1
|
Yu X, Yang Y, Zhu W, Liu M, Wu J, Singer SM, Li W. The pathogenic responses elicited during exposure of human intestinal cell line with Giardia duodenalis excretory-secretory products and the potential attributed endocytosis mechanism. Med Microbiol Immunol 2024; 213:23. [PMID: 39441372 DOI: 10.1007/s00430-024-00806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Giardia duodenalis, an important zoonotic protozoan parasite, adheres to host intestinal epithelial cells (IECs) via the ventral disc and causes giardiasis characterized mainly by diarrhea. To date, it remains elusive how excretory-secretory products (ESPs) of Giardia enter IECs and how the cells respond to the entry. Herein, we initially demonstrated that ESPs evoked IEC endocytosis in vitro. We indicated that ESPs contributed vitally in triggering intrinsic apoptosis, pro-inflammatory responses, tight junction (TJ) protein expressional changes, and autophagy in IECs. Endocytosis was further proven to be implicated in those ESPs-triggered IEC responses. Ten predicted virulent excretory-secretory proteins of G. duodenalis were investigated for their capability to activate clathrin/caveolin-mediated endocytosis (CME/CavME) in IECs. Pyridoxamine 5'-phosphate oxidase (PNPO) was confirmed to be an important contributor. PNPO was subsequently verified as a vital promoter in the induction of giardiasis-related IEC apoptosis, inflammation, and TJ protein downregulation. Most importantly, this process seemed to be involved majorly in PNPO-evoked CME pathway, rather than CavME. Collectively, this study identified Giardia ESPs, notably PNPO, as potentially important pathogenic factors during noninvasive infection. It was also noteworthy that ESPs-evoked endocytosis might play a role in triggering giardiasis-inducing cellular regulation. These findings would deepen our understanding about the role of ESPs, notably PNPO, in the pathogenesis of giardiasis and the potential attributed endocytosis mechanism.
Collapse
Affiliation(s)
- Xiran Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yongwu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Weining Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Min Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jingxue Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Argüello-García R, Carrero JC, Ortega-Pierres MG. Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens-Factors Linked to Virulence and Pathogenicity. Int J Mol Sci 2023; 24:12850. [PMID: 37629029 PMCID: PMC10454693 DOI: 10.3390/ijms241612850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Intestinal diseases caused by protistan parasites of the genera Giardia (giardiasis), Entamoeba (amoebiasis), Cryptosporidium (cryptosporidiosis) and Blastocystis (blastocystosis) represent a major burden in human and animal populations worldwide due to the severity of diarrhea and/or inflammation in susceptible hosts. These pathogens interact with epithelial cells, promoting increased paracellular permeability and enterocyte cell death (mainly apoptosis), which precede physiological and immunological disorders. Some cell-surface-anchored and molecules secreted from these parasites function as virulence markers, of which peptide hydrolases, particularly cysteine proteases (CPs), are abundant and have versatile lytic activities. Upon secretion, CPs can affect host tissues and immune responses beyond the site of parasite colonization, thereby increasing the pathogens' virulence. The four intestinal protists considered here are known to secrete predominantly clan A (C1- and C2-type) CPs, some of which have been characterized. CPs of Giardia duodenalis (e.g., Giardipain-1) and Entamoeba histolytica (EhCPs 1-6 and EhCP112) degrade mucin and villin, cause damage to intercellular junction proteins, induce apoptosis in epithelial cells and degrade immunoglobulins, cytokines and defensins. In Cryptosporidium, five Cryptopains are encoded in its genome, but only Cryptopains 4 and 5 are likely secreted. In Blastocystis sp., a legumain-activated CP, called Blastopain-1, and legumain itself have been detected in the extracellular medium, and the former has similar adverse effects on epithelial integrity and enterocyte survival. Due to their different functions, these enzymes could represent novel drug targets. Indeed, some promising results with CP inhibitors, such as vinyl sulfones (K11777 and WRR605), the garlic derivative, allicin, and purified amoebic CPs have been obtained in experimental models, suggesting that these enzymes might be useful drug targets.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico;
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico;
| |
Collapse
|
3
|
Al-Abodi1 HR. Assessment of the variability of the hematological and biochemical parameters in giardiasis patients. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Giardiasis is one of the essential parasitic intestinal diseases, widespread in many countries. Therefore, it has occupied a necessary place among public health priorities. Children are the most vulnerable and affected by this disease. The current study evaluated the physiological and biochemical hematological changes of affected children under 12 in Al-Diwaniyah Governorate, middle of Iraq. Hemoglobin levels and the volume of compacted blood cells decreased in patients (10.4g/dL and 33.7%, respectively). In contrast, the number of white blood cells increased to (7700 cells/mm3), indicating substantial differences between the hematological parameters and the control group's results.
Regarding the number of cells, the investigation revealed a reduction of (64.1%) in the total number of cells. In contrast to the control data, the results showed a rise in the number of lymphocytes, eosinophils, and basophils, with respective percentages of (%28.4), (%0.6), and (%0.4). Monocytes were unaffected. The findings of the biochemical parameters demonstrated that the concentrations of liver enzymes varied significantly, with the attention of GPT and GOT increasing to(18.7) and (19.9)international units/liter. Additionally, lipid level variations, including lower cholesterol and triglycerides, were discovered. Compared to the control groups, it reached (163.8) and (122.5) mg/DL.
Keywords: Giardiasis, blood parameters, GOT, Giardia lamblia.
Collapse
|
4
|
Zoghroban HS, Ibrahim FMK, Nasef NA, Saad AE. The impact of L-citrulline on murine intestinal cell integrity, immune response, and arginine metabolism in the face of Giardia lamblia infection. Acta Trop 2022; 237:106748. [DOI: 10.1016/j.actatropica.2022.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
5
|
Barroeta-Echegaray E, Fonseca-Liñán R, Argüello-García R, Rodríguez-Muñoz R, Bermúdez-Cruz RM, Nava P, Ortega-Pierres MG. Giardia duodenalis enolase is secreted as monomer during trophozoite-epithelial cell interactions, activates plasminogen and induces necroptotic damage. Front Cell Infect Microbiol 2022; 12:928687. [PMID: 36093180 PMCID: PMC9452966 DOI: 10.3389/fcimb.2022.928687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022] Open
Abstract
Enolase, a multifunctional protein expressed by multiple pathogens activates plasminogen to promote proteolysis on components of the extracellular matrix, an important event in early host-pathogen interactions. A secreted form of enolase that is released upon the interaction of trophozoites with epithelial cells has been detected in the secretome of G. duodenalis. However, the role of enolase in the host-pathogen interactions remains largely unknown. In this work, the effects of G. duodenalis enolase (Gd-eno) on the epithelial cell model (IEC-6) were analyzed. Firstly, the coding sequence of Giardia enolase was cloned and the recombinant protein used to raise antibodies that were then used to define the localization and role of enolase in epithelial cell-trophozoite interactions. Gd-eno was detected in small cytoplasmic vesicles as well as at the surface and is enriched in the region of the ventral disk of Giardia trophozoites. Moreover, the blocking of the soluble monomeric form of the enzyme, which is secreted upon interaction with IEC-6 cells by the anti-rGd-eno antibodies, significantly inhibited trophozoite attachment to intestinal IEC-6 cell monolayers. Further, rGd-eno was able to bind human plasminogen (HsPlg) and enhanced plasmin activity in vitro when the trophozoites were incubated with the intrinsic plasminogen activators of epithelial cells. In IEC-6 cells, rGd-eno treatment induced a profuse cell damage characterized by copious vacuolization, intercellular separation and detachment from the substrate; this effect was inhibited by either anti-Gd-eno Abs or the plasmin inhibitor ϵ- aminocaproic acid. Lastly, we established that in epithelial cells rGd-eno treatment induced a necroptotic-like process mediated by tumor necrosis factor α (TNF-α) and the apoptosis inducing factor (AIF), but independent of caspase-3. All together, these results suggest that Giardia enolase is a secreted moonlighting protein that stimulates a necroptotic-like process in IEC-6 epithelial cells via plasminogen activation along to TNFα and AIF activities and must be considered as a virulence factor.
