1
|
Tuna RW, Achmad NA, Kurniawan I, Khairiyah, Asaf MB, Sapiun Z, Himawan A, Dominguez-Robles J, Aswad M, Permana AD. Development of thermosensitive mucoadhesive gel incorporated lipid microspheres of donepezil for enhanced nose-to-brain delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-28. [PMID: 40262568 DOI: 10.1080/09205063.2025.2492455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
Alzheimer's disease (ALZ) is a chronic disease that affects the brain neurons leading to dementia. Donepezil (DPZ), a first-line treatment for ALZ is a potent symptomatic therapeutic agent. However, the oral and transdermal route represents non-targeted delivery, causing various adverse effects. This study presents the successful incorporation of a DPZ-loaded lipid microsphere (DPZ-LM) system into a thermosensitive-mucoadhesive gel (TMG), thereby enhancing the delivery of DPZ through the nose-to-brain route. To optimize the formulations, several evaluations were conducted, resulting in an optimized formulation of LM using Compritol® exhibited particle size of 8.75 µm, 98.44% of DPZ entrapped, and 93.40% of DPZ loaded in the system with a sustained release manner in the in vitro studies. The TMG-DPZ-LM was prepared using Pluronic® F127 and F68, as the gelling agents, with the addition of sodium alginate, as the mucoadhesive polymer. Following incorporation into TMG-DPZ-LM, the system exhibited excellent physicochemical properties and effective nasal delivery in ex vivo permeation has found that 88.58 ± 12.53 µg/cm2 and retention studies with a mean concentration of 0.0077 mg of retention DPZ in porcine nasal mucosa. The in vivo pharmacokinetic studies demonstrated that the administration of TMG-DPZ-LM via the nose-to-brain route resulted in a significant (p < 0.05) increase in the Cmax, with 207.24 ± 5.16 µg/cm3 of DPZ in the brain that exhibited a significantly different profile compared to the other route and formulation. The TMG-DPZ-LM system that was developed in this study was considered to have improved its efficacy in the treatment of ALZ.
Collapse
Affiliation(s)
- Rachmatya W Tuna
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Nurafni Annisa Achmad
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Irfan Kurniawan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Khairiyah
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Muh Bisfain Asaf
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Zulfiayu Sapiun
- Department of Pharmacy, Health Polytechnic of Gorontalo, Gorontalo, Indonesia
| | - Achmad Himawan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Juan Dominguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Muhammad Aswad
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Andi Dian Permana
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
2
|
Hard SAAA, Shivakumar HN, Bafail DA, Moqbel Redhwan MA. Development of in vitro and in vivo evaluation of mucoadhesive in-situ gel for intranasal delivery of vinpocetine. J Drug Target 2025; 33:528-545. [PMID: 39601452 DOI: 10.1080/1061186x.2024.2433557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
ABSTRACT Alzheimer's disease (AD), which is marked by gradual neuronal decline and subsequent loss of cognitive functions and memory, poses significant treatment challenges. The present study involved the development, in vitro, and in vivo evaluation of a novel intranasal mucoadhesive in-situ gel of vinpocetine (VIN) with the aim to target the brain. An innovative gel formulation composed of poloxamer 407, HPMC E15 LV, and citric acid as a solubilizer was developed by 23 Factorial Design. The developed optimal formulation exhibited favorable rheological properties as it displayed ideal gelation time (31.6 ± 1.52 sec), optimum gelling temperature (32 ± 1.0 °C), enhanced mucoadhesive strength (6622 ± 2.64 dynes/cm2), prolonged adhesion (7.22 ± 0.57 hrs) compared with the baseline formulation (F18), and improved drug release in 12 hrs (39.59 ± 1.6%). In vivo, pharmacokinetics revealed a significant increase in Cmax (∼2-fold) and AUC0-t (∼2-fold) in the brain with the in-situ intranasal gel compared to the oral route. In the rat model of AD, in-situ intranasal gel demonstrated significantly greater efficacy (p < 0.001) than oral administration in alleviating AD symptoms as evidenced by behavioral and histological studies. Thus, VIN in-situ gel can be safe and noninvasive for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Sumaia Abdulbari Ahmed Ali Hard
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - H N Shivakumar
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moqbel Ali Moqbel Redhwan
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Desai S, Thorat P, Majumdar A. A promise of nose to brain delivery of bevacizumab intranasal sol-gel formulation substantiated in rat C6 glioma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4123-4148. [PMID: 39417842 DOI: 10.1007/s00210-024-03536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Glioblastoma is one of the rapidly spreading cancers, with its potent malignancy often linked to pronounced angiogenesis within tumors. To mitigate this vascularization profile, bevacizumab (Avastin®), a monoclonal antibody, has been utilized for its antiangiogenic activity. However, its effectiveness is hindered by challenges in crossing the blood-brain barrier and the risk of off-target organ toxicity. Delivering drugs directly from the nose to the brain through the olfactory or trigeminal nerves bypassing the blood-brain barrier offers enhanced bioavailability and a more precise targeting strategy. To overcome these challenges, we aimed to develop bevacizumab in situ gel loaded mesoporous silica nanoparticles for intranasal delivery and further examine their pharmacokinetic and pharmacodynamic characteristics. The intranasal gel of mesoporous silica nanoparticles loaded with bevacizumab was optimized and formulated using a factorial and quality by design approach. In the case of bevacizumab mesoporous silica nanoparticles, lower particle size and most negative zeta potential were selected as quality target product profiles which is important for drug loading on the mesoporous silica nanoparticles and also transport of these nanoparticles across the nasal mucosa to the brain. A design space with a multidimensional combination of input variables and process parameters has been demonstrated to assure quality. To optimize the design space and achieve the desired quality standards, the base catalyst and surfactant concentration were chosen as the critical process parameters, while particle size and zeta potential were identified as the critical quality attributes. The novel formulation was assessed for physicochemical parameters such as particle size, zeta potential, entrapment efficiency, appearance, color, consistency, and pH. Additionally, studies on in vitro release, ex vivo permeation, stability, nasal toxicity, organ safety, and bioavailability were conducted. The efficacy study was conducted in an orthotopic murine glioblastoma rat model in which C6 Luc cells were instilled in the striatum of the rat's brain. In vivo, bioluminescence imaging of brain tumors was carried out to observe the tumor regression after treatment with the intranasal and intravenous bevacizumab formulation. Biochemical parameters and histopathology were performed for organ safety studies. The optimized intranasal formulation exhibited an average particle size of 318.8 nm and a zeta potential of - 14.7 mV for the mesoporous silica nanoparticles. The formulation also demonstrated an entrapment efficiency of 91.34% and a loading capacity of 45.67%. Further pharmacokinetic studies revealed that the optimized intranasal bevacizumab formulation achieved a significantly higher brain concentration Cmax = 147.9 ng/ml, indicating improved bioavailability compared to rats administered with intravenous bevacizumab formulation (BEVATAS®), which had a Cmax of 127.2 ng/ml. Moreover, this nanoparticle formulation entirely mitigated systemic exposure to bevacizumab. Organ safety evaluation of different biochemical parameters and histopathological analyses revealed that the intranasal bevacizumab-treated group was showing less off-target organ toxicity compared to the group treated with intravenous bevacizumab formulation. Subsequently, the efficacy of this nanosystem was evaluated in an orthotopic glioblastoma rat model, monitoring tumor growth over time through in vivo bioluminescence imaging and assessing anti-angiogenic effects. Twenty-one days post-induction, mesoporous silica nanoparticles loaded with bevacizumab in situ gel exhibited a marked reduction in average bioluminescence radiance (4.39 × 103) from day 7 (1.35 × 107) emphasizing an enhanced anti-angiogenic effect compared to the group treated with intravenous bevacizumab formulation which showed a gradual decrease in average bioluminescence radiance (4.82 × 104) from day 7 (1.42 × 107). These results suggest that the proposed novel formulation of mesoporous silica nanoparticles loaded bevacizumab in situ gel could serve as a promising avenue to enhance glioblastoma treatment efficacy, thereby potentially improving patient quality of life and survival rates significantly. Furthermore, the success of this delivery method could open new avenues for treating other neurological disorders, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. By providing effective brain-targeted therapies, this approach has the potential to revolutionize treatment options and improve outcomes for a broad spectrum of neurological conditions.
