1
|
Liu Q, Jiang K, Duan S, Zhao N, Shen Y, Zhu L, Zhang KQ, Yang J. Identification of a transcription factor AoMsn2 of the Hog1 signaling pathway contributes to fungal growth, development and pathogenicity in Arthrobotrys oligospora. J Adv Res 2025; 68:1-15. [PMID: 38331317 PMCID: PMC11785577 DOI: 10.1016/j.jare.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Arthrobotrys oligospora has been utilized as a model strain to study the interaction between fungi and nematodes owing to its ability to capture nematodes by developing specialized traps. A previous study showed that high-osmolarity glycerol (Hog1) signaling regulates the osmoregulation and nematocidal activity of A. oligospora. However, the function of downstream transcription factors of the Hog1 signaling in the nematode-trapping (NT) fungi remains unclear. OBJECTIVE This study aimed to investigate the functions and potential regulatory network of AoMsn2, a downstream transcription factor of the Hog1 signaling pathway in A. oligospora. METHODS The function of AoMsn2 was characterized using targeted gene deletion, phenotypic experiments, real-time quantitative PCR, RNA sequencing, untargeted metabolomics, and yeast two-hybrid analysis. RESULTS Loss of Aomsn2 significantly enlarged and swollen the hyphae, with an increase in septa and a significant decrease in nuclei. In particular, spore yield, spore germination rate, traps, and nematode predation efficiency were remarkably decreased in the mutants. Phenotypic and transcriptomic analyses revealed that AoMsn2 is essential for fatty acid metabolism and autophagic pathways. Additionally, untargeted metabolomic analysis identified an important function of AoMsn2 in the modulation of secondary metabolites. Furtherly, we analyzed the protein interaction network of AoMsn2 based on the Kyoto Encyclopedia of Genes and Genomes pathway map and the online website STRING. Finally, Hog1 and six putative targeted proteins of AoMsn2 were identified by Y2H analysis. CONCLUSION Our study reveals that AoMsn2 plays crucial roles in the growth, conidiation, trap development, fatty acid metabolism, and secondary metabolism, as well as establishes a broad basis for understanding the regulatory mechanisms of trap morphogenesis and environmental adaptation in NT fungi.
Collapse
Affiliation(s)
- Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Kexin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China.
| |
Collapse
|
2
|
Albogami B, Darwish H, Alghamdi A, Darwish AB, Al-Otaibi WM, A. Osman M, M. Al Dhafar Z, Alkhaibari AM, Mashlawi AM, Baakdah F, Noureldeen A. Acaricidal and insecticidal activities of entomopathogenic nematodes combined with rosemary essential oil and bacterium-synthesized silver nanoparticles against camel tick, Hyalomma dromedarii and wax moth, Galleria mellonella. PeerJ 2025; 13:e18782. [PMID: 39830955 PMCID: PMC11740739 DOI: 10.7717/peerj.18782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance. The present investigation was carried out to determine for the first time the in vitro acaricidal and insecticidal efficacies of endogenous two entomopathogenic nematodes (EPNs), Heterorhabditis indica and Steinernema sp. combined with either Proteus mirabilis-synthesized silver nanoparticles or Rosmarinus officinalis essential oil against the camel tick, Hyalomma dromedarii larvae and females, and greater wax moth, Galleria mellonella larvae as well. We also determined the potential effects of these treatments on the biological characteristics of H. dromedarii's engorged females. We further investigated R. officinalis essential oil (EO) profiling and nanoparticle (AgNPs) characterization. All the evaluated combinations demonstrated synergistic effects on the larvae of G. mellonella and H. dromedarii, as well as on engorged females. When H. indica was mixed with EO or AgNPs, it worked well than when Steinernema sp. was mixed with EO or AgNPs. This was shown by the highest number of tick and insect mortalities and the lowest lethal concentration (LC50) values. One day after G. mellonella was exposed to H. indica (1,000 infective juveniles (IJs)) together with EO at 60 or 40 mg/mL, all tested individuals died. We obtained the same results when H. dromedarii females exposed to the same level of EPN with 60 mg/mL EO, and when H. dromedarii larvae treated with H. indica at 500 IJs + EO at 25 mg/mL. Treatments altered all biological parameters of engorged females, revealing extremely noticeable differences between the treated and untreated groups. Gas chromatography-mass spectrometry (GC-MS) analysis identified a total of 28 compounds in the R. officinalis EO. Visual observation showed a color change from yellow to dark brown for AgNPs biosynthesized from P. mirabilis; the transmission electron microscopy (TEM) image and ultraviolet-visible (UV-Vis) spectrum showed well-dispersed particles with a diameter of 5-45 nm; and the greatest surface plasmon peaked at 320 nm. The results demonstrated the high efficacy of combining EPN, H. indica, with EO to control tick and insect pests. This is due to its acaricidal activity on different stages of H. dromedarii, including larvae and engorged females, and its larvicidal effect on G. mellonella.