Collapse
Affiliation(s)
- Elisa Barroeta-Echegaray
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Fonseca-Liñán
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Raúl Argüello-García
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Guadalupe Ortega-Pierres
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: M. Guadalupe Ortega-Pierres,
| |
Collapse
|
6
|
Rojas L, Grüttner J, Ma’ayeh S, Xu F, Svärd SG. Dual RNA Sequencing Reveals Key Events When Different Giardia Life Cycle Stages Interact With Human Intestinal Epithelial Cells In Vitro. Front Cell Infect Microbiol 2022; 12:862211. [PMID: 35573800 PMCID: PMC9094438 DOI: 10.3389/fcimb.2022.862211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Giardia intestinalis is a protozoan parasite causing diarrheal disease, giardiasis, after extracellular infection of humans and other mammals’ intestinal epithelial cells (IECs) of the upper small intestine. The parasite has two main life cycle stages: replicative trophozoites and transmissive cysts. Differentiating parasites (encysting cells) and trophozoites have recently been shown to be present in the same regions of the upper small intestine, whereas most mature cysts are found further down in the intestinal system. To learn more about host-parasite interactions during Giardia infections, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and Giardia WB trophozoites, early encysting cells (7 h), and cysts. Dual RNA sequencing (Dual RNAseq) was used to identify differentially expressed genes (DEGs) in both Giardia and the IECs, which might relate to establishing infection and disease induction. In the human cells, the largest gene expression changes were found in immune and MAPK signaling, transcriptional regulation, apoptosis, cholesterol metabolism and oxidative stress. The different life cycle stages of Giardia induced a core of similar DEGs but at different levels and there are many life cycle stage-specific DEGs. The metabolic protein PCK1, the transcription factors HES7, HEY1 and JUN, the peptide hormone CCK and the mucins MUC2 and MUC5A are up-regulated in the IECs by trophozoites but not cysts. Cysts specifically induce the chemokines CCL4L2, CCL5 and CXCL5, the signaling protein TRKA and the anti-bacterial protein WFDC12. The parasite, in turn, up-regulated a large number of hypothetical genes, high cysteine membrane proteins (HCMPs) and oxidative stress response genes. Early encysting cells have unique DEGs compared to trophozoites (e.g. several uniquely up-regulated HCMPs) and interaction of these cells with IECs affected the encystation process. Our data show that different life cycle stages of Giardia induce different gene expression responses in the host cells and that the IECs in turn differentially affect the gene expression in trophozoites and early encysting cells. This life cycle stage-specific host-parasite cross-talk is an important aspect to consider during further studies of Giardia’s molecular pathogenesis.
Collapse
Affiliation(s)
- Laura Rojas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- *Correspondence: Staffan G. Svärd,
| |
Collapse
|
7
|
Abstract
Purpose of review Here, we review recent progress made on the genetic characterization of Giardia duodenalis assemblages and their relationship with virulence. We also discuss the implications of virulence factors in the pathogenesis of giardiasis, and advances in the development of vaccines and drugs based on knowledge of virulence markers. Recent findings The use of transcriptomic and proteomic technologies as well as whole genome sequencing (WGS) from single cysts has allowed the assembly of the draft genome sequences for assemblages C and D of G. duodenalis. These findings, along with the published genomes for assemblages A, B, and E, have allowed comparative genomic investigations. In addition, the use of these methodologies for the characterization of the secretomes of trophozoite-epithelial cell interactions for assemblages A/B has led to the identification of virulence markers including energy metabolism enzymes, proteinases, high-cysteine membrane proteins (HCMPs), and variant surface proteins (VSPs). Recently, some drugs and vaccines, targeting virulence factors have been developed, offering possible alternatives to current treatment and prevention options against giardiasis. Summary Among the nine recognized species of Giardia, G. duodenalis stands out because of its broad spectrum of hosts and its socio-economic importance. This species comprises eight genetic assemblages (A to H), of which A and B are zoonotic, and the other assemblages have narrow host specificities. Assemblages A and B may be considered as the most virulent ones, but the existence of asymptomatic carriers and considerable genetic variability within and among these assemblages hampers the definition of common virulence factors. The attachment of Giardia trophozoites to epithelial cells and structural cytoskeleton components of the adhesive disk, such as giardins or tubulins, is proposed to play key roles, but toxins have not yet been precisely defined. However, recent transcriptomic and proteomic analyses of the secretomes of trophozoites representing assemblages A and B and interacting with particular epithelial cell lines have defined a series of virulence factors, including glycolytic (e.g., enolase) and arginolytic (e.g., arginine deiminase) enzymes, cysteine proteases (e.g., giardipain-1) and VSPs (e.g., VSP9B10A). Other factors, such as HCMPs and tenascins, have been consistently found to be excreted/secreted, but their role(s) in the pathogenesis of giardiasis has not yet been elucidated. Interestingly, recent investigations of single cysts representing assemblages C and D using advanced sequencing and informatic methods have suggested that the transcription/expression profiles of virulence factors vary both within and between assemblages, thus assemblage-specific molecules might allow adaptation to the microenvironment within the host. Importantly, some drugs active against cysteine-rich proteins of Giardia, including giardipain-1, VSPs and arginine deiminase, have been shown to be targeted by cysteine-modifying compounds as disulfiram, L-canavanin and allicin. On the other hand, VSPs are presently considered as key vaccine candidates because they induce protection against Giardia in rodents and dogs. Overall, this review reveals that much more work is needed to identify, characterize, and understand the roles of virulence factors in Giardia and to assess their validity as drug and vaccine targets. Clear, advanced omics and informatic tools should assist in this future endeavor, with a focus on targeting virulence factors that are common and/or unique to distinct assemblages to develop new and effective interventions against Giardia.
Collapse
|
8
|
Peirasmaki D, Ma'ayeh SY, Xu F, Ferella M, Campos S, Liu J, Svärd SG. High Cysteine Membrane Proteins (HCMPs) Are Up-Regulated During Giardia-Host Cell Interactions. Front Genet 2020; 11:913. [PMID: 33014015 PMCID: PMC7461913 DOI: 10.3389/fgene.2020.00913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Giardia intestinalis colonizes the upper small intestine of humans and animals, causing the diarrheal disease giardiasis. This unicellular eukaryotic parasite is not invasive but it attaches to the surface of small intestinal epithelial cells (IECs), disrupting the epithelial barrier. Here, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) in Giardia, which might relate to the establishment of infection and disease induction. Giardia trophozoites interacted with differentiated Caco-2 cells for 1.5, 3, and 4.5 h and at each time point, 61, 89, and 148 parasite genes were up-regulated more than twofold, whereas 209, 265, and 313 parasite genes were down-regulated more than twofold. The most abundant DEGs encode hypothetical proteins and members of the High Cysteine Membrane Protein (HCMP) family. Among the up-regulated genes we also observed proteins associated with proteolysis, cellular redox balance, as well as lipid and nucleic acid metabolic pathways. In contrast, genes encoding kinases, regulators of the cell cycle and arginine metabolism and cytoskeletal proteins were down-regulated. Immunofluorescence imaging of selected, up-regulated HCMPs, using C-terminal HA-tagging, showed localization to the plasma membrane and peripheral vesicles (PVs). The expression of the HCMPs was affected by histone acetylation and free iron-levels. In fact, the latter was shown to regulate the expression of many putative giardial virulence factors in subsequent RNAseq experiments. We suggest that the plasma membrane localized and differentially expressed HCMPs play important roles during Giardia-host cell interactions.
