caused by the infection of heart valves, majorly caused by Staphilococcus aureus. IE is initiated by bacteria entering the blood circulation in favouring conditions (e.g., during invasive procedures). So far, the conventional antimicrobial strategies based on the usage of antibiotics remain the major intervention for treating IE. Nevertheless, the therapeutic efficacy of antibiotics in IE is limited not only by the bacterial drug resistance, but also by the formation of biofilms, which resist the penetration of antibiotics into bacterial cells. To overcome these drawbacks, the development of anti-biofilm treatments that can expose bacteria and make them more susceptible to the action of antibiotics, therefore resulting in reduced antimicrobial resistance, is urgently required. A series of anti-biofilm strategies have been developed, and this review will focus in particular on the development of anti-biofilm antibodies. Based on the results previously reported in the literature, several potential anti-biofilm targets are discussed, such as bacterial adhesins, biofilm matrix and bacterial toxins, covering their antigenic properties (with the identification of potential promising epitopes), functional mechanisms, as well as the antibodies already developed against these targets and, where feasible, their clinical translation.
Collapse
Affiliation(s)
- Jiahe Han
- UCL Institute of Cardiovascular Science, The Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
10
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
11
|
Ma PY, Chong CW, Than LTL, Sulong AB, Ho KL, Neela VK, Sekawi Z, Liew YK. Impact of IsaA Gene Disruption: Decreasing Staphylococcal Biofilm and Alteration of Transcriptomic and Proteomic Profiles. Microorganisms 2022; 10:microorganisms10061119. [PMID: 35744637 PMCID: PMC9229027 DOI: 10.3390/microorganisms10061119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus expresses diverse proteins at different stages of growth. The immunodominant staphylococcal antigen A (IsaA) is one of the proteins that is constitutively produced by S. aureus during colonisation and infection. SACOL2584 (or isaA) is the gene that encodes this protein. It has been suggested that IsaA can hydrolyse cell walls, and there is still need to study isaA gene disruption to analyse its impact on staphylococcal phenotypes and on alteration to its transcription and protein profiles. In the present study, the growth curve in RPMI medium (which mimics human plasma), autolytic activity, cell wall morphology, fibronectin and fibrinogen adhesion and biofilm formation of S. aureus SH1000 (wildtype) was compared to that of S. aureus MS001 (isaA mutant). RNA sequencing and liquid chromatography–tandem mass spectrometry were carried out on samples of both S. aureus strains taken during the exponential growth phase, followed by bioinformatics analysis. Disruption of isaA had no obvious effect on the growth curve and autolysis ability or thickness of cell walls, but this study revealed significant strength of fibronectin adherence in S. aureus MS001. In particular, the isaA mutant formed less biofilm than S. aureus SH1000. In addition, proteomics and transcriptomics showed that the adhesin/biofilm-related genes and hemolysin genes, such as sasF, sarX and hlgC, were consistently downregulated with isaA gene disruption. The majority of the upregulated genes or proteins in S. aureus MS001 were pur genes. Taken together, this study provides insight into how isaA disruption changes the expression of other genes and has implications regarding biofilm formation and biological processes.
Collapse
Affiliation(s)
- Pei Yee Ma
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Anita Binti Sulong
- Department of Medical Microbiology and Immunology, Pusat Perubatan UKM, Kuala Lumpur 56000, Malaysia;
| | - Ket Li Ho
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Yun Khoon Liew
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
12
|
Pulia MS, Anderson J, Ye Z, Elsayed NS, Le T, Patitucci J, Ganta K, Hall M, Singh VK, Shukla SK. Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections. Antibiotics (Basel) 2022; 11:527. [PMID: 35453277 PMCID: PMC9032627 DOI: 10.3390/antibiotics11040527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Staphylococcus aureus, the most common pathogen in skin and soft tissue infections (SSTI), harbors many well-characterized virulence genes. However, the expression of many of them in SSTIs is unknown. In this study, S. aureus virulence genes expressed in SSTI were investigated. METHODS Fifty-three subjects presenting to the outpatient's care and emergency departments with a purulent SSTI at two medical centers in Wisconsin, USA, were enrolled in the study. Total mRNA was extracted from the purulent or swab materials, made into cDNA and sequenced on MiSeq platform. The relative cDNA counts to gmk and identifications of the transcripts were carried out with respect to USA300 reference genome and using SAMTOOLS v.1.3 and BWA, respectively. RESULT A significantly higher cDNA count was observed for many of the virulence and regulatory gene transcripts in the pus samples compared to the swab samples relative to the cDNA counts for gmk, a housekeeping gene. They were for lukS-PV (18.6 vs. 14.2), isaA (13.4 vs. 8.5), ssaA (4.8 vs. 3.1), hlgC (1.4 vs. 1.33), atl (17.7 vs. 8.33), clfA (3.9 vs. 0.83), eno (6.04 vs. 3.16), fnbA (5.93 vs. 0.33), saeS (6.3 vs. 1.33), saeR (5.4 vs. 3.33) and agrC (5.6 vs. 1.5). CONCLUSIONS A relative increase in the transcripts of several toxins, adhesion and regulatory genes with respect to a gmk in purulent materials suggests their role in situ during SSTIs, perhaps in an orchestrated manner.
Collapse
Affiliation(s)
- Michael S. Pulia
- Department of Emergency Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726, USA;
| | - Jennifer Anderson
- Integrated Research Development Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (J.A.); (T.L.)
| | - Zhan Ye
- Bioinformatics Research Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (Z.Y.); (J.P.)
| | - Noha S. Elsayed
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| | - Thao Le
- Integrated Research Development Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (J.A.); (T.L.)
| | - Jacob Patitucci
- Bioinformatics Research Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (Z.Y.); (J.P.)