Collapse
Affiliation(s)
- Bander Albogami
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Akram Alghamdi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | | | | | - Mohamed A. Osman
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Zamzam M. Al Dhafar
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Abadi M. Mashlawi
- Department of Biology, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Fadi Baakdah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
3
|
Li J, Wei X, Pei Z, Sun J, Xi J, Li X, Shapiro-IIan D, Ruan W. Volatile organic compounds released from entomopathogenic nematode-infected insect cadavers for the biocontrol of Meloidogyne incognita. PEST MANAGEMENT SCIENCE 2024; 80:5400-5411. [PMID: 38943354 DOI: 10.1002/ps.8268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Root-knot nematodes (RKNs), Meloidogyne spp., are one of the most destructive polyphagous plant-parasitic nematodes. They pose a serious threat to global food security and are difficult to control. Entomopathogenic nematodes (EPNs) show promise in controlling RKNs. However, it remains unclear whether the volatile organic compounds (VOCs) emitted from EPN-infected cadavers can control RKNs. RESULTS We investigated the fumigation activity of VOCs released from cadavers infected by five different species of EPNs on RKNs in Petri dishes, and found that VOCs released from Steinernema feltiae (SN strain) and S. carpocapsae (All strain) infected cadavers had a significant lethal effect on second-stage juveniles (J2s) of Meloidogyne incognita. The VOCs released from the cadavers infected with S. feltiae were analyzed using SPME-GC/MS. Dimethyl disulfide (DMDS), tetradecane, pentadecane, and butylated hydroxytoluene (BHT), were selected for a validation experiment with pure compounds. The DMDS compound had significant nematicidal activity and repelled J2s. DMDS also inhibited egg hatching and the invasion of tomato roots by J2s. In a pot experiment, the addition of S. feltiae-infected cadavers and cadavers wrapped with a 400-mesh nylon net also significantly reduced the population of RKNs in tomato roots after 7 days. The number of root knots and eggs was reduced by 58% and 74.34%, respectively, compared to the control. CONCLUSION These results suggested that the VOCs emitted by the EPN-infected cadavers affected various developmental stages of M. incognita and thus have the potential to be used in controlling RKNs through multiple methods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Li
- College of Life Sciences, Nankai University, Tianjin, China
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zixuan Pei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jiale Xi
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xingyue Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | | | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Matuska-Łyżwa J, Duda S, Nowak D, Kaca W. Impact of Abiotic and Biotic Environmental Conditions on the Development and Infectivity of Entomopathogenic Nematodes in Agricultural Soils. INSECTS 2024; 15:421. [PMID: 38921136 PMCID: PMC11204376 DOI: 10.3390/insects15060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
Many organisms, including beneficial entomopathogenic nematodes (EPNs), are commonly found in the soil environment. EPNs are used as biopesticides for pest control. They have many positive characteristics and are able to survive at sites of application for a long time, producing new generations of individuals. The occurrence of populations depends on many environmental parameters, such as temperature, moisture, soil texture, and pH. Extreme temperatures result in a decrease in the survival rate and infectivity of EPNs. Both high humidity and acidic soil pH reduce populations and disrupt the biological activity of EPNs. Nematodes are also exposed to anthropogenic agents, such as heavy metals, oil, gasoline, and even essential oils. These limit their ability to move in the soil, thereby reducing their chances of successfully finding a host. Commonly used fertilizers and chemical pesticides are also a challenge. They reduce the pathogenicity of EPNs and negatively affect their reproduction, which reduces the population size. Biotic factors also influence nematode biology. Fungi and competition limit the reproduction and survival of EPNs in the soil. Host availability enables survival and affects infectivity. Knowledge of the influence of environmental factors on the biology of EPNs will allow more effective use of the insecticidal capacity of these organisms.
Collapse
Affiliation(s)
- Joanna Matuska-Łyżwa
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, 7 Uniwersytecka St., 25-406 Kielce, Poland; (S.D.); (D.N.); (W.K.)
| | | | | | | |
Collapse
|
5
|
Li M, Ha B, Li Y, Vrieling K, Fu Z, Yu Q, Rasmann S, Wei X, Ruan W. Toxicological impacts of microplastics on virulence, reproduction and physiological process of entomopathogenic nematodes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116153. [PMID: 38422790 DOI: 10.1016/j.ecoenv.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Microplastics have emerged as significant and concerning pollutants within soil ecosystems. Among the soil biota, entomopathogenic nematodes (EPNs) are lethal parasites of arthropods, and are considered among the most effective biological agents against pests. Infective juveniles (IJs) of EPNs, as they navigate the soil matrix scavenging for arthropod hosts to infect, they could potentially encounter microplastics. Howver, the impact of microplastics on EPNs has not been fully elucidated yet. We addressed this gap by subjecting Steinernema feltiae EPNs to polystyrene microplastics (PS-MPs) with various sizes, concentrations, and exposure durations. After confirming PS-MP ingestion by S. feltiae using fluorescent dyes, we found that the PS-MPs reduced the survival, reproduction, and pathogenicity of the tested EPNs, with effects intensifying for smaller PS-MPs (0.1-1 μm) at higher concentrations (105 μg/L). Furthermore, exposure to PS-MPs triggered oxidative stress in S. feltiae, leading to increased reactive oxygen species levels, compromised mitochondrial membrane potential, and increased antioxidative enzyme activity. Furthermore, transcriptome analyses revealed PS-MP-induced suppression of mitochondrial function and oxidative phosphorylation pathways. In conclusion, we show that ingestion of PS-MPs by EPNs can compromise their fitness, due to multple toxicity effects. Our results bear far-reaching consequences, as the presence of microplastics in soil ecosystems could undermine the ecological role of EPNs in regulating pest populations.
