1
|
Nosková E, Sambucci KM, Petrželková KJ, Červená B, Modrý D, Pafčo B. Strongyloides in non-human primates: significance for public health control. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230006. [PMID: 38008123 PMCID: PMC10676817 DOI: 10.1098/rstb.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/18/2023] [Indexed: 11/28/2023] Open
Abstract
Primates are an important source of infectious disease in humans. Strongyloidiasis affects an estimated 600 million people worldwide, with a global distribution and hotspots of infection in tropical and subtropical regions. Recently added to the list of neglected tropical diseases, global attention has been demanded in the drive for its control. Through a literature review of Strongyloides in humans and non-human primates (NHP), we analysed the most common identification methods and gaps in knowledge about this nematode genus. The rise of molecular-based methods for Strongyloides detection is evident in both humans and NHP and provides an opportunity to analyse all data available from primates. Dogs were also included as an important host species of Strongyloides and a potential bridge host between humans and NHP. This review highlights the lack of molecular data across all hosts-humans, NHP and dogs-with the latter highly underrepresented in the database. Despite the cosmopolitan nature of Strongyloides, there are still large gaps in our knowledge for certain species when considering transmission and pathogenicity. We suggest that a unified approach to Strongyloides detection be taken, with an optimized, repeatable molecular-based method to improve our understanding of this parasitic infection. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Eva Nosková
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Kelly M. Sambucci
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Department of Anthropology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Klára J. Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Barbora Červená
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
2
|
Bryant AS, Akimori D, Stoltzfus JDC, Hallem EA. A standard workflow for community-driven manual curation of Strongyloides genome annotations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220443. [PMID: 38008112 PMCID: PMC10676816 DOI: 10.1098/rstb.2022.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/18/2023] [Indexed: 11/28/2023] Open
Abstract
Advances in the functional genomics and bioinformatics toolkits for Strongyloides species have positioned these species as genetically tractable model systems for gastrointestinal parasitic nematodes. As community interest in mechanistic studies of Strongyloides species continues to grow, publicly accessible reference genomes and associated genome annotations are critical resources for researchers. Genome annotations for multiple Strongyloides species are broadly available via the WormBase and WormBase ParaSite online repositories. However, a recent phylogenetic analysis of the receptor-type guanylate cyclase (rGC) gene family in two Strongyloides species highlights the potential for errors in a large percentage of current Strongyloides gene models. Here, we present three examples of gene annotation updates within the Strongyloides rGC gene family; each example illustrates a type of error that may occur frequently within the annotation data for Strongyloides genomes. We also extend our analysis to 405 previously curated Strongyloides genes to confirm that gene model errors are found at high rates across gene families. Finally, we introduce a standard manual curation workflow for assessing gene annotation quality and generating corrections, and we discuss how it may be used to facilitate community-driven curation of parasitic nematode biodata. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Astra S. Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Damia Akimori
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, CA 90095, USA
| | | | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Fitzpatrick LLJ, Ligabue-Braun R, Nekaris KAI. Slowly Making Sense: A Review of the Two-Step Venom System within Slow ( Nycticebus spp.) and Pygmy Lorises ( Xanthonycticebus spp.). Toxins (Basel) 2023; 15:514. [PMID: 37755940 PMCID: PMC10536643 DOI: 10.3390/toxins15090514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Since the early 2000s, studies of the evolution of venom within animals have rapidly expanded, offering new revelations on the origins and development of venom within various species. The venomous mammals represent excellent opportunities to study venom evolution due to the varying functional usages, the unusual distribution of venom across unrelated mammals and the diverse variety of delivery systems. A group of mammals that excellently represents a combination of these traits are the slow (Nycticebus spp.) and pygmy lorises (Xanthonycticebus spp.) of south-east Asia, which possess the only confirmed two-step venom system. These taxa also present one of the most intriguing mixes of toxic symptoms (cytotoxicity and immunotoxicity) and functional usages (intraspecific competition and ectoparasitic defence) seen in extant animals. We still lack many pieces of the puzzle in understanding how this venom system works, why it evolved what is involved in the venom system and what triggers the toxic components to work. Here, we review available data building upon a decade of research on this topic, focusing especially on why and how this venom system may have evolved. We discuss that research now suggests that venom in slow lorises has a sophisticated set of multiple uses in both intraspecific competition and the potential to disrupt the immune system of targets; we suggest that an exudate diet reveals several toxic plants consumed by slow and pygmy lorises that could be sequestered into their venom and which may help heal venomous bite wounds; we provide the most up-to-date visual model of the brachial gland exudate secretion protein (BGEsp); and we discuss research on a complement component 1r (C1R) protein in saliva that may solve the mystery of what activates the toxicity of slow and pygmy loris venom. We conclude that the slow and pygmy lorises possess amongst the most complex venom system in extant animals, and while we have still a lot more to understand about their venom system, we are close to a breakthrough, particularly with current technological advances.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-170, Brazil