| | - Krishna Ganta
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| | - Matthew Hall
- Department of Infectious Diseases, Marshfield Clinic Health System, Marshfield, WI 54449, USA;
| | - Vineet K. Singh
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still, University of Health Sciences, Kirksville, MO 63501, USA;
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| |
Collapse
|
13
|
|
14
|
Redirected Stress Responses in a Genome-Minimized 'midi Bacillus' Strain with Enhanced Capacity for Protein Secretion. mSystems 2021; 6:e0065521. [PMID: 34904864 PMCID: PMC8670375 DOI: 10.1128/msystems.00655-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genome engineering offers the possibility to create completely novel cell factories with enhanced properties for biotechnological applications. In recent years, genome minimization was extensively explored in the Gram-positive bacterial cell factory Bacillus subtilis, where up to 42% of the genome encoding dispensable functions was removed. Such studies showed that some strains with minimized genomes gained beneficial features, especially for secretory protein production. However, strains with the most minimal genomes displayed growth defects. This focused our attention on strains with less extensive genomic deletions that display close-to-wild-type growth properties while retaining the acquired beneficial traits in secretory protein production. A strain of this category is B. subtilis IIG-Bs27-47-24, here referred to as midiBacillus, which lacks 30.95% of the parental genome. To date, it was unknown how the altered genomic configuration of midiBacillus impacts cell physiology in general, and protein secretion in particular. The present study bridges this knowledge gap through comparative quantitative proteome analyses with focus on protein secretion. Interestingly, the results show that the secretion stress responses of midiBacillus, as elicited by high-level expression of the immunodominant staphylococcal antigen A, are completely different from secretion stress responses that occur in the parental strain 168. We further show that midiBacillus has an increased capacity for translation and that a variety of critical Sec secretion machinery components is present at elevated levels. Altogether, our observations demonstrate that high-level protein secretion has different consequences for wild-type and genome-engineered Bacillus strains, dictated by the altered genomic and proteomic configurations. IMPORTANCE Our present study showcases a genome-minimized nonpathogenic bacterium, the so-called midiBacillus, as a chassis for the development of future industrial strains that serve in the production of high-value difficult-to-produce proteins. In particular, we explain how midiBacillus, which lacks about one-third of the original genome, effectively secretes a protein of the major human pathogen Staphylococcus aureus that cannot be produced by the parental Bacillus subtilis strain. This is important, because the secreted S. aureus protein is exemplary for a range of targets that can be implemented in future antistaphylococcal immunotherapies. Accordingly, we anticipate that midiBacillus chassis will contribute to the development of vaccines that protect both humans and livestock against diseases caused by S. aureus, a bacterial pathogen that is increasingly difficult to fight with antibiotics, because it has accumulated resistances to essentially all antibiotics that are currently in clinical practice.
Collapse
|
15
|
Bispo M, Suhani S, van Dijl JM. Empowering antimicrobial photodynamic therapy of Staphylococcus aureus infections with potassium iodide. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112334. [PMID: 34678616 DOI: 10.1016/j.jphotobiol.2021.112334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
Infections caused by the Gram-positive bacterium Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), impose a great burden on global healthcare systems. Thus, there is an urgent need for alternative approaches to fight staphylococcal infections, such as targeted antimicrobial photodynamic therapy (aPDT). We recently reported that targeted aPDT with the S. aureus-specific immunoconjugate 1D9-700DX can be effectively applied to eradicate MRSA. Nonetheless, the efficacy of aPDT in the human body may be diminished by powerful antioxidant activities. In particular, we observed that the efficacy of aPDT with 1D9-700DX towards MRSA was reduced in human plasma. Here we show that this antagonistic effect can be attributed to human serum albumin, which represents the largest pool of free thiols in plasma for trapping reactive oxygen species. Importantly, we also show that our targeted aPDT approach with 1D9-700DX can be empowered by the non-toxic inorganic salt potassium iodide (KI), which reacts with the singlet oxygen produced upon aPDT, resulting in the formation of free iodine. The targeted iodine formation allows full eradication of MRSA (more than 6-log reduction) without negatively affecting other non-targeted bacterial species or human cells. Altogether, we show that the addition of KI allows a drastic reduction of both the amount of the immunoconjugate 1D9-700DX and the irradiation time needed for effective elimination of MRSA by aPDT in the presence of human serum albumin.
Collapse
Affiliation(s)
- Mafalda Bispo
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Sabrina Suhani
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
16
|
Raineri EJM, Yedavally H, Salvati A, van Dijl JM. Time-resolved analysis of Staphylococcus aureus invading the endothelial barrier. Virulence 2021; 11:1623-1639. [PMID: 33222653 PMCID: PMC7714425 DOI: 10.1080/21505594.2020.1844418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is a leading cause of infections world-wide. Once this pathogen has reached the bloodstream, it can invade different parts of the human body by crossing the endothelial barrier. Infected endothelial cells may be lysed by bacterial products, but the bacteria may also persist intracellularly, where they are difficult to eradicate with antibiotics and cause relapses of infection. Our present study was aimed at investigating the fate of methicillin resistant S. aureus (MRSA) isolates of the USA300 lineage with different epidemiological origin inside endothelial cells. To this end, we established two in vitro infection models based on primary human umbilical vein endothelial cells (HUVEC), which mimic conditions of the endothelium when infection occurs. For comparison, the laboratory strain S. aureus HG001 was used. As shown by flow cytometry and fluorescence- or electron microscopy, differentiation of HUVEC into a cell barrier with cell-cell junctions sets limits to the rates of bacterial internalization, the numbers of internalized bacteria, the percentage of infected cells, and long-term intracellular bacterial survival. Clear strain-specific differences were observed with the HG001 strain infecting the highest numbers of HUVEC and displaying the longest intracellular persistence, whereas the MRSA strains reproduced faster intracellularly. Nonetheless, all internalized bacteria remained confined in membrane-enclosed LAMP-1-positive lysosomal or vacuolar compartments. Once internalized, the bacteria had a higher propensity to persist within the differentiated endothelial cell barrier, probably because internalization of lower numbers of bacteria was less toxic. Altogether, our findings imply that intact endothelial barriers are more likely to sustain persistent intracellular infection.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Harita Yedavally
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen , Groningen, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen , Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
17
|
Wang M, van den Berg S, Mora Hernández Y, Visser AH, Vera Murguia E, Koedijk DGAM, Bellink C, Bruggen H, Bakker-Woudenberg IAJM, van Dijl JM, Buist G. Differential binding of human and murine IgGs to catalytic and cell wall binding domains of Staphylococcus aureus peptidoglycan hydrolases. Sci Rep 2021; 11:13865. [PMID: 34226629 PMCID: PMC8257689 DOI: 10.1038/s41598-021-93359-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing high morbidity and mortality. Since multi-drug resistant S. aureus lineages are nowadays omnipresent, alternative tools for preventive or therapeutic interventions, like immunotherapy, are urgently needed. However, there are currently no vaccines against S. aureus. Surface-exposed and secreted proteins are regarded as potential targets for immunization against S. aureus infections. Yet, many potential staphylococcal antigens of this category do not elicit protective immune responses. To obtain a better understanding of this problem, we compared the binding of serum IgGs from healthy human volunteers, highly S. aureus-colonized patients with the genetic blistering disease epidermolysis bullosa (EB), or immunized mice to the purified S. aureus peptidoglycan hydrolases Sle1, Aly and LytM and their different domains. The results show that the most abundant serum IgGs from humans and immunized mice target the cell wall-binding domain of Sle1, and the catalytic domains of Aly and LytM. Interestingly, in a murine infection model, these particular IgGs were not protective against S. aureus bacteremia. In contrast, relatively less abundant IgGs against the catalytic domain of Sle1 and the N-terminal domains of Aly and LytM were almost exclusively detected in sera from EB patients and healthy volunteers. These latter IgGs may contribute to the protection against staphylococcal infections, as previous studies suggest that serum IgGs protect EB patients against severe S. aureus infection. Together, these observations focus attention on the use of particular protein domains for vaccination to direct potentially protective immune responses towards the most promising epitopes within staphylococcal antigens.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yaremit Mora Hernández
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Aafke Hinke Visser
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Channah Bellink
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Hilde Bruggen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
18
|
Soltanmohammadi B, Piri‐Gavgani S, Basardeh E, Ghanei M, Azizi M, Khaksar Z, Sharifzadeh Z, Badmasti F, Soezi M, Fateh A, Azimi P, Siadat SD, Shooraj F, Bouzari S, Omrani MD, Rahimi‐Jamnani F. Bactericidal fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteraemia. Clin Transl Immunology 2021; 10:e1302. [PMID: 34221401 PMCID: PMC8240403 DOI: 10.1002/cti2.1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The increasing prevalence of antibiotic-resistant Staphylococcus aureus, besides the inadequate numbers of effective antibiotics, emphasises the need to find new therapeutic agents against this lethal pathogen. METHODS In this study, to obtain antibody fragments against S. aureus, a human single-chain fragment variable (scFv) library was enriched against living methicillin-resistant S. aureus (MRSA) cells, grown in three different conditions, that is human peripheral blood mononuclear cells with plasma, whole blood and biofilm. The antibacterial activity of scFvs was evaluated by the growth inhibition assay in vitro. Furthermore, the therapeutic efficacy of anti-S. aureus scFvs was appraised in a mouse model of bacteraemia. RESULTS Three scFv antibodies, that is MEH63, MEH158 and MEH183, with unique sequences, were found, which exhibited significant binding to S. aureus and reduced the viability of S. aureus in in vitro inhibition assays. Based on the results, MEH63, MEH158 and MEH183, in addition to their combination, could prolong the survival rate, reduce the bacterial burden in the blood and prevent inflammation and tissue destruction in the kidneys and spleen of mice with MRSA bacteraemia compared with the vehicle group (treated with normal saline). CONCLUSION The combination therapy with anti-S. aureus scFvs and conventional antibiotics might shed light on the treatment of patients with S. aureus infections.