Collapse
Affiliation(s)
- Mingge Li
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Bingjun Ha
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuchen Li
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Klaas Vrieling
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, Leiden 2300 RA, the Netherlands
| | - Zhen Fu
- Van Andel Research Institute, Grand Rapids, MI, USA
| | - Qilin Yu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel CH-2000, Switzerland
| | - Xianqin Wei
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Weibin Ruan
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
6
|
Zhou L, He Z, Zhang K, Wang X. Analysis of Nuclear Dynamics in Nematode-Trapping Fungi Based on Fluorescent Protein Labeling. J Fungi (Basel) 2023; 9:1183. [PMID: 38132784 PMCID: PMC10744682 DOI: 10.3390/jof9121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Nematophagous fungi constitute a category of fungi that exhibit parasitic behavior by capturing, colonizing, and poisoning nematodes, which are critical factors in controlling nematode populations in nature, and provide important research materials for biological control. Arthrobotrys oligospora serves as a model strain among nematophagous fungi, which begins its life as conidia, and then its hyphae produce traps to capture nematodes, completing its lifestyle switch from saprophytic to parasitic. There have been many descriptions of the morphological characteristics of A. oligospora lifestyle changes, but there have been no reports on the nuclear dynamics in this species. In this work, we constructed A. oligospora strains labeled with histone H2B-EGFP and observed the nuclear dynamics from conidia germination and hyphal extension to trap formation. We conducted real-time imaging observations on live cells of germinating and extending hyphae and found that the nucleus was located near the tip. It is interesting that the migration rate of this type of cell nucleus is very fast, and we speculate that this may be related to the morphological changes involved in the transformation to a predatory lifestyle. We suggest that alterations in nuclear shape and fixation imply the immediate disruption of the interaction with cytoskeletal mechanisms during nuclear migration. In conclusion, these findings suggest that the signal initiating nuclear migration into fungal traps is generated at the onset of nucleus entry into a trap cell. Our work provides a reference for analysis of the dynamics of nucleus distribution and a means to visualize protein localization and interactions in A. oligospora.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (L.Z.); (Z.H.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| | - Zhiwei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (L.Z.); (Z.H.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (L.Z.); (Z.H.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (L.Z.); (Z.H.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| |
Collapse
|
7
|
Manrique S, Gómez J, Piñeiro M, Sampietro BA, Peschiutta ML, Tapia A, Simirgiotis MJ, Lima B. Zuccagnia punctata Cav., a Potential Environmentally Friendly and Sustainable Bionematicide for the Control of Argentinean Horticultural Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:4104. [PMID: 38140431 PMCID: PMC10747203 DOI: 10.3390/plants12244104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
This research was designed to investigate the metabolite profiling, phenolics, and flavonoids content as well as the potential nematicidal properties of decoction (ZpDe), orange-yellow resin (ZpRe) and essential oil (ZpEO) from Argentinean medicinal plant Zuccagnia punctata Cav. Additionally, the antioxidant and antibacterial properties of ZpDe and ZpEO were determined. Metabolite profiling was obtained by an ultrahigh-resolution liquid chromatography MS analysis (UHPLC-ESI-QTOF/OT-MS-MS) and GCMS. The nematicidal activity was assayed by a standardized method against Meloidogyne incognita. The antioxidant properties were screened by four methods: (2,2-diphenyl-1-picrylhydrazyl assay (DPPH), Trolox equivalent antioxidant activity assay (TEAC), ferric-reducing antioxidant power assay (FRAP), and lipid peroxidation in erythrocytes (ILP). The antibacterial activity was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) rules. The ZpDe, ZpRe and ZpEO displayed a strong nematicidal activity with an LC50 of 0.208, 0.017 and 0.142 mg/mL, respectively. On the other hand, the ZpDe showed a strong DPPH scavenging activity (IC50 = 28.54 µg/mL); ILP of 87.75% at 250 µg ZpDe/mL and moderated antimicrobial activity. The ZpEO showed promising activity against a panel of yeasts Candida albicans and non-albicans (ATCC and clinically isolated) with MIC values from 750 to 1500 µg/mL. The ZpDe showed a content of phenolics and flavonoid compounds of 241 mg GAE/g and 10 mg EQ/g, respectively. Fifty phenolic compounds were identified in ZpDe by ultrahigh-resolution liquid chromatography (UHPLC-PDA- Q-TOF-MS) analysis, while forty-six phenolic compounds were identified in ZpRe by UHPLC-ESI-Q-OT-MS-MS and twenty-nine in ZpEO using a GC-MS analysis, updating the knowledge on the chemical profile of this species. The results support and standardize this medicinal plant mainly as a potential environmentally friendly and sustainable bionematicide for the control of Argentinean horticultural crops including tomatoes and peppers and as a source of antimicrobial and antioxidant compounds which could be further explored and exploited for potential applications.
Collapse
Affiliation(s)
- Sofía Manrique
- Instituto de Biotecnología—Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (S.M.); (J.G.); (M.P.); (B.A.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires C1425FQB, Argentina
| | - Jessica Gómez
- Instituto de Biotecnología—Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (S.M.); (J.G.); (M.P.); (B.A.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires C1425FQB, Argentina
| | - Mauricio Piñeiro
- Instituto de Biotecnología—Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (S.M.); (J.G.); (M.P.); (B.A.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires C1425FQB, Argentina
| | - Belén Ariza Sampietro
- Instituto de Biotecnología—Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (S.M.); (J.G.); (M.P.); (B.A.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires C1425FQB, Argentina
| | - Maria L. Peschiutta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET)—Cátedra de Química Orgánica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina;
| | - Alejandro Tapia
- Instituto de Biotecnología—Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (S.M.); (J.G.); (M.P.); (B.A.S.)