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
4
|
Nosková E, Modrý D, Baláž V, Červená B, Jirků-Pomajbíková K, Zechmeisterová K, Leowski C, Petrželková KJ, Pšenková I, Vodička R, Kessler SE, Ngoubangoye B, Setchell JM, Pafčo B. Identification of potentially zoonotic parasites in captive orangutans and semi-captive mandrills: Phylogeny and morphological comparison. Am J Primatol 2023; 85:e23475. [PMID: 36776131 DOI: 10.1002/ajp.23475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
Cysts and trophozoites of vestibuliferid ciliates and larvae of Strongyloides were found in fecal samples from captive orangutans Pongo pygmaeus and P. abelii from Czech and Slovak zoological gardens. As comparative material, ciliates from semi-captive mandrills Mandrillus sphinx from Gabon were included in the study. Phylogenetic analysis of the detected vestibuliferid ciliates using ITS1-5.8s-rRNA-ITS2 and partial 18S ribosomal deoxyribonucleic acid (rDNA) revealed that the ciliates from orangutans are conspecific with Balantioides coli lineage A, while the ciliates from mandrills clustered with Buxtonella-like ciliates from other primates. Morphological examination of the cysts and trophozoites using light microscopy did not reveal differences robust enough to identify the genera of the ciliates. Phylogenetic analysis of detected L1 larvae of Strongyloides using partial cox1 revealed Strongyloides stercoralis clustering within the cox1 lineage A infecting dogs, humans, and other primates. The sequences of 18S rDNA support these results. As both B. coli and S. stercoralis are zoonotic parasites and the conditions in captive and semi-captive settings may facilitate transmission to humans, prophylactic measures should reflect the findings.
Collapse
Affiliation(s)
- Eva Nosková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences , Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Vojtech Baláž
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Barbora Červená
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | | | | | - Clotilde Leowski
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Liberec Zoo, Liberec, Czech Republic
| | | | | | - Sharon E Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Barthélémy Ngoubangoye
- Centre de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Anthropology, and Behaviour, Ecology and Evolution Research Centre, Durham University, Durham, UK
| | - Joanna M Setchell
- Centre de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Anthropology, and Behaviour, Ecology and Evolution Research Centre, Durham University, Durham, UK
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
5
|
Richins T, Sapp SG, Ketzis JK, Willingham AL, Mukaratirwa S, Qvarnstrom Y, Barratt JL. Genetic characterization of Strongyloides fuelleborni infecting free-roaming African vervets ( Chlorocebus aethiops sabaeus) on the Caribbean island of St. Kitts. Int J Parasitol Parasites Wildl 2023; 20:153-161. [PMID: 36860205 PMCID: PMC9969202 DOI: 10.1016/j.ijppaw.2023.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Human strongyloidiasis is an important neglected tropical disease primarily caused by the nematode Strongyloides stercoralis, and to a lesser extent Strongyloides fuelleborni which mainly infects non-human primates. Zoonotic sources of infection have important implications for control and prevention of morbidity and mortality caused by strongyloidiasis. Recent molecular evidence suggests that for S. fuelleborni, primate host specificity is variable among genotypes across the Old World, and consequently that these types likely vary in their capacity for human spillover infections. Populations of free-roaming vervet monkeys (Chlorocebus aethiops sabaeus), introduced to the Caribbean Island of Staint Kitts from Africa, live in close contact with humans, and concern has arisen regarding their potential to serve as reservoirs of zoonotic infections. In this study, we sought to determine the genotypes of S. fuelleborni infecting St. Kitts vervets to explore whether they are potential reservoirs for human-infecting S. fuelleborni types. Fecal specimens were collected from St. Kitts vervets and S. fuelleborni infections were confirmed microscopically and by PCR. Strongyloides fuelleborni genotypes were determined from positive fecal specimens using an Illumina amplicon sequencing-based genotyping approach targeting the mitochondrial cox1 locus and 18S rDNA hypervariable regions I and IV of Strongyloides species. Phylogenetic analysis of resultant genotypes supported that S. fuelleborni from St. Kitts vervets is of an exclusively African variety, falling within the same monophyletic group as an isolate which has been detected previously in a naturally infected human from Guinea-Bissau. This observation highlights that St. Kitts vervets may serve as potential reservoirs for zoonotic S. fuelleborni infection, which warrants further exploration.