Collapse
Affiliation(s)
- Behnoush Soltanmohammadi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Somayeh Piri‐Gavgani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Mostafa Ghanei
- Chemical Injuries Research CenterSystems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Zabihollah Khaksar
- Department of Basic SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | | | - Farzad Badmasti
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mahdieh Soezi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Parisa Azimi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Fahimeh Shooraj
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Saeid Bouzari
- Molecular Biology DepartmentPasteur Institute of IranTehranIran
| | - Mir Davood Omrani
- Department of Medical GeneticsSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Rahimi‐Jamnani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| |
Collapse
|
19
|
Bispo M, Anaya-Sanchez A, Suhani S, Raineri EJM, López-Álvarez M, Heuker M, Szymański W, Romero Pastrana F, Buist G, Horswill AR, Francis KP, van Dam GM, van Oosten M, van Dijl JM. Fighting Staphylococcus aureus infections with light and photoimmunoconjugates. JCI Insight 2020; 5:139512. [PMID: 33048846 PMCID: PMC7710284 DOI: 10.1172/jci.insight.139512] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Infections caused by multidrug-resistant Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), are responsible for high mortality and morbidity worldwide. Resistant lineages were previously confined to hospitals but are now also causing infections among healthy individuals in the community. It is therefore imperative to explore therapeutic avenues that are less prone to raise drug resistance compared with today’s antibiotics. An opportunity to achieve this ambitious goal could be provided by targeted antimicrobial photodynamic therapy (aPDT), which relies on the combination of a bacteria-specific targeting agent and light-induced generation of ROS by an appropriate photosensitizer. Here, we conjugated the near-infrared photosensitizer IRDye700DX to a fully human mAb, specific for the invariantly expressed staphylococcal antigen immunodominant staphylococcal antigen A (IsaA). The resulting immunoconjugate 1D9-700DX was characterized biochemically and in preclinical infection models. As demonstrated in vitro, in vivo, and in a human postmortem orthopedic implant infection model, targeted aPDT with 1D9-700DX is highly effective. Importantly, combined with the nontoxic aPDT-enhancing agent potassium iodide, 1D9-700DX overcomes the antioxidant properties of human plasma and fully eradicates high titers of MRSA. We show that the developed immunoconjugate 1D9-700DX targets MRSA and kills it upon illumination with red light, without causing collateral damage to human cells. An immunoconjugate for targeted photodynamic therapy of Staphylococcus aureus infections kills MRSA with high efficacy upon illumination with red light.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wiktor Szymański
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | | | | | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Gooitzen M van Dam
- Department of Surgery, Division of Surgical Oncology, Nuclear Medicine and Molecular Imaging, Intensive Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | | |
Collapse
|
20
|
Palma Medina LM, Becker AK, Michalik S, Surmann K, Hildebrandt P, Gesell Salazar M, Mekonnen SA, Kaderali L, Völker U, van Dijl JM. Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration. ACS Infect Dis 2020; 6:2279-2290. [PMID: 32579327 PMCID: PMC7432605 DOI: 10.1021/acsinfecdis.0c00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The
primary barrier that protects our lungs against infection by
pathogens is a tightly sealed layer of epithelial cells. When the
integrity of this barrier is disrupted as a consequence of chronic
pulmonary diseases or viral insults, bacterial pathogens will gain
access to underlying tissues. A major pathogen that can take advantage
of such conditions is Staphylococcus aureus, thereby
causing severe pneumonia. In this study, we investigated how S. aureus responds to different conditions of the human
epithelium, especially nonpolarization and fibrogenesis during regeneration
using an in vitro infection model. The infective
process was monitored by quantification of the epithelial cell and
bacterial populations, fluorescence microscopy, and mass spectrometry.
The results uncover differences in bacterial internalization and population
dynamics that correlate with the outcome of infection. Protein profiling
reveals that, irrespective of the polarization state of the epithelial
cells, the invading bacteria mount similar responses to adapt to the
intracellular milieu. Remarkably, a bacterial adaptation that was
associated with the regeneration state of the epithelial cells concerned
the early upregulation of proteins controlled by the redox-responsive
regulator Rex when bacteria were confronted with a polarized cell
layer. This is indicative of the modulation of the bacterial cytoplasmic
redox state to maintain homeostasis early during infection even before
internalization. Our present observations provide a deeper insight
into how S. aureus can take advantage of a breached
epithelial barrier and show that infected epithelial cells have limited
ability to respond adequately to staphylococcal insults.