Collapse
Affiliation(s)
- Siddhesh Desai
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India
| | - Prajakta Thorat
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India.
| |
Collapse
|
4
|
Jadhav K, Jhilta A, Singh R, Sharma S, Negi S, Ahirwar K, Shukla R, Singh AK, Verma RK. Trans-nasal brain delivery of anti-TB drugs by methyl-β-cyclodextrin microparticles show efficient mycobacterial clearance from central nervous system. J Control Release 2025; 378:671-686. [PMID: 39689814 DOI: 10.1016/j.jconrel.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Central nervous system tuberculosis (CNS-TB) is the most severe extra-pulmonary manifestation of tuberculosis (TB), facing significant challenges due to the limited penetration of anti-TB drugs (ATDs) across the blood-brain barrier (BBB) and their insufficient concentrations at the site of infection. This study aimed to enhance the efficacy of ATDs by encapsulating them in methyl-β-cyclodextrin (M-β-CD) microparticles (ATD-MP) using spray drying, intended for intranasal delivery to manage CNS-TB. M-β-CD microparticles loaded with isoniazid (INH) and rifampicin (RIF) exhibited spherical shapes with slightly deflated surfaces and particle sizes of 6.24 ± 0.77 μm and 5.97 ± 0.50 μm, respectively. M-β-CD improved the permeation of ATDs through RPMI-2650 cell monolayers while reducing drug cytotoxicity. Pharmacokinetic and biodistribution analysis demonstrated that intranasal administration of ATD-MP significantly enhanced the trans-nasal brain delivery of ATDs and their distribution in the brain, achieving the minimum inhibitory concentration. In a murine model of CNS-TB, intranasal insufflation of ATD-MP for four weeks led to a significant reduction (∼0.78 Log10 CFU) in mycobacterial burden in the brain compared to the untreated group (∼3.60 Log10 CFU). These preclinical results underscore the potential of intranasal administration of M-β-CD microparticles as an effective therapeutic strategy for combating brain inflammation in CNS-TB.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Shweta Sharma
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Swarnima Negi
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
5
|
de Araújo JSM, Augusto GGX, Pestana AM, Groppo FC, Rodrigues FSM, Novaes PD, Franz-Montan M. Impact of Storage on In Vitro Permeation and Mucoadhesion Setup Experiments Using Swine Nasal Mucosa. AAPS PharmSciTech 2024; 26:7. [PMID: 39638952 DOI: 10.1208/s12249-024-03002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Intranasal topical administration offers a promising route for local and systemic drug delivery, with in vitro permeation and mucoadhesion studies often using porcine models. However, the impact of storage on mucosal integrity after the procedure remains unaddressed. This study aimed to standardize the preparation process and evaluated whether storage of porcine nasal mucosa impairs its integrity and permeability for experimental comparisons. Additionally, an optimized in vitro mucoadhesion experiment using texture analyzer equipment was investigated. Porcine nasal mucosa was subjected to different storage conditions ("fresh"; refrigerated at 4°C for 24 h and 48 h, and frozen at -20°C for two or three weeks) and assessed using optical and transmission electron microscopy. In vitro permeation assays were performed in a Franz-type vertical diffusion system with lidocaine hydrochloride (LDC). In vitro mucoadhesion assays were conducted using fresh nasal mucosa and a commercial nasal topical formulation using TA.XT. Plus texture analyzer. The variables involved (probe speed, contact time, and application force) in assessing mucoadhesive capacity (maximum mucoadhesive force Fmax and work of mucoadhesion Wmuc) were optimized using a Central Composite Design. Fresh tissues showed no alterations in histological arrangement or in the ultrastructure of adherence junctions. Stored tissues exhibited histological disorganization, reduced thickness, and loss of epithelial integrity. LDC permeability increased in storage tissues (p < 0.05). Contact force had a positive effect on Fmax and Wmuc (p < 0.0001), with a minimum required value of 0.48 N. Variations in contact time and probe speed did not affect the responses (p > 0.05). In conclusion, the preparation technique was adequate to maintain mucosa integrity for permeability studies. However, storing the mucosa at 4 or -20°C overestimated LDC permeation, which could mislead critical data for formulation development. Therefore, the use of fresh mucosa is recommended to ensure more reliable results. For in vitro mucoadhesion assays, a minimum contact force of 0.48N is required for optimal responses.
Collapse
Affiliation(s)
- Jaiza Samara Macena de Araújo
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, 901 Limeira Avenue, Bairro Areião, Piracicaba, Sao Paulo, 13414-903, Brazil
| | - Gabriela Gama Xavier Augusto
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, 901 Limeira Avenue, Bairro Areião, Piracicaba, Sao Paulo, 13414-903, Brazil
| | - Aylla Mesquita Pestana
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, 901 Limeira Avenue, Bairro Areião, Piracicaba, Sao Paulo, 13414-903, Brazil
| | - Francisco Carlos Groppo
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, 901 Limeira Avenue, Bairro Areião, Piracicaba, Sao Paulo, 13414-903, Brazil
| | - Flávia Sammartino Mariano Rodrigues
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, 901 Limeira Avenue, Bairro Areião, Piracicaba, Sao Paulo, 13414-903, Brazil
| | - Pedro Duarte Novaes
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, 901 Limeira Avenue, Bairro Areião, Piracicaba, Sao Paulo, 13414-903, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, 901 Limeira Avenue, Bairro Areião, Piracicaba, Sao Paulo, 13414-903, Brazil.
| |
Collapse
|
6
|
Dong Z, Zhang L, Li G, Li Y, He H, Lu Y, Wu W, Qi J. Mechanism and performance of choline-based ionic liquids in enhancing nasal delivery of glucagon. J Control Release 2024; 375:812-828. [PMID: 39341285 DOI: 10.1016/j.jconrel.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Proteins and peptides have been increasingly developed as pharmaceuticals owing to their high potency and low side effects. However, their administration routes are confined to injections, such as intra-muscular and intra-venous injections, making patient compliance a challenge. Hence, non-injectable delivery systems are crucial to expanding the clinical use of proteins and peptides. In this context, two choline-based ionic liquids (ILs), namely, choline geranic acid ([Ch][Ger]) and choline citric acid ([Ch][Cit]), have been identified as promising agents for enhancing the permeation and prolonging the retention time of glucagon (GC) after intra-nasal administration. Notably, intra-nasal delivery of GC via ILs (GC/ILs) elicited rapid and smooth reversal of acute hypoglycaemia without leading to rebound hyperglycaemia in type 1 diabetic rats subjected to insulin induction. In addition, ILs could improve the transcellular transport of GC through electrostatic interaction. ILs could also transiently open inter-cellular tight junctions transiently to facilitate the paracellular transport of GC. Safety tests indicated that continuous intra-nasal delivery of ILs led to reversible changes, such as epithelial cell inflammation, goblet cell overgrowth, and impacts on the distribution of nasal cilia. However, these changes could be alleviated by the innate self-repair ability of mucosal epithelial cells. This study highlights the considerable potential of ILs for long-term nasal delivery of biomacromolecules.