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Beatriz Lima
- Instituto de Biotecnología—Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (S.M.); (J.G.); (M.P.); (B.A.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires C1425FQB, Argentina
| |
Collapse
|
8
|
Khan A, Haris M, Hussain T, Khan AA, Laasli SE, Lahlali R, Mokrini F. Counter-attack of biocontrol agents: Environmentally benign Approaches against Root-knot nematodes ( Meloidogyne spp.) on Agricultural crops. Heliyon 2023; 9:e21653. [PMID: 37954375 PMCID: PMC10632526 DOI: 10.1016/j.heliyon.2023.e21653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Root-knot nematodes (Meloidogyne spp.) are obligate sedentary endoparasites, considered severe crop-damaging taxa among all plant-parasitic nematodes globally. Their attacks through parasitic proteins alter the physiology and machinery of the host cells to favour parasitism and reduction in crop yield. Currently, the use of excessive pesticides as a fast remedy to manage this pest is hazardous for both the environment and humans. Keeping this view in mind, there is an urgent need for developing efficient eco-friendly strategies. Bio-control as an eco-friendly is considered the best approach to manage nematodes without disturbing non-target microbes. In bio-control, living agents such as fungi and bacteria are the natural enemies of nematodes and the best substitute for pesticides. Fungi, including nematode-trapping fungi, can sense host signals and produce special trapping devices viz., constricting rings and adhesive knobs/loops, to capture nematodes and kill them. Whereas, endo-parasitic fungi kill nematodes by enzymatic secretions and spore adhesion through their hyphae. Bacteria can also control nematodes by producing antibiotic compounds, competing for nutrients and rhizosphere, production of hydrolytic enzymes viz., chitinases, proteases, lipases, and induction of systemic resistance (ISR) in host plants. Scientists throughout the world are trying to evolve environmentally benign methods that sustain agricultural production and keep nematodes below a threshold level. Whatever methods evolve, in the future the focus should be on important aspects like green approaches for managing nematodes without disturbing human health and the environment.
Collapse
Affiliation(s)
- Amir Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Mohammad Haris
- Section of Environmental Botany, Department of Botany, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Touseef Hussain
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, UP, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abrar Ahmad Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès, 50001, Morocco
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès, 50001, Morocco
- Plant Pathology Laboratory, AgroBioSciences, College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco
| | - Fouad Mokrini
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès, 50001, Morocco
- Biotechnology Unit, Regional Center of Agricultural Research, INRA-Morocco, Rabat, Morocco
| |
Collapse
|
9
|
Hanke W, Alenfelder J, Liu J, Gutbrod P, Kehraus S, Crüsemann M, Dörmann P, Kostenis E, Scholz M, König GM. The Bacterial G q Signal Transduction Inhibitor FR900359 Impairs Soil-Associated Nematodes. J Chem Ecol 2023; 49:549-569. [PMID: 37453001 PMCID: PMC10725363 DOI: 10.1007/s10886-023-01442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
The cyclic depsipeptide FR900359 (FR) is derived from the soil bacterium Chromobacterium vaccinii and known to bind Gq proteins of mammals and insects, thereby abolishing the signal transduction of their Gq protein-coupled receptors, a process that leads to severe physiological consequences. Due to their highly conserved structure, Gq family of proteins are a superior ecological target for FR producing organisms, resulting in a defense towards a broad range of harmful organisms. Here, we focus on the question whether bacteria like C. vaccinii are important factors in soil in that their secondary metabolites impair, e.g., plant harming organisms like nematodes. We prove that the Gq inhibitor FR is produced under soil-like conditions. Furthermore, FR inhibits heterologously expressed Gαq proteins of the nematodes Caenorhabditis elegans and Heterodera schachtii in the micromolar range. Additionally, in vivo experiments with C. elegans and the plant parasitic cyst nematode H. schachtii demonstrated that FR reduces locomotion of C. elegans and H. schachtii. Finally, egg-laying of C. elegans and hatching of juvenile stage 2 of H. schachtii from its cysts is inhibited by FR, suggesting that FR might reduce nematode dispersion and proliferation. This study supports the idea that C. vaccinii and its excreted metabolome in the soil might contribute to an ecological equilibrium, maintaining and establishing the successful growth of plants.
Collapse
Affiliation(s)
- Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Jun Liu
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Philipp Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
- Bonn International Graduate School - Land and Food, University of Bonn, Katzenburgweg 9, D-53115, Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Monika Scholz
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany.
| |
Collapse
|
10
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
11
|
Kim I, Heryanto C, Eleftherianos I. HETERORHABDITIS BACTERIOPHORA NEMATODES ARE SENSITIVE TO THE BACTERIAL PATHOGEN PHOTORHABDUS ASYMBIOTICA. J Parasitol 2023; 109:11-14. [PMID: 36805240 DOI: 10.1645/22-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The entomopathogenic nematode (EPN) Heterorhabditis bacteriophora infects a wide range of insect hosts with the aid of its mutualistic bacteria Photorhabdus luminescens. While the mutualistic relationship between H. bacteriophora and P. luminescens and the infectivity of the nematode-bacteria complex have been characterized, how nematode fitness is affected by entomopathogenic bacteria existing in association with other EPN species remains poorly understood. In this study, the survival of H. bacteriophora infective juveniles containing or lacking P. luminescens was tested against the entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus asymbiotica as well as the non-pathogenic Escherichia coli. While X. nematophila and E. coli did not significantly affect the survival of H. bacteriophora, P. asymbiotica exerted a significant effect on nematode survival, particularly on those lacking P. luminescens. These results imply that P. asymbiotica encodes factors that are pathogenic to EPNs. Future efforts will focus on the identification of the bacterial molecular components that induce these effects. This study makes an important contribution to a growing body of research aimed at exploiting the full potential of nematode-bacterial complexes for eliminating noxious insect pests and treating infectious diseases caused by parasitic nematodes.