Collapse
Affiliation(s)
- Laura M. Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Solomon A. Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| |
Collapse
|
21
|
Sheppard WL, Mosich GM, Smith RA, Hamad CD, Park HY, Zoller SD, Trikha R, McCoy TK, Borthwell R, Hoang J, Truong N, Cevallos N, Clarkson S, Hori KR, van Dijl JM, Francis KP, Petrigliano FA, Bernthal NM. Novel in vivo mouse model of shoulder implant infection. J Shoulder Elbow Surg 2020; 29:1412-1424. [PMID: 32014357 PMCID: PMC11037115 DOI: 10.1016/j.jse.2019.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Animal models are used to guide management of periprosthetic implant infections. No adequate model exists for periprosthetic shoulder infections, and clinicians thus have no preclinical tools to assess potential therapeutics. We hypothesize that it is possible to establish a mouse model of shoulder implant infection (SII) that allows noninvasive, longitudinal tracking of biofilm and host response through in vivo optical imaging. The model may then be employed to validate a targeting probe (1D9-680) with clinical translation potential for diagnosing infection and image-guided débridement. METHODS A surgical implant was press-fit into the proximal humerus of c57BL/6J mice and inoculated with 2 μL of 1 × 103 (e3), or 1 × 104 (e4), colony-forming units (CFUs) of bioluminescent Staphylococcus aureus Xen-36. The control group received 2 μL sterile saline. Bacterial activity was monitored in vivo over 42 days, directly (bioluminescence) and indirectly (targeting probe). Weekly radiographs assessed implant loosening. CFU harvests, confocal microscopy, and histology were performed. RESULTS Both inoculated groups established chronic infections. CFUs on postoperative day (POD) 42 were increased in the infected groups compared with the sterile group (P < .001). By POD 14, osteolysis was visualized in both infected groups. The e4 group developed catastrophic bone destruction by POD 42. The e3 group maintained a congruent shoulder joint. Targeting probes helped to visualize low-grade infections via fluorescence. DISCUSSION Given bone destruction in the e4 group, a longitudinal, noninvasive mouse model of SII and chronic osteolysis was produced using e3 of S aureus Xen-36, mimicking clinical presentations of chronic SII. CONCLUSION The development of this model provides a foundation to study new therapeutics, interventions, and host modifications.
Collapse
Affiliation(s)
- William L Sheppard
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Gina M Mosich
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Ryan A Smith
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher D Hamad
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Howard Y Park
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Stephen D Zoller
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Rishi Trikha
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Tatiana K McCoy
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Borthwell
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Hoang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicole Truong
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicolas Cevallos
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samuel Clarkson
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kellyn R Hori
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kevin P Francis
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA; PerkinElmer, Hopkinton, MA, USA
| | - Frank A Petrigliano
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Nicholas M Bernthal
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA.
| |
Collapse
|
22
|
Dreisbach A, Wang M, van der Kooi-Pol MM, Reilman E, Koedijk DGAM, Mars RAT, Duipmans J, Jonkman M, Benschop JJ, Bonarius HPJ, Groen H, Hecker M, Otto A, Bäsell K, Bernhardt J, Back JW, Becher D, Buist G, van Dijl JM. Tryptic Shaving of Staphylococcus aureus Unveils Immunodominant Epitopes on the Bacterial Cell Surface. J Proteome Res 2020; 19:2997-3010. [DOI: 10.1021/acs.jproteome.0c00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annette Dreisbach
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Magdalena M. van der Kooi-Pol
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ewoud Reilman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Dennis G. A. M. Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ruben A. T. Mars
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - José Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Marcel Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Joris J. Benschop
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | | | - Herman Groen
- IQ Therapeutics, Rozenburglaan 13a, 9727 DL Groningen, the Netherlands
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Katrin Bäsell
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jörg Bernhardt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jaap Willem Back
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
23
|
A Kayvirus Distant Homolog of Staphylococcal Virulence Determinants and VISA Biomarker Is a Phage Lytic Enzyme. Viruses 2020; 12:v12030292. [PMID: 32156046 PMCID: PMC7150955 DOI: 10.3390/v12030292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal bacteriophages of the Kayvirus genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD. It causes lysis of E. coli cells expressing the cloned tgl gene, but could be overproduced when depleted of signal peptide. S. aureus cells producing Tgl lysed in the presence of nisin, which mimics the action of phage holin. In vitro, Tgl protein was able to destroy S. aureus cell walls. The production of Tgl decreased S. aureus tolerance to vancomycin, unlike the production of SceD, which is associated with decreased sensitivity to vancomycin. In the genomes of kayviruses, the tgl gene is located a few genes away from the lysK gene, encoding the major endolysin. While lysK is a late phage gene, tgl can be transcribed by a host RNA polymerase, like phage early genes. Taken together, our data indicate that tgl belongs to the kayvirus lytic module and encodes an additional endolysin that can act in concert with LysK in cell lysis.
Collapse
|
24
|
Antelo-Varela M, Aguilar Suárez R, Bartel J, Bernal-Cabas M, Stobernack T, Sura T, van Dijl JM, Maaß S, Becher D. Membrane Modulation of Super-Secreting "midi Bacillus" Expressing the Major Staphylococcus aureus Antigen - A Mass-Spectrometry-Based Absolute Quantification Approach. Front Bioeng Biotechnol 2020; 8:143. [PMID: 32185169 PMCID: PMC7059095 DOI: 10.3389/fbioe.2020.00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/12/2020] [Indexed: 01/18/2023] Open
Abstract
Bacillus subtilis has been extensively used as a microbial cell factory for industrial enzymes due to its excellent capacities for protein secretion and large-scale fermentation. This bacterium is also an attractive host for biopharmaceutical production. However, the secretion potential of this organism is not fully utilized yet, mostly due to a limited understanding of critical rearrangements in the membrane proteome upon high-level protein secretion. Recently, it was shown that bottlenecks in heterologous protein secretion can be resolved by genome minimization. Here, we present for the first time absolute membrane protein concentrations of a genome-reduced B. subtilis strain ("midiBacillus") expressing the immunodominant Staphylococcus aureus antigen A (IsaA). We quantitatively characterize the membrane proteome adaptation of midiBacillus during production stress on the level of molecules per cell for more than 400 membrane proteins, including determination of protein concentrations for ∼61% of the predicted transporters. We demonstrate that ∼30% of proteins with unknown functions display a significant increase in abundance, confirming the crucial role of membrane proteins in vital biological processes. In addition, our results show an increase of proteins dedicated to translational processes in response to IsaA induction. For the first time reported, we provide accumulation rates of a heterologous protein, demonstrating that midiBacillus secretes 2.41 molecules of IsaA per minute. Despite the successful secretion of this protein, it was found that there is still some IsaA accumulation occurring in the cytosol and membrane fraction, leading to a severe secretion stress response, and a clear adjustment of the cell's array of transporters. This quantitative dataset offers unprecedented insights into bioproduction stress responses in a synthetic microbial cell.