Collapse
Affiliation(s)
- Travis Richins
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, USA,Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Jennifer K. Ketzis
- Biomedical Sciences, One Health Center for Zoonoses & Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Arve Lee Willingham
- Department of Veterinary Medicine, College of Agriculture & Veterinary Medicine, United Arab Emirates
| | - Samson Mukaratirwa
- Biomedical Sciences, One Health Center for Zoonoses & Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Yvonne Qvarnstrom
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, USA
| | - Joel L.N. Barratt
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, USA,Corresponding author.
| |
Collapse
|
6
|
Ko PP, Haraguchi M, Hara T, Hieu DD, Ito A, Tanaka R, Tanaka M, Suzumura T, Ueda M, Yoshida A, Maruyama H, Nagayasu E. Population genetics study of Strongyloides fuelleborni and phylogenetic considerations on primate-infecting species of Strongyloides based on their mitochondrial genome sequences. Parasitol Int 2022; 92:102663. [PMID: 36058466 DOI: 10.1016/j.parint.2022.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
Abstract
Strongyloides is a genus of parasitic nematodes of vertebrates comprising approximately 50 documented species, each with various host ranges. Among these, three species (S. stercoralis, S. fuelleborni, and S. cebus) are known to infect primate hosts. S. fuelleborni typically infects non-human primates in the Old World. To complement the existing information on the global genetic structure of this species, we conducted a genotyping study of S. fuelleborni samples collected from rhesus macaques in Myanmar, Japanese macaques in Japan, and some zoo-kept primates. This study identified a novel haplotype group in isolates from the Myanmar rhesus macaques. Subsequently, we obtained the complete or nearly complete mitochondrial genome sequences of S. fuelleborni, S. cebus (Strongyloides of New World monkeys), and S. vituli (Strongyloides of cattle). Phylogenetic analysis based on concatenated mitochondrial protein sequences of various Strongyloides species indicated a close relationship between S. fuelleborni, S. vituli and S. papillosus (Strongyloides in sheep and cattle). S. cebus is quite distantly related to both S. fuelleborni and S. stercoralis, which led to the hypothesis that the three primate Strongyloides species evolved independently as parasites of primates.
Collapse
Affiliation(s)
- Phoo Pwint Ko
- Department of Microbiology, University of Medicine 1, No. 245, Myoma Kyaung Street, Lanmadaw Township, Yangon, Myanmar; Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Misaki Haraguchi
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Takashi Hara
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Duong Duc Hieu
- Department of Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 12406, Viet Nam
| | - Ayaka Ito
- Hirakawa Zoological Park, 5669-1 Hirakawa-cho, Kagoshima-shi, Japan.
| | - Ryusei Tanaka
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Mio Tanaka
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Takafumi Suzumura
- Koshima Field Station, Wildlife Research Center, Kyoto University, 16-1 Ichiki, Kushima, Miyazaki 889-3311, Japan.
| | - Miya Ueda
- Yokohama Zoological Gardens Zoorasia, 1171-1, Kami-Shirane-cho, Yokohama 241-0001, Japan.
| | - Ayako Yoshida
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, 889-2192 Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, 889-2192 Miyazaki, Japan.