Collapse
Affiliation(s)
- Zirong Dong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Luyu Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Guangyue Li
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Yang Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Haisheng He
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Yi Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Wei Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China.
| |
Collapse
|
7
|
Desai B, Adrish M, Mohan A, Lugogo NL. Biologics in Asthma: Emerging Biologics. Immunol Allergy Clin North Am 2024; 44:751-763. [PMID: 39389722 DOI: 10.1016/j.iac.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Advances in our understanding of asthma pathophysiology have led to the advent of multiple targeted asthma therapies such as biologics. However, partial response to biologics occurs, indicating residual disease activity in some patients. Hence, there exists a need for new therapies that focus on novel pathways, alongside perhaps evaluation of combination biologic therapies and modulators of downstream cytokine activation. Therefore, although our current focus is on biologics; it is critical to take a more holistic approach including consideration for nonbiologic therapies that have the potential to significantly advance asthma care.
Collapse
Affiliation(s)
- Brinda Desai
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Muhammad Adrish
- Department of Pulmonary & Critical Care, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Arjun Mohan
- Department of Medicine, University of Michigan, 300 North Ingalls Street, Suite 2d21, Ann Arbor, MI 48109, USA
| | - Njira L Lugogo
- Department of Medicine, University of Michigan, 300 North Ingalls Street, Suite 2c40, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Jadhav K, Jhilta A, Singh R, Ray E, Kumar V, Yadav AB, Singh AK, Verma RK. Effective cerebral tuberculosis treatment via nose-to-brain transport of anti-TB drugs using mucoadhesive nano-aggregates. NANOSCALE 2024; 16:16485-16499. [PMID: 39135488 DOI: 10.1039/d4nr02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Central nervous system tuberculosis (CNS-TB) is a severe form of extra-pulmonary tuberculosis with high mortality and morbidity rates. The standard treatment regimen for CNS-TB parallels that of pulmonary TB, despite the challenge posed by the blood-brain barrier (BBB), which limits the efficacy of first-line anti-TB drugs (ATDs). Nose-to-brain (N2B) drug delivery offers a promising solution for achieving high ATD concentrations directly at infection sites in the brain while bypassing the BBB. This study aimed to develop chitosan nanoparticles encapsulating ATDs, specifically isoniazid (INH) and rifampicin (RIF). These nanoparticles were further processed into micro-sized chitosan nano-aggregates (NA) via spray drying. Both INH-NA and RIF-NA showed strong mucoadhesion and significantly higher permeation rates across RPMI 2650 cells compared to free ATDs. Intranasal administration of these NAs to TB-infected mice for four weeks resulted in a significant reduction of mycobacterial load by approximately ∼2.86 Log 10 CFU compared to the untreated group. This preclinical data highlights the efficacy of intranasal chitosan nano-aggregates in treating CNS-TB, demonstrating high therapeutic potential, and addressing brain inflammation challenges. To our knowledge, this study is the first to show nasal delivery of ATD nano-formulations for CNS-TB management.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Awadh Bihari Yadav
- Center of Biotechnology, Nehru Science Centre, University of Allahabad, Prayagraj-211002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
9
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
10
|
Wong CYJ, Baldelli A, Tietz O, van der Hoven J, Suman J, Ong HX, Traini D. An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting. Int J Pharm 2024; 654:123922. [PMID: 38401871 DOI: 10.1016/j.ijpharm.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The surge in neurological disorders necessitates innovative strategies for delivering active pharmaceutical ingredients to the brain. The non-invasive intranasal route has emerged as a promising approach to optimize drug delivery to the central nervous system by circumventing the blood-brain barrier. While the intranasal approach offers numerous advantages, the lack of a standardized protocol for drug testing poses challenges to both in vitro and in vivo studies, limiting the accurate interpretation of nasal drug delivery and pharmacokinetic data. This review explores the in vitro experimental assays employed by the pharmaceutical industry to test intranasal formulation. The focus lies on understanding the diverse techniques used to characterize the intranasal delivery of drugs targeting the brain. Parameters such as drug release, droplet size measurement, plume geometry, deposition in the nasal cavity, aerodynamic performance and mucoadhesiveness are scrutinized for their role in evaluating the performance of nasal drug products. The review further discusses the methodology for in vivo characterization in detail, which is essential in evaluating and refining drug efficacy through the nose-to-brain pathway. Animal models are indispensable for pre-clinical drug testing, offering valuable insights into absorption efficacy and potential variables affecting formulation safety. The insights presented aim to guide future research in intranasal drug delivery for neurological disorders, ensuring more accurate predictions of therapeutic efficacy in clinical contexts.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Alberto Baldelli
- Faculty of Food and Land Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julie Suman
- Next Breath, an Aptar Pharma Company, Baltimore, MD 21227, USA
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
11
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
12
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
13
|
Sécher T, Heuzé-Vourc'h N. Barriers for orally inhaled therapeutic antibodies. Expert Opin Drug Deliv 2023; 20:1071-1084. [PMID: 37609943 DOI: 10.1080/17425247.2023.2249821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Respiratory diseases represent a worldwide health issue. The recent Sars-CoV-2 pandemic, the burden of lung cancer, and inflammatory respiratory diseases urged the development of innovative therapeutic solutions. In this context, therapeutic antibodies (Abs) offer a tremendous opportunity to benefit patients with respiratory diseases. Delivering Ab through the airways has been demonstrated to be relevant to improve their therapeutic index. However, few inhaled Abs are on the market. AREAS COVERED This review describes the different barriers that may alter the fate of inhaled therapeutic Abs in the lungs at steady state. It addresses both physical and biological barriers and discusses the importance of taking into consideration the pathological changes occurring during respiratory disease, which may reinforce these barriers. EXPERT OPINION The pulmonary route remains rare for delivering therapeutic Abs, with few approved inhaled molecules, despite promising evidence. Efforts must focus on the intertwined barriers associated with lung diseases to develop appropriate Ab-formulation-device combo, ensuring optimal Ab deposition in the respiratory tract. Finally, randomized controlled clinical trials should be carried out to establish inhaled Ab therapy as prominent against respiratory diseases.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
14
|
Antunes JL, Amado J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems, Drug Molecule Functionalization and Intranasal Delivery: An Update on the Most Promising Strategies for Increasing the Therapeutic Efficacy of Antidepressant and Anxiolytic Drugs. Pharmaceutics 2023; 15:998. [PMID: 36986859 PMCID: PMC10054777 DOI: 10.3390/pharmaceutics15030998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and anxiety are high incidence and debilitating psychiatric disorders, usually treated by antidepressant or anxiolytic drug administration, respectively. Nevertheless, treatment is usually given through the oral route, but the low permeability of the blood-brain barrier reduces the amount of drug that will be able to reach it, thus consequently reducing the therapeutic efficacy. Which is why it is imperative to find new solutions to make these treatments more effective, safer, and faster. To overcome this obstacle, three main strategies have been used to improve brain drug targeting: the intranasal route of administration, which allows the drug to be directly transported to the brain by neuronal pathways, bypassing the blood-brain barrier and avoiding the hepatic and gastrointestinal metabolism; the use of nanosystems for drug encapsulation, including polymeric and lipidic nanoparticles, nanometric emulsions, and nanogels; and drug molecule functionalization by ligand attachment, such as peptides and polymers. Pharmacokinetic and pharmacodynamic in vivo studies' results have shown that intranasal administration can be more efficient in brain targeting than other administration routes, and that the use of nanoformulations and drug functionalization can be quite advantageous in increasing brain-drug bioavailability. These strategies could be the key to future improved therapies for depressive and anxiety disorders.