Collapse
Affiliation(s)
- Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marcela Ferella
- Eukaryotic Single Cell Genomics Platform, Karolinska Institute, Science for Life Laboratory (SciLifeLab), Solna, Sweden
| | - Sara Campos
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D, Eckmann L, Andersson JO, Svärd SG, Jerlström-Hultqvist J. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom 2020; 6:mgen000402. [PMID: 32618561 PMCID: PMC7641422 DOI: 10.1099/mgen.0.000402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Diplomonad parasites of the genus Giardia have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic Giardia species, Giardia intestinalis, has been extensively studied at the genome and gene expression level, but no such information is available for other Giardia species. Comparative data would be particularly valuable for Giardia muris, which colonizes mice and is commonly used as a prototypic in vivo model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of G. muris. We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. G. muris and G. intestinalis share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to G. intestinalis, G. muris maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the G. muris genome suggest significant metabolic differences to G. intestinalis. Additionally, G. muris encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the Giardia genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the Giardia genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the G. muris-mouse pathosystem.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | | | - Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jan O. Andersson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| |
Collapse
|
10
|
Buret AG. Acceptance of the 2019 Stoll-Stunkard Memorial Lectureship Award: The Study of Host-Parasite Interactions to Better Understand Fundamental Host Physiology: The Model of Giardiasis. J Parasitol 2020. [DOI: 10.1645/19-134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- André G. Buret
- Department of Biological Sciences, Host-Parasite Interactions Program, Inflammation Research Network, University of Calgary, 2500 University Drive N.W., Calgary (Alberta), T2N 1N4, Canada
| |
Collapse
|
11
|
Allain T, Buret AG. Pathogenesis and post-infectious complications in giardiasis. ADVANCES IN PARASITOLOGY 2019; 107:173-199. [PMID: 32122529 DOI: 10.1016/bs.apar.2019.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Giardia is an important cause of diarrhoea, and results in post-infectious and extra-intestinal complications. This chapter presents a state-of-the art of our understanding of how this parasite may cause such abnormalities, which appear to develop at least in part in Assemblage-dependent manner. Findings from prospective longitudinal cohort studies indicate that Giardia is one of the four most prevalent enteropathogens in early life, and represents a risk factor for stunting at 2 years of age. This may occur independently of diarrheal disease, in strong support of the pathophysiological significance of the intestinal abnormalities induced by this parasite. These include epithelial malabsorption and maldigestion, increased transit, mucus depletion, and disruptions of the commensal microbiota. Giardia increases epithelial permeability and facilitates the invasion of gut bacteria. Loss of intestinal barrier function is at the core of the acute and post-infectious complications associated with this infection. Recent findings demonstrate that the majority of the pathophysiological responses triggered by this parasite can be recapitulated by the effects of its membrane-bound and secreted cysteine proteases.
Collapse
Affiliation(s)
- Thibault Allain
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada
| | - André G Buret
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada.
| |
Collapse
|
12
|
Emery-Corbin SJ, Grüttner J, Svärd S. Transcriptomic and proteomic analyses of Giardia intestinalis: Intestinal epithelial cell interactions. ADVANCES IN PARASITOLOGY 2019; 107:139-171. [PMID: 32122528 DOI: 10.1016/bs.apar.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia intestinalis is a unicellular protozoan parasite that infects the small intestines of humans and animals. Giardiasis, the disease caused by the parasite, occurs globally across socioeconomic boundaries but is mainly endemic in developing countries and particularly within young children, where pronounced effects manifests in a failure to thrive condition. The molecular pathogenesis of Giardia has been studied using in vitro models of human and rat intestinal epithelial cells (IECs) and parasites from the two major human genotypes or assemblages (A and B). High-quality, genome sequencing of representative isolates from assemblages A (WB) and B (GS) has enabled exploration of these host-parasite models using 'omics' technologies, allowing deep and quantitative analyses of global gene expression changes in IECs and parasites during their interactions, cross-talk and competition. These include a major up-regulation of immune-related genes in the IECs early after the start of interactions, as well as competition between host cells and parasites for nutrients like sugars, amino acids and lipids, which is also reflected in their secretome interactions. Unique parasite proteins dominate these interactions, with many major up-regulated genes being either hypothetical proteins or members of Giardia-specific gene families like the high-cysteine-rich membrane proteins (HCMPs), variable surface proteins (VSPs), alpha-giardins and cysteine proteases. Furthermore, these proteins also dominate in the secretomes, suggesting that they are important virulence factors in Giardia and crucial molecular effectors at the host-parasite interface.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Liu J, Fu Z, Hellman L, Svärd SG. Cleavage specificity of recombinant Giardia intestinalis cysteine proteases: Degradation of immunoglobulins and defensins. Mol Biochem Parasitol 2019; 227:29-38. [DOI: 10.1016/j.molbiopara.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
|
14
|
Ortega-Pierres MG, Argüello-García R. Giardia duodenalis: Role of secreted molecules as virulent factors in the cytotoxic effect on epithelial cells. ADVANCES IN PARASITOLOGY 2019; 106:129-169. [PMID: 31630757 DOI: 10.1016/bs.apar.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the course of giardiasis in humans and experimental models, G. duodenalis trophozoites express and secrete several proteins (ESPs) affecting structural, cellular and soluble components of the host intestinal milieu. These include the toxin-like molecules CRP136 and ESP58 that induce intestinal hyper-peristalsis. After the completion of the Giardia genome database and using up-to date transcriptomic and proteomic approaches, secreted 'virulence factors' have also been identified and experimentally characterized. This repertoire includes arginine deiminase (ADI) that competes for arginine, an important energy source for trophozoites, some high-cysteine membrane proteins (HCMPs) and VSP88, a versatile variant surface protein (VSP) that functions as an extracellular protease. Another giardial protein, enolase, moonlights as a metabolic enzyme that interacts with the fibrinolytic system and damages host epithelial cells. Other putative Giardia virulence factors are cysteine proteases that degrade multiple host components including mucin, villin, tight junction proteins, immunoglobulins, defensins and cytokines. One of these proteases, named giardipain-1, decreases transepithelial electrical resistance and induces apoptosis in epithelial cells. A putative role for tenascins, present in the Giardia's secretome, is interfering with the host epidermal growth factor. Based on the roles that these molecules play, drugs may be designed to interfere with their functions. This review presents a comprehensive description of secreted Giardia virulence factors. It further describes their cytotoxic mechanisms and roles in the pathophysiology of giardiasis, and then assesses their potential as targets for drug development.
Collapse
Affiliation(s)
- M Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico City, Mexico.
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico City, Mexico
| |
Collapse
|
15
|
Liu J, Ma'ayeh S, Peirasmaki D, Lundström-Stadelmann B, Hellman L, Svärd SG. Secreted Giardia intestinalis cysteine proteases disrupt intestinal epithelial cell junctional complexes and degrade chemokines. Virulence 2018; 9:879-894. [PMID: 29726306 PMCID: PMC5955458 DOI: 10.1080/21505594.2018.1451284] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Giardiasis is a common diarrheal disease caused by the protozoan parasite Giardia intestinalis. Cysteine proteases (CPs) are acknowledged as virulence factors in Giardia but their specific role in the molecular pathogenesis of disease is not known. Herein, we aimed to characterize the three main secreted CPs (CP14019, CP16160 and CP16779), which were identified by mass spectrometry in the medium during interaction with intestinal epithelial cells (IECs) in vitro. First, the CPs were epitope-tagged and localized to the endoplasmic reticulum and cytoplasmic vesicle-like structures. Second, we showed that recombinant CPs, expressed in Pichia pastoris, are more active in acidic environment (pH 5.5-6) and we determined the kinetic parameters using fluorogenic substrates. Third, excretory-secretory proteins (ESPs) from Giardia trophozoites affect the localization of apical junctional complex (AJC) proteins and recombinant CPs cleave or re-localize the AJC proteins (claudin-1 and -4, occludin, JAM-1, β-catenin and E-cadherin) of IECs. Finally, we showed that the ESPs and recombinant CPs can degrade several chemokines, including CXCL1, CXCL2, CXCL3, IL-8, CCL2, and CCL20, which are up-regulated in IECs during Giardia-host cell interactions. This is the first study that characterizes the role of specific CPs secreted from Giardia and our results collectively indicate their roles in the disruption of the intestinal epithelial barrier and modulating immune responses during Giardia infections.