| | - Haruhiko Maruyama
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Eiji Nagayasu
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
7
|
Jacobson D, Zheng Y, Plucinski MM, Qvarnstrom Y, Barratt JLN. Evaluation of various distance computation methods for construction of haplotype-based phylogenies from large MLST dataset. Mol Phylogenet Evol 2022; 177:107608. [PMID: 35963590 PMCID: PMC10127246 DOI: 10.1016/j.ympev.2022.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Multi-locus sequence typing (MLST) is widely used to investigate genetic relationships among eukaryotic taxa, including parasitic pathogens. MLST analysis workflows typically involve construction of alignment-based phylogenetic trees - i.e., where tree structures are computed from nucleotide differences observed in a multiple sequence alignment (MSA). Notably, alignment-based phylogenetic methods require that all isolates/taxa are represented by a single sequence. When multiple loci are sequenced these sequences may be concatenated to produce one tree that includes information from all loci. Alignment-based phylogenetic techniques are robust and widely used yet possess some shortcomings, including how heterozygous sites are handled, intolerance for missing data (i.e., partial genotypes), and differences in the way insertions-deletions (indels) are scored/treated during tree construction. In certain contexts, 'haplotype-based' methods may represent a viable alternative to alignment-based techniques, as they do not possess the aforementioned limitations. This is namely because haplotype-based methods assess genetic similarity based on numbers of shared (i.e., intersecting) haplotypes as opposed to similarities in nucleotide composition observed in an MSA. For haplotype-based comparisons, choosing an appropriate distance statistic is fundamental, and several statistics are available to choose from. However, a comprehensive assessment of various available statistics for their ability to produce a robust haplotype-based phylogenetic reconstruction has not yet been performed. We evaluated seven distance statistics by applying them to extant MLST datasets from the gastrointestinal parasite Cyclospora cayetanensis and two species of pathogenic nematode of the genus Strongyloides. We compare the genetic relationships identified using each statistic to epidemiologic, geographic, and host metadata. We show that Barratt's heuristic definition of genetic distance was the most robust among the statistics evaluated. Consequently, it is proposed that Barratt's heuristic represents a useful approach for use in the context of challenging MLST datasets possessing features (i.e., high heterozygosity, partial genotypes, and indel or repeat-based polymorphisms) that confound or preclude the use of alignment-based methods.
Collapse
Affiliation(s)
- David Jacobson
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Yueli Zheng
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; Eagle Global Scientific, San Antonio, TX, USA
| | - Mateusz M Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yvonne Qvarnstrom
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel L N Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
8
|
Cháves-González LE, Morales-Calvo F, Mora J, Solano-Barquero A, Verocai GG, Rojas A. What lies behind the curtain: Cryptic diversity in helminth parasites of human and veterinary importance. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100094. [PMID: 35800064 PMCID: PMC9253710 DOI: 10.1016/j.crpvbd.2022.100094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Parasite cryptic species are morphologically indistinguishable but genetically distinct organisms, leading to taxa with unclear species boundaries. Speciation mechanisms such as cospeciation, host colonization, taxon pulse, and oscillation may lead to the emergence of cryptic species, influencing host-parasite interactions, parasite ecology, distribution, and biodiversity. The study of cryptic species diversity in helminth parasites of human and veterinary importance has gained relevance, since their distribution may affect clinical and epidemiological features such as pathogenicity, virulence, drug resistance and susceptibility, mortality, and morbidity, ultimately affecting patient management, course, and outcome of treatment. At the same time, the need for recognition of cryptic species diversity has implied a transition from morphological to molecular diagnostic methods, which are becoming more available and accessible in parasitology. Here, we discuss the general approaches for cryptic species delineation and summarize some examples found in nematodes, trematodes and cestodes of medical and veterinary importance, along with the clinical implications of their taxonomic status. Lastly, we highlight the need for the correct interpretation of molecular information, and the correct use of definitions when reporting or describing new cryptic species in parasitology, since molecular and morphological data should be integrated whenever possible.
Collapse
Affiliation(s)
- Luis Enrique Cháves-González
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Fernando Morales-Calvo
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Alberto Solano-Barquero
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
9
|
Bradbury RS, Pafčo B, Nosková E, Hasegawa H. Strongyloides genotyping: a review of methods and application in public health and population genetics. Int J Parasitol 2021; 51:1153-1166. [PMID: 34757088 DOI: 10.1016/j.ijpara.2021.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Strongyloidiasis represents a major medical and veterinary helminthic disease. Human infection is caused by Strongyloides stercoralis, Strongyloides fuelleborni fuelleborni and Strongyloides fuelleborni kellyi, with S.stercoralis accounting for the majority of cases. Strongyloides f. fuelleborni likely represents a zoonosis acquired from non-human primates (NHPs), while no animal reservoir for S. f. kellyi infection has been found. Whether S. stercoralis represents a zoonosis acquired from dogs and cats remains unanswered. Over the past two decades various tools have been applied to genotype Strongyloides spp. The most commonly sequenced markers have been the hyper-variable regions I and IV of the 18S rRNA gene and selected portions of the cytochrome c oxidase subunit I gene. These markers have been sequenced and compared in Strongyloides from multiple hosts and geographical regions. More recently, a machine learning algorithm multi-locus sequence typing approach has been applied using these markers, while others have applied whole genome sequencing. Genotyping of Strongyloides from dogs, cats, NHPs and humans has identified that S. stercoralis likely originated in dogs and adapted to human hosts. It has also been demonstrated that S. stercoralis is distinct from S. f. fuelleborni and S. f. kellyi. Two distinct genetic clades of S. stercoralis exist, one restricted to dogs and another infecting humans, NHPs, dogs and cats. Genotyping of S. f. fuelleborni has identified two separate clades, one associated with African isolates and another Indochinese peninsular clade. This review summarises the history and development of genotyping tools for Strongyloides spp. It describes the findings of major studies to date in the context of the epidemiology and evolutionary biology of these helminths, with a specific focus on human-infecting species.