Collapse
Affiliation(s)
- Irene Kim
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, D.C. 20052
| | - Christa Heryanto
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, D.C. 20052
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, D.C. 20052
| |
Collapse
|
12
|
Lax P, Passone MA, Becerra AG, Sosa AL, Ciancio A, Finetti-Sialer MM, Rosso LC. Sustainable strategies for management of the "false root-knot nematode" Nacobbus spp. FRONTIERS IN PLANT SCIENCE 2022; 13:1046315. [PMID: 36570909 PMCID: PMC9774502 DOI: 10.3389/fpls.2022.1046315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The genus Nacobbus, known as the false root-knot nematode, is native to the American continent and comprises polyphagous species adapted to a wide range of climatic conditions. Alone or in combination with other biotic and abiotic factors, Nacobbus spp. can cause significant economic yield losses on main food crops such as potato, sugar beet, tomato, pepper and bean, in South and North America. Although the genus distribution is restricted to the American continent, it has quarantine importance and is subject to international legislation to prevent its spread to other regions, such as the European Union. The management of Nacobbus spp. remains unsatisfactory due to the lack of information related to different aspects of its life cycle, survival stages in the soil and in plant material, a rapid and reliable diagnostic method for its detection and the insufficient source of resistant plant genotypes. Due to the high toxicity of chemical nematicides, the search for alternatives has been intensified. Therefore, this review reports findings on the application of environmentally benign treatments to manage Nacobbus spp. Biological control strategies, such as the use of different organisms (mainly bacteria, fungi and entomopathogenic nematodes) and other eco-compatible approaches (such as metabolites, essential oils, plant extracts, phytohormones and amendments), either alone or as part of a combined control strategy, are discussed. Knowledge of potential sources of resistance for genetic improvement for crops susceptible to Nacobbus spp. are also reported. The sustainable strategies outlined here offer immediate benefits, not only to counter the pathogen, but also as good alternatives to improve crop health and growth.
Collapse
Affiliation(s)
- Paola Lax
- Instituto de Diversidad y Ecología Animal (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Centro de Zoología Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - María A. Passone
- Laboratorio de Ecología Microbiana Ambiental (ECOMA), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto, Argentina
| | - Alejandra G. Becerra
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ana L. Sosa
- Laboratorio de Ecología Microbiana Ambiental (ECOMA), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto, Argentina
| | - Aurelio Ciancio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | | | - Laura C. Rosso
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| |
Collapse
|
13
|
El-Saadony MT, Abuljadayel DA, Shafi ME, Albaqami NM, Desoky ESM, El-Tahan AM, Mesiha PK, Elnahal AS, Almakas A, Taha AE, Abd El-Mageed TA, Hassanin AA, Elrys AS, Saad AM. Control of foliar phytoparasitic nematodes through sustainable natural materials: Current progress and challenges. Saudi J Biol Sci 2021; 28:7314-7326. [PMID: 34867034 PMCID: PMC8626253 DOI: 10.1016/j.sjbs.2021.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 10/28/2022] Open
Abstract
Nematodes are hidden enemies that inhibit the entire ecosystem causing adverse effects on animals and plants, leading to economic losses. Management of foliar phytoparasitic nematodes is an excruciating task. Various approaches were used to control nematodes dispersal, i.e., traditional practices, resistant cultivars, plant extract, compost, biofumigants, induced resistance, nano-biotechnology applications, and chemical control. This study reviews the various strategies adopted in combating plant-parasitic nematodes while examining the benefits and challenges. The significant awareness of biological and environmental factors determines the effectiveness of nematode control, where the incorporation of alternative methods to reduce the nematodes population in plants with increasing crop yield. The researchers were interested in explaining the fundamental molecular mechanisms, providing an opportunity to deepen our understanding of the sustainable management of nematodes in croplands. Eco-friendly pesticides are effective as a sustainable nematodes management tool and safe for humans. The current review presents the eco-friendly methods in controlling nematodes to minimize yield losses, and benefit the agricultural production efficiency and the environment.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dalia A. Abuljadayel
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Najah M. Albaqami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Philemon K. Mesiha
- Plant pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed S.M. Elnahal
- Plant pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Aisha Almakas
- Department of Crops and Pastures, Faculty of Agriculture, Sana’a University, Yemen
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Taia A. Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Abdallah A. Hassanin
- Genetics department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
14
|
Kamali S, Javadmanesh A, Stelinski LL, Kyndt T, Seifi A, Cheniany M, Zaki-Aghl M, Hosseini M, Heydarpour M, Asili J, Karimi J. Beneficial worm allies warn plants of parasite attack below-ground and reduce above-ground herbivore preference and performance. Mol Ecol 2021; 31:691-712. [PMID: 34706125 DOI: 10.1111/mec.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Antagonistic interactions among different functional guilds of nematodes have been recognized for quite some time, but the underlying explanatory mechanisms are unclear. We investigated responses of tomato (Solanum lycopersicum) to two functional guilds of nematodes-plant parasite (Meloidogyne javanica) and entomopathogens (Heterorhabditis bacteriophora, Steinernema feltiae below-ground, and S. carpocapsae)-as well as a leaf mining insect (Tuta absoluta) above-ground. Our results indicate that entomopathogenic nematodes (EPNs): (1) reduced root knot nematode (RKN) infestation below-ground, (2) reduced herbivore (T. absoluta) host preference and performance above-ground, and (3) induced overlapping plant defence responses by rapidly activating polyphenol oxidase and guaiacol peroxidase activity in roots, but simultaneously suppressing this activity in above-ground tissues. Concurrently, we investigated potential plant signalling mechanisms underlying these interactions using transcriptome analyses. We found that both entomopathogens and plant parasites triggered immune responses in plant roots with shared gene expression. Secondary metabolite transcripts induced in response to the two nematode functional guilds were generally overlapping and showed an analogous profile of regulation. Likewise, we show that EPNs modulate plant defence against RKN invasion, in part, by suppressing active expression of antioxidant enzymes. Inoculations of roots with EPN triggered an immune response in tomato via upregulated phenylpropanoid metabolism and synthesis of protease inhibitors in plant tissues, which may explain decreased egg laying and developmental performance exhibited by herbivores on EPN-inoculated plants. Furthermore, changes induced in the volatile organic compound-related transcriptome indicated that M. javanica and/or S. carpocapsae inoculation of plants triggered both direct and indirect defences. Our results support the hypothesis that plants "mistake" subterranean EPNs for parasites, and these otherwise beneficial worms activate a battery of plant defences associated with systemic acquired resistance and/or induced systemic resistance with concomitant antagonistic effects on temporally co-occurring subterranean plant pathogenic nematodes and terrestrial herbivores.