Collapse
Affiliation(s)
- Jingyi Liu
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Showgy Ma'ayeh
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Dimitra Peirasmaki
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | | | - Lars Hellman
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Staffan G Svärd
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| |
Collapse
|
16
|
Giardipain-1, a protease secreted by Giardia duodenalis trophozoites, causes junctional, barrier and apoptotic damage in epithelial cell monolayers. Int J Parasitol 2018; 48:621-639. [DOI: 10.1016/j.ijpara.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
|
17
|
1H HR-MAS NMR spectroscopy to study the metabolome of the protozoan parasite Giardia lamblia. Talanta 2018; 188:429-441. [PMID: 30029398 DOI: 10.1016/j.talanta.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022]
Abstract
Knowledge of the metabolic profile and exchange processes in the protozoan parasite Giardia lamblia is of importance for a better understanding of the biochemical processes and for the development of drugs to control diseases caused by G. lamblia. In the current paper, 1H High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy was directly applied to G. lamblia trophozoite suspensions to analyze the detectable small metabolites with a minimum of intervention. Thirty-one components were identified with main contributions from amino acids such as alanine and ornithine. The reproducibility, variability, and stability of the metabolites were investigated. Citrulline was found to be formed as an intermediate and citrulline levels depended on the stage of cell growth. Glucose-1-phosphate was found to be formed in relatively high amounts after cell harvesting if enzymes were not inactivated. In addition, the metabolic footprint of Giardia trophozoites, i.e. changes in the culture medium induced by G. lamblia, was investigated by liquid state NMR spectroscopy of culture media before and after inoculation. A quantitative comparison of the NMR spectra revealed component changes in the culture media during growth. The results suggested that not glucose but rather arginine serves as main energy supply. Biochemical functions of intracellular components and their metabolic exchange with the culture medium are discussed. The results provide an important basis for the design of HR-MAS NMR based metabolomic studies of G. lamblia in particular and any protozoan parasite samples in general.
Collapse
|
18
|
Muñoz-Cruz S, Gomez-García A, Matadamas-Martínez F, Alvarado-Torres JA, Meza-Cervantez P, Arriaga-Pizano L, Yépez-Mulia L. Giardia lamblia: identification of molecules that contribute to direct mast cell activation. Parasitol Res 2018; 117:2555-2567. [DOI: 10.1007/s00436-018-5944-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
|
19
|
Aguayo-Ortiz R, Meza-Cervantez P, Castillo R, Hernández-Campos A, Dominguez L, Yépez-Mulia L. Insights into the Giardia intestinalis enolase and human plasminogen interaction. MOLECULAR BIOSYSTEMS 2018; 13:2015-2023. [PMID: 28770921 DOI: 10.1039/c7mb00252a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Giardia intestinalis is an intestinal parasite that causes diarrhea in humans and animals worldwide. The enolase of G. intestinalis (GiENO) participates in its glycolysis pathway and is abundantly expressed in the parasite cytosol; however, its localization on the surface of trophozoites and cysts has been demonstrated. Enolases from bacteria and parasites can have different functions and are considered moonlighting proteins, for example, as a cell surface plasminogen receptor. In relation to GiENO, no studies have been performed about its possible participation as a plasminogen receptor. In this work, we employed molecular docking and multiscale molecular dynamics (MD) simulations to explore the possible interactions of human plasminogen (HsPLG) with the open and closed GiENO conformations. Our proposed GiENO plasminogen binding site (PLGBs) was identified at Lys266 based on the sequence comparison with bacterial enolase known to act as a plasminogen receptor. Our docking results performed with multiple MD snapshots of the closed GiENO conformation showed that Lys266 preferentially binds to the K5 domain of HsPLG. On the other hand, open GiENO conformations from all-atom and coarse-grained simulations indicated a high preference of the HsPLG K4 domain for lysine residues 186 and 188. Furthermore, we identified a potential N-glycosylation site of GiENO which suggests a possible explanation for the parasite cell surface localization or host mucin oligosaccharide adhesion mechanism. Our study constitutes the first multiscale computational study to explore the plasminogen receptor function of GiENO for its further consideration as a potential therapeutic target for giardiasis treatment.
Collapse
Affiliation(s)
- R Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico.
| | | | | | | | | | | |
Collapse
|
20
|
Cacciò SM, Lalle M, Svärd SG. Host specificity in the Giardia duodenalis species complex. INFECTION GENETICS AND EVOLUTION 2017; 66:335-345. [PMID: 29225147 DOI: 10.1016/j.meegid.2017.12.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022]
Abstract
Giardia duodenalis is a unicellular flagellated parasite that infects the gastrointestinal tract of a wide range of mammalian species, including humans. Investigations of protein and DNA polymorphisms revealed that G. duodenalis should be considered as a species complex, whose members, despite being morphologically indistinguishable, can be classified into eight groups, or Assemblages, separated by large genetic distances. Assemblages display various degree of host specificity, with Assemblages A and B occurring in humans and many other hosts, Assemblage C and D in canids, Assemblage E in hoofed animals, Assemblage F in cats, Assemblage G in rodents, and Assemblage H in pinnipeds. The factors determining host specificity are only partially understood, and clearly involve both the host and the parasite. Here, we review the results of in vitro and in vivo experiments, and clinical observations to highlight relevant biological and genetic differences between Assemblages, with a focus on human infection.
Collapse
Affiliation(s)
- Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Marco Lalle
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine. mSphere 2017; 2:mSphere00343-16. [PMID: 28656177 PMCID: PMC5480036 DOI: 10.1128/msphere.00343-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/21/2017] [Indexed: 01/28/2023] Open
Abstract
Giardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation. Giardia lamblia is a highly prevalent yet understudied protistan parasite causing significant diarrheal disease worldwide. Hosts ingest Giardia cysts from contaminated sources. In the gastrointestinal tract, cysts excyst to become motile trophozoites, colonizing and attaching to the gut epithelium. Trophozoites later differentiate into infectious cysts that are excreted and contaminate the environment. Due to the limited accessibility of the gut, the temporospatial dynamics of giardiasis in the host are largely inferred from laboratory culture and thus may not mirror Giardia physiology in the host. Here, we have developed bioluminescent imaging (BLI) to directly interrogate and quantify the in vivo temporospatial dynamics of Giardia infection, thereby providing an improved murine model to evaluate anti-Giardia drugs. Using BLI, we determined that parasites primarily colonize the proximal small intestine nonuniformly in high-density foci. By imaging encystation-specific bioreporters, we show that encystation initiates shortly after inoculation and continues throughout the duration of infection. Encystation also initiates in high-density foci in the proximal small intestine, and high density contributes to the initiation of encystation in laboratory culture. We suggest that these high-density in vivo foci of colonizing and encysting Giardia likely result in localized disruption to the epithelium. This more accurate visualization of giardiasis redefines the dynamics of the in vivo Giardia life cycle, paving the way for future mechanistic studies of density-dependent parasitic processes in the host. IMPORTANCEGiardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation.
Collapse
|
22
|
Pham JK, Nosala C, Scott EY, Nguyen KF, Hagen KD, Starcevich HN, Dawson SC. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Front Cell Infect Microbiol 2017; 7:227. [PMID: 28620589 PMCID: PMC5450421 DOI: 10.3389/fcimb.2017.00227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.
Collapse
Affiliation(s)
- Jonathan K Pham
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Erica Y Scott
- Department of Animal Science, University of California, DavisDavis, CA, United States
| | - Kristofer F Nguyen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Hannah N Starcevich
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| |
Collapse
|
23
|
Evans-Osses I, Mojoli A, Monguió-Tortajada M, Marcilla A, Aran V, Amorim M, Inal J, Borràs FE, Ramirez MI. Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol 2017; 96:131-142. [DOI: 10.1016/j.ejcb.2017.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
|
24
|
Emery SJ, Lacey E, Haynes PA. Quantitative proteomics in Giardia duodenalis —Achievements and challenges. Mol Biochem Parasitol 2016; 208:96-112. [DOI: 10.1016/j.molbiopara.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/31/2022]
|
25
|
Antioxidant defence systems in the protozoan pathogen Giardia intestinalis. Mol Biochem Parasitol 2016; 206:56-66. [DOI: 10.1016/j.molbiopara.2015.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 01/03/2023]
|
26
|
Emery SJ, Mirzaei M, Vuong D, Pascovici D, Chick JM, Lacey E, Haynes PA. Induction of virulence factors in Giardia duodenalis independent of host attachment. Sci Rep 2016; 6:20765. [PMID: 26867958 PMCID: PMC4751611 DOI: 10.1038/srep20765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response.