Collapse
Affiliation(s)
- Richard S Bradbury
- Health Innovation and Transformation Centre, Federation University, Berwick, Victoria, Australia.
| | - Barbora Pafčo
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Nosková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hideo Hasegawa
- Department of Biomedicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| |
Collapse
|
10
|
Takaki Y, Kadekaru S, Takami Y, Yoshida A, Maruyama H, Une Y, Nagayasu E. First demonstration of Strongyloides parasite from an imported pet meerkat - Possibly a novel species in the stercoralis/procyonis group. Parasitol Int 2021; 84:102399. [PMID: 34077794 DOI: 10.1016/j.parint.2021.102399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
Strongyloides is a genus of parasitic nematodes of vertebrates that contains over 50 species, each with a variable host range. A recent molecular phylogenetic analysis on this genus showed that Strongyloides spp. from various carnivore hosts form a strongly supported clade together with Strongyloides stercoralis, a major pathogen of humans and dogs (named the "stercoralis/procyonis group"). In the present study, we obtained DNA sequencing data of Strongyloides sp. isolated from an imported meerkat (Suricata suricatta). Based on the phylogenetic analysis, we considered this a new member of the stercoralis/procyonis group. This study represents the first isolation and molecular characterization of a Strongyloides species from hosts belonging to the family Herpestidae (mongooses and meerkat). However, whether the meerkat serves as a natural host of this Strongyloides species remains to be investigated.
Collapse
Affiliation(s)
- Youki Takaki
- Verts Animal Hospital, 4-3-1 Morooka, Hakata-Ku Fukuoka-shi, Fukuoka 812-0894, Japan
| | - Sho Kadekaru
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Okayama University of Science, 794-8555, Japan
| | - Yoshinori Takami
- Verts Animal Hospital, 4-3-1 Morooka, Hakata-Ku Fukuoka-shi, Fukuoka 812-0894, Japan
| | - Ayako Yoshida
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, 889-2192 Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, 889-2192 Miyazaki, Japan
| | - Haruhiko Maruyama
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, 889-2192 Miyazaki, Japan; Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki, Japan
| | - Yumi Une
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Okayama University of Science, 794-8555, Japan
| | - Eiji Nagayasu
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki, Japan.
| |
Collapse
|
11
|
Frias L, Hasegawa H, Chua TH, Sipangkui S, Stark DJ, Salgado-Lynn M, Goossens B, Keuk K, Okamoto M, MacIntosh AJJ. Parasite community structure in sympatric Bornean primates. Int J Parasitol 2021; 51:925-933. [PMID: 33862059 DOI: 10.1016/j.ijpara.2021.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/26/2022]
Abstract
Parasites are important components of ecosystems, influencing trophic networks, competitive interactions and biodiversity patterns. Nonetheless, we are not nearly close to disentangling their complex roles in natural systems. Southeast Asia falls within global areas targeted as most likely to source parasites with zoonotic potential, where high rates of land conversion and fragmentation have altered the circulation of wildlife species and their parasites, potentially resulting in altered host-parasite systems. Although the overall biodiversity in the region predicts equally high, or even higher, parasite diversity, we know surprisingly little about wild primate parasites, even though this constitutes the first step towards a more comprehensive understanding of parasite transmission processes. Here, we characterise the gastrointestinal helminth parasite assemblages of a community of Bornean primates living along the Kinabatangan floodplain in Sabah (Malaysian Borneo), including two species endemic to the island. Through parasitological analyses, and by using several measures of parasite infection as proxies for parasite diversity and distribution, we show that (i) most parasite taxonomic groups are not limited to a single host, suggesting a greater flexibility for habitat disturbance, (ii) parasite infracommunities of nocturnal primates differ from their diurnal counterparts, reflecting both phylogenetic and ecological constraints, and (iii) soil-transmitted helminths such as whipworm, threadworm and nodule worm are widespread across the primate community. This study also provides new parasite records for southern pig-tailed macaques (Macaca nemestrina), silvered langurs (Trachypithecus cristatus) and Western tarsiers (Cephalopachus bancanus) in the wild, while adding to the limited records for the other primate species in the community. Given the information gap regarding primate-parasite associations in the region, the information presented here should prove relevant for future studies of parasite biodiversity and infectious disease ecology in Asia and elsewhere.