Collapse
Affiliation(s)
- Shokoofeh Kamali
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, USA
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaki-Aghl
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Hosseini
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
15
|
Abstract
A new microbial insecticide mathematical model with density dependent for pest is proposed in this paper. First, the system without impulsive state feedback control is considered. The existence and stability of equilibria are investigated and the properties of equilibria under different conditions are verified by using numerical simulation. Since the system without pulse has two positive equilibria under some additional assumptions, the system is not globally asymptotically stable. Based on the stability analysis of equilibria, limit cycle, outer boundary line and Sotomayor’s theorem, the existence of saddle-node bifurcation and global dynamics of the system are obtained. Second, we consider homoclinic bifurcation of the system with impulsive state feedback control. The existence of order-1 homoclinic orbit of the system is studied. When the impulsive function is slightly disturbed, the homoclinic orbit breaks and bifurcates order-1 periodic solution. The existence and stability of order-1 periodic solution are obtained by means of theory of semi-continuous dynamic system.
Collapse
Affiliation(s)
- Tieying Wang
- School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, P. R. China
| |
Collapse
|
16
|
Tayyrov A, Wei C, Fetz C, Goryachkin A, Schächle P, Nyström L, Künzler M. Cytoplasmic Lipases-A Novel Class of Fungal Defense Proteins Against Nematodes. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:696972. [PMID: 37744157 PMCID: PMC10512399 DOI: 10.3389/ffunb.2021.696972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/31/2021] [Indexed: 09/26/2023]
Abstract
Fungi are an attractive food source for predators such as fungivorous nematodes. Several fungal defense proteins and their protective mechanisms against nematodes have been described. Many of these proteins are lectins which are stored in the cytoplasm of the fungal cells and bind to specific glycan epitopes in the digestive tract of the nematode upon ingestion. Here, we studied two novel nematotoxic proteins with lipase domains from the model mushroom Coprinopsis cinerea. These cytoplasmically localized proteins were found to be induced in the vegetative mycelium of C. cinerea upon challenge with fungivorous nematode Aphelenchus avenae. The proteins showed nematotoxicity when heterologously expressed in E. coli and fed to several bacterivorous nematodes. Site-specific mutagenesis of predicted catalytic residues eliminated the in-vitro lipase activity of the proteins and significantly reduced their nematotoxicity, indicating the importance of the lipase activity for the nematotoxicity of these proteins. Our results suggest that cytoplasmic lipases constitute a novel class of fungal defense proteins against predatory nematodes. These findings improve our understanding of fungal defense mechanisms against predators and may find applications in the control of parasitic nematodes in agriculture and medicine.
Collapse
Affiliation(s)
- Annageldi Tayyrov
- Department of Biology, Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Chunyue Wei
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Céline Fetz
- Department of Biology, Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Aleksandr Goryachkin
- Department of Biology, Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Philipp Schächle
- Department of Biology, Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Laura Nyström
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
17
|
Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie van Leeuwenhoek 2021; 114:885-912. [PMID: 33893903 DOI: 10.1007/s10482-021-01577-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022]
Abstract
Plant parasitic nematodes (Root-knot nematodes, Meloidogyne spp.) are rounded worms, microscopic, and cause many agricultural economic losses. Their attacks have a direct impact on the productivity of cultivated crops by reducing their fruit quantity. Chemical control is widespread all over the world, but biological control is the most effective way to reduce the number of pests that infect crops, particularly by the use of microorganisms like fungi and bacteria. Biological control is rapidly evolving, and more products are being sold worldwide over time. They can be produced by fungi, bacteria, or actinomycetes that can destruct plant parasite nematodes and feed on them. Nematophagous microorganisms as the natural enemies of nematodes have a promising way of controlling nematodes. Some of them create net-like substances and traps to take the worms from outside and finally kill them. Other parasites serve as internal parasites in order to produce toxins and to produce virulence to kill nematodes. Comprehension of the molecular basis for microbial nematode interactions gives important insights into how successful biological nematode control agents can be created. We discuss recent advances in our understanding of nematodes and nematophagous microorganisms, with an emphasis on molecular mechanisms that infect nematodes with nematophagous microorganisms and on nematode safety from pathogenic attacks. Finally, we addressed numerous key areas for future research and development, including possible approaches to the application of our recent expertise in the development of successful biocontrol strategies.
Collapse
|
18
|
Zhang X, Li L, Kesner L, Robert CAM. Chemical host-seeking cues of entomopathogenic nematodes. CURRENT OPINION IN INSECT SCIENCE 2021; 44:72-81. [PMID: 33866041 DOI: 10.1016/j.cois.2021.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Entomopathogenic nematodes (EPNs) are obligate parasites that infect a broad range of insect species. Host-seeking is a crucial step for EPN infection success and survival. Yet, the identity and ecological functions of chemicals involved in host-seeking by EPNs remain overlooked. In this review, we report known CO2, plant-derived and insect-derived cues shaping EPN host-seeking and recognition. Despite species-specific response to environmental cues, we highlight a hierarchical integration of chemicals by EPNs. We further emphasize the impact of EPN selection pressure, age, and experience on their responsiveness to infochemicals. Finally, we feature that EPN chemical ecology can translate into powerful sustainable strategies to control insect herbivores in agriculture.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Lu Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lucie Kesner
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Oeschger Centre for Climate Change Research (OCCR), University of Bern, Falkenplatz 16, 3012 Bern, Switzerland.