Collapse
Affiliation(s)
- Jéssica L. Antunes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Amado
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
15
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Elhabak M, Salama AAA, Salama AH. Nose-to-brain delivery of galantamine loaded nanospray dried polyacrylic acid/taurodeoxycholate mixed matrix as a protective therapy in lipopolysaccharide-induced Alzheimer's in mice model. Int J Pharm 2023; 632:122588. [PMID: 36623740 DOI: 10.1016/j.ijpharm.2023.122588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
One of the promising drug delivery approaches is performed by nanosizing the administered drug product using the nanospray drying technique. In this study, a combination of several formulation factors was integrated and exploited to augment the bioavailability of galantamine hydrobromide (GAL) via the intranasal route. Nanosized polymeric particles were fabricated using the mucoadhesive polymer, polyacrylic acid (PAA), and the permeability booster, sodium taurodeoxycholate (TDC). First, a preliminary study was conducted to adjust the nanospray drying conditions. Then, formulations were prepared on the basis of a mixed factorial experimental design and further analyzed using Design Expert® software. Different responses were investigated: particle size, polydispersity index, spray rate, drying efficiency, and percent yield. The optimized formulation was further assessed for physical morphology using the scanning electron microscope, flowability, in vitro drug release, and in vivo brain cell uptake using confocal laser scanning microscopy. The promising formulation (F6), composed of equal ratio of PAA and TDC and 20 mg GAL, exhibited a particle size of 185.55 ± 4.3 nm, polydispersity index of 0.413 ± 0.02, and yield-value of 69.58 ± 5.82 %. It also displayed good flowability, complete drug release within 2 h, and enhanced in vivo fluorescent dye uptake and penetration in brain cells. The efficacy of the optimized formulation was examined using lipopolysaccharide-induced Alzheimer's in mice. Results revealed the advantageous influence of the optimized formulation (F6) through downregulation of NF-κβ, IL-1β and GFAP as well as upregulating TGF-1β in adult mice.
Collapse
Affiliation(s)
- Mona Elhabak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
17
|
Turano E, Scambi I, Virla F, Bonetti B, Mariotti R. Extracellular Vesicles from Mesenchymal Stem Cells: Towards Novel Therapeutic Strategies for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032917. [PMID: 36769247 PMCID: PMC9917806 DOI: 10.3390/ijms24032917] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases are fatal disorders of the central nervous system (CNS) which currently lack effective treatments. The application of mesenchymal stem cells (MSCs) represents a new promising approach for treating these incurable disorders. Growing evidence suggest that the therapeutic effects of MSCs are due to the secretion of neurotrophic molecules through extracellular vesicles. The extracellular vesicles produced by MSCs (MSC-EVs) have valuable innate properties deriving from parental cells and could be exploited as cell-free treatments for many neurological diseases. In particular, thanks to their small size, they are able to overcome biological barriers and reach lesion sites inside the CNS. They have a considerable pharmacokinetic and safety profile, avoiding the critical issues related to the fate of cells following transplantation. This review discusses the therapeutic potential of MSC-EVs in the treatment of neurodegenerative diseases, focusing on the strategies to further enhance their beneficial effects such as tracking methods, bioengineering applications, with particular attention to intranasal delivery as a feasible strategy to deliver MSC-EVs directly to the CNS in an effective and minimally invasive way. Current progresses and limiting issues to the extent of the use of MSC-EVs treatment for human neurodegenerative diseases will be also revised.
Collapse
Affiliation(s)
- Ermanna Turano
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Virla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Bruno Bonetti
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37124 Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7164
| |
Collapse
|
18
|
Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:119-152. [PMID: 35910081 PMCID: PMC9308891 DOI: 10.1007/s40005-022-00589-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023]
Abstract
Background Cranial nerve-related diseases such as brain tumors, Alzheimer's disease, and epilepsy are serious diseases that continue to threaten human. Brain-related diseases are increasing worldwide, including in the United States and Korea, and these increases are closely related to the exposure to harmful substances and excessive stress caused by rapid industrialization and environmental pollution. Drug delivery to the brain is very important for the effective prevention and treatment of brain-related diseases. However, due to the presence of the blood-brain barrier and the extensive first-pass metabolism effect, the general routes of administration such as oral and intravenous routes have limitations in drug delivery to the brain. Therefore, as an alternative, the nasal-brain drug delivery route is attracting attention as a route for effective drug delivery to the brain. Areas covered This review includes physiological factors, advantages, limitations, current application status, especially in clinical applications, and the necessary factors for consideration in formulation development related to nasal-brain drug delivery. Expert opinion The nasal-brain drug delivery route has the advantage of enhancing drug delivery to the brain locally, mainly through the olfactory route rather than the systemic circulation. The nasal-brain lymphatic system has recently attracted attention, and it has been implied that the delivery of anticancer drugs to the brain nervous system is possible effectively. However, there are limitations such as low drug permeability, as well as nasal mucosa and the mucociliary system, as obstacles in nasal-brain drug delivery. Therefore, to overcome the limitations of nasal-brain drug delivery, the use of nanocarriers and mucoadhesive agents is being attempted. However, very few drugs have been officially approved for clinical application via the nasal-brain drug delivery route. This is probably because the understanding of and related studies on nasal-brain drug delivery are limited. In this review, we tried to explore the major considerations and target factors in drug delivery through the nasal-brain route based on physiological knowledge and formulation research information. This will help to provide a mechanistic understanding of drug delivery through the nasal-brain route and bring us one step closer to developing effective formulations and drugs in consideration of the key factors for nasal-brain drug delivery.
Collapse
|
19
|
Sadeghi M, Asadirad A, Koushki K, Keshavarz Shahbaz S, Dehnavi S. Recent advances in improving intranasal allergen-specific immunotherapy; focus on delivery systems and adjuvants. Int Immunopharmacol 2022; 113:109327. [PMID: 36257257 DOI: 10.1016/j.intimp.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Allergen-specific Immunotherapy (AIT) is the main therapeutic strategy to control and treat allergic disorders. Intranasal Immunotherapy (INIT) was introduced as a needle-free, noninvasive, and efficient approach among various routes of allergen administration. Since direct exposure of nasal mucosa to allergen extracts could induce local and systemic reactions, recent studies focus on establishing novel formulations using various delivery systems and adjuvants to improve INIT efficacy. This review categorizes and describes natural and synthetic micro/nanoparticles such as chitosan, PLGA, liposome, exosome, and nano-emulation droplets used as delivery systems or immunomodulatory and immune-regulatory agents. Also, multiple microbial agents, including probiotics, mycobacterial and viral components, TLR ligands, and biologic agents, i.e., antibody fragments, recombinant cytokines, vitamin A, and pulsed dendritic cells (DCs), are other platforms that are discussed. In addition, future perspectives and proposed strategies to help INIT were provided.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum, and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Koushki
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
20
|
Nanomedicine approaches for medulloblastoma therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Nose-to-Brain Delivery of Therapeutic Peptides as Nasal Aerosols. Pharmaceutics 2022; 14:pharmaceutics14091870. [PMID: 36145618 PMCID: PMC9502087 DOI: 10.3390/pharmaceutics14091870] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Central nervous system (CNS) disorders, such as psychiatric disorders, neurodegeneration, chronic pain, stroke, brain tumor, spinal cord injury, and many other CNS diseases, would hugely benefit from specific and potent peptide pharmaceuticals and their low inherent toxicity. The delivery of peptides to the brain is challenging due to their low metabolic stability, which decreases their duration of action, poor penetration of the blood-brain barrier (BBB), and their incompatibility with oral administration, typically resulting in the need for parenteral administration. These challenges limit peptides’ clinical application and explain the interest in alternative routes of peptide administration, particularly nose-to-brain (N-to-B) delivery, which allows protein and peptide drugs to reach the brain noninvasively. N-to-B delivery can be a convenient method for rapidly targeting the CNS, bypassing the BBB, and minimizing systemic exposure; the olfactory and trigeminal nerves provide a unique pathway to the brain and the external environment. This review highlights the intranasal delivery of drugs, focusing on peptide delivery, illustrating various clinical applications, nasal delivery devices, and the scope and limitations of this approach.