Collapse
Affiliation(s)
- Minia Antelo-Varela
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Rocío Aguilar Suárez
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jürgen Bartel
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Margarita Bernal-Cabas
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tim Stobernack
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Thomas Sura
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sandra Maaß
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
25
|
Roles of lytic transglycosylases in biofilm formation and β-lactam resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2019:AAC.01277-19. [PMID: 31570396 DOI: 10.1128/aac.01277-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is responsible for numerous community outbreaks and is one of the most frequent causes of nosocomial infections with significant morbidity and mortality. While the function of lytic transglycosylases (LTs) in relation to cell division, biofilm formation, and antibiotic resistance has been determined for several bacteria, their role in S. aureus remains largely unknown. The only known LTs in S. aureus are immunodominant staphylococcal antigen A (IsaA) and Staphylococcus epidermidis D protein (SceD). Our study demonstrates that, in a strain of methicillin-resistant S. aureus (MRSA), IsaA and SceD contribute differently to biofilm formation and β-lactam resistance. Deletion of isaA, but not sceD, led to decreased biofilm formation. Additionally, in isaA-deleted strains, β-lactam resistance was significantly decreased compared to that of wild-type strains. Plasmid-based expression of mecA, a major determinant of β-lactam resistance in MRSA, in an isaA-deleted strain did not restore β-lactam resistance, demonstrating that the β-lactam susceptibility phenotype is exhibited by isaA mutant regardless of the production level of PBP2a. Overall, our results suggest that IsaA is a potential therapeutic target for MRSA infections.
Collapse
|
26
|
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, Bello-Irizarry SN, Ninomiya M, Brodell JD, Lee CC, Hao SP, Oh I, Xie C, Awad HA, Daiss JL, Owen JR, Kates SL, Schwarz EM, Muthukrishnan G. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res 2019; 7:20. [PMID: 31646012 PMCID: PMC6804538 DOI: 10.1038/s41413-019-0061-z] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Ryan P. Trombetta
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ann Lindley Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Mark Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - James D. Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
27
|
Zhao X, Palma Medina LM, Stobernack T, Glasner C, de Jong A, Utari P, Setroikromo R, Quax WJ, Otto A, Becher D, Buist G, van Dijl JM. Exoproteome Heterogeneity among Closely Related Staphylococcus aureus t437 Isolates and Possible Implications for Virulence. J Proteome Res 2019; 18:2859-2874. [PMID: 31119940 PMCID: PMC6617432 DOI: 10.1021/acs.jproteome.9b00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus with spa-type t437 has been identified as a predominant community-associated methicillin-resistant S. aureus clone from Asia, which is also encountered in Europe. Molecular typing has previously shown that t437 isolates are highly similar regardless of geographical regions or host environments. The present study was aimed at assessing to what extent this high similarity is actually reflected in the production of secreted virulence factors. We therefore profiled the extracellular proteome, representing the main reservoir of virulence factors, of 20 representative clinical isolates by mass spectrometry. The results show that these isolates can be divided into three groups and nine subgroups based on exoproteome abundance signatures. This implies that S. aureus t437 isolates show substantial exoproteome heterogeneity. Nonetheless, 30 highly conserved extracellular proteins, of which about 50% have a predicted role in pathogenesis, were dominantly identified. To approximate the virulence of the 20 investigated isolates, we employed infection models based on Galleria mellonella and HeLa cells. The results show that the grouping of clinical isolates based on their exoproteome profile can be related to virulence. We consider this outcome important as our approach provides a tool to pinpoint differences in virulence among seemingly highly similar clinical isolates of S. aureus.
Collapse
Affiliation(s)
- Xin Zhao
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Laura M Palma Medina
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Tim Stobernack
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Corinna Glasner
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Anne de Jong
- University of Groningen , Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics , 9747 AG Groningen , The Netherlands
| | - Putri Utari
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Rita Setroikromo
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Wim J Quax
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Andreas Otto
- Institut für Mikrobiologie , University of Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Dörte Becher
- Institut für Mikrobiologie , University of Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Girbe Buist
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Jan Maarten van Dijl
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| |
Collapse
|
28
|
Zoller SD, Park HY, Olafsen T, Zamilpa C, Burke ZD, Blumstein G, Sheppard WL, Hamad CD, Hori KR, Tseng JC, Czupryna J, McMannus C, Lee JT, Bispo M, Romero Pastrana F, Raineri EJ, Miller JF, Miller LS, van Dijl JM, Francis KP, Bernthal NM. Multimodal imaging guides surgical management in a preclinical spinal implant infection model. JCI Insight 2019; 4:124813. [PMID: 30728332 DOI: 10.1172/jci.insight.124813] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/09/2019] [Indexed: 01/16/2023] Open
Abstract
Spine implant infections portend disastrous outcomes, as diagnosis is challenging and surgical eradication is at odds with mechanical spinal stability. Current imaging modalities can detect anatomical alterations and anomalies but cannot differentiate between infection and aseptic loosening, diagnose specific pathogens, or delineate the extent of an infection. Herein, a fully human monoclonal antibody 1D9, recognizing the immunodominant staphylococcal antigen A on the surface of Staphylococcus aureus, was assessed as a nuclear and fluorescent imaging probe in a preclinical model of S. aureus spinal implant infection, utilizing bioluminescently labeled bacteria to confirm the specificity and sensitivity of this targeting. Postoperative mice were administered 1D9 probe dual labeled with 89-zirconium (89Zr) and a bars represent SEM dye (NIR680) (89Zr-NIR680-1D9), and PET-CT and in vivo fluorescence and bioluminescence imaging were performed. The 89Zr-NIR680-1D9 probe accurately diagnosed both acute and subacute implant infection and permitted fluorescent image-guided surgery for selective debridement of infected tissue. Therefore, a single probe could noninvasively diagnose an infection and facilitate image-guided surgery to improve the clinical management of implant infections.
Collapse
Affiliation(s)
- Stephen D Zoller
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Howard Y Park
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Charles Zamilpa
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Zachary Dc Burke
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Gideon Blumstein
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - William L Sheppard
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | | | - Kellyn R Hori
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | - Jason T Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Mafalda Bispo
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisa Jm Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jeffery F Miller
- California NanoSystems Institute, UCLA, Los Angeles, California, USA.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Lloyd S Miller
- Department of Orthopaedic Surgery.,Department of Dermatology, and.,Division of Infectious Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kevin P Francis
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA.,PerkinElmer, Hopkinton, Massachusetts, USA
| | - Nicholas M Bernthal
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| |
Collapse
|
29
|
Raafat D, Otto M, Reppschläger K, Iqbal J, Holtfreter S. Fighting Staphylococcus aureus Biofilms with Monoclonal Antibodies. Trends Microbiol 2019; 27:303-322. [PMID: 30665698 DOI: 10.1016/j.tim.2018.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a notorious pathogen and one of the most frequent causes of biofilm-related infections. The treatment of S. aureus biofilms is hampered by the ability of the biofilm structure to shield bacteria from antibiotics as well as the host's immune system. Therefore, new preventive and/or therapeutic interventions, including the use of antibody-based approaches, are urgently required. In this review, we describe the mechanisms by which anti-S. aureus antibodies can help in combating biofilms, including an up-to-date overview of monoclonal antibodies currently in clinical trials. Moreover, we highlight ongoing efforts in passive vaccination against S. aureus biofilm infections, with special emphasis on promising targets, and finally indicate the direction into which future research could be heading.