Collapse
Affiliation(s)
- Liesbeth Frias
- Asian School of the Environment, Nanyang Technological University, Singapore; Primate Research Institute, Kyoto University, Inuyama, Japan; Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia.
| | - Hideo Hasegawa
- Department of Biomedicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Danica J Stark
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Milena Salgado-Lynn
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK; Wildlife Health, Genetic and Forensic Laboratory, Kota Kinabalu, Sabah, Malaysia; Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Benoit Goossens
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK; Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Kenneth Keuk
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | - Andrew J J MacIntosh
- Primate Research Institute, Kyoto University, Inuyama, Japan; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
12
|
Barratt JLN, Sapp SGH. Machine learning-based analyses support the existence of species complexes for Strongyloides fuelleborni and Strongyloides stercoralis. Parasitology 2020; 147:1184-1195. [PMID: 32539880 PMCID: PMC7443747 DOI: 10.1017/s0031182020000979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human strongyloidiasis is a serious disease mostly attributable to Strongyloides stercoralis and to a lesser extent Strongyloides fuelleborni, a parasite mainly of non-human primates. The role of animals as reservoirs of human-infecting Strongyloides is ill-defined, and whether dogs are a source of human infection is debated. Published multi-locus sequence typing (MLST) studies attempt to elucidate relationships between Strongyloides genotypes, hosts, and distributions, but typically examine relatively few worms, making it difficult to identify population-level trends. Combining MLST data from multiple studies is often impractical because they examine different combinations of loci, eliminating phylogeny as a means of examining these data collectively unless hundreds of specimens are excluded. A recently-described machine learning approach that facilitates clustering of MLST data may offer a solution, even for datasets that include specimens sequenced at different combinations of loci. By clustering various MLST datasets as one using this procedure, we sought to uncover associations among genotype, geography, and hosts that remained elusive when examining datasets individually. Multiple datasets comprising hundreds of S. stercoralis and S. fuelleborni individuals were combined and clustered. Our results suggest that the commonly proposed 'two lineage' population structure of S. stercoralis (where lineage A infects humans and dogs, lineage B only dogs) is an over-simplification. Instead, S. stercoralis seemingly represents a species complex, including two distinct populations over-represented in dogs, and other populations vastly more common in humans. A distinction between African and Asian S. fuelleborni is also supported here, emphasizing the need for further resolving these taxonomic relationships through modern investigations.
Collapse
Affiliation(s)
- Joel L N Barratt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Parasitic Diseases Branch, Atlanta, USA
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Sarah G H Sapp
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Parasitic Diseases Branch, Atlanta, USA
| |
Collapse
|
13
|
Janwan P, Rodpai R, Intapan PM, Sanpool O, Tourtip S, Maleewong W, Thanchomnang T. Possible transmission of Strongyloides fuelleborni between working Southern pig-tailed macaques (Macaca nemestrina) and their owners in Southern Thailand: Molecular identification and diversity. INFECTION GENETICS AND EVOLUTION 2020; 85:104516. [PMID: 32860989 DOI: 10.1016/j.meegid.2020.104516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022]
Abstract
Human strongyloidiasis is caused by Strongyloides stercoralis, S. fuelleborni fuelleborni and Strongyloides f. kellyi. Strongyloides fuelleborni is a soil-transmitted nematode parasite typically infecting non-human primates. The southern pig-tailed macaque (Macaca nemestrina) is distributed throughout the southern part of Thailand and could be a source of zoonotic transmission of this nematode. Here, we extracted DNA from Strongyloides speciescultured from the feces of southern pig-tailed macaques and their owners. Using PCR and sequencing of the extracted DNA, we compared the nucleotide sequences of these worms using portions of the 18S rDNA hypervariable region IV (HVR-IV) and the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. Sequences from the 18S rRNA gene were obtained from worms from 23 southern pig-tailed macaques and from one owner. These sequences were identical with each other and with all East and Southeast Asian S. fuelleborni sequences (from Japan, Thailand, and Lao PDR) in the GenBank database. A median-joining network of published cox1 sequences (n = 123), in combination with the present 24 new sequences, represented 107 haplotypes distributed among six clusters, which corresponded to geographical localities but did not relate to host species. The S. fuelleborni cox1 sequences from some southern pig-tailed macaques and the one infected owner shared the same cox1 haplotype. This is the first evidence of likely zoonotic transmission of S. fuelleborni from a reservoir host, M. nemestrina.