Collapse
|
24
|
Nair AB, Chaudhary S, Shah H, Jacob S, Mewada V, Shinu P, Aldhubiab B, Sreeharsha N, Venugopala KN, Attimarad M, Shah J. Intranasal Delivery of Darunavir-Loaded Mucoadhesive In Situ Gel: Experimental Design, In Vitro Evaluation, and Pharmacokinetic Studies. Gels 2022; 8:gels8060342. [PMID: 35735686 PMCID: PMC9223067 DOI: 10.3390/gels8060342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
The clinical efficacy of antiretroviral therapy in NeuroAIDS is primarily limited by the low perfusion of the drug to the brain. The objective of the current investigation was to design and develop an in situ mucoadhesive gel loaded with darunavir to assess the feasibility of brain targeting through the intranasal route. Preliminary batches (F1−F9) were prepared and evaluated for various pharmaceutical characteristics. A full factorial design of the experiment was applied to optimize and assess the effect of two influencing variables (Carbopol 934P (X1) and Poloxamer 407 (X2)) on the response effects (gelation temperature (Y1) and % drug release (Y2) at 8 h). The data demonstrate that both influencing variables affect the response variables significantly (p < 0.05). The optimized formulation (F7) exhibited favorable rheological properties, adequate mucoadhesion, sustained drug release, and greater permeation across the nasal mucosa. An in vitro ciliotoxicity study confirms the nontoxicity of the optimized in situ gel (D7) on the nasal mucosa. An in vivo pharmacokinetic study in rats was performed to assess drug targeting to the brain following the nasal application of the selected in situ gel (D7). Significantly higher (p < 0.0001) Cmax (~4-fold) and AUC0-α (~3.5-fold) values were noticed in the brain after nasal application, as compared to the intravenous route. However, less systemic exposure to darunavir was noticed with nasal therapy, which confirms the low absorption of the drug into the central compartment. Overall, the data here demonstrate that the optimized in situ mucoadhesive nasal gel is effective in targeting darunavir to the brain by the nasal route and could be a viable option for the treatment of NeuroAIDS.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (N.S.); (K.N.V.); (M.A.)
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| | - Sunita Chaudhary
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India; (S.C.); (H.S.)
| | - Hiral Shah
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India; (S.C.); (H.S.)
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Vivek Mewada
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (N.S.); (K.N.V.); (M.A.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (N.S.); (K.N.V.); (M.A.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (N.S.); (K.N.V.); (M.A.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (N.S.); (K.N.V.); (M.A.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| |
Collapse
|
25
|
Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm 2022; 176:1-20. [PMID: 35568256 DOI: 10.1016/j.ejpb.2022.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
Abstract
Powders for nasal delivery have been recognized as advantageous dosage forms over liquids due to increased stability and residence time on nasal mucosa, with improved bioavailability. They can be manufactured by spray-drying, allowing the optimization of the particle properties that are critical to guarantee nasal deposition, as size and shape. It is also a scalable and flexible method already explored extensively in the pharmaceutical industry. However, it is important to understand how process parameters, particle physical properties and formulation considerations affect the product performance. Hence, this review aims to provide an overview of nasal powder formulation and processing through spray drying, with an emphasis on the variables that impact on performance. To this purpose, we describe the physical, biological and pharmacological phenomena prior to drug absorption as well as the most relevant powder properties. Formulation considerations including qualitative and quantitative composition are then reviewed, as well as manufacturing considerations including spray drying relevant parameters.
Collapse
Affiliation(s)
- Patrícia Henriques
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; R&D, Drug Product Development, Hovione FarmaCiencia SA, Lisbon, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | | |
Collapse
|
26
|
Yuwanda A, Surini S, Harahap Y, Jufri M. Study of Valproic Acid Liposomes for Delivery into the Brain through an Intranasal Route. Heliyon 2022; 8:e09030. [PMID: 35284670 PMCID: PMC8914119 DOI: 10.1016/j.heliyon.2022.e09030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Intranasal drug transport through the olfactory route to the brain is an effective drug route for increased absorption and bioavailability of the drug. The objective of this study was to increase the penetration of valproic acid as an anticonvulsant into a delivery system comprising liposomes. Valproic acid liposomes were prepared by a thin-layer hydration technique using soybean phosphatidylcholine and cholesterol as the main ingredients. The formulations were evaluated for diameter size, entrapment efficiency (EE), zeta potential, polydispersity index, and morphology. ex vivo permeation using sheep nasal mucosa and in vivo efficacy were assessed by performing a pharmacokinetic study in Wistar albino rats following intranasal administration of the formulations in comparison with pure drug. The mean size particle of optimized liposomes ranged from 90 to 210 nm with a low polydispersity index (<0.5). The EE of optimized liposomes was between 60% and 85%, increasing the concentration of phosphatidylcholine added to the formula. Transmission electron microscopy observations (40,000×) showed that valproic acid liposomes have a spherical molecular shape and a particle size of below 250 nm. The ex vivo and in vivo results showed that liposomal formulations provided enhanced brain exposure. Among the formulations studied, Formula 4 (F4) showed greater uptake of valproic acid into the brain than plasma. The high brain targeting efficiency index for F4 indicated the preferential transport of the drug to the brain. The study demonstrated the successful formulation of surface-modified valproic acid liposomes for nasal delivery with brain targeting potential.
Collapse
|
27
|
Human Lactobacillus Biosurfactants as Natural Excipients for Nasal drug Delivery of Hydrocortisone. Pharmaceutics 2022; 14:pharmaceutics14030524. [PMID: 35335901 PMCID: PMC8952429 DOI: 10.3390/pharmaceutics14030524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
The inclusion of a chemical permeation enhancer in a dosage form is considered an effective approach to improve absorption across the nasal mucosa. Herein we evaluated the possibility of exploiting biosurfactants (BS) produced by Lactobacillus gasseri BC9 as innovative natural excipients to improve nasal delivery of hydrocortisone (HC). BC9-BS ability to improve HC solubility and the BS mucoadhesive potential were investigated using the surfactant at a concentration below and above the critical micelle concentration (CMC). In vitro diffusion studies through the biomimetic membrane PermeaPad® and the same synthetic barrier functionalized with a mucin layer were assessed to determine BC9-BS absorption enhancing properties in the absence and presence of the mucus layer. Lastly, the diffusion study was performed across the sheep nasal mucosa using BC9-BS at a concentration below the CMC. Results showed that BC9-BS was able to interact with the main component of the nasal mucosa, and that it allowed for a greater solubilization and also permeation of the drug when it was employed at a low concentration. Overall, it seems that BC9-BS could be a promising alternative to chemical surfactants in the nasal drug delivery field.
Collapse
|
28
|
Iontophoresis of Biological Macromolecular Drugs. Pharmaceutics 2022; 14:pharmaceutics14030525. [PMID: 35335900 PMCID: PMC8953920 DOI: 10.3390/pharmaceutics14030525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, biological macromolecular drugs (e.g., peptides, proteins, and nucleic acids) have become a significant therapeutic modality for the treatment of various diseases. These drugs are considered superior to small-molecule drugs because of their high specificity and favorable safety profiles. However, such drugs are limited by their low oral bioavailability and short half-lives. Biological macromolecular drugs are typically administrated via invasive methods, e.g., intravenous or subcutaneous injections, which can be painful and induce needle phobia. Noninvasive transdermal delivery is an alternative administration route for the local and systemic delivery of biological macromolecular drugs. However, a challenge with the noninvasive transdermal delivery of biological macromolecular drugs is the outermost layer of the skin, known as the stratum corneum, which is a physical barrier that restricts the entry of extraneous macromolecules. Iontophoresis (IP) relies on the application of a low level of electricity for transdermal drug delivery, in order to facilitate the skin permeation of hydrophilic and charged molecules. The IP of several biological macromolecular drugs has recently been investigated. Herein, we review the IP-mediated noninvasive transdermal delivery of biological macromolecular drugs, their routes of skin permeation, their underlying mechanisms, and their advance applications.