| |
Collapse
|
19
|
Touray M, Cimen H, Gulsen SH, Ulug D, Erdogus D, Shapiro-Ilan D, Hazir S. The impact of chemical nematicides on entomopathogenic nematode survival and infectivity. J Nematol 2021. [DOI: 10.21307/jofnem-2021-049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
20
|
Abd-Elgawad MMM, Askary TH. Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL 2020; 30:17. [DOI: 10.1186/s41938-020-00215-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 09/02/2023]
Abstract
AbstractBiological control agents (BCAs) are increasingly used against various plant-parasitic nematode (PPN) pests and offer a favorable alternative to hazardous chemical nematicides. Yet, their lack of efficacy, inconsistent field performance, and/or unfavorable economic factors have generally relegated them to a relatively small sector of pesticide market. Efficacy and biocontrol success can be boosted via holistic grasping of soil biological and ecological factors. Therefore, such factors were highlighted to give better directions for their use. Main points discussed currently are considered to affect the transmission success of these BCAs so that their use must be a way forward in crop protection/pest management. These included improved sampling, grasping BCAs interactions with soil biota and ecology, cost-effective use of BCAs, genetic manipulation for better PPN control, grower acceptance and awareness-raising of BCA techniques, and commercial application.
Collapse
|
21
|
Li J, Chen Y, Zhang G, Ruan W, Shan S, Lai X, Yang D, Yu Z. Integration of behavioural tests and transcriptome sequencing of C. elegans reveals how the nematode responds to peanut shell biochar amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136024. [PMID: 31972909 DOI: 10.1016/j.scitotenv.2019.136024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/05/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Biochars have drawn wide attention as adsorbents, carbon sequesters and soil re-mediators. However, these substances are ambiguous regarding their effects on the motility, phenotypic changes and potential adaptative mechanisms of soil organisms. This study investigated how peanut shell biochar (PBC) affects the C. elegans model via a one-choice selection test and RNA-seq analysis. The results showed that C. elegans were able to select either PBC or a water control, and a clear preference for PBC was observed after 48 h of exposure, with the chemotaxis index (CI) reaching approximately 1.0. The nematode preferences for PBC vs sterile PBC/graphite were not significant, which demonstrated that initial microorganisms and appearances were not the reasons for the worms' selection, but the selection behaviour was instead determined by volatile odours. The treatments also showed that biochar amendment significantly decreased the body length, brood size and superoxide dismutase (SOD) activity of C. elegans to 960.20 ± 15.23 μm, 173.22 ± 4.56, 165.81 ± 3.82 U/mL SOD, respectively. Then, a possible molecular mechanism of PBC-induced developmental and reproductive effects on C. elegans was explored. Differential gene expression analysis was performed, and 1625 genes (1425 up- and 225 downregulated genes) were regulated in response to PBC treatment. The top 20 regulated genes were col genes (col-129; col-81; col-139; col-71), bli-6, perm-4 and his-24, which indicated that cuticle collagen synthesis, eggshell formation and/or heterochromatin in postembryonic growth may be disrupted following exposure to PBC. Therefore, our study suggested that quality standards be used to test nematode preferences and responses to biochar amendment, with the aim of safe application in soils, seedling substrates or fertilizers.
Collapse
Affiliation(s)
- Jie Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Yixuan Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China; College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin 30071, China.
| | - Shaojie Shan
- College of Life Sciences, Nankai University, Tianjin 30071, China.
| | - Xin Lai
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Dianlin Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Zhiguo Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
22
|
Shan S, Wang W, Song C, Wang M, Sun B, Li Y, Fu Y, Gu X, Ruan W, Rasmann S. The symbiotic bacteria Alcaligenes faecalis of the entomopathogenic nematodes Oscheius spp. exhibit potential biocontrol of plant- and entomopathogenic fungi. Microb Biotechnol 2019; 12:459-471. [PMID: 30618110 PMCID: PMC6465237 DOI: 10.1111/1751-7915.13365] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022] Open
Abstract
Soil-dwelling entomopathogenic nematodes (EPNs) kill arthropod hosts by injecting their symbiotic bacteria into the host hemolymph and feed on the bacteria and the tissue of the dying host for several generations cycles until the arthropod cadaver is completely depleted. The EPN-bacteria-arthropod cadaver complex represents a rich energy source for the surrounding opportunistic soil fungal biota and other competitors. We hypothesized that EPNs need to protect their food source until depletion and that the EPN symbiotic bacteria produce volatile and non-volatile exudations that deter different soil fungal groups in the soil. We isolated the symbiotic bacteria species (Alcaligenes faecalis) from the EPN Oscheius spp. and ran infectivity bioassays against entomopathogenic fungi (EPF) as well as against plant pathogenic fungi (PPF). We found that both volatile and non-volatile symbiotic bacterial exudations had negative effects on both EPF and PPF. Such deterrent function on functionally different fungal strains suggests a common mode of action of A. faecalis bacterial exudates, which has the potential to influence the structure of soil microbial communities, and could be integrated into pest management programs for increasing crop protection against fungal pathogens.