Collapse
Affiliation(s)
- Penchom Janwan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pewpan M Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somjintana Tourtip
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Tongjit Thanchomnang
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand.
| |
Collapse
|
14
|
Ko PP, Suzuki K, Canales-Ramos M, Aung MPPTHH, Htike WW, Yoshida A, Montes M, Morishita K, Gotuzzo E, Maruyama H, Nagayasu E. Phylogenetic relationships of Strongyloides species in carnivore hosts. Parasitol Int 2020; 78:102151. [PMID: 32502520 DOI: 10.1016/j.parint.2020.102151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
Strongyloides stercoralis is a parasitic nematode and a major pathogen responsible for human strongyloidiasis. The presence of this species in the dog population has led to an interest in studying the phylogenetic relationships among Strongyloides spp. in carnivore hosts. In the present study, Strongyloides spp. from various carnivore hosts (raccoon, Japanese badger, Siberian weasel, raccoon dog, masked palm civet, and domestic cat) were sought. Except for civets, Strongyloides spp. were identified in all host species. Based on 18S rDNA sequences, nine OTUs (operational taxonomy units) were identified. Molecular phylogenetic analyses using 18S28S rDNA and mitochondrial cox1 (cytochrome c oxidase subunit 1) sequences clustered them into two groups. The first group (named the stercoralis/procyonis group) was comprised of six OTUs and occurred in cats, raccoon dogs, raccoons (S. procyonis), Siberian weasels, and Japanese badgers and included S. stercoralis from humans and dogs. The second group (named the planiceps group) was made up of Strongyloides spp. from raccoon dogs (two OTUs) and one OTU from Siberian weasels. Subsequent analysis using almost the full-length nucleotide sequences of protein-coding genes in their mitochondrial genomes placed Strongyloides spp. of cats in a sister taxon position to S. stercoralis, whereas S. procyonis from raccoons was more distantly related to them. The presence of Strongyloides spp. from various carnivore hosts, which are close relatives of S. stercoralis, suggests this group of Strongyloides (the stercoralis/procyonis group) essentially evolved as parasites of carnivores, although more data on Strongyloides spp. from primate hosts are needed.
Collapse
Affiliation(s)
- Phoo Pwint Ko
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan; Department of Microbiology, University of Medicine 1, No. 245, Myoma Kyaung Street, Lanmadaw Township, Yangon, Myanmar.
| | - Kazuo Suzuki
- Hikiiwa Park Center, 1629 Inari-cho, Tanabe, Wakayama 646-0051, Japan.
| | - Marco Canales-Ramos
- Instituto de Medicina Tropical 'Alexander von Humboldt', Facultad de Medicina, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, San Martin de Porres, Lima 15102, Peru.
| | | | - Wah Win Htike
- Department of Microbiology, University of Medicine 1, No. 245, Myoma Kyaung Street, Lanmadaw Township, Yangon, Myanmar
| | - Ayako Yoshida
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, 889-2192 Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, 889-2192 Miyazaki, Japan.
| | - Martin Montes
- Instituto de Medicina Tropical 'Alexander von Humboldt', Facultad de Medicina, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, San Martin de Porres, Lima 15102, Peru.
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Eduardo Gotuzzo
- Instituto de Medicina Tropical 'Alexander von Humboldt', Facultad de Medicina, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, San Martin de Porres, Lima 15102, Peru.
| | - Haruhiko Maruyama
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan; Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, 889-2192 Miyazaki, Japan.