Collapse
|
29
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
30
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
31
|
Ndemazie NB, Inkoom A, Morfaw EF, Smith T, Aghimien M, Ebesoh D, Agyare E. Multi-disciplinary Approach for Drug and Gene Delivery Systems to the Brain. AAPS PharmSciTech 2021; 23:11. [PMID: 34862567 PMCID: PMC8817187 DOI: 10.1208/s12249-021-02144-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Drug delivery into the brain has for long been a huge challenge as the blood–brain barrier (BBB) offers great resistance to entry of foreign substances (with drugs inclusive) into the brain. This barrier in healthy individuals is protective to the brain, disallowing noxious substances present in the blood to get to the brain while allowing for the exchange of small molecules into the brain by diffusion. However, BBB is disrupted under certain disease conditions, such as cerebrovascular diseases including acute ischemic stroke and intracerebral hemorrhage, and neurodegenerative disorders including multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD), and cancers. This review aims to provide a broad overview of present-day strategies for brain drug delivery, emphasizing novel delivery systems. Hopefully, this review would inspire scientists and researchers in the field of drug delivery across BBB to uncover new techniques and strategies to optimize drug delivery to the brain. Considering the anatomy, physiology, and pathophysiological functioning of the BBB in health and disease conditions, this review is focused on the controversies drawn from conclusions of recently published studies on issues such as the penetrability of nanoparticles into the brain, and whether active targeted drug delivery into the brain could be achieved with the use of nanoparticles. We also extended the review to cover novel non-nanoparticle strategies such as using viral and peptide vectors and other non-invasive techniques to enhance brain uptake of drugs.
Collapse
|
32
|
Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Dholakia J, Prabhakar B, Shende P. Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm 2021; 608:121068. [PMID: 34481011 DOI: 10.1016/j.ijpharm.2021.121068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a metabolic disorder defined by higher blood glucose levels in the body generally controlled by antidiabetic agents (oral) and insulin (subcutaneous). To avoid the limitations of the conventional routes such as lower bioavailability and pain at the site of injection in case of parenteral route modified delivery systems are proposed like transdermal, pulmonary and inhalation delivery and among the other delivery systems nasal drug delivery system that shows the advantages such as reduced frequency of dose, higher patient compliance, safety, ease of administration, prolonged residence time, improved absorption of drug in the body, higher bioavailability and stability. This review article discusses the strategies adopted for the delivery of antidiabetic drugs by the intranasal delivery system. The insulin and glucagon-like peptides on experimentation show results of improved therapeutic levels and patient compliance. The drugs are transported by the paracellular route and absorbed through the epithelial tight junctions successfully by utilising different strategies. The limitations of the nasal delivery such as irritation or burning on administration, degradation by the enzymes, mucociliary clearance, lesser volume of the nasal cavity and permeation through the nasal mucosa. To overcome the challenges different strategies for the nasal administration are studied such as polymers, particulate delivery systems, complexation with peptides and smart delivery using glucose-responsive systems. A vast scope of intranasal preparations exists for antidiabetic drugs in the future for the management of diabetes and more clinical studies are the requirement for the societal impact to battle against diabetes.
Collapse
Affiliation(s)
- Jheel Dholakia
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
34
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
35
|
Intranasal Administration for Pain: Oxytocin and Other Polypeptides. Pharmaceutics 2021; 13:pharmaceutics13071088. [PMID: 34371778 PMCID: PMC8309171 DOI: 10.3390/pharmaceutics13071088] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Pain, particularly chronic pain, remains one of the most debilitating and difficult-to-treat conditions in medicine. Chronic pain is difficult to treat, in part because it is associated with plastic changes in the peripheral and central nervous systems. Polypeptides are linear organic polymers that are highly selective molecules for neurotransmitter and other nervous system receptors sites, including those associated with pain and analgesia, and so have tremendous potential in pain therapeutics. However, delivery of polypeptides to the nervous system is largely limited due to rapid degradation within the peripheral circulation as well as the blood–brain barrier. One strategy that has been shown to be successful in nervous system deposition of polypeptides is intranasal (IN) delivery. In this narrative review, we discuss the delivery of polypeptides to the peripheral and central nervous systems following IN administration. We briefly discuss the mechanism of delivery via the nasal–cerebral pathway. We review recent studies that demonstrate that polypeptides such as oxytocin, delivered IN, not only reach key pain-modulating regions in the nervous system but, in doing so, evoke significant analgesic effects. IN administration of polypeptides has tremendous potential to provide a non-invasive, rapid and effective method of delivery to the nervous system for chronic pain treatment and management.
Collapse
|
36
|
Sutthapitaksakul L, Dass CR, Sriamornsak P. Donepezil—an updated review of challenges in dosage form design. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev 2021; 171:266-288. [PMID: 33617902 DOI: 10.1016/j.addr.2021.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Intercellular tight junctions represent a formidable barrier against paracellular drug absorption at epithelia (e.g., nasal, intestinal) and the endothelium (e.g., blood-brain barrier). In order to enhance paracellular transport of drugs and increase their bioavailability and organ deposition, active excipients modulating tight junctions have been applied. First-generation of permeation enhancers (PEs) acted by unspecific interactions, while recently developed PEs address specific physiological mechanisms. Such target specific tight junction modulators (TJMs) have the advantage of a defined specific mechanism of action. To date, merely a few of these novel active excipients has entered into clinical trials, as their lack in safety and efficiency in vivo often impedes their commercialisation. A stronger focus on the development of such active excipients would result in an economic and therapeutic improvement of current and future drugs.