Collapse
Affiliation(s)
- Shaojie Shan
- College of Life SciencesNankai UniversityTianjin300071China
| | - Wenwu Wang
- College of Life SciencesNankai UniversityTianjin300071China
| | - Chunxu Song
- Department of Molecular GeneticsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Minggang Wang
- Department of Plant Protection BiologySwedish University of Agricultural SciencesPO Box 102SE‐23053AlnarpSweden
| | - Bingjiao Sun
- College of Life SciencesNankai UniversityTianjin300071China
| | - Yang Li
- College of Life SciencesNankai UniversityTianjin300071China
| | - Yaqi Fu
- College of Life SciencesNankai UniversityTianjin300071China
| | - Xinghui Gu
- Disease and Insect Bio‐control Engineering Research Center of National Tobacco IndustryYuxi653100YunnanChina
| | - Weibin Ruan
- College of Life SciencesNankai UniversityTianjin300071China
| | - Sergio Rasmann
- Laboratory of Animal Ecology and EntomologyInstitute of ZoologyUniversity of NeuchâtelCP 2CH‐2007NeuchâtelSwitzerland
| |
Collapse
|
23
|
Labaude S, Griffin CT. Transmission Success of Entomopathogenic Nematodes Used in Pest Control. INSECTS 2018; 9:insects9020072. [PMID: 29925806 PMCID: PMC6023359 DOI: 10.3390/insects9020072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
Abstract
Entomopathogenic nematodes from the two genera Steinernema and Heterorhabditis are widely used as biological agents against various insect pests and represent a promising alternative to replace pesticides. Efficacy and biocontrol success can be enhanced through improved understanding of their biology and ecology. Many endogenous and environmental factors influence the survival of nematodes following application, as well as their transmission success to the target species. The aim of this paper is to give an overview of the major topics currently considered to affect transmission success of these biological control agents, including interactions with insects, plants and other members of the soil biota including conspecifics.
Collapse
Affiliation(s)
- Sophie Labaude
- Department of Biology, Maynooth University, W23 A023 Maynooth, Co. Kildare, Ireland.
| | - Christine T Griffin
- Department of Biology, Maynooth University, W23 A023 Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
24
|
Xing X, Li X, Zhang M, Wang Y, Liu B, Xi Q, Zhao K, Wu Y, Yang T. Transcriptome analysis of resistant and susceptible tobacco (Nicotiana tabacum) in response to root-knot nematode Meloidogyne incognita infection. Biochem Biophys Res Commun 2017; 482:1114-1121. [PMID: 27914810 DOI: 10.1016/j.bbrc.2016.11.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
The root-knot nematode (RKN) Meloidogyne incognita reproduces on the roots of tobacco (Nicotiana tabacum), damaging crops, reducing crop yield, and causing economic losses annually. The development of resistant genotypes is an alternative strategy to effectively control these losses. However, the molecular mechanism responsible for host pathogenesis and defense responses in tobacco specifically against RKNs remain poorly understood. Here, root transcriptome analysis of resistant (Yuyan12) and susceptible (Changbohuang) tobacco varieties infected with RKNs was performed. Moreover, 2623 and 545 differentially expressed genes (DEGs) in RKN-infected roots were observed in Yuyan12 and Changbohuang, respectively, compared to those in non-infected roots, including 289 DEGs commonly expressed in the two genotypes. Among these DEGs, genes encoding cell wall modifying proteins, auxin-related proteins, the ROS scavenging system, and transcription factors involved in various biological and physiochemical processes were significantly expressed in both the resistant and susceptible genotypes. This work is thus the first report on the relationships in the RKN-tobacco interaction using transcriptome analysis, and the results provide important information on the mechanism of RKN resistance in tobacco.
Collapse
Affiliation(s)
- Xuexia Xing
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaohui Li
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Mingzhen Zhang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yuan Wang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Bingyang Liu
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Qiliang Xi
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Ke Zhao
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yunjie Wu
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Tiezhao Yang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
25
|
Parasitic Nematode Immunomodulatory Strategies: Recent Advances and Perspectives. Pathogens 2016; 5:pathogens5030058. [PMID: 27649248 PMCID: PMC5039438 DOI: 10.3390/pathogens5030058] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023] Open
Abstract
More than half of the described species of the phylum Nematoda are considered parasitic, making them one of the most successful groups of parasites. Nematodes are capable of inhabiting a wide variety of niches. A vast array of vertebrate animals, insects, and plants are all identified as potential hosts for nematode parasitization. To invade these hosts successfully, parasitic nematodes must be able to protect themselves from the efficiency and potency of the host immune system. Innate immunity comprises the first wave of the host immune response, and in vertebrate animals it leads to the induction of the adaptive immune response. Nematodes have evolved elegant strategies that allow them to evade, suppress, or modulate host immune responses in order to persist and spread in the host. Nematode immunomodulation involves the secretion of molecules that are capable of suppressing various aspects of the host immune response in order to promote nematode invasion. Immunomodulatory mechanisms can be identified in parasitic nematodes infecting insects, plants, and mammals and vary greatly in the specific tactics by which the parasites modify the host immune response. Nematode-derived immunomodulatory effects have also been shown to affect, negatively or positively, the outcome of some concurrent diseases suffered by the host. Understanding nematode immunomodulatory actions will potentially reveal novel targets that will in turn lead to the development of effective means for the control of destructive nematode parasites.
Collapse
|
26
|
Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. Curr Top Microbiol Immunol 2016; 402:123-156. [PMID: 27995342 DOI: 10.1007/82_2016_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entomopathogenic nematodes are important organisms for the biological control of insect pests and excellent models for dissecting the molecular basis of the insect immune response against both the nematode parasites and their mutualistic bacteria. Previous research involving the use of various insects has found distinct differences in the number and nature of immune mechanisms that are activated in response to entomopathogenic nematode parasites containing or lacking their associated bacteria. Recent studies using model insects have started to reveal the identity of certain molecules with potential anti-nematode or antibacterial activity as well as the molecular components that nematodes and their bacteria employ to evade or defeat the insect immune system. Identification and characterization of the genes that regulate the insect immune response to nematode-bacteria complexes will contribute significantly to the development of improved practices to control insects of agricultural and medical importance, and potentially nematode parasites that infect mammals, perhaps even humans.
Collapse
|