1
|
Orłowska B, Świsłocka-Cutter M, Filip-Hutsch K, Młocicki D, Olszewski A, Asman M, Anusz K, Werszko J. First detection and phylogenetic analysis of Trypanosoma species in European wolves and bears: discovery of novel haplotypes. Sci Rep 2025; 15:4160. [PMID: 39905172 PMCID: PMC11794649 DOI: 10.1038/s41598-025-88397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Wild carnivores may be important sources of emerging zoonotic pathogens worldwide, however, specific data concerning their presence in large carnivores are limited. The genus Trypanosoma (protozoan parasites) comprises numerous species adapted to all classes of vertebrates. This genus includes highly pathogenic species, such as T. brucei ssp., T. congolense or T. vivax. The aim of this study was to expand on the ecological or zoonotic significance of detecting Trypanosoma in large carnivores. Samples from free-living carnivores (n = 26) were collected. The diversity and occurrence of Trypanosoma species among wildlife in Europe were investigated through the analysis of 18S rRNA gene sequences. The phylogenetic analysis showed three new haplotypes of the 18S rRNA gene of Trypanosoma sp. isolated from two grey wolves (Canis lupus) and two brown bears (Ursus arctos). To the best of our knowledge, this this study represents the first detection of trypanosomes in large carnivores in Europe. The detection of Trypanosoma sp. was achieved through nested- PCR amplification. Furthermore, the identification of new haplotypes of these protozoan highlights variability within Trypanosoma sp., which could lead to the emergence of new, potentially more virulent variants of these parasites in wild animal populations, posing a potential threat to their health. Moreover, these findings underscore the need for further research to comprehensively understand the diversity, distribution, and potential impact of Trypanosoma species on the populations of large carnivores.
Collapse
Affiliation(s)
- Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland.
| | - Magdalena Świsłocka-Cutter
- Department of Zoology and Genetics, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Katarzyna Filip-Hutsch
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Daniel Młocicki
- Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004, Warsaw, Poland
| | - Adam Olszewski
- Kampinos National Park, Ul. Tetmajera 38, 05-080, Izabelin, Poland
| | - Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808, Zabrze-Rokitnica, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Joanna Werszko
- Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004, Warsaw, Poland.
| |
Collapse
|
2
|
Yatsuk AA, Triseleva TA, Narchuk EP, Matyukhin AV, Safonkin AF. Morphology of the wings and attachment apparatus in the evolution of the family Hippoboscidae (Diptera). Integr Zool 2024; 19:941-954. [PMID: 38037136 DOI: 10.1111/1749-4877.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Using a complex analysis of the molecular genetics, morphological, and ecological characteristics of Hippoboscidae flies, the phylogenetic structure and trends in the evolution of morphological characters that contribute to the ectoparasitic lifestyle of hippoboscid flies of the north of Eurasia were studied for the first time. The research was carried out on 26 Palearctic species from 10 genera. The analysis of molecular phylogeny revealed the levels of clustering of the family with the species predominantly parasitizing mammals or birds, the time of cluster formation, and the divergence of species in the Palearctic conditions. An independent adaptation to birds occurred in the genera Icosta, Pseudolynchia, Ornithoica, and others. Bird parasites are characterized by bifid tarsal claws, long hooks on pulvilli, and long empodium setae (except genus Ornithoica). Mammalian parasites are characterized by simple tarsal claws, short lobes of hooks on pulvilli, and zones on empodium with short setae. Specialization in empodium and pulvillus morphotypes and wing reduction are higher diverged in mammalian parasites than in bird parasites. The decrease of flight ability and wing reduction independently arose in different subfamilies of Hippoboscidae flies. Our results assume that the tribe Ornithomyini is a paraphyletic group, since, according to the complex of morphological features, the genus Ornithoica can be considered a separate lineage of evolution.
Collapse
Affiliation(s)
| | | | - Emilia P Narchuk
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | | | | |
Collapse
|
3
|
Turčinavičienė J, Bernotienė R, Petrašiūnas A. Molecular Detection and Analysis of Trypanosoma ( Megatrypanum) spp. Diversity in Tabanidae (Diptera) Collected in Lithuania. INSECTS 2024; 15:581. [PMID: 39194786 DOI: 10.3390/insects15080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
Trypanosomatids from the Tabanidae family have not been studied in Lithuania in any detail. In this study, a nested PCR amplifying the DNA fragment coding the SSU rRNA was used to determine the Trypanosoma spp. prevalence and diversity in the Tabanidae family collected in Lithuania in 2018-2019. In total, 101 Tabanidae individuals were investigated from six areas in Lithuania, and 14 different species were identified. The overall positivity of Trypanosoma spp. DNA in tabanids was 50.5% (51/101). Tabanus maculicornis was the most abundant species and yielded the highest prevalence of trypanosomatids (84.62%, 22/26), while Hybomitra nitidifrons showed a high prevalence as well, reaching 77.8% (14/18). In flies of some species (Hybomitra lapponica and Hybomitra lurida), Trypanosoma was detected for the first time. Nine different haplotypes were detected as being distributed in different tabanid species. Analysis showed that most sequences obtained during our study were identical or extremely close to two major T. theileri subclades: TthI and TthII. Our data analysis suggests the presence of different Trypanosoma genotypes in the same tabanid species, meaning that different lineages of Trypanosoma could be more related to the vertebrate host and not the fly species. This is the first study of trypanosomatid parasites in tabanids from Lithuania, and our results are valuable in providing data on the diversity of these parasites in different Tabanidae species.
Collapse
Affiliation(s)
- Jurga Turčinavičienė
- Department of Zoology, Institute of Biosciences, Life Sciences Center of Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Rasa Bernotienė
- Department of Zoology, Institute of Biosciences, Life Sciences Center of Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Andrius Petrašiūnas
- Department of Zoology, Institute of Biosciences, Life Sciences Center of Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Serem EK, Mburu DM, Abdullahi OA, Bargul JL. A scoping review on tsetse fly blood meal sources and its assay methods since 1956 to 2022. Parasit Vectors 2024; 17:52. [PMID: 38308365 PMCID: PMC10837921 DOI: 10.1186/s13071-023-06114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/27/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Tsetse flies (Glossina spp.) are the definitive biological vectors of African trypanosomes in humans and animals. Controlling this vector is the most promising method of preventing trypanosome transmission. This requires a comprehensive understanding of tsetse biology and host preference to inform targeted design and management strategies, such as the use of olfaction and visual cues in tsetse traps. No current review exists on host preference and blood meal analyses of tsetse flies. METHODS This review presents a meta-analysis of tsetse fly blood meal sources and the methodologies used to identify animal hosts from 1956 to August 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRIMA-ScR) was applied. This focused on tsetse-endemic countries, blood meal analysis methodologies and the blood meal hosts identified. The articles were retrieved and screened from databases using predetermined eligibility criteria. RESULTS Only 49/393 of the articles retrieved matched the inclusion criteria. Glossina's main hosts in the wild included the bushbuck, buffalo, elephant, warthog, bushpig and hippopotamus. Pigs, livestock and humans were key hosts at the domestic interface. The least studied species included Glossina fuscipleuris, G. fusca, G. medicorum, G. tabaniformis and G. austeni. In the absence of preferred hosts, Glossina fed opportunistically on a variety of hosts. Precipitin, haemagglutination, disc diffusion, complement fixation, ELISA and PCR-based assays were used to evaluate blood meals. Cytochrome b (Cyt b) was the main target gene in PCR to identify the vertebrate hosts. CONCLUSIONS Tsetse blood meal sources have likely expanded because of ecological changes that could have rendered preferred hosts unavailable. The major approaches for analysing tsetse fly blood meal hosts targeted Cyt b gene for species identification by Sanger sequencing. However, small-fragment DNAs, such as the mammalian 12S and 16S rRNA genes, along with second- and third-generation sequencing techniques, could increase sensitivity for host identification in multiple host feeders that Sanger sequencing may misidentify as "noise". This review of tsetse fly blood meal sources and approaches to host identification could inform strategies for tsetse control.