Collapse
Affiliation(s)
- Joël Brunner
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sakthikumar Ragupathy
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
38
|
Wang K, Wang L, Chen L, Peng C, Luo B, Mo J, Chen W. Intranasal administration of dauricine loaded on graphene oxide: multi-target therapy for Alzheimer's disease. Drug Deliv 2021; 28:580-593. [PMID: 33729067 PMCID: PMC7971267 DOI: 10.1080/10717544.2021.1895909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system characterized by progressive cognitive and memory-related impairment. However, current therapeutic treatments have not proved sufficiently effective, mainly due to the complicated pathogenesis of the disease. In this study, a nano-formulation of graphene oxide (GO) loaded with dauricine (Dau) was investigated in terms of the combined anti-inflammatory and anti-oxidative stress effects of Dau and the inhibition of misfolding and aggregation of the amyloid-β (Aβ) protein by GO. Both in vivo and in vitro models were induced using Aβ1-42, and the formulation was administered nasally in mice. The results showed that GO loaded with Dau greatly reduced oxidative stress through increasing superoxide dismutase levels and decreasing reactive oxygen species and malondialdehyde levels in vitro; it also alleviated the cognitive memory deficits and brain glial cell activation in mice with Aβ1-42-induced AD. This proved that GO loaded with Dau could protect against Aβ1-42-induced oxidative damage and apoptosis in both in vitro and in vivo AD models; therefore, GO loaded with Dau has the potential to be an effective and agent for the rapid treatment of AD.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Lingfeng Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, China
| | - Ling Chen
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Chiwei Peng
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Beijiao Luo
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Jingxin Mo
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Chen
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
39
|
Wang D, Du Y, Zhang W, Han X, Zhang H, Wang Z, Liu N, Li M, Gao X, Zhuang X, Gao J, Zheng A. Development and in vivo evaluation of intranasal formulations of parathyroid hormone (1-34). Drug Deliv 2021; 28:487-498. [PMID: 33657948 PMCID: PMC7935113 DOI: 10.1080/10717544.2021.1889718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
For efficient intranasal transport of parathyroid hormone (1-34) [PTH(1-34)], there is a great medical need to investigate permeation enhancers for intranasal formulations. In this study, the development of PTH(1-34) intranasal formulations was conducted. Based on conformation and chemical stability studies, the most preferable aqueous environment was determined to be 0.008 M acetate buffer solution (ABS). Subsequently, citric acid and Kolliphor® HS·15 were compared as permeation enhancers. The mechanisms of action of citric acid and Kolliphor® HS·15 were investigated using an in vitro model of nasal mucosa, and Kolliphor® HS·15 led to higher permeability of fluorescein isothiocyanate-labeled PTH(1-34) (FITC-PTH) by enhancing both the transcellular and paracellular routes. Moreover, citric acid showed severe mucosal toxicity resulting in cilia shedding, while Kolliphor® HS·15 did not cause obvious mucosa damage. Finally, Kolliphor® HS·15 was studied as a permeation enhancer using a liquid chromatography tandem mass spectrometry (LC-MS/MS) method. The results showed that 5% and 10% Kolliphor® HS·15 increased the bioavailability of PTH(1-34) to 14.76% and 30.87%, respectively. In conclusion, an effective and biosafe PTH(1-34) intranasal formulation was developed by using 10% Kolliphor® HS·15 as a permeation enhancer. Intranasal formulations with higher concentrations of Kolliphor® HS·15 for higher bioavailability of PTH(1-34) could be further researched.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yimeng Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaolu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
40
|
Jia Z, Guo Z, Yang CT, Prestidge C, Thierry B. "Mucus-on-Chip": A new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus. Int J Pharm 2021; 598:120391. [PMID: 33621642 DOI: 10.1016/j.ijpharm.2021.120391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
The mucus covering of epithelial tissues presents one significant biological barrier to the uptake and absorption of particulate carriers. Improved understanding of the mechanisms mediating the transport of nanoparticles across such mucus layers would accelerate their development as optimised mucosal drug delivery formulations (e.g. via oral and rectal routes). Herein, an in vitro mucus model ("Mucus-on-Chip") was developed to enable the interaction and transport of functionalised nanoparticles and reconstituted mucus to be quantitatively investigated in real-time. We verified that the diffusion of nanoparticles into mucus is highly dependent on their biointerfacial properties. Muco-inert modification (PEGylation) significantly enhanced the mucopenetration of 50 nm and 200 nm nanoparticles, whereas limited mucopenetration was observed for pectin coated mucoadhesive nanoparticles. Furthermore, this model can be easily adapted to mimic specific physiological mucus environments. Mucus pre-treated with a mucolytic agent displayed reduced barrier function and therefore significantly accelerated mucopenetration of nanoparticles, which was independent of their size and biointerfacial properties. This new "Mucus-on-Chip" methodology provides detailed insight into the dynamics of nanoparticle-mucus interaction, which can be applied to refine the design of particulate formulations for more efficient mucosal drug delivery.
Collapse
Affiliation(s)
- Zhengyang Jia
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Zhaobin Guo
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chih-Tsung Yang
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Clive Prestidge
- UniSA Clinical and Health Science and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
41
|
Ragupathy S, Brunner J, Borchard G. Short peptide sequence enhances epithelial permeability through interaction with protein kinase C. Eur J Pharm Sci 2021; 160:105747. [PMID: 33582284 DOI: 10.1016/j.ejps.2021.105747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 01/13/2023]
Abstract
We have identified a short peptide sequence (L-R5) acting as partial inhibitor of intracellular protein kinase C, capable of tight junction modulation in terms of reversible and non-toxic drug permeation enhancement. L-R5 is a pentapeptide with a cell-penetrating group at the N-terminus and of the sequence myristoyl-ARRWR. Apically applied in vitro, L-R5 transiently increased epithelial permeability within minutes, enhancing apical-to-basolateral (AB) transport of 4-kDa dextran and BCS class III drug naloxone. L-R5 was shown to be stable and effective at 37°C over a period of 24 hours. L-R5 was shown to be non-cytotoxic in consecutive exposure studies on primary human nasal epithelial cells by LDH release assay and ciliary beating frequency test. Finally, L-R5 by itself showed very low diffusion across epithelial monolayers, which is of advantage with regard to its expected negligible systemic bioavailability and side effects. Taken together, these data demonstrate the potential of short peptide partial inhibitor L-R5 to enhance the epithelial paracellular permeability via a reversible mechanism, and in a non-toxic manner.
Collapse
Affiliation(s)
- Sakthikumar Ragupathy
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO) University of Geneva, CH-1211Geneva, Switzerland
| | - Joël Brunner
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO) University of Geneva, CH-1211Geneva, Switzerland
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO) University of Geneva, CH-1211Geneva, Switzerland.
| |
Collapse
|
42
|
Mignani S, Shi X, Karpus A, Majoral JP. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur J Med Chem 2021; 209:112905. [PMID: 33069435 PMCID: PMC7548078 DOI: 10.1016/j.ejmech.2020.112905] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
There are several routes of administration to the brain, including intraparenchymal, intraventricular, and subarachnoid injections. The blood-brain barrier (BBB) impedes the permeation and access of most drugs to the central nervous system (CNS), and consequently, many neurological diseases remain undertreated. For past decades, to circumvent this effect, several nanocarriers have been developed to deliver drugs to the brain. Importantly, intranasal (IN) administration can allow direct delivery of drugs into the brain through the anatomical connection between the nasal cavity and brain without crossing the BBB. In this regard, dendrimers may possess great potential to deliver drugs to the brain by IN administration, bypassing the BBB and reducing systemic exposure and side effects, to treat diseases of the CNS. In this original concise review, we highlighted the few examples advocated regarding the use of dendrimers to deliver CNS drugs directly via IN. This review highlighed the few examples of the association of dendrimer encapsulating drugs (e.g., small compounds: haloperidol and paeonol; macromolecular compounds: dextran, insulin and calcitonin; and siRNA) using IN administration. Good efficiencies were observed. In addition, we will present the in vivo effects of PAMAM dendrimers after IN administration, globally, showing no general toxicity.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination Du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex 4, France; Université Toulouse 118 Route de Narbonne, 31077, Toulouse, Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination Du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex 4, France; Université Toulouse 118 Route de Narbonne, 31077, Toulouse, Cedex 4, France.
| |
Collapse
|
43
|
Xu J, Tao J, Wang J. Design and Application in Delivery System of Intranasal Antidepressants. Front Bioeng Biotechnol 2020; 8:626882. [PMID: 33409272 PMCID: PMC7779764 DOI: 10.3389/fbioe.2020.626882] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
One of the major reasons why depressed patients fail their treatment course is the existence of the blood-brain barrier (BBB), which prevents drugs from being delivered to the central nervous system (CNS). In recent years, nasal drug delivery has achieved better systemic bioavailability and activity in low doses in antidepressant treatment. In this review, we focused on the latest strategies for delivery carriers (or formation) of intranasal antidepressants. We began this review with an overview of the nasal drug delivery systems, including nasal drug delivery route, absorption mechanism, advantages, and limitations in the nasal drug delivery route. Next, we introduced the development of nasal drug delivery devices, such as powder devices, liquid-based devices, and so on. Finally, intranasal delivery carriers of antidepressants in clinical studies, including nanogels, nanostructured lipid, liposomes nanoparticles, nanoemulsions/microemulsion, were summarized. Moreover, challenges and future perspectives on recent progress of intranasal delivery carriers in antidepressant treatments were discussed.