Collapse
Affiliation(s)
- Dina Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Egypt; Current affiliation: Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Kevin Reppschläger
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Jawad Iqbal
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
30
|
Aguilar Suárez R, Stülke J, van Dijl JM. Less Is More: Toward a Genome-Reduced Bacillus Cell Factory for "Difficult Proteins". ACS Synth Biol 2019; 8:99-108. [PMID: 30540431 PMCID: PMC6343112 DOI: 10.1021/acssynbio.8b00342] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The availability of complete genome
sequences and the definition
of essential gene sets were fundamental in the start of the genome
engineering era. In a recent study, redundant and unnecessary genes
were systematically deleted from the Gram-positive bacterium Bacillus subtilis, an industrial production host of high-value
secreted proteins. This culminated in strain PG10, which lacks about
36% of the genome, thus representing the most minimal Bacillus chassis currently available. Here, we show that this “miniBacillus” strain has synthetic traits that are favorable
for producing “difficult-to-produce proteins”. As exemplified
with different staphylococcal antigens, PG10 overcomes several bottlenecks
in protein production related to the secretion process and instability
of the secreted product. These findings show for the first time that
massive genome reduction can substantially improve secretory protein
production by a bacterial expression host, and underpin the high potential
of genome-engineered strains as future cell factories.
Collapse
Affiliation(s)
- Rocío Aguilar Suárez
- University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Jörg Stülke
- Institute of Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Jan Maarten van Dijl
- University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
31
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
32
|
Romero Pastrana F, Neef J, Koedijk DGAM, de Graaf D, Duipmans J, Jonkman MF, Engelmann S, van Dijl JM, Buist G. Human antibody responses against non-covalently cell wall-bound Staphylococcus aureus proteins. Sci Rep 2018; 8:3234. [PMID: 29459694 PMCID: PMC5818649 DOI: 10.1038/s41598-018-21724-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Human antibody responses to pathogens, like Staphylococcus aureus, are important indicators for in vivo expression and immunogenicity of particular bacterial components. Accordingly, comparing the antibody responses to S. aureus components may serve to predict their potential applicability as antigens for vaccination. The present study was aimed at assessing immunoglobulin G (IgG) responses elicited by non-covalently cell surface-bound proteins of S. aureus, which thus far received relatively little attention. To this end, we applied plasma samples from patients with the genetic blistering disease epidermolysis bullosa (EB) and healthy S. aureus carriers. Of note, wounds of EB patients are highly colonized with S. aureus and accordingly these patients are more seriously exposed to staphylococcal antigens than healthy individuals. Ten non-covalently cell surface-bound proteins of S. aureus, namely Atl, Eap, Efb, EMP, IsaA, LukG, LukH, SA0710, Sle1 and SsaA2, were selected by bioinformatics and biochemical approaches. These antigens were recombinantly expressed, purified and tested for specific IgG responses using human plasma. We show that high exposure of EB patients to S. aureus is mirrored by elevated IgG levels against all tested non-covalently cell wall-bound staphylococcal antigens. This implies that these S. aureus cell surface proteins are prime targets for the human immune system.
Collapse
Affiliation(s)
- Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Douwe de Graaf
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - José Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Susanne Engelmann
- Institute of Microbiology, Technical University Braunschweig, Inhoffenstrasse 7, D-38124, Braunschweig, Germany.,Helmholtz Institute for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, D-38124, Braunschweig, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
33
|
|
34
|
Romero Pastrana F, Thompson JM, Heuker M, Hoekstra H, Dillen CA, Ortines RV, Ashbaugh AG, Pickett JE, Linssen MD, Bernthal NM, Francis KP, Buist G, van Oosten M, van Dam GM, Thorek DLJ, Miller LS, van Dijl JM. Noninvasive optical and nuclear imaging of Staphylococcus-specific infection with a human monoclonal antibody-based probe. Virulence 2017; 9:262-272. [PMID: 29166841 PMCID: PMC5955194 DOI: 10.1080/21505594.2017.1403004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus infections are a major threat in healthcare, requiring adequate early-stage diagnosis and treatment. This calls for novel diagnostic tools that allow noninvasive in vivo detection of staphylococci. Here we performed a preclinical study to investigate a novel fully-human monoclonal antibody 1D9 that specifically targets the immunodominant staphylococcal antigen A (IsaA). We show that 1D9 binds invariantly to S. aureus cells and may further target other staphylococcal species. Importantly, using a human post-mortem implant model and an in vivo murine skin infection model, preclinical feasibility was demonstrated for 1D9 labeled with the near-infrared fluorophore IRDye800CW to be applied for direct optical imaging of in vivo S. aureus infections. Additionally, 89Zirconium-labeled 1D9 could be used for positron emission tomography imaging of an in vivo S. aureus thigh infection model. Our findings pave the way towards clinical implementation of targeted imaging of staphylococcal infections using the human monoclonal antibody 1D9.
Collapse
Affiliation(s)
- Francisco Romero Pastrana
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - John M Thompson
- b Department of Orthopaedic Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marjolein Heuker
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Hedzer Hoekstra
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Carly A Dillen
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Roger V Ortines
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Alyssa G Ashbaugh
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Julie E Pickett
- d Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Matthijs D Linssen
- e Department of Gastroentrology and Hepatology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands.,f Department of clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Nicholas M Bernthal
- g Department of Orthopaedic Surgery , David Geffen School of Medicine at the University of California, Los Angeles Medical Center , Santa Monica , CA , USA
| | - Kevin P Francis
- g Department of Orthopaedic Surgery , David Geffen School of Medicine at the University of California, Los Angeles Medical Center , Santa Monica , CA , USA.,h PerkinElmer , Alameda , California , CA , USA.,i Department of Surgery , Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Girbe Buist
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Marleen van Oosten
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Gooitzen M van Dam
- i Department of Surgery , Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Daniel L J Thorek
- d Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,j Department of Oncology , Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Lloyd S Miller
- b Department of Orthopaedic Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,k Division of Infectious Disease, Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Jan Maarten van Dijl
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| |
Collapse
|
35
|
Rapid identification of staphylococci by Raman spectroscopy. Sci Rep 2017; 7:14846. [PMID: 29093473 PMCID: PMC5665888 DOI: 10.1038/s41598-017-13940-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022] Open
Abstract
Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.
Collapse
|
36
|
de Jong NWM, Ramyar KX, Guerra FE, Nijland R, Fevre C, Voyich JM, McCarthy AJ, Garcia BL, van Kessel KPM, van Strijp JAG, Geisbrecht BV, Haas PJA. Immune evasion by a staphylococcal inhibitor of myeloperoxidase. Proc Natl Acad Sci U S A 2017; 114:9439-9444. [PMID: 28808028 PMCID: PMC5584439 DOI: 10.1073/pnas.1707032114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is highly adapted to its host and has evolved many strategies to resist opsonization and phagocytosis. Even after uptake by neutrophils, S. aureus shows resistance to killing, which suggests the presence of phagosomal immune evasion molecules. With the aid of secretome phage display, we identified a highly conserved protein that specifically binds and inhibits human myeloperoxidase (MPO), a major player in the oxidative defense of neutrophils. We have named this protein "staphylococcal peroxidase inhibitor" (SPIN). To gain insight into inhibition of MPO by SPIN, we solved the cocrystal structure of SPIN bound to a recombinant form of human MPO at 2.4-Å resolution. This structure reveals that SPIN acts as a molecular plug that prevents H2O2 substrate access to the MPO active site. In subsequent experiments, we observed that SPIN expression increases inside the neutrophil phagosome, where MPO is located, compared with outside the neutrophil. Moreover, bacteria with a deleted gene encoding SPIN showed decreased survival compared with WT bacteria after phagocytosis by neutrophils. Taken together, our results demonstrate that S. aureus secretes a unique proteinaceous MPO inhibitor to enhance survival by interfering with MPO-mediated killing.