Collapse
Affiliation(s)
- Samantha J Emery
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW, 2109, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ernest Lacey
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
27
|
Ansell BRE, McConville MJ, Baker L, Korhonen PK, Young ND, Hall RS, Rojas CAA, Svärd SG, Gasser RB, Jex AR. Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites. PLoS Negl Trop Dis 2015; 9:e0004261. [PMID: 26636323 PMCID: PMC4670223 DOI: 10.1371/journal.pntd.0004261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022] Open
Abstract
Giardia duodenalis is the most common gastrointestinal protozoan parasite of humans and a significant contributor to the global burden of both diarrheal disease and post-infectious chronic disorders. Although G. duodenalis can be cultured axenically, significant gaps exist in our understanding of the molecular biology and metabolism of this pathogen. The present study employed RNA sequencing to characterize the mRNA transcriptome of G. duodenalis trophozoites in axenic culture, at log (48 h of growth), stationary (60 h), and declining (96 h) growth phases. Using ~400-times coverage of the transcriptome, we identified 754 differentially transcribed genes (DTGs), mainly representing two large DTG groups: 438 that were down-regulated in the declining phase relative to log and stationary phases, and 281 that were up-regulated. Differential transcription of prominent antioxidant and glycolytic enzymes implicated oxygen tension as a key factor influencing the transcriptional program of axenic trophozoites. Systematic bioinformatic characterization of numerous DTGs encoding hypothetical proteins of unknown function was achieved using structural homology searching. This powerful approach greatly informed the differential transcription analysis and revealed putative novel antioxidant-coding genes, and the presence of a near-complete two-component-like signaling system that may link cytosolic redox or metabolite sensing to the observed transcriptional changes. Motif searching applied to promoter regions of the two large DTG groups identified different putative transcription factor-binding motifs that may underpin global transcriptional regulation. This study provides new insights into the drivers and potential mediators of transcriptional variation in axenic G. duodenalis and provides context for static transcriptional studies.
Collapse
Affiliation(s)
- Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Louise Baker
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ross S. Hall
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Cristian A. A. Rojas
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Staffan G. Svärd
- Department of Cell & Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int J Parasitol 2015; 45:925-38. [DOI: 10.1016/j.ijpara.2015.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/17/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022]
|
29
|
Cotton JA, Amat CB, Buret AG. Disruptions of Host Immunity and Inflammation by Giardia Duodenalis: Potential Consequences for Co-Infections in the Gastro-Intestinal Tract. Pathogens 2015; 4:764-92. [PMID: 26569316 PMCID: PMC4693164 DOI: 10.3390/pathogens4040764] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, or G. lamblia) is a leading cause of waterborne diarrheal disease that infects hundreds of millions of people annually. Research on Giardia has greatly expanded within the last few years, and our understanding of the pathophysiology and immunology on this parasite is ever increasing. At peak infection, Giardia trophozoites induce pathophysiological responses that culminate in the development of diarrheal disease. However, human data has suggested that the intestinal mucosa of Giardia-infected individuals is devoid of signs of overt intestinal inflammation, an observation that is reproduced in animal models. Thus, our understanding of host inflammatory responses to the parasite remain incompletely understood and human studies and experimental data have produced conflicting results. It is now also apparent that certain Giardia infections contain mechanisms capable of modulating their host's immune responses. As the oral route of Giardia infection is shared with many other gastrointestinal (GI) pathogens, co-infections may often occur, especially in places with poor sanitation and/or improper treatment of drinking water. Moreover, Giardia infections may modulate host immune responses and have been found to protect against the development of diarrheal disease in developing countries. The following review summarizes our current understanding of the immunomodulatory mechanisms of Giardia infections and their consequences for the host, and highlights areas for future research. Potential implications of these immunomodulatory effects during GI co-infection are also discussed.
Collapse
Affiliation(s)
- James A Cotton
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Christina B Amat
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
30
|
Ankarklev J, Franzén O, Peirasmaki D, Jerlström-Hultqvist J, Lebbad M, Andersson J, Andersson B, Svärd SG. Comparative genomic analyses of freshly isolated Giardia intestinalis assemblage A isolates. BMC Genomics 2015; 16:697. [PMID: 26370391 PMCID: PMC4570179 DOI: 10.1186/s12864-015-1893-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background The diarrhea-causing protozoan Giardia intestinalis makes up a species complex of eight different assemblages (A-H), where assemblage A and B infect humans. Comparative whole-genome analyses of three of these assemblages have shown that there is significant divergence at the inter-assemblage level, however little is currently known regarding variation at the intra-assemblage level. We have performed whole genome sequencing of two sub-assemblage AII isolates, recently axenized from symptomatic human patients, to study the biological and genetic diversity within assemblage A isolates. Results Several biological differences between the new and earlier characterized assemblage A isolates were identified, including a difference in growth medium preference. The two AII isolates were of different sub-assemblage types (AII-1 [AS175] and AII-2 [AS98]) and showed size differences in the smallest chromosomes. The amount of genetic diversity was characterized in relation to the genome of the Giardia reference isolate WB, an assemblage AI isolate. Our analyses indicate that the divergence between AI and AII is approximately 1 %, represented by ~100,000 single nucleotide polymorphisms (SNP) distributed over the chromosomes with enrichment in variable genomic regions containing surface antigens. The level of allelic sequence heterozygosity (ASH) in the two AII isolates was found to be 0.25–0.35 %, which is 25–30 fold higher than in the WB isolate and 10 fold higher than the assemblage AII isolate DH (0.037 %). 35 protein-encoding genes, not found in the WB genome, were identified in the two AII genomes. The large gene families of variant-specific surface proteins (VSPs) and high cysteine membrane proteins (HCMPs) showed isolate-specific divergences of the gene repertoires. Certain genes, often in small gene families with 2 to 8 members, localize to the variable regions of the genomes and show high sequence diversity between the assemblage A isolates. One of the families, Bactericidal/Permeability Increasing-like protein (BPIL), with eight members was characterized further and the proteins were shown to localize to the ER in trophozoites. Conclusions Giardia genomes are modular with highly conserved core regions mixed up by variable regions containing high levels of ASH, SNPs and variable surface antigens. There are significant genomic variations in assemblage A isolates, in terms of chromosome size, gene content, surface protein repertoire and gene polymorphisms and these differences mainly localize to the variable regions of the genomes. The large genetic differences within one assemblage of G. intestinalis strengthen the argument that the assemblages represent different Giardia species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1893-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johan Ankarklev
- Department of Cell and Molecular Biology, Science for Life Laboratory, BMC, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden.
| | - Oscar Franzén
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, SE-171 77, Stockholm, Sweden. .,Science for Life Laboratory, KISP, Tomtebodavägen 23A, 171 65, Solna, Sweden.
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Science for Life Laboratory, BMC, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden.
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, Science for Life Laboratory, BMC, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden.
| | - Marianne Lebbad
- Department of Microbiology, Public Health Agency of Sweden, SE-171 82, Solna, Sweden.
| | - Jan Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, BMC, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden.
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, SE-171 77, Stockholm, Sweden. .,Science for Life Laboratory, KISP, Tomtebodavägen 23A, 171 65, Solna, Sweden.
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Science for Life Laboratory, BMC, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
31
|
Bhargava A, Cotton JA, Dixon BR, Gedamu L, Yates RM, Buret AG. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase. PLoS One 2015; 10:e0136102. [PMID: 26334299 PMCID: PMC4559405 DOI: 10.1371/journal.pone.0136102] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/29/2015] [Indexed: 01/13/2023] Open
Abstract
Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.
Collapse
Affiliation(s)
- Amol Bhargava
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - James A. Cotton
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Brent R. Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Robin M. Yates
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
32
|
Guo F, Ortega-Pierres G, Argüello-García R, Zhang H, Zhu G. Giardia fatty acyl-CoA synthetases as potential drug targets. Front Microbiol 2015; 6:753. [PMID: 26257723 PMCID: PMC4510421 DOI: 10.3389/fmicb.2015.00753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/08/2015] [Indexed: 12/03/2022] Open
Abstract
Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis) is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids (FA) de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5) to activate FA scavenged from the host. ACS is an essential enzyme because FA need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference toward palmitic acid (C16:0) and myristic acid (C14:0), and allosteric or Michaelis–Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 μM, Ki = 0.18 μM for GiACS1, and IC50 = 2.28 μM, Ki = 0.23 μM for GiACS2, respectively) and the growth of G. intestinalis in vitro (IC50 = 0.8 μM). As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite.
Collapse
Affiliation(s)
- Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas USA
| | - Guadalupe Ortega-Pierres
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City Mexico
| | - Raúl Argüello-García
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City Mexico
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas USA
| |
Collapse
|
33
|
Ansell BRE, McConville MJ, Ma'ayeh SY, Dagley MJ, Gasser RB, Svärd SG, Jex AR. Drug resistance in Giardia duodenalis. Biotechnol Adv 2015; 33:888-901. [PMID: 25922317 DOI: 10.1016/j.biotechadv.2015.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia.
| | - Malcolm J McConville
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Michael J Dagley
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| |
Collapse
|
34
|
UV irradiation responses in Giardia intestinalis. Exp Parasitol 2015; 154:25-32. [PMID: 25825252 DOI: 10.1016/j.exppara.2015.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022]
Abstract
The response to ultraviolet light (UV) radiation, a natural stressor to the intestinal protozoan parasite Giardia intestinalis, was studied to deepen the understanding of how the surrounding environment affects the parasite during transmission. UV radiation at 10 mJ/cm(2) kills Giardia cysts effectively whereas trophozoites and encysting parasites can recover from UV treatment at 100 mJ/cm(2) and 50 mJ/cm(2) respectively. Staining for phosphorylated histone H2A showed that UV treatment induces double-stranded DNA breaks and flow cytometry analyses revealed that UV treatment of trophozoites induces DNA replication arrest. Active DNA replication coupled to DNA repair could be an explanation to why UV light does not kill trophozoites and encysting cells as efficiently as the non-replicating cysts. We also examined UV-induced gene expression responses in both trophozoites and cysts using RNA sequencing (RNA seq). UV radiation induces small overall changes in gene expression in Giardia but cysts show a stronger response than trophozoites. Heat shock proteins, kinesins and Nek kinases are up-regulated, whereas alpha-giardins and histones are down-regulated in UV treated trophozoites. Expression of variable surface proteins (VSPs) is changed in both trophozoites and cysts. Our data show that Giardia cysts have limited ability to repair UV-induced damage and this may have implications for drinking- and waste-water treatment when setting criteria for the use of UV disinfection to ensure safe water.
Collapse
|
35
|
Martínez-Gordillo MN, González-Maciel A, Reynoso-Robles R, Montijo-Barrios E, Ponce-Macotela M. Intraepithelial giardia intestinalis: a case report and literature review. Medicine (Baltimore) 2014; 93:e277. [PMID: 25546671 PMCID: PMC4602618 DOI: 10.1097/md.0000000000000277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The giardiasis is a neglected parasitic disease. The WHO has estimated more than 280 million of human infections each year; however, intraepithelial giardiasis is a rare entity, there are only 5 reports showing invasive giardiasis. A pediatric female patient with chronic abdominal pain, diarrhea, or pasty stools, without fever, was seen in the Gastroenterology and Nutrition Service. The stool studies were negative for pathogens and lactose hydrogen breath test was positive. The presumptive clinical diagnosis was giardiasis and the patient was empirically treated with nitazoxanide. But, the patient persisted with abdominal pain and pasty stools. Endoscopy was indicated to search for Helicobacter and Giardia. Guardian and patient gave written informed consent. Hematological profile was normal. The endoscopy was performed under general anesthesia and the biopsies and duodenal aspirate were obtained. The microscopic analyses of duodenal fluid showed Giardia trophozoites. Electron microscopic analysis was negative for Helicobacter pylori, but Giardia trophozoites with a typical crescent shape within the tissue were found. The patient was treated with tinidazole, subsequent tests showed that lactose absorption was normal, stool examinations were negative for Giardia and abdominal pain had stopped. This case suggest that intraepithelial giardiasis could be a common entity but unseen because the giardiasis diagnosis is usually made on fecal samples. Future studies are necessary to determine the role of intraepithelial trophozoites in giardiasis pathogenic mechanisms.
Collapse
Affiliation(s)
- Mario Noé Martínez-Gordillo
- From the Laboratorio de Parasitología Experimental (MNM-G, MP-M); Laboratorio de Microscopia Electrónica (AG-M, RR-R); and Servicio de Gastroenterología y Nutrición, Instituto Nacional de Pediatría (EM-B)
| | | | | | | | | |
Collapse
|
36
|
Ferella M, Davids BJ, Cipriano MJ, Birkeland SR, Palm D, Gillin FD, McArthur AG, Svärd S. Gene expression changes during Giardia-host cell interactions in serum-free medium. Mol Biochem Parasitol 2014; 197:21-3. [PMID: 25286381 DOI: 10.1016/j.molbiopara.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/20/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022]
Abstract
Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs.
Collapse
Affiliation(s)
- Marcela Ferella
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Barbara J Davids
- Department of Pathology, Division of Infectious Disease, University of California, San Diego, CA, USA
| | | | | | - Daniel Palm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Frances D Gillin
- Department of Pathology, Division of Infectious Disease, University of California, San Diego, CA, USA
| | | | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Wu Z, Mirza H, Tan KSW. Intra-subtype variation in enteroadhesion accounts for differences in epithelial barrier disruption and is associated with metronidazole resistance in Blastocystis subtype-7. PLoS Negl Trop Dis 2014; 8:e2885. [PMID: 24851944 PMCID: PMC4031124 DOI: 10.1371/journal.pntd.0002885] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/08/2014] [Indexed: 01/13/2023] Open
Abstract
Blastocystis is an extracellular, enteric pathogen that induces intestinal disorders in a range of hosts including humans. Recent studies have identified potential parasite virulence factors in and host responses to this parasite; however, little is known about Blastocystis-host attachment, which is crucial for colonization and virulence of luminal stages. By utilizing 7 different strains of the parasite belonging to two clinically relevant subtypes ST-4 and ST-7, we investigated Blastocystis-enterocyte adhesion and its association with parasite-induced epithelial barrier disruption. We also suggest that drug resistance in ST-7 strains might result in fitness cost that manifested as impairment of parasite adhesion and, consequently, virulence. ST-7 parasites were generally highly adhesive to Caco-2 cells and preferred binding to intercellular junctions. These strains also induced disruption of ZO-1 and occludin tight junction proteins as well as increased dextran-FITC flux across epithelial monolayers. Interestingly, their adhesion was correlated with metronidazole (Mz) susceptibility. Mz resistant (Mzr) strains were found to be less pathogenic, owing to compromised adhesion. Moreover, tolerance of nitrosative stress was also reduced in the Mzr strains. In conclusion, the findings indicate that Blastocystis attaches to intestinal epithelium and leads to epithelial barrier dysfunction and that drug resistance might entail a fitness cost in parasite virulence by limiting entero-adhesiveness. This is the first study of the cellular basis for strain-to-strain variation in parasite pathogenicity. Intra- and inter-subtype variability in cytopathogenicity provides a possible explanation for the diverse clinical outcomes of Blastocystis infections.
Collapse
Affiliation(s)
- Zhaona Wu
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haris Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Kevin Shyong Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system. PLoS One 2013; 8:e81104. [PMID: 24312526 PMCID: PMC3849038 DOI: 10.1371/journal.pone.0081104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022] Open
Abstract
Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.
Collapse
|
39
|
Stadelmann B, Hanevik K, Andersson MK, Bruserud O, Svärd SG. The role of arginine and arginine-metabolizing enzymes during Giardia - host cell interactions in vitro. BMC Microbiol 2013; 13:256. [PMID: 24228819 PMCID: PMC4225669 DOI: 10.1186/1471-2180-13-256] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/06/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. RESULTS RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. CONCLUSIONS Giardia affects the host's arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy.
Collapse
Affiliation(s)
- Britta Stadelmann
- Department of Cell- and Molecular Biology, Uppsala University, BMC, Box 596, Uppsala SE-751 24, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Leite RB, Milan M, Coppe A, Bortoluzzi S, dos Anjos A, Reinhardt R, Saavedra C, Patarnello T, Cancela ML, Bargelloni L. mRNA-Seq and microarray development for the Grooved Carpet shell clam, Ruditapes decussatus: a functional approach to unravel host-parasite interaction. BMC Genomics 2013; 14:741. [PMID: 24168212 PMCID: PMC4007648 DOI: 10.1186/1471-2164-14-741] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 09/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.
Collapse
Affiliation(s)
- Ricardo B Leite
- CCMAR- Center of Marine Sciences/University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim J, Lee HY, Lee MA, Yong TS, Lee KH, Park SJ. Identification of α-11 giardin as a flagellar and surface component of Giardia lamblia. Exp Parasitol 2013; 135:227-33. [PMID: 23891940 DOI: 10.1016/j.exppara.2013.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
Giardia lamblia is a protozoan pathogen with distinct cytoskeletal structures, including median bodies and eight flagella. In this study, we examined components comprising G. lamblia flagella. Crude flagellar extracts were prepared from G. lamblia trophozoites, and analyzed by two-dimensional (2-D) gel electrophoresis. The 19 protein spots were analyzed by MALDI-TOF mass spectrometry, identifying ten metabolic enzymes, six distinct giardins, Giardia trophozoite antigen 1, translational initiation factor eIF-4A, and an extracellular signal-regulated kinase 2. Among the identified proteins, we studied α-11 giardin which belongs to a group of cytoskeletal proteins specific to Giardia. Western blot analysis and real-time PCR indicated that expression of α-11 giardin is not significantly increased during encystation of G. lamblia. Immunofluorescence assays using anti-α-11 giardin antibodies revealed that α-11 giardin protein mainly localized to the plasma membranes and basal bodies of the anterior flagella of G. lamblia trophozoites, suggesting that α-11 giardin is a genuine component of the G. lamblia cytoskeleton.
Collapse
Affiliation(s)
- Juri Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, The Post Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Banik S, Renner Viveros P, Seeber F, Klotz C, Ignatius R, Aebischer T. Giardia duodenalis arginine deiminase modulates the phenotype and cytokine secretion of human dendritic cells by depletion of arginine and formation of ammonia. Infect Immun 2013; 81:2309-17. [PMID: 23589577 PMCID: PMC3697621 DOI: 10.1128/iai.00004-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/06/2013] [Indexed: 12/22/2022] Open
Abstract
Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH(4)(+) and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration.
Collapse
Affiliation(s)
- Stefanie Banik
- Department of Parasitology/Mycology/Intracellular Pathogens (FG 16), Robert Koch Institute, Berlin, Germany
| | - Pablo Renner Viveros
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Seeber
- Department of Parasitology/Mycology/Intracellular Pathogens (FG 16), Robert Koch Institute, Berlin, Germany
| | - Christian Klotz
- Department of Parasitology/Mycology/Intracellular Pathogens (FG 16), Robert Koch Institute, Berlin, Germany
| | - Ralf Ignatius
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Toni Aebischer
- Department of Parasitology/Mycology/Intracellular Pathogens (FG 16), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
43
|
Franzén O, Jerlström-Hultqvist J, Einarsson E, Ankarklev J, Ferella M, Andersson B, Svärd SG. Transcriptome profiling of Giardia intestinalis using strand-specific RNA-seq. PLoS Comput Biol 2013; 9:e1003000. [PMID: 23555231 PMCID: PMC3610916 DOI: 10.1371/journal.pcbi.1003000] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/02/2013] [Indexed: 01/08/2023] Open
Abstract
Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms. Phenotypical differences have been documented between assemblages and genome sequences are available for A, B and E. We have characterized and compared the polyadenylated transcriptomes of assemblages A, B and E. Four genetically different isolates were studied (WB (AI), AS175 (AII), P15 (E) and GS (B)) using paired-end, strand-specific RNA-seq. Most of the genome was transcribed in trophozoites grown in vitro, but at vastly different levels. RNA-seq confirmed many of the present annotations and refined the current genome annotation. Gene expression divergence was found to recapitulate the known phylogeny, and uncovered lineage-specific differences in expression. Polyadenylation sites were mapped for over 70% of the genes and revealed many examples of conserved and unexpectedly long 3′ UTRs. 28 open reading frames were found in a non-transcribed gene cluster on chromosome 5 of the WB isolate. Analysis of allele-specific expression revealed a correlation between allele-dosage and allele expression in the GS isolate. Previously reported cis-splicing events were confirmed and global mapping of cis-splicing identified only one novel intron. These observations can possibly explain differences in host-preference and symptoms, and it will be the basis for further studies of Giardia pathogenesis and biology. Giardia is a single cell intestinal parasite and a common cause of diarrhea in humans and animals. Giardia is an unusual eukaryote by possessing two nuclei, a highly reduced genome and simple transcriptional apparatus. We have characterized the transcriptome of Giardia at single nucleotide resolution, which allowed the calculation of digital gene expression values for the complete set of genes. We performed a comparison of gene expression divergence across three genotypes. Most of the genes were transcribed, and the data were used to refine and correct gene models. Several gene expression differences were identified between the genotypes. A non-transcribed cluster of genes was detected on chromosome 5, likely representing a silenced region. The data also allowed mapping of transcript termini, which provided the first global view of 3′ untranslated regions in this parasite. This study also gives the first genome-wide evidence of transcription of allelic variants in Giardia. In this study, we provide novel insights into the transcriptome of an important human pathogen and model eukaryote. The findings reported here likely relate to the lifestyle of this parasite and its adaptation to parasitism. The data provide starting points for functional investigation of Giardia's biology and diplomonads generally.
Collapse
Affiliation(s)
- Oscar Franzén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Johan Ankarklev
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Marcela Ferella
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
44
|
Liévin-Le Moal V. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines. Cell Microbiol 2013; 15:860-9. [PMID: 23437821 DOI: 10.1111/cmi.12126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- CNRS, UMR 8076 BioCIS, Team Antiparasitic chemotherapy, Faculty of Pharmacy, Châtenay-Malabry, 92296, France.
| |
Collapse
|
45
|
Lee HY, Hyung S, Lee NY, Yong TS, Han SH, Park SJ. Excretory-secretory products of Giardia lamblia induce interleukin-8 production in human colonic cells via activation of p38, ERK1/2, NF-κB and AP-1. Parasite Immunol 2012; 34:183-98. [PMID: 22224945 DOI: 10.1111/j.1365-3024.2012.01354.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Giardia lamblia, a pathogen causing diarrhoeal outbreaks, is interesting how it triggers immune response in the human epithelial cells. This study defined the crucial roles of signalling components involved in G. lamblia-induced cytokine production in human epithelial cells. Incubation of the gastrointestinal cell line HT-29 with G. lamblia GS trophozoites triggered production of interleukin (IL)-1β, IL-8 and tumour necrosis factor (TNF)-α. IL-8 production was not significantly decreased by physically separating the HT-29 cells and G. lamblia GS trophozoites. Indeed, treatment of HT-29 with G. lamblia excretory-secretory products (ESP) induced IL-8 production. Electrophoretic mobility gel shift and transfection assays using mutagenized IL-8 promoter reporter plasmids indicated that IL-8 production by G. lamblia ESP occurs through activation of two transcriptional factors, nuclear factor kappaB (NF-κB) and activator protein 1 (AP-1) in HT-29 cells. In addition, activation of two mitogen-activated protein kinases (MAPKs), p38 and ERK1/2, was also detected in the HT-29 cells stimulated with G. lamblia ESP. Selective inhibition of these MAPKs resulted in decreased production of ESP-induced IL-8. These results indicate that activation of p38, ERK1/2 MAPK, NF-κB and AP-1 comprises the signalling pathway responsible for IL-8 production by G. lamblia ESP.
Collapse
Affiliation(s)
- H-Y Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Ma’ayeh SY, Brook-Carter PT. Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6. Int J Parasitol 2012; 42:501-9. [DOI: 10.1016/j.ijpara.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
47
|
Alum A, Sbai B, Asaad H, Rubino JR, Khalid Ijaz M. ECC-RT-PCR: a new method to determine the viability and infectivity of Giardia cysts. Int J Infect Dis 2012; 16:e350-3. [PMID: 22390842 DOI: 10.1016/j.ijid.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Giardia sp is a major cause of diarrheal illness worldwide, and millions of people are infected each year. Rapid methods to determine the infectivity and virulence of isolates are critical for the development of intervention strategies to control the transmission of Giardia sp cysts, which occurs through contaminated surfaces, food, and water. However, determining the viability, infectivity, and virulence of Giardia sp cysts using molecular methods is a technical challenge because of the lack of a cell culture model. METHOD This study was designed to evaluate mRNA expression in trophozoites and to assess trophozoite attachment to cell monolayer and changes in transcellular resistance as an indicator of Giardia sp viability and infectivity. Heat shock mRNA in Giardia cysts and variant-specific protein (VSP) mRNA in trophozoites were quantified by reverse transcription polymerase chain reaction (RT-PCR). C2bb (Caco-2) cells were grown on transwell chambers to study the attachment of trophozoites, changes in transcellular resistance, and expression of VSP in trophozoites. RESULTS The results of these molecular and cell culture studies indicate a direct linear correlation between the viability and infectivity of fresh stocks of Giardia sp cysts. The attachment of trophozoites to cell monolayer, expression of VSP, and change in the transcellular resistance was directly correlated with their infectivity in neonatal mice. PCR was successfully combined with the electrophysiological analysis of cell culture (ECC-RT-PCR) post-trophozoite attachment. CONCLUSION This study shows that the ECC-RT-PCR, a new integrated cell culture assay, can be used as a rapid and cost-effective tool for assessing the viability and infectivity of environmental isolates of Giardia sp cysts.
Collapse
Affiliation(s)
- Absar Alum
- Arizona State University, Department of Civil & Environmental Engineering, Tempe, Arizona, USA; DH Laboratory, Chandler, Arizona, USA
| | | | | | | | | |
Collapse
|
48
|
Saraiya AA, Li W, Wang CC. A microRNA derived from an apparent canonical biogenesis pathway regulates variant surface protein gene expression in Giardia lamblia. RNA (NEW YORK, N.Y.) 2011; 17:2152-64. [PMID: 22033329 PMCID: PMC3222128 DOI: 10.1261/rna.028118.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/13/2011] [Indexed: 05/19/2023]
Abstract
We have previously shown that a snoRNA-derived microRNA, miR2, in Giardia lamblia potentially regulates the expression of 22 variant surface protein (VSP) genes. Here, we identified another miRNA, miR4, also capable of regulating the expression of several VSPs but derived from an unannotated open reading frame (ORF) rather than a snoRNA, suggesting a canonical miRNA biogenesis pathway in Giardia. miR4 represses expression of a reporter containing two miR4 antisense sequences at the 3' UTR without causing a corresponding decrease in the mRNA level. This repression requires the presence of the Giardia Argonaute protein (GlAgo) and is reversed by 2' O-methylated antisense oligo to miR4, suggesting an RNA-induced silencing complex (RISC)-mediated mechanism. Furthermore, in vivo and in vitro evidence suggested that the Giardia Dicer protein (GlDcr) is required for miR4 biogenesis. Coimmunoprecipitation of miR4 with GlAgo further verified miR4 as a miRNA. A total of 361 potential target sites for miR4 were bioinformatically identified in Giardia, out of which 69 (32.7%) were associated with VSP genes. miR4 reduces the expression of a reporter containing two copies of the target site from VSP (GL50803_36493) at the 3' UTR. Sixteen of the 69 VSP genes were further found to contain partially overlapping miR2 and miR4 targeting sites. Expression of a reporter carrying the two overlapping sites was inhibited by either miR2 or miR4, but the inhibition was neither synergistic nor additive, suggesting a complex mechanism of miRNA regulation of VSP expression and the presence of a rich miRNAome in Giardia.
Collapse
Affiliation(s)
- Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2280, USA
| | - Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2280, USA
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2280, USA
- Corresponding author.E-mail .
| |
Collapse
|
49
|
Humen MA, Pérez PF, Liévin-Le Moal V. Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries. Cell Microbiol 2011; 13:1683-702. [PMID: 21790940 DOI: 10.1111/j.1462-5822.2011.01647.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gardia intestinalis, the aetiological agent of giardiasis, one of the most common intestinal diseases in both developing and developed countries, induces a loss of epithelial barrier function and functional injuries of the enterocyte by mechanisms that remain unknown. Three possible mechanisms have been proposed: (i) Giardia may directly alter the epithelial barrier after a close interaction between the trophozoite and polarized intestinal cells, (ii) intestinal functions may be altered by factors secreted by Giardia including an 'enterotoxin', proteinases and lectins, and (iii) based on mouse studies, a mechanism involving the intervention of activated T lymphocytes. We used fully differentiated cultured human intestinal Caco-2/TC7 cells forming a monolayer and expressing several polarized functions of enterocytes of small intestine to investigate the mechanisms by which G. intestinalis induces structural and functional alterations in the host intestinal epithelium. We first report that adhesion of G. intestinalis at the brush border of enterocyte-like cells involves the lipid raft membrane microdomains of the trophozoite. We report an adhesion-dependent disorganization of the apical F-actin cytoskeleton that, in turn, results in a dramatic loss of distribution of functional brush border-associated proteins, including sucrase-isomaltase (SI), dipeptidylpeptidase IV (DPP IV) and fructose transporter, GLUT5, and a decrease in sucrose enzyme activity in G. intestinalis-infected enterocyte-like cells. We observed that the G. intestinalis trophozoite promotes an adhesion-dependent decrease in transepithelial electrical resistance (TER) accompanied by a rearrangement of functional tight junction (TJ)-associated occludin, and delocalization of claudin-1. Finally, we found that whereas the occludin rearrangement induced by G. intestinalis was related to apical F-actin disorganization, the delocalization of claudin-1 was not.
Collapse
|
50
|
Cotton JA, Beatty JK, Buret AG. Host parasite interactions and pathophysiology in Giardia infections. Int J Parasitol 2011; 41:925-33. [PMID: 21683702 DOI: 10.1016/j.ijpara.2011.05.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 12/13/2022]
Abstract
Giardia is a protozoan parasite of the small intestine, and a leading cause of diarrhoeal disease worldwide in a variety of animals, including humans. The host-parasite interaction and pathophysiological processes of giardiasis remain incompletely understood. Current research suggests that Giardia-induced diarrhoeal disease is mediated by small intestinal malabsorption and maldigestion, chloride hypersecretion and increased rates of small intestinal transit. Small intestinal malabsorption and maldigestion results from the CD8+ lymphocyte-induced diffuse shortening of brush border microvilli. Activation of CD8+ lymphocytes occurs secondary to small intestinal barrier dysfunction, which results from heightened rates of enterocyte apoptosis and disruption of epithelial tight junctions. Both host and parasite factors contribute to the pathogenesis of giardiasis and ongoing research in this field may elucidate genotype/assemblage-specific pathogenic mechanisms. Giardia infections can result in chronic gastrointestinal disorders such as post-infectious Irritable Bowel Syndrome and symptoms may manifest at extra-intestinal sites, even though the parasite does not disseminate beyond the gastrointestinal tract. The infection can cause failure to thrive in children. Furthermore, there is now evidence suggesting that Giardia symptoms may vary between industrialised and developing areas of the world, for reasons that remain obscure. More research is needed to improve our understanding of this parasitic infection which was recently included in the World Health Organisation "Neglected Disease Initiative".
Collapse
Affiliation(s)
- James A Cotton
- Dept. of Biological Sciences, Inflammation Research Network, University of Calgary, Calgary (AB), Canada T2N 1N4
| | | | | |
Collapse
|