Collapse
Affiliation(s)
- Jingying Xu
- School of Marxism, Yanshan University, Qinhuangdao, China
- Mental Health Service Center, Yanshan University, Qinhuangdao, China
| | - Jiangang Tao
- School of Marxism, Yanshan University, Qinhuangdao, China
- Mental Health Service Center, Yanshan University, Qinhuangdao, China
| | - Jidong Wang
- Applied Chemistry Key Laboratory of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, China
| |
Collapse
|
44
|
Lam JKW, Cheung CCK, Chow MYT, Harrop E, Lapwood S, Barclay SIG, Wong ICK. Transmucosal drug administration as an alternative route in palliative and end-of-life care during the COVID-19 pandemic. Adv Drug Deliv Rev 2020; 160:234-243. [PMID: 33137363 PMCID: PMC7603972 DOI: 10.1016/j.addr.2020.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has led to a surge in need for alternative routes of administration of drugs for end of life and palliative care, particularly in community settings. Transmucosal routes include intranasal, buccal, sublingual and rectal. They are non-invasive routes for systemic drug delivery with the possibility of self-administration, or administration by family caregivers. In addition, their ability to offer rapid onset of action with reduced first-pass metabolism make them suitable for use in palliative and end-of-life care to provide fast relief of symptoms. This is particularly important in COVID-19, as patients can deteriorate rapidly. Despite the advantages, these routes of administration face challenges including a relatively small surface area for effective drug absorption, small volume of fluid for drug dissolution and the presence of a mucus barrier, thereby limiting the number of drugs that are suitable to be delivered through the transmucosal route. In this review, the merits, challenges and limitations of each of these transmucosal routes are discussed. The goals are to provide insights into using transmucosal drug delivery to bring about the best possible symptom management for patients at the end of life, and to inspire scientists to develop new delivery systems to provide effective symptom management for this group of patients.
Collapse
Affiliation(s)
- Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region.
| | - Chucky C K Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region; School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Y T Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region; Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Emily Harrop
- Helen and Douglas House, Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Susie Lapwood
- Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Stephen I G Barclay
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, United Kingdom
| | - Ian C K Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region; Centre for Medicines Optimisation Research and Education (CMORE), Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
45
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|
46
|
Popescu R, Ghica MV, Dinu-Pîrvu CE, Anuța V, Lupuliasa D, Popa L. New Opportunity to Formulate Intranasal Vaccines and Drug Delivery Systems Based on Chitosan. Int J Mol Sci 2020; 21:ijms21145016. [PMID: 32708704 PMCID: PMC7404068 DOI: 10.3390/ijms21145016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
In an attempt to develop drug delivery systems that bypass the blood–brain barrier (BBB) and prevent liver and intestinal degradation, it was concluded that nasal medication meets these criteria and can be used for drugs that have these drawbacks. The aim of this review is to present the influence of the properties of chitosan and its derivatives (mucoadhesion, permeability enhancement, surface tension, and zeta potential) on the development of suitable nasal drug delivery systems and on the nasal bioavailability of various active pharmaceutical ingredients. Interactions between chitosan and proteins, lipids, antigens, and other molecules lead to complexes that have their own applications or to changing characteristics of the substances involved in the bond (conformational changes, increased stability or solubility, etc.). Chitosan and its derivatives have their own actions (antibacterial, antifungal, immunostimulant, antioxidant, etc.) and can be used as such or in combination with other molecules from the same class to achieve a synergistic effect. The applicability of the properties is set out in the second part of the paper, where nasal formulations based on chitosan are described (vaccines, hydrogels, nanoparticles, nanostructured lipid carriers (NLC), powders, emulsions, etc.).
Collapse
Affiliation(s)
- Roxana Popescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
- Correspondence:
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy ”Carol Davila”, 020956 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| |
Collapse
|
47
|
Matías-Guiu J, Matías-Guiu JA, Montero-Escribano P, Barcia JA, Canales-Aguirre AA, Mateos-Diaz JC, Gómez-Pinedo U. Particles Containing Cells as a Strategy to Promote Remyelination in Patients With Multiple Sclerosis. Front Neurol 2020; 11:638. [PMID: 32733364 PMCID: PMC7358567 DOI: 10.3389/fneur.2020.00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
The repair of demyelinated lesions is a key objective in multiple sclerosis research. Remyelination fundamentally depends on oligodendrocyte progenitor cells (OPC) reaching the lesion; this is influenced by numerous factors including age, disease progression time, inflammatory activity, and the pool of OPCs available, whether they be NG2 cells or cells derived from neural stem cells. Administering OPCs has been proposed as a potential cell therapy; however, these cells can only be administered directly. This article discusses the potential administration of OPCs encapsulated within hydrogel particles composed of biocompatible biomaterials, via the nose-to-brain pathway. We also discuss conditions for the indication of this therapy, and such related issues as the influence on endogenous remyelination, migration of OPCs to demyelinated areas, and the immune response, given the autoimmune nature of multiple sclerosis. Chitosan and derivatives constitute the most promising biomaterial for this purpose, although these issues must be addressed. In conclusion, this line of research may yield an alternative to the remyelinating drugs currently being studied.
Collapse
Affiliation(s)
- Jorge Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.,Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Paloma Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Juan C Mateos-Diaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de 12 Jalisco, CIATEJ, Zapopan, Mexico
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
48
|
Kumar A, Naik PK, Pradhan D, Ghosh G, Rath G. Mucoadhesive formulations: innovations, merits, drawbacks, and future outlook. Pharm Dev Technol 2020; 25:797-814. [DOI: 10.1080/10837450.2020.1753771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amresh Kumar
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga, Punjab, India
| | | | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
49
|
Inoue D, Furubayashi T, Tanaka A, Sakane T, Sugano K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur J Pharm Biopharm 2020; 149:145-153. [DOI: 10.1016/j.ejpb.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/25/2019] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
|
50
|
Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer's disease. Eur J Pharm Biopharm 2020; 148:38-53. [PMID: 31926222 DOI: 10.1016/j.ejpb.2019.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Since health care systems dedicate substantial resources to Alzheimer's disease (AD), it poses an increasing challenge to scientists and health care providers worldwide, especially that many decades of research in the medical field revealed no optimal effective treatment for this disease. The intranasal administration route seems to be a preferable route of anti-AD drug delivery over the oral one as it demonstrates an ability to overcome the related obstacles reflected in low bioavailability, limited brain exposure and undesired pharmacokinetics or side effects. This delivery route can bypass the systemic circulation through the intraneuronal and extraneuronal pathways, providing truly needleless and direct brain drug delivery of the therapeutics due to its large surface area, porous endothelial membrane, the avoidance of the first-pass metabolism, and ready accessibility. Among the different nano-carrier systems developed, lipid-based nanosystems have become increasingly popular and have proven to be effective in managing the common symptoms of AD when administered via the nose-to-brain delivery route, which provides an answer to circumventing the BBB. The design of such lipid-based nanocarriers could be challenging since many factors can contribute to the quality of the final product. Hence, according to the authors, it is recommended to follow the quality by design methodology from the early stage of development to ensure high product quality while saving efforts and costs. This review article aims to draw attention to the up-to-date findings in the field of lipid-based nanosystems and the potential role of developing such forms in the management of AD by means of the nose-to-brain delivery route, in addition to highlighting the significant role of applying QbD methodology in this development.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| |
Collapse
|