| | - Eiji Nagayasu
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
15
|
Barratt JLN, Lane M, Talundzic E, Richins T, Robertson G, Formenti F, Pritt B, Verocai G, Nascimento de Souza J, Mato Soares N, Traub R, Buonfrate D, Bradbury RS. A global genotyping survey of Strongyloides stercoralis and Strongyloides fuelleborni using deep amplicon sequencing. PLoS Negl Trop Dis 2019; 13:e0007609. [PMID: 31525192 PMCID: PMC6762204 DOI: 10.1371/journal.pntd.0007609] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/26/2019] [Accepted: 07/06/2019] [Indexed: 01/21/2023] Open
Abstract
Strongyloidiasis is a neglected tropical disease caused by the human infective nematodes Strongyloides stercoralis, Strongyloides fuelleborni fuelleborni and Strongyloides fuelleborni kellyi. Previous large-scale studies exploring the genetic diversity of this important genus have focused on Southeast Asia, with a small number of isolates from the USA, Switzerland, Australia and several African countries having been genotyped. Consequently, little is known about the global distribution of geographic sub-variants of these nematodes and the genetic diversity that exists within the genus Strongyloides generally. We extracted DNA from human, dog and primate feces containing Strongyloides, collected from several countries representing all inhabited continents. Using a genotyping assay adapted for deep amplicon sequencing on the Illumina MiSeq platform, we sequenced the hyper-variable I and hyper-variable IV regions of the Strongyloides 18S rRNA gene and a fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene from these specimens. We report several novel findings including unique S. stercoralis and S. fuelleborni genotypes, and the first identifications of a previously unknown S. fuelleborni infecting humans within Australia. We expand on an existing Strongyloides genotyping scheme to accommodate S. fuelleborni and these novel genotypes. In doing so, we compare our data to all 18S and cox1 sequences of S. fuelleborni and S. stercoralis available in GenBank (to our knowledge), that overlap with the sequences generated using our approach. As this analysis represents more than 1,000 sequences collected from diverse hosts and locations, representing all inhabited continents, it allows a truly global understanding of the population genetic structure of the Strongyloides species infecting humans, non-human primates, and domestic dogs. Strongyloidiasis is a neglected tropical disease caused by the human infective worms (nematodes) Strongyloides stercoralis, Strongyloides fuelleborni fuelleborni and Strongyloides fuelleborni kellyi. Little is known about the genetic diversity of these nematodes and the possibility of geographically isolated genetic types is a particularly interesting research question, given the unique life cycle of these worms which includes both sexual and asexual stages. We extracted DNA from human, dog and primate feces containing Strongyloides, collected from several countries representing all inhabited continents. Using next-generation sequencing, we analyzed three Strongyloides DNA fragments from these specimens; two fragments of the 18S gene and one from the cytochrome c oxidase subunit 1 (cox1) gene. Using this approach, we discovered some unique S. stercoralis and S. fuelleborni genotypes, and identified a previously unknown S. fuelleborni infecting humans within Australia. We compared our data to all 18S and cox1 sequences of S. fuelleborni and S. stercoralis available in public databases and identified several patterns relating to the global distribution of certain genotypes. This knowledge could allow us to infer the origin of human Strongyloides infections in the future, and assess the role certain animals (non-human primates and dogs) might play in the transmission of Strongyloides to humans.
Collapse
Affiliation(s)
- Joel L. N. Barratt
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Meredith Lane
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Synergy America Inc., Atlanta, Georgia, United States of America
| | - Emir Talundzic
- Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Travis Richins
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Gemma Robertson
- Forensic and Scientific Services, Health Support Queensland, Brisbane, Queensland, Australia
| | - Fabio Formenti
- Department of Infectious–Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Bobbi Pritt
- Mayo Clinic, Rochester, Minnesota, United States of America
| | - Guilherme Verocai
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States of America
| | | | - Neci Mato Soares
- Faculdade de Farmacia, Universidade Federal da Bahia, Bahia, Brazil
| | - Rebecca Traub
- Faculty of Veterinary Science, University of Melbourne, Victoria, Australia
| | - Dora Buonfrate
- Department of Infectious–Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Richard S. Bradbury
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Purpose of Review This paper constitutes an update of recent studies on the general biology, molecular genetics, and cellular biology of Strongyloides spp. and related parasitic nematodes. Recent Findings Increasingly, human strongyloidiasis is considered the most neglected of neglected tropical diseases. Despite this, the last 5 years has seen remarkable advances in the molecular biology of Strongyloides spp. Genome sequences for S. stercoralis, S. ratti, S. venezuelensis, S. papillosus, and the related parasite Parastrongyloides trichosuri were created, annotated, and analyzed. These genomic resources, along with a practical transgenesis platform for Strongyloides spp., aided a major achievement, the advent of targeted mutagenesis via CRISPR/