Collapse
Affiliation(s)
- Nienke W M de Jong
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Kasra X Ramyar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Fermin E Guerra
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717
| | - Reindert Nijland
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Cindy Fevre
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717
| | - Alex J McCarthy
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Brandon L Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Pieter-Jan A Haas
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
37
|
Koedijk DGAM, Pastrana FR, Hoekstra H, Berg SVD, Back JW, Kerstholt C, Prins RC, Bakker-Woudenberg IAJM, van Dijl JM, Buist G. Differential epitope recognition in the immunodominant staphylococcal antigen A of Staphylococcus aureus by mouse versus human IgG antibodies. Sci Rep 2017; 7:8141. [PMID: 28811514 PMCID: PMC5557936 DOI: 10.1038/s41598-017-08182-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/29/2017] [Indexed: 11/25/2022] Open
Abstract
The immunodominant staphylococcal antigen A (IsaA) is a potential target for active or passive immunization against the important human pathogen Staphylococcus aureus. Consistent with this view, monoclonal antibodies against IsaA were previously shown to be protective against S. aureus infections in mouse models. Further, patients with the genetic blistering disease epidermolysis bullosa (EB) displayed high IsaA-specific IgG levels that could potentially be protective. Yet, mice actively immunized with IsaA were not protected against S. aureus infection. The present study was aimed at explaining these differences in IsaA-specific immune responses. By epitope mapping, we show that the protective human monoclonal antibody (humAb) 1D9 recognizes a conserved 62-residue N-terminal domain of IsaA. The same region of IsaA is recognized by IgGs in EB patient sera. Further, we show by immunofluorescence microscopy that this N-terminal IsaA domain is exposed on the S. aureus cell surface. In contrast to the humAb 1D9 and IgGs from EB patients, the non-protective IgGs from mice immunized with IsaA were shown to predominantly bind the C-terminal domain of IsaA. Altogether, these observations focus attention on the N-terminal region of IsaA as a potential target for future immunization against S. aureus.
Collapse
Affiliation(s)
- Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Hedzer Hoekstra
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Carolien Kerstholt
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Rianne C Prins
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
38
|
Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Ježek J, Zemánek P, Holá V. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy. Future Microbiol 2017; 12:881-890. [PMID: 28686040 DOI: 10.2217/fmb-2016-0224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIM Raman spectroscopy is an analytical method with a broad range of applications across multiple scientific fields. We report on a possibility to differentiate between two important Gram-positive species commonly found in clinical material - Staphylococcus aureus and Staphylococcus epidermidis - using this rapid noninvasive technique. MATERIALS & METHODS For this, we tested 87 strains, 41 of S. aureus and 46 of S. epidermidis, directly from colonies grown on a Mueller-Hinton agar plate using Raman spectroscopy. DISCUSSION & CONCLUSION The method paves a way for separation of these two species even on high number of samples and therefore, it can be potentially used in clinical diagnostics.
Collapse
Affiliation(s)
- Katarína Rebrošová
- Department of Microbiology, Faculty of Medicine & St Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| | - Martin Šiler
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Ota Samek
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine & St Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| | - Silvie Bernatová
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Jan Ježek
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Pavel Zemánek
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Veronika Holá
- Department of Microbiology, Faculty of Medicine & St Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| |
Collapse
|
39
|
Hoekstra H, Romero Pastrana F, Bonarius HPJ, van Kessel KPM, Elsinga GS, Kooi N, Groen H, van Dijl JM, Buist G. A human monoclonal antibody that specifically binds and inhibits the staphylococcal complement inhibitor protein SCIN. Virulence 2017; 9:70-82. [PMID: 28277903 PMCID: PMC5955450 DOI: 10.1080/21505594.2017.1294297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is a serious public health burden causing a wide variety of infections. Earlier detection of such infections could result in faster and more directed therapies that also prevent resistance development. Human monoclonal antibodies (humAbs) are promising tools for diagnosis and therapy owing to their relatively straightforward synthesis, long history of safe clinical use and high target specificity. Here we show that the humAb 6D4, which was obtained from a random screen of B-cells producing antibodies that bind to whole cells of S. aureus, targets the staphylococcal complement inhibitor (SCIN). The epitope recognized by 6D4 was localized to residues 26 to 36 in the N-terminus of SCIN, which overlap with the active site. Accordingly, 6D4 can inhibit SCIN activity as demonstrated through the analysis of C3b deposition on S. aureus cells and complement-induced lysis of rabbit erythrocytes. Importantly, while SCIN is generally regarded as a secreted virulence factor, 6D4 allowed detection of strongly increased SCIN binding to S. aureus cells upon exposure to human serum, relating to the known binding of SCIN to C3 convertases deposited on the staphylococcal cell surface. Lastly, we show that labeling of humAb 6D4 with a near-infrared fluorophore allows one-step detection of SCIN-producing S. aureus cells. Together, our findings show that the newly described humAb 6D4 specifically recognizes S. aureus SCIN, which can potentially be used for detection of human serum-incubated S. aureus strains expressing SCIN.
Collapse
Affiliation(s)
- Hedzer Hoekstra
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Francisco Romero Pastrana
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | | | - Kok P M van Kessel
- c Medical Microbiology, University Medical Center Utrecht , Utrecht , The Netherlands
| | | | | | | | - Jan Maarten van Dijl
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Girbe Buist
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
40
|
Combining in vitro protein detection and in vivo antibody detection identifies potential vaccine targets against Staphylococcus aureus during osteomyelitis. Med Microbiol Immunol 2016; 206:11-22. [PMID: 27629411 PMCID: PMC5263195 DOI: 10.1007/s00430-016-0476-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/03/2016] [Indexed: 12/31/2022]
Abstract
Currently, little is known about the in vivo human immune response against Staphylococcus aureus during a biofilm-associated infection, such as osteomyelitis, and how this relates to protein production in biofilms in vitro. Therefore, we characterized IgG responses in 10 patients with chronic osteomyelitis against 50 proteins of S. aureus, analyzed the presence of these proteins in biofilms of the infecting isolates on polystyrene (PS) and human bone in vitro, and explored the relation between in vivo and in vitro data. IgG levels against 15 different proteins were significantly increased in patients compared to healthy controls. Using a novel competitive Luminex-based assay, eight of these proteins [alpha toxin, Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FlipR), glucosaminidase, iron-responsive surface determinants A and H, the putative ABC transporter SACOL0688, staphylococcal complement inhibitor (SCIN), and serine-aspartate repeat-containing protein E (SdrE)] were also detected in a majority of the infecting isolates during biofilm formation in vitro. However, 4 other proteins were detected in only a minority of isolates in vitro while, vice versa, 7 proteins were detected in multiple isolates in vitro but not associated with significantly increased IgG levels in patients. Detection of proteins was largely confirmed using a transcriptomic approach. Our data provide further insights into potential therapeutic targets, such as for vaccination, to reduce S. aureus virulence and biofilm formation. At the same time, our data suggest that either in vitro or immunological in vivo data alone should be interpreted cautiously and that combined studies are necessary to identify potential targets.