Collapse
Affiliation(s)
- Erick Kibichiy Serem
- Department of Anatomy and Physiology, School of Health and Human Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya.
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, P.O. Box 195-80108, Kilifi, Kenya.
| | - David Mwangi Mburu
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, P.O. Box 195-80108, Kilifi, Kenya
- Department of Biological Sciences, School of Pure and Applied Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya
| | - Osman Abdikarim Abdullahi
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, P.O. Box 195-80108, Kilifi, Kenya
- Department of Public Health, School of Health and Human Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya
| | - Joel Ltilitan Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
5
|
Peña-Espinoza M, Em D, Shahi-Barogh B, Berer D, Duscher GG, van der Vloedt L, Glawischnig W, Rehbein S, Harl J, Unterköfler MS, Fuehrer HP. Molecular pathogen screening of louse flies (Diptera: Hippoboscidae) from domestic and wild ruminants in Austria. Parasit Vectors 2023; 16:179. [PMID: 37269018 DOI: 10.1186/s13071-023-05810-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Hippoboscid flies (Diptera: Hippoboscidae), also known as louse flies or keds, are obligate blood-sucking ectoparasites of animals, and accidentally of humans. The potential role of hippoboscids as vectors of human and veterinary pathogens is being increasingly investigated, but the presence and distribution of infectious agents in louse flies is still unknown in parts of Europe. Here, we report the use of molecular genetics to detect and characterize vector-borne pathogens in hippoboscid flies infesting domestic and wild animals in Austria. METHODS Louse flies were collected from naturally infested cattle (n = 25), sheep (n = 3), and red deer (n = 12) across Austria between 2015 and 2019. Individual insects were morphologically identified to species level and subjected to DNA extraction for molecular pathogen screening and barcoding. Genomic DNA from each louse fly was screened for Borrelia spp., Bartonella spp., Trypanosomatida, Anaplasmataceae, Filarioidea and Piroplasmida. Obtained sequences of Trypanosomatida and Bartonella spp. were further characterized by phylogenetic and haplotype networking analyses. RESULTS A total of 282 hippoboscid flies corresponding to three species were identified: Hippobosca equina (n = 62) collected from cattle, Melophagus ovinus (n = 100) from sheep and Lipoptena cervi (n = 120) from red deer (Cervus elaphus). Molecular screening revealed pathogen DNA in 54.3% of hippoboscids, including infections with single (63.39%), two (30.71%) and up to three (5.90%) distinct pathogens in the same individual. Bartonella DNA was detected in 36.9% of the louse flies. Lipoptena cervi were infected with 10 distinct and previously unreported Bartonella sp. haplotypes, some closely associated with strains of zoonotic potential. DNA of trypanosomatids was identified in 34% of hippoboscids, including the first description of Trypanosoma sp. in H. equina. Anaplasmataceae DNA (Wolbachia spp.) was detected only in M. ovinus (16%), while < 1% of the louse flies were positive for Borrelia spp. and Filarioidea. All hippoboscids were negative for Piroplasmida. CONCLUSIONS Molecular genetic screening confirmed the presence of several pathogens in hippoboscids infesting domestic and wild ruminants in Austria, including novel pathogen haplotypes of zoonotic potential (e.g. Bartonella spp.) and the first report of Trypanosoma sp. in H. equina, suggesting a potential role of this louse fly as vector of animal trypanosomatids. Experimental transmission studies and expanded monitoring of hippoboscid flies and hippoboscid-associated pathogens are warranted to clarify the competence of these ectoparasites as vectors of infectious agents in a One-Health context.
Collapse
Affiliation(s)
- Miguel Peña-Espinoza
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Daniel Em
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bita Shahi-Barogh
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dominik Berer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Georg G Duscher
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Agency for Health and Food Safety (AGES), Research Services, Vienna, Austria
| | - Lara van der Vloedt
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Walter Glawischnig
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Innsbruck, Austria
| | - Steffen Rehbein
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - Josef Harl
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria S Unterköfler
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Kim JY, Choi JH, Nam SH, Fyumagwa R, Yong TS. Parasites and blood-meal hosts of the tsetse fly in Tanzania: a metagenomics study. Parasit Vectors 2022; 15:224. [PMID: 35733222 PMCID: PMC9215111 DOI: 10.1186/s13071-022-05344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background Tsetse flies can transmit various Trypanosoma spp. that cause trypanosomiasis in humans, wild animals, and domestic animals. Amplicon deep sequencing of the 12S ribosomal RNA (rRNA) gene can be used to detect mammalian tsetse hosts, and the 18S rRNA gene can be used to detect all associated eukaryotic pathogens, including Trypanosoma spp. Methods Tsetse flies were collected from the Serengeti National Park (n = 48), Maswa Game Reserve (n = 42), and Tarangire National Park (n = 49) in Tanzania in 2012–13. Amplicon deep sequencing targeting mammal-specific 12S rRNA and 18S rRNA genes was performed to screen the blood-feeding sources of tsetse flies and eukaryotic parasites in tsetse flies, respectively. Results 12S rRNA gene deep sequencing revealed that various mammals were blood-feeding sources of the tsetse flies, including humans, common warthogs, African buffalos, mice, giraffes, African elephants, waterbucks, and lions. Genes of humans were less frequently detected in Serengeti (P = 0.0024), whereas African buffaloes were detected more frequently as a blood-feeding source (P = 0.0010). 18S rRNA gene deep sequencing showed that six tsetse samples harbored the Trypanosoma gene, which was identified as Trypanosoma godfreyi and Trypanosoma simiae in subsequent ITS1 gene sequencing. Conclusions Through amplicon deep sequencing targeting the 12S rRNA and 18S rRNA genes, various mammalian animals were identified as blood-meal sources, and two Trypanosoma species were detected in tsetse flies collected from the Maswa Game Reserve, Serengeti National Park, and Tarangire National Park in Tanzania. This study illustrates the patterns of parasitism of tsetse fly, wild animals targeted by the fly, and Trypanosoma spp. carried by the fly in Tanzania. It may provide essential data for formulating better strategies to control African trypanosomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05344-1.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun Ho Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung-Hyun Nam
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, P.O. Box 661, Arusha, Tanzania
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Kostygov AY, Frolov AO, Malysheva MN, Ganyukova AI, Drachko D, Yurchenko V, Agasoi VV. Development of two species of the Trypanosoma theileri complex in tabanids. Parasit Vectors 2022; 15:95. [PMID: 35313955 PMCID: PMC8935851 DOI: 10.1186/s13071-022-05212-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background Trypanosoma theileri species complex includes parasites of Bovidae (cattle, sheep, goat, etc.) and Cervidae (deer) transmitted mainly by Tabanidae (horse flies and deerflies) and keds (Hippoboscidae). While morphological discrimination of species is challenging, two big clades, TthI and TthII, each containing parasites isolated from bovids and cervids, have been identified phylogenetically. To date, the development in the vector has been studied in detail only for the ked-transmitted sheep parasite T. melophagium (TthII), while the fate of trypanosomes in tabanids was described only briefly by light microscopy. Methods We collected infected tabanids of various species and identified trypanosomes by molecular phylogenetic analysis. The morphology and development of trypanosomes was studied using the combination of statistical analyses as well as light and electron microscopy. Results Two trypanosome species belonging to both TthI and TthII clades of the T. theileri complex were identified. The phylogenetic position of these two trypanosomes suggests that they parasitize deer. Both species were indiscernible by morphology in the vector and showed the same development in its intestine. In contrast to the previously described development of T. melophagium, both trypanosomes of tabanids only transiently infected midgut and settled mainly in the ileum, while pylorus and rectum were neglected. Meanwhile, the flagellates developing in the tabanid ileum (pyriform epimastigotes and metacyclic trypomastigotes) showed similarities to the corresponding stages in T. melophagium by morphology, mode of attachment to the host cuticle and formation of the fibrillar matrix surrounding the mass of developing parasites. In addition, for the first time to our knowledge we documented extraintestinal stages in these trypanosomes, located in the space between the epithelium and circular muscles. Conclusions The development of different species of flagellates of the T. theileri complex in their insect vectors shows many similarities, which can be explained not only by their common origin, but also the same transmission mode, i.e. contamination of the oral mucosa with the gut content released after squashing the insect either by tongue or teeth. The observed differences (concerning primarily the distribution of developmental stages in the intestine) are associated rather with the identity of vectors than the phylogenetic position of parasites. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05212-y.
Collapse
Affiliation(s)
- Alexei Yu Kostygov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 190121, Russia. .,Life Science Research Centre, Faculty of Science, University of Ostrava, 71000, Ostrava, Czech Republic.
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 190121, Russia
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 190121, Russia
| | - Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 190121, Russia
| | - Daria Drachko
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 190121, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000, Ostrava, Czech Republic.,Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, 119435, Russia
| | - Vera V Agasoi
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 190121, Russia.,Natural-Geographical Faculty, Pskov State University, Pskov, 180000, Russia
| |
Collapse
|
8
|
Santolíková A, Brzoňová J, Čepička I, Svobodová M. Avian Louse Flies and Their Trypanosomes: New Vectors, New Lineages and Host–Parasite Associations. Microorganisms 2022; 10:microorganisms10030584. [PMID: 35336159 PMCID: PMC8948672 DOI: 10.3390/microorganisms10030584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Louse flies (Hippoboscidae) are permanent ectoparasites of birds and mammals. They have a cosmopolitan distribution with more than 200 described species. The aim of this study was to reveal host–vector–parasite associations between louse flies, birds, and trypanosomes. A total of 567 louse fly specimens belonging to 7 species were collected from birds at several localities in Czechia, including the rare species Ornithophila metallica and Ornithoica turdi. There was a significant difference in the occurrence of Ornithomya avicularia and Ornithomya fringillina on bird hosts according to their migratory status, O. fringillina being found more frequently on long-distance migrants. Trypanosomes were found in four species, namely, Ornithomya avicularia, O. fringillina, O. biloba, and Ornithoica turdi; the later three species are identified in this paper as natural trypanosome vectors for the first time. The prevalence of trypanosomes ranged between 5 and 19%, the highest being in O. biloba and the lowest being in O. fringillina. Phylogenetic analysis of the SSU rRNA gene revealed that a vast majority of trypanosomes from hippoboscids belong to the avian T. corvi/culicavium group B. Four new lineages were revealed in group B, with louse flies being probable vectors for some of these trypanosome lineages. We also confirmed the transcontinental distribution of several trypanosome lineages. Our results show that hippoboscids of several genera are probable vectors of avian trypanosomes.
Collapse
Affiliation(s)
- Anežka Santolíková
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, CZ, 128 44 Prague, Czech Republic;
- Correspondence: (A.S.); (M.S.)
| | - Jana Brzoňová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, CZ, 128 44 Prague, Czech Republic;
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ, 128 44 Prague, Czech Republic;
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, CZ, 128 44 Prague, Czech Republic;
- Correspondence: (A.S.); (M.S.)
| |
Collapse
|
9
|
Williams KA, Smit A, Neves L, Snyman LP. Evaluating the morphological and molecular challenges in identifying the afrotropical Atylotus species (Diptera: Tabanidae). Acta Trop 2022; 226:106262. [PMID: 34871565 DOI: 10.1016/j.actatropica.2021.106262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
The Afrotropical fly genus, Atylotus has previously shown little differentiation into species groups using the barcode gene COI. This study analysed all available Atylotus COI sequences from GenBank and BOLD to determine if COI is suitable for delimiting species of this genus. Morphological assessments of the different Afrotropical species were done to determine if these species have been accurately identified in recent publications. The results show that COI does not separate the species of this genus into species clades and these species are often misidentified in the literature. This is of concern as species of this genus are known vectors of pathogens and misidentifications have serious implications for management practices. Additional genes need to be used in future molecular studies to differentiate species.
Collapse
|
10
|
Brotánková A, Fialová M, Čepička I, Brzoňová J, Svobodová M. Trypanosomes of the Trypanosoma theileri Group: Phylogeny and New Potential Vectors. Microorganisms 2022; 10:microorganisms10020294. [PMID: 35208749 PMCID: PMC8880487 DOI: 10.3390/microorganisms10020294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Trypanosomes belonging to Trypanosoma theileri group are mammalian blood parasites with keds and horse fly vectors. Our aim is to study to vector specificity of T. theileri trypanosomes. During our bloodsucking Diptera survey, we found a surprisingly high prevalence of T. theileri trypanosomes in mosquitoes (154/4051). Using PCR and gut dissections, we detected trypanosomes of T. theileri group mainly in Aedes mosquitoes, with the highest prevalence in Ae. excrucians (22%), Ae. punctor (21%), and Ae. cantans/annulipes (10%). Moreover, T. theileri group were found in keds and blackflies, which were reported as potential vectors for the first time. The vectorial capacity was confirmed by experimental infections of Ae. aegypti using our isolates from mosquitoes; sand fly Phlebotomus perniciosus supported the development of trypanosomes as well. Infection rates were high in both vectors (47–91% in mosquitoes, 65% in sandflies). Furthermore, metacyclic stages of T. theileri trypanosomes were observed in the gut of infected vectors; these putative infectious forms were found in the urine of Ae. aegypti after a second bloodmeal. On the contrary, Culex pipiens quinquefasciatus was refractory to experimental infections. According to a phylogenetic analysis of the 18S rRNA gene, our trypanosomes belong into three lineages, TthI, ThII, and a lineage referred to as here a putative lineage TthIII. The TthI lineage is transmitted by Brachycera, while TthII and ThIII include trypanosomes from Nematocera. In conclusion, we show that T. theileri trypanosomes have a wide range of potential dipteran vectors, and mosquitoes and, possibly, sandflies serve as important vectors.
Collapse
Affiliation(s)
- Anna Brotánková
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic; (M.F.); (M.S.)
- Correspondence: (A.B.); (J.B.)
| | - Magdaléna Fialová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic; (M.F.); (M.S.)
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic;
| | - Jana Brzoňová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic; (M.F.); (M.S.)
- Correspondence: (A.B.); (J.B.)
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic; (M.F.); (M.S.)
| |
Collapse
|
11
|
Complete Life Cycle of Trypanosoma thomasbancrofti, an Avian Trypanosome Transmitted by Culicine Mosquitoes. Microorganisms 2021; 9:microorganisms9102101. [PMID: 34683422 PMCID: PMC8539158 DOI: 10.3390/microorganisms9102101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Avian trypanosomes are cosmopolitan and common protozoan parasites of birds; nevertheless, knowledge of their life cycles and vectors remains incomplete. Mosquitoes have been confirmed as vectors of Trypanosoma culicavium and suggested as vectors of T. thomasbancrofti; however, transmission has been experimentally confirmed only for the former species. This study aims to confirm the experimental transmission of T. thomasbancrofti to birds and its localization in vectors. Culex pipiens were fed on blood using four strains of T. thomasbancrofti, isolated from vectors and avian hosts; all strains established infections, and three of them were able to develop high infection rates in mosquitoes. The infection rate of the culicine isolates was 5–28% for CUL15 and 48–81% for CUL98, 67–92% for isolate OF19 from hippoboscid fly, while the avian isolate PAS343 ranged between 48% and 92%, and heavy infections were detected in 90% of positive females. Contrary to T. culicavium, trypanosomes were localized in the hindgut, where they formed rosettes with the occurrence of free epimastigotes in the hindgut and midgut during late infections. Parasites occurred in urine droplets produced during mosquito prediuresis. Transmission to birds was achieved by the ingestion of mosquito guts containing trypanosomes and via the conjunctiva. Bird infection was proven by blood cultivation and xenodiagnosis; mature infections were present in the dissected guts of 24–26% of mosquitoes fed on infected birds. The prevalence of T. thomasbancrofti in vectors in nature and in avian populations is discussed in this paper. This study confirms the vectorial capacity of culicine mosquitoes for T. thomasbancrofti, a trypanosome related to T. avium, and suggests that prediuresis might be an effective mode of trypanosome transmission.