Collapse
|
41
|
Selle M, Hertlein T, Oesterreich B, Klemm T, Kloppot P, Müller E, Ehricht R, Stentzel S, Bröker BM, Engelmann S, Ohlsen K. Global antibody response to Staphylococcus aureus live-cell vaccination. Sci Rep 2016; 6:24754. [PMID: 27103319 PMCID: PMC4840433 DOI: 10.1038/srep24754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration.
Collapse
Affiliation(s)
- Martina Selle
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Tobias Hertlein
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Babett Oesterreich
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Theresa Klemm
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Peggy Kloppot
- University Greifswald, Institute for Microbiology, Greifswald, Germany
| | - Elke Müller
- Alere Technologies GmbH, Jena, Germany.,InfectoGnostics Research Campus Jena, Germany
| | - Ralf Ehricht
- Alere Technologies GmbH, Jena, Germany.,InfectoGnostics Research Campus Jena, Germany
| | - Sebastian Stentzel
- University Medicine Greifswald, Department of Immunology, Greifswald, Germany
| | - Barbara M Bröker
- University Medicine Greifswald, Department of Immunology, Greifswald, Germany
| | - Susanne Engelmann
- Technical University Braunschweig, Institute for Microbiology, Braunschweig, Germany.,Helmholtz-Zentrum für Infektionsforschung, Mikrobielle Proteomik, Braunschweig, Germany
| | - Knut Ohlsen
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| |
Collapse
|
42
|
Yang Y, Qian M, Yi S, Liu S, Li B, Yu R, Guo Q, Zhang X, Yu C, Li J, Xu J, Chen W. Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice. PLoS One 2016; 11:e0149460. [PMID: 26926145 PMCID: PMC4771200 DOI: 10.1371/journal.pone.0149460] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/01/2016] [Indexed: 02/06/2023] Open
Abstract
Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections.
Collapse
Affiliation(s)
- Yilong Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Shaoqiong Yi
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Shuling Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Bing Li
- Department of Clinical Laboratory, 306 Hospital of People’s Liberation Army, Beijing, PR China
| | - Rui Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Qiang Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Xiaopeng Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Changming Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, PR China
- * E-mail:
| |
Collapse
|
43
|
Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VJ. Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends Pharmacol Sci 2015; 37:231-241. [PMID: 26719219 DOI: 10.1016/j.tips.2015.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
The growing incidence of serious infections mediated by methicillin-resistant Staphylococcus aureus (MRSA) strains poses a significant risk to public health. This risk is exacerbated by a prolonged void in the discovery and development of truly novel antibiotics and the absence of a vaccine. These gaps have created renewed interest in the use of biologics in the prevention and treatment of serious staphylococcal infections. In this review, we focus on efforts towards the discovery and development of antibody-based biologic agents and their potential as clinical agents in the management of serious S. aureus infections. Recent promising data for monoclonal antibodies (mAbs) targeting anthrax and Ebola highlight the potential of antibody-based biologics as therapeutic agents for serious infections.
Collapse
Affiliation(s)
- William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter T Buckley
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - William R Strohl
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - A Simon Lynch
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
44
|
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. SENSORS 2015; 15:29635-47. [PMID: 26610516 PMCID: PMC4701351 DOI: 10.3390/s151129635] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/09/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
Abstract
Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.
Collapse
|
45
|
Vuong C, Yeh AJ, Cheung GYC, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs 2015; 25:73-93. [PMID: 26536498 DOI: 10.1517/13543784.2016.1109077] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries, a situation that calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. AREAS COVERED This review provides an overview of current investigational drugs and therapeutic antibodies against S. aureus in early clinical development (up to phase II clinical development). It includes a short description of the mechanism of action and a presentation of microbiological and clinical data. EXPERT OPINION Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and therapies, such as anti-virulence drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise.
Collapse
Affiliation(s)
- Cuong Vuong
- a Principal Scientist/Laboratory Head, Bacteriology , AiCuris GmbH & Co. KG, Friedrich-Ebert-Str. 475/Geb. 302, 42117 Wuppertal , Germany
| | - Anthony J Yeh
- b Post-baccalaureate IRTA, Laboratory of Bacteriology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Gordon Y C Cheung
- c Staff Scientist, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Michael Otto
- d Senior Investigator, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| |
Collapse
|
46
|
van den Berg S, Koedijk DGAM, Back JW, Neef J, Dreisbach A, van Dijl JM, Bakker-Woudenberg IAJM, Buist G. Active immunization with an octa-valent Staphylococcus aureus antigen mixture in models of S. aureus bacteremia and skin infection in mice. PLoS One 2015; 10:e0116847. [PMID: 25710376 PMCID: PMC4339199 DOI: 10.1371/journal.pone.0116847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022] Open
Abstract
Proteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl) and four phenol-soluble modulins α (PSMα) are invariantly produced by this pathogen. Therefore the present study was aimed at investigating whether these proteins can be used for active immunization against S. aureus infection in mouse models of bacteremia and skin infection. To this end, recombinant His-tagged fusions of IsaA, LytM, Nuc and pro-Atl were isolated from Lactococcus lactis or Escherichia coli, while the PSMα1-4 peptides were chemically synthesized. Importantly, patients colonized by S. aureus showed significant immunoglobulin G (IgG) responses against all eight antigens. BALB/cBYJ mice were immunized subcutaneously with a mixture of the antigens at day one (5 μg each), and boosted twice (25 μg of each antigen) with 28 days interval. This resulted in high IgG responses against all antigens although the response against pro-Atl was around one log lower compared to the other antigens. Compared to placebo-immunized mice, immunization with the octa-valent antigen mixture did not reduce the S. aureus isolate P load in blood, lungs, spleen, liver, and kidneys in a bacteremia model in which the animals were challenged for 14 days with a primary load of 3 × 105 CFU. Discomfort scores and animal survival rates over 14 days did not differ between immunized mice and placebo-immunized mice upon bacteremia with S. aureus USA300 (6 × 105 CFU). In addition, this immunization did not reduce the S. aureus isolate P load in mice with skin infection. These results show that the target antigens are immunogenic in both humans and mice, but in the used animal models do not result in protection against S. aureus infection.
Collapse
Affiliation(s)
- Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| | - Dennis G. A. M. Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annette Dreisbach
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|