Collapse
|
12
|
Votypka J, Petrzelkova KJ, Brzonova J, Jirku M, Modry D, Lukes J. How monoxenous trypanosomatids revealed hidden feeding habits of their tsetse fly hosts. Folia Parasitol (Praha) 2021; 68. [PMID: 34309583 DOI: 10.14411/fp.2021.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 02/01/2023]
Abstract
Tsetse flies are well-known vectors of trypanosomes pathogenic for humans and livestock. For these strictly blood-feeding viviparous flies, the host blood should be the only source of nutrients and liquids, as well as any exogenous microorganisms colonising their intestine. Here we describe the unexpected finding of several monoxenous trypanosomatids in their gut. In a total of 564 individually examined Glossina (Austenia) tabaniformis (Westwood) (436 specimens) and Glossina (Nemorhina) fuscipes fuscipes (Newstead) (128 specimens) captured in the Dzanga-Sangha Protected Areas, Central African Republic, 24 (4.3%) individuals were infected with monoxenous trypanosomatids belonging to the genera Crithidia Léger, 1902; Kentomonas Votýpka, Yurchenko, Kostygov et Lukeš, 2014; Novymonas Kostygov et Yurchenko, 2020; Obscuromonas Votýpka et Lukeš, 2021; and Wallacemonas Kostygov et Yurchenko, 2014. Moreover, additional 20 (3.5%) inspected tsetse flies harboured free-living bodonids affiliated with the genera Dimastigella Sandon, 1928; Neobodo Vickerman, 2004; Parabodo Skuja, 1939; and Rhynchomonas Klebs, 1892. In the context of the recently described feeding behaviour of these dipterans, we propose that they become infected while taking sugar meals and water, providing indirect evidence that blood is not their only source of food and liquids.
Collapse
Affiliation(s)
- Jan Votypka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice (Budweis), Czech Republic
| | - Klara J Petrzelkova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice (Budweis), Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Studenec, Czech Republic.,Liberec Zoo, Liberec, Czech Republic
| | - Jana Brzonova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milan Jirku
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice (Budweis), Czech Republic
| | - David Modry
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice (Budweis), Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Julius Lukes
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, Ceske Budejovice (Budweis), Czech Republic
| |
Collapse
|
13
|
Molecular characterization of Trypanosoma vivax in tsetse flies confirms the presence of the virulent Tvv4 genotype in Kenya: Potential implications for the control of trypanosomiasis in Shimba Hills. INFECTION GENETICS AND EVOLUTION 2021; 93:104953. [PMID: 34091066 DOI: 10.1016/j.meegid.2021.104953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
Trypanosoma vivax is a vector-borne protozoan parasite of livestock endemic to Africa and South America. To date, fifteen genotypes of the parasite have been described in vertebrate and insect hosts in East Africa. However, information regarding T. vivax diversity remains limited in many endemic countries in the sub-region, including Kenya. Such information could deepen insight into the local epidemiology of animal trypanosomiasis in Shimba Hills, a wildlife area in southeast Kenya where T. vivax is endemic and infects livestock. We employed two-gene conventional-PCR-sequencing and phylogenetic analysis to characterize T. vivax genotypes in tsetse flies collected between November 2018 and September 2019 in the wildlife-livestock interface of the Shimba Hills National Reserve. Phylogenetic analysis of Internal Transcribed Spacer-1 (ITS-1) sequences of T. vivax isolates confirmed the presence of two T. vivax genotypes in Shimba Hills of which >80% of T. vivax isolates from tsetse flies clustered within the virulent Tvv4-genotype clade. Tsetse infections with the Tvv4 genotype were also confirmed based on 18S rRNA gene sequencing. Expanded gene characterization identified three closely related haplotypes within the Tvv4-clade. The Tvv4-isolates were detected in male and female Glossina pallidipes tsetse flies, most of which were collected from grasslands and within two kilometres of the Shimba Hills National Reserve boundary. Considering that T. vivax is the most common trypanosome in the Shimba Hills area and causes severe clinical conditions in livestock, the Tvv4 genotype reported here for the first time in Kenya contributes to our understanding of these pathologies. The effectiveness of trypanocidal drugs in the management of Tvv4 is presently not clearly understood. Therefore, the parasite management in Shimba Hills should focus on vector control to reduce the density of G. pallidipes, especially in grasslands near the wildlife protectorate.
Collapse
|
14
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
15
|
Garcia HA, Blanco PA, Rodrigues AC, Rodrigues CMF, Takata CSA, Campaner M, Camargo EP, Teixeira MMG. Pan-American Trypanosoma (Megatrypanum) trinaperronei n. sp. in the white-tailed deer Odocoileus virginianus Zimmermann and its deer ked Lipoptena mazamae Rondani, 1878: morphological, developmental and phylogeographical characterisation. Parasit Vectors 2020; 13:308. [PMID: 32532317 PMCID: PMC7291487 DOI: 10.1186/s13071-020-04169-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/04/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The subgenus Megatrypanum Hoare, 1964 of Trypanosoma Gruby, 1843 comprises trypanosomes of cervids and bovids from around the world. Here, the white-tailed deer Odocoileus virginianus (Zimmermann) and its ectoparasite, the deer ked Lipoptena mazamae Rondani, 1878 (hippoboscid fly), were surveyed for trypanosomes in Venezuela. RESULTS Haemoculturing unveiled 20% infected WTD, while 47% (7/15) of blood samples and 38% (11/29) of ked guts tested positive for the Megatrypanum-specific TthCATL-PCR. CATL and SSU rRNA sequences uncovered a single species of trypanosome. Phylogeny based on SSU rRNA and gGAPDH sequences tightly cluster WTD trypanosomes from Venezuela and the USA, which were strongly supported as geographical variants of the herein described Trypanosoma (Megatrypanum) trinaperronei n. sp. In our analyses, the new species was closest to Trypanosoma sp. D30 from fallow deer (Germany), both nested into TthII alongside other trypanosomes from cervids (North American elk and European fallow, red and sika deer), and bovids (cattle, antelopes and sheep). Insights into the life-cycle of T. trinaperronei n. sp. were obtained from early haemocultures of deer blood and co-culture with mammalian and insect cells showing flagellates resembling Megatrypanum trypanosomes previously reported in deer blood, and deer ked guts. For the first time, a trypanosome from a cervid was cultured and phylogenetically and morphologically (light and electron microscopy) characterised. CONCLUSIONS In the analyses based on SSU rRNA, gGAPDH, CATL and ITS rDNA sequences, neither cervids nor bovids trypanosomes were monophyletic but intertwined within TthI and TthII major phylogenetic lineages. One host species can harbour more than one species/genotype of trypanosome, but each trypanosome species/genotype was found in a single host species or in phylogenetically closely related hosts. Molecular evidence that L. mazamae may transmit T. trinaperronei n. sp. suggests important evolutionary constraints making tight the tripartite T. trinaperronei-WTD-deer ked association. In a plausible evolutionary scenario, T. trinaperronei n. sp. entered South America with North American white-tailed deer at the Pliocene-Pleistocene boundary following the closure of the Panama Isthmus.
Collapse
Affiliation(s)
- Herakles A. Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Pilar A. Blanco
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
- Fundación Esfera, Harpy Eagle Conservation Program in Venezuela, El Palmar, Bolívar Venezuela
- Earthmatters, Gainesville, FL USA
| | - Adriana C. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Carla M. F. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT-EpiAmo, Porto Velho, Rondônia Brazil
| | - Carmen S. A. Takata
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Marta Campaner
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Erney P. Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT-EpiAmo, Porto Velho, Rondônia Brazil
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT-EpiAmo, Porto Velho, Rondônia Brazil
| |
Collapse
|
16
|
Werszko J, Szewczyk T, Steiner-Bogdaszewska Ż, Wróblewski P, Karbowiak G, Laskowski Z. Molecular detection of Megatrypanum trypanosomes in tabanid flies. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:69-73. [PMID: 31571237 DOI: 10.1111/mve.12409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Trypanosomes of the subgenus Megatrypanum have been isolated from many mammalian hosts around the world. They are usually non-pathogenic, although they may confuse the parasitological diagnosis of trypanosomosis. Additionally, Trypanosoma theileri has been associated with disease in cattle. Megatrypanum trypanosomes are considered to be transmitted by different arthropods, including tabanids. However, little is known about the potential vectors of Megatrypanum trypanosomes in different parts of the world. The present study reports on the detection of Megatrypanum trypanosomes in Heamatopota pluvialis, Tabanus bromius, Tabanus maculicornis and Tabanus distinguendus in Poland. It also discusses the possible role of these tabanids in the transmission of Megatrypanum trypanosomes.
Collapse
Affiliation(s)
- J Werszko
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - T Szewczyk
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | - P Wróblewski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - G Karbowiak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Z Laskowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Rodrigues CMF, Garcia HA, Rodrigues AC, Pereira DL, Pereira CL, Viola LB, Neves L, Camargo EP, Gibson W, Teixeira MMG. Expanding our knowledge on African trypanosomes of the subgenus Pycnomonas: A novel Trypanosoma suis-like in tsetse flies, livestock and wild ruminants sympatric with Trypanosoma suis in Mozambique. INFECTION GENETICS AND EVOLUTION 2019; 78:104143. [PMID: 31837483 DOI: 10.1016/j.meegid.2019.104143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022]
Abstract
Among the subgenera of African tsetse-transmitted trypanosomes pathogenic to livestock, the least known is the subgenus Pycnomonas, which contains a single species, Trypanosoma suis (TSU), a pathogen of domestic pigs first reported in 1905 and recently rediscovered in Tanzania and Mozambique. Analysis by Fluorescent Fragment Length Barcoding (FFLB) revealed an infection rate of 20.3% (108 out of 530 tsetse flies) in a recent study in the Gorongosa and Niassa wildlife reserves in Mozambique, and demonstrated two groups of Pycnomonas trypanosomes: one (14.1%, 75 flies) showing an FFLB profile identical to the reference TSU from Tanzania, and the other (6.2%, 33 flies) differing slightly from reference TSU and designated Trypanosoma suis-like (TSU-L). Phylogenetic analyses tightly clustered TSU and TSU-L from Mozambique with TSU from Tanzania forming the clade Pycnomonas positioned between the subgenera Trypanozoon and Nannomonas. Our preliminarily exploration of host ranges of Pycnomonas trypanosomes revealed TSU exclusively in warthogs while TSU-L was identified, for the first time for a member of the subgenus Pycnomonas, in ruminants (antelopes, Cape buffalo, and in domestic cattle and goats). The preferential blood meal sources of tsetse flies harbouring TSU and TSU-L were wild suids, and most of these flies concomitantly harboured the porcine trypanosomes T. simiae, T. simiae Tsavo, and T. godfreyi. Therefore, our findings support the link of TSU with suids while TSU-L remains to be comprehensively investigated in these hosts. Our results greatly expand our knowledge of the diversity, hosts, vectors, and epidemiology of Pycnomonas trypanosomes. Due to shortcomings of available molecular diagnostic methods, a relevant cohort of trypanosomes transmitted by tsetse flies to ungulates, especially suids, has been neglected or most likely misidentified. The method employed in the present study enables an accurate discrimination of trypanosome species and genotypes and, hence, a re-evaluation of the "lost" subgenus Pycnomonas and of porcine trypanosomes in general, the most neglected group of African trypanosomes pathogenic to ungulates.
Collapse
Affiliation(s)
- Carla M F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil
| | - Herakles A Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Adriana C Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Carlos Lopes Pereira
- National Administration of Conservation Areas (ANAC), Ministry of Land, Environment and Rural Development, Maputo, Mozambique
| | | | - Luis Neves
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa; Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil.
| |
Collapse
|
18
|
Weber JS, Ngomtcho SCH, Shaida SS, Chechet GD, Gbem TT, Nok JA, Mamman M, Achukwi DM, Kelm S. Genetic diversity of trypanosome species in tsetse flies (Glossina spp.) in Nigeria. Parasit Vectors 2019; 12:481. [PMID: 31610794 PMCID: PMC6792248 DOI: 10.1186/s13071-019-3718-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background Trypanosomes cause disease in humans and livestock in sub-Saharan Africa and rely on tsetse flies as their main insect vector. Nigeria is the most populous country in Africa; however, only limited information about the occurrence and diversity of trypanosomes circulating in the country is available. Methods Tsetse flies were collected from five different locations in or adjacent to protected areas, i.e. national parks and game reserves, in Nigeria. Proboscis and gut samples were analysed for trypanosome DNA by molecular amplification of the internal transcribed spacer 1 (ITS1) region and part of the trypanosome specific glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene. Results The most abundant Trypanosoma species found in the tsetse gut was T. grayi, a trypanosome infecting crocodiles. It was ubiquitously distributed throughout the country, accounting for over 90% of all cases involving trypanosomes. Trypanosoma congolense was detected in gut samples from all locations except Cross River National Park, but not in the proboscis, while T. brucei (sensu lato) was not detected at all. In proboscis samples, T. vivax was the most prominent. The sequence diversity of gGAPDH suggests that T. vivax and T. grayi represent genetically diverse species clusters. This implies that they are highly dynamic populations. Conclusions The prevalence of animal pathogenic trypanosomes throughout Nigeria emphasises the role of protected areas as reservoirs for livestock trypanosomes. The genetic diversity observed within T. vivax and T. grayi populations might be an indication for changing pathogenicity or host range and the origin and consequences of this diversity has to be further investigated.![]()
Collapse
Affiliation(s)
- Judith Sophie Weber
- Centre for Biomolecular Interactions, Department of Biology and Chemistry, University of Bremen, Bremen, Germany.
| | - Sen Claudine Henriette Ngomtcho
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon.,Ministry of Public Health, Yaoundé, Cameroon
| | | | - Gloria Dada Chechet
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Thaddeus Terlumun Gbem
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.,Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| | - Jonathan Andrew Nok
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Mamman
- Nigerian Institute for Trypanosomiasis Research, Kaduna, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | | | - Sørge Kelm
- Centre for Biomolecular Interactions, Department of Biology and Chemistry, University of Bremen, Bremen, Germany. .,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| |
Collapse
|
19
|
Votýpka J, Brzoňová J, Ježek J, Modrý D. Horse flies (Diptera: Tabanidae) of three West African countries: A faunistic update, barcoding analysis and trypanosome occurrence. Acta Trop 2019; 197:105069. [PMID: 31233728 DOI: 10.1016/j.actatropica.2019.105069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
Horse flies (Diptera: Tabanidae) are of medical and veterinary importance since they transmit a range of pathogens. The horse fly fauna of tropical Africa is still poorly known, and in some geographical areas has not been studied for decades. This study summarizes the results of tabanid collections performed in three West African countries where only sparse data were previously available, the Central African Republic (CAR), Gabon and Liberia. Of 1093 collected specimens, 28 morphospecies and 26 genospecies belonging to six genera were identified, including the first findings of eleven morphospecies in the countries where horse flies were collected: Philoliche (Subpangonia) gravoti Surcouf, 1908 and Tabanus ianthinus Surcouf, 1907 are new records for Liberia; Ancala fasciata f. mixta (Surcouf, 1914), Tabanus fraternus Macquart, 1846, and T. triquetrornatus Carter, 1915 for CAR; Chrysops longicornis Macquart, 1838, Haematopota albihirta Karsch, 1887, H. bowdeni Oldroyd, 1952, and H. brucei Austen, 1908 for Gabon; and Tabanus secedens f. regnaulti Surcouf, 1912 and T. thoracinus Palisot de Beauvois, 1807 for Gabon and Liberia. Species identification of all 28 morphospecies based on morphological features was further supplemented by barcoding of cytochrome oxidase I (COI). Based on the COI sequences of 115 specimens representing 74 haplotypes, a phylogenetic tree was constructed to illustrate the relationships among the tabanid species found and to demonstrate their intra- and interspecific divergences. Our study enriches the current number of barcoded tabanids with another 22 genospecies. Based on the analysis of molecular data we question the taxonomic relevance of the morphological forms Ancala fasciata f. mixta and Tabanus secedens f. regnaulti. A parasitological survey based on nested PCR of 18S rRNA revealed a high (˜25%) prevalence of Trypanosoma theileri in the studied horse flies, accompanied by two species of monoxenous trypanosomatids, Crithidia mellificae and Blastocrithidia sp.
Collapse
|
20
|
Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Molecular identification of bloodmeal sources and trypanosomes in Glossina spp., Tabanus spp. and Stomoxys spp. trapped on cattle farm settlements in southwest Nigeria. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:269-281. [PMID: 30730048 DOI: 10.1111/mve.12358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The interactions of host, vector and parasite in bovine trypanosomiasis transmission cycles in southwest Nigeria are not yet well understood. Trypanosoma (Trypanosomatida: Trypanosomatidae) species infection prevalences and bloodmeal sources were determined in transmitting vectors of the genera Glossina (Diptera: Glossinidae), Tabanus (Diptera: Tabanidae) and Stomoxys (Diptera: Muscidae) collected using Nzi traps in cattle settlements in southwest Nigeria. Sequenced cytochrome B mitochondrial DNA segments obtained from vector digestive tracts identified bloodmeal sources from eight host species, namely human, cattle, hippopotamus, giraffe, gazelle, spotted hyena, long-tailed rat and one unidentified species. Overall, 71.1% [95% confidence interval (CI) 63.0-78.1], 33.3% (95% CI 21.9-47.0) and 22.2% (95% CI 16.2-29.9), respectively, of Glossina, Tabanus and Stomoxys flies were positive for trypanosomes. The observed trypanosome species were Trypanosoma vivax, Trypanosoma congolense, Trypanosoma brucei, Trypanosoma evansi, Trypanosoma simiae and Trypanosoma godfreyi. Trypanosome DNA was more prevalent in tsetse (34.8% Tr. vivax, 51.1% Tr. b. brucei, 5.2% Tr. congolense, 4.4% Tr. simiae and 24.4% mixed infections) than in other flies and the main determinants in all flies were seasonal factors and host availability. To the best of the present group's knowledge, this is the first report of Trypanosoma species in Tabanus and Stomoxys flies in Nigeria. It indicates that vector control programmes should always consider biting flies along with tsetse flies in the control of human and animal trypanosomiasis.
Collapse
Affiliation(s)
- P O Odeniran
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
| | - E T Macleod
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
| | - I O Ademola
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - S C Welburn
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| |
Collapse
|
21
|
Fermino BR, Paiva F, Viola LB, Rodrigues CMF, Garcia HA, Campaner M, Takata CSA, Sheferaw D, Kisakye JJ, Kato A, Jared CAGS, Teixeira MMG, Camargo EP. Shared species of crocodilian trypanosomes carried by tabanid flies in Africa and South America, including the description of a new species from caimans, Trypanosoma kaiowa n. sp. Parasit Vectors 2019; 12:225. [PMID: 31088523 PMCID: PMC6515670 DOI: 10.1186/s13071-019-3463-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The genus Trypanosoma Gruby, 1843 is constituted by terrestrial and aquatic phylogenetic lineages both harboring understudied trypanosomes from reptiles including an increasing diversity of crocodilian trypanosomes. Trypanosoma clandestinus Teixeira & Camargo, 2016 of the aquatic lineage is transmitted by leeches to caimans. Trypanosoma grayi Novy, 1906 of the terrestrial lineage is transmitted by tsetse flies to crocodiles in Africa, but the vectors of Neotropical caiman trypanosomes nested in this lineage remain unknown. RESULTS Our phylogenetic analyses uncovered crocodilian trypanosomes in tabanids from South America and Africa, and trypanosomes other than T. grayi in tsetse flies. All trypanosomes found in tabanids clustered in the crocodilian clade (terrestrial lineage) forming six clades: Grayi (African trypanosomes from crocodiles and tsetse flies); Ralphi (trypanosomes from caimans, African and Brazilian tabanids and tsetse flies); Terena (caimans); Cay03 (caimans and Brazilian tabanids); and two new clades, Tab01 (Brazilian tabanid and tsetse flies) and Kaiowa. The clade Kaiowa comprises Trypanosoma kaiowa n. sp. and trypanosomes from African and Brazilian tabanids, caimans, tsetse flies and the African dwarf crocodile. Trypanosoma kaiowa n. sp. heavily colonises tabanid guts and differs remarkably in morphology from other caiman trypanosomes. This species multiplied predominantly as promastigotes on log-phase cultures showing scarce epimastigotes and exhibited very long flagellates in old cultures. Analyses of growth behavior revealed that insect cells allow the intracellular development of Trypanosoma kaiowa n. sp. CONCLUSIONS Prior to this description of Trypanosoma kaiowa n. sp., no crocodilian trypanosome parasitic in tabanid flies had been cultured, morphologically examined by light, scanning and transmission microscopy, and phylogenetically compared with other crocodilian trypanosomes. Additionally, trypanosomes thought to be restricted to caimans were identified in Brazilian and African tabanids, tsetse flies and the dwarf crocodile. Similar repertoires of trypanosomes found in South American caimans, African crocodiles and tabanids from both continents support the recent diversification of these transcontinental trypanosomes. Our findings are consistent with trypanosome host-switching likely mediated by tabanid flies between caimans and transoceanic migrant crocodiles co-inhabiting South American wetlands at the Miocene.
Collapse
Affiliation(s)
- Bruno R. Fermino
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Fernando Paiva
- Biological Institute, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul Brazil
| | | | - Carla M. F. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
- Instituto Nacional de Ciência e Tecnologia, EpiAmo, Porto Velho, Rondônia Brazil
| | - Herakles A. Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Marta Campaner
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Carmen S. A. Takata
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Desie Sheferaw
- Department of Veterinary Medicine, Hawassa University, Hawassa, Ethiopia
| | - John J. Kisakye
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Agapitus Kato
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Marta M. G. Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
- Instituto Nacional de Ciência e Tecnologia, EpiAmo, Porto Velho, Rondônia Brazil
| | - Erney P. Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
- Instituto Nacional de Ciência e Tecnologia, EpiAmo, Porto Velho, Rondônia Brazil
| |
Collapse
|
22
|
Genetic diversity of trypanosomes pathogenic to livestock in tsetse flies from the Nech Sar National Park in Ethiopia: A concern for tsetse suppressed area in Southern Rift Valley? INFECTION GENETICS AND EVOLUTION 2019; 69:38-47. [DOI: 10.1016/j.meegid.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
|
23
|
Horváth G, Pereszlényi Á, Åkesson S, Kriska G. Striped bodypainting protects against horseflies. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181325. [PMID: 30800379 PMCID: PMC6366178 DOI: 10.1098/rsos.181325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Bodypainting is widespread in African, Australian and Papua New Guinean indigenous communities. Many bodypaintings use white or bright yellow/grey/beige stripes on brown skin. Where the majority of people using bodypainting presently live, blood-sucking horseflies are abundant, and they frequently attack the naked brown regions of the human body surface with the risk of transmitting the pathogens of dangerous diseases. Since horseflies are deterred by the black and white stripes of zebras, we hypothesized that white-striped paintings on dark brown human bodies have a similar effect. In a field experiment in Hungary, we tested this hypothesis. We show that the attractiveness to horseflies of a dark brown human body model significantly decreases, if it is painted with the white stripes that are used in bodypaintings. Our brown human model was 10 times more attractive to horseflies than the white-striped brown model, and a beige model, which was used as a control, attracted two times more horseflies than the striped brown model. Thus, white-striped bodypaintings, such as those used by African and Australian people, may serve to deter horseflies, which is an advantageous byproduct of these bodypaintings that could lead to reduced irritation and disease transmission by these blood-sucking insects.
Collapse
Affiliation(s)
- Gábor Horváth
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, 1117 Budapest, Pázmány sétány 1, Hungary
| | - Ádám Pereszlényi
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, 1117 Budapest, Pázmány sétány 1, Hungary
- Hungarian Natural History Museum, Department of Zoology, Bird Collection, 1083 Budapest, Ludovika tér 2-6, Hungary
| | - Susanne Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - György Kriska
- MTA Centre for Ecological Research, Danube Research Institute, 1113 Budapest, Karolina út 29-31, Hungary
- Biological Institute, ELTE Eötvös Loránd University, 1117 Budapest, Pázmány sétány 1, Hungary
| |
Collapse
|
24
|
Votýpka J, Pafčo B, Modrý D, Mbohli D, Tagg N, Petrželková KJ. An unexpected diversity of trypanosomatids in fecal samples of great apes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:322-325. [PMID: 30225193 PMCID: PMC6139395 DOI: 10.1016/j.ijppaw.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Charismatic great apes have been used widely and effectively as flagship species in conservation campaigns for decades. These iconic representatives of their ecosystems could also play a role as reservoirs of several zoonotic diseases. Recently it was demonstrated that African great apes can host Leishmania parasites (Kinetoplastea: Trypanosomatidae). Given that this finding raised a strong negative reaction from leishmania experts and the subsequent discussion did not lead to a clear resolution, we decided to analyze wild gorilla (Gorilla gorilla gorilla) and chimpanzee (Pan troglodytes troglodytes) fecal samples collected from the same area in Cameroon as in the original study. Fecal samples, used to circumvent the difficulties and ethics involved in obtaining blood samples from endangered wild apes, were screened by three different PCR assays for detection of Leishmania DNA. We did not detect any leishmania parasites in analyzed feces; however, sequencing of SSU rRNA revealed an unexpected diversity of free-living bodonids (Kinetoplastea: Bodonidae) and parasitic trypanosomatids (Kinetoplastea: Trypanosomatidae) other than Leishmania. A single detected Phytomonas species, found in chimpanzee feces, most likely originated from animal plant food. On the other hand, the presence of four free-living bodonid species and four parasitic insect monoxenous trypanosomatid, including two possible new species of the genus Herpetomonas, could be explained as ex post contamination of feces either from the environment or from flies (Diptera: Brachycera). We analyzed wild gorilla and chimpanzee fecal samples, from the area where a previous study detected Leishmania parasites. We detected leishmania DNA neither in great ape fecal samples nor in feces of experimentally infected rodents. We revealed unexpected diversity of bodonids, monoxenous and dixenous trypanosomatids other than Leishmania.
Collapse
Affiliation(s)
- Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Corresponding author. Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, Czech Republic.
| | - Barbora Pafčo
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - David Modrý
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Central European Institute for Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Donald Mbohli
- Association de la Protection de Grands Singes, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Nikki Tagg
- Association de la Protection de Grands Singes, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Klára J. Petrželková
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Liberec Zoo, Liberec, Czech Republic
| |
Collapse
|
25
|
Weiskopf SR, McCarthy KP, Tessler M, Rahman HA, McCarthy JL, Hersch R, Faisal MM, Siddall ME. Using terrestrial haematophagous leeches to enhance tropical biodiversity monitoring programmes in Bangladesh. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13111] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah R. Weiskopf
- Department of Entomology and Wildlife Ecology University of Delaware Newark DE USA
| | - Kyle P. McCarthy
- Department of Entomology and Wildlife Ecology University of Delaware Newark DE USA
| | - Michael Tessler
- Richard Gilder Graduate School American Museum of Natural History New York NY USA
- Division of Invertebrate Zoology American Museum of Natural History New York NY USA
- Sackler Institute for Comparative Genomics American Museum of Natural History New York NY USA
| | - Hasan A. Rahman
- Department of Entomology and Wildlife Ecology University of Delaware Newark DE USA
| | | | - Rebecca Hersch
- Sackler Institute for Comparative Genomics American Museum of Natural History New York NY USA
| | | | - Mark E. Siddall
- Richard Gilder Graduate School American Museum of Natural History New York NY USA
- Division of Invertebrate Zoology American Museum of Natural History New York NY USA
- Sackler Institute for Comparative Genomics American Museum of Natural History New York NY USA
| |
Collapse
|
26
|
Molinari J, Moreno SA. Trypanosoma brucei Plimmer & Bradford, 1899 is a synonym of T. evansi (Steel, 1885) according to current knowledge and by application of nomenclature rules. Syst Parasitol 2018; 95:249-256. [PMID: 29411297 DOI: 10.1007/s11230-018-9779-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022]
Abstract
Proper application of the principles of biological nomenclature is fundamental for scientific and technical communication about organisms. As other scientific disciplines, taxonomy inherently is open to change, thus species names cannot be final and immutable. Nevertheless, altering the names of organisms of high economical, medical, or veterinary importance can become a complex challenge between the scientific need to have correct classifications, and the practical ideal of having fixed classifications. Trypanosoma evansi (Steel, 1885), T. brucei Plimmer & Bradford, 1899 and T. equiperdum Doflein, 1901 are important parasites of mammals. According to current knowledge, the three names are synonyms of a single trypanosome species, the valid name of which should be T. evansi by the mandatory application of the Principle of Priority of zoological nomenclature. Subspecies known as T. brucei brucei Plimmer & Bradford, 1899, T. b. gambiense Dutton, 1902 and T. b. rhodesiense Stephens & Fantham, 1910 should be referred to respectively as T. evansi evansi (Steel, 1885), T. e. gambiense and T. e. rhodesiense. The polyphyletic groupings so far known as T. evansi and T. equiperdum should be referred respectively to as surra- and dourine-causing strains of T. e. evansi. Likewise, trypanosomes so far known as T. b. brucei should be referred to as nagana-causing strains of T. e. evansi. Though it modifies the scientific names of flagship human and animal parasites, the amended nomenclature proposed herein should be adopted because it reflects phylogenetic and biological advancements, fixes errors, and is simpler than the existing classificatory system.
Collapse
Affiliation(s)
- Jesús Molinari
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela.
| | - S Andrea Moreno
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela
| |
Collapse
|
27
|
Rodrigues CM, Garcia HA, Rodrigues AC, Costa-Martins AG, Pereira CL, Pereira DL, Bengaly Z, Neves L, Camargo EP, Hamilton PB, Teixeira MM. New insights from Gorongosa National Park and Niassa National Reserve of Mozambique increasing the genetic diversity of Trypanosoma vivax and Trypanosoma vivax-like in tsetse flies, wild ungulates and livestock from East Africa. Parasit Vectors 2017; 10:337. [PMID: 28716154 PMCID: PMC5513381 DOI: 10.1186/s13071-017-2241-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Trypanosoma (Duttonella) vivax is a major pathogen of livestock in Africa and South America (SA), and genetic studies limited to small sampling suggest greater diversity in East Africa (EA) compared to both West Africa (WA) and SA. METHODS Multidimensional scaling and phylogenetic analyses of 112 sequences of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) gene and 263 sequences of the internal transcribed spacer of rDNA (ITS rDNA) were performed to compare trypanosomes from tsetse flies from Gorongosa National Park and Niassa National Reserve of Mozambique (MZ), wild ungulates and livestock from EA, and livestock isolates from WA and SA. RESULTS Multidimensional scaling (MDS) supported Tvv (T. vivax) and TvL (T. vivax-like) evolutionary lineages: 1) Tvv comprises two main groups, TvvA/B (all SA and WA isolates plus some isolates from EA) and TvvC/D (exclusively from EA). The network revealed five ITS-genotypes within Tvv: Tvv1 (WA/EA isolates), Tvv2 (SA) and Tvv3-5 (EA). EA genotypes of Tvv ranged from highly related to largely different from WA/SA genotypes. 2) TvL comprises two gGAPDH-groups formed exclusively by EA sequences, TvLA (Tanzania/Kenya) and TvLB-D (MZ). This lineage contains more than 11 ITS-genotypes, seven forming the lineage TvL-Gorongosa that diverged from T. vivax Y486 enough to be identified as another species of the subgenus Duttonella. While gGAPDH sequences were fundamental for classification at the subgenus, major evolutionary lineages and species levels, ITS rDNA sequences permitted identification of known and novel genotypes. CONCLUSIONS Our results corroborate a remarkable diversity of Duttonella trypanosomes in EA, especially in wildlife conservation areas, compared to the moderate diversity in WA. Surveys in wilderness areas in WA may reveal greater diversity. Biogeographical and phylogenetic data point to EA as the place of origin, diversification and spread of Duttonella trypanosomes across Africa, providing relevant insights towards the understanding of T. vivax evolutionary history.
Collapse
Affiliation(s)
- Carla Mf Rodrigues
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Herakles A Garcia
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Departamento de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
| | - Adriana C Rodrigues
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - André G Costa-Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos L Pereira
- National Administration of Conservation Areas, Ministry of Tourism, Maputo, Mozambique.,Wildlife Conservation Society, Niassa National Reserve, Maputo, Mozambique
| | | | - Zakaria Bengaly
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Luis Neves
- Centro de Biotecnologia, Eduardo Mondlane University, Maputo, Mozambique.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Erney P Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Marta Mg Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil. .,Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso.
| |
Collapse
|
28
|
Garcia HA, Rodrigues CMF, Rodrigues AC, Pereira DL, Pereira CL, Camargo EP, Hamilton PB, Teixeira MMG. Remarkable richness of trypanosomes in tsetse flies (Glossina morsitans morsitans and Glossina pallidipes) from the Gorongosa National Park and Niassa National Reserve of Mozambique revealed by fluorescent fragment length barcoding (FFLB). INFECTION GENETICS AND EVOLUTION 2017; 63:370-379. [PMID: 28688979 DOI: 10.1016/j.meegid.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022]
Abstract
Trypanosomes of African wild ungulates transmitted by tsetse flies can cause human and livestock diseases. However, trypanosome diversity in wild tsetse flies remains greatly underestimated. We employed FFLB (fluorescent fragment length barcoding) for surveys of trypanosomes in tsetse flies (3086) from the Gorongosa National Park (GNP) and Niassa National Reserve (NNR) in Mozambique (MZ), identified as Glossina morsitans morsitans (GNP/NNR=77.6%/90.5%) and Glossina pallidipes (22.4%/9.5%). Trypanosomes were microscopically detected in 8.3% of tsetse guts. FFLB of gut samples revealed (GNP/NNR): Trypanosoma congolense of Savannah (27%/63%), Kilifi (16.7%/29.7%) and Forest (1.0%/0.3%) genetic groups; T. simiae Tsavo (36.5%/6.1%); T. simiae (22.2%/17.7%); T. godfreyi (18.2%/7.0%); subgenus Trypanozoon (20.2%/25.7%); T. vivax/T. vivax-like (1.5%/5.2%); T. suis/T. suis-like (9.4%/11.9%). Tsetse proboscises exhibited similar species composition, but most prevalent species were (GNP/NNR): T. simiae (21.9%/28%), T. b. brucei (19.2%/31.7%), and T. vivax/T. vivax-like (19.2%/28.6%). Flies harboring mixtures of trypanosomes were common (~ 64%), and combinations of more than four trypanosomes were especially abundant in the pristine NNR. The non-pathogenic T. theileri was found in 2.5% while FFLB profiles of unknown species were detected in 19% of flies examined. This is the first report on molecular diversity of tsetse flies and their trypanosomes in MZ; all trypanosomes pathogenic for ungulates were detected, but no human pathogens were detected. Overall, two species of tsetse flies harbor 12 species/genotypes of trypanosomes. This notable species richness was likely uncovered because flies were captured in wildlife reserves and surveyed using the method of FFLB able to identify, with high sensitivity and accuracy, known and novel trypanosomes. Our findings importantly improve the knowledge on trypanosome diversity in tsetse flies, revealed the greatest species richness so far reported in tsetse fly of any African country, and indicate the existence of a hidden trypanosome diversity to be discovered in African wildlife protected areas.
Collapse
Affiliation(s)
- Herakles A Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Carla M F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Adriana C Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Carlos L Pereira
- Ministry of Tourism of Mozambique, Wildlife Conservation Society, Mozambique
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - P B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
29
|
Svobodová M, Dolnik OV, Čepička I, Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors 2017; 10:224. [PMID: 28482865 PMCID: PMC5423023 DOI: 10.1186/s13071-017-2158-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background Although avian trypanosomes are widespread parasites, the knowledge of their vectors is still incomplete. Despite biting midges (Diptera: Ceratopogonidae) are considered as potential vectors of avian trypanosomes, their role in transmission has not been satisfactorily elucidated. Our aim was to clarify the potential of biting midges to sustain the development of avian trypanosomes by testing their susceptibility to different strains of avian trypanosomes experimentally. Moreover, we screened biting midges for natural infections in the wild. Results Laboratory-bred biting midges Culicoides nubeculosus were highly susceptible to trypanosomes from the Trypanosoma bennetti and T. avium clades. Infection rates reached 100%, heavy infections developed in 55–87% of blood-fed females. Parasite stages from the insect gut were infective for birds. Moreover, midges could be infected after feeding on a trypanosome-positive bird. Avian trypanosomes can thus complete their cycle in birds and biting midges. Furthermore, we succeeded to find infected blood meal-free biting midges in the wild. Conclusions Biting midges are probable vectors of avian trypanosomes belonging to T. bennetti group. Midges are highly susceptible to artificial infections, can be infected after feeding on birds, and T. bennetti-infected biting midges (Culicoides spp.) have been found in nature. Moreover, midges can be used as model hosts producing metacyclic avian trypanosome stages infective for avian hosts.
Collapse
Affiliation(s)
- Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
| | - Olga V Dolnik
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| | - Jana Rádrová
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| |
Collapse
|
30
|
d’Avila-Levy CM, Boucinha C, Kostygov A, Santos HLC, Morelli KA, Grybchuk-Ieremenko A, Duval L, Votýpka J, Yurchenko V, Grellier P, Lukeš J. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz 2015; 110:956-65. [PMID: 26602872 PMCID: PMC4708014 DOI: 10.1590/0074-02760150253] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.
Collapse
Affiliation(s)
- Claudia Masini d’Avila-Levy
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Carolina Boucinha
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Alexei Kostygov
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Russian Academy of Sciences, Zoological Institute, Laboratory of
Molecular Systematics, St Petersburg, Russia
| | - Helena Lúcia Carneiro Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto
Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | | | - Linda Duval
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Jan Votýpka
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- Charles University, Faculty of Science, Department of Parasitology,
Prague, Czech Republic
| | - Vyacheslav Yurchenko
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
| | - Philippe Grellier
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Julius Lukeš
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- University of South Bohemia, Faculty of Sciences, České Budejovice,
Czech Republic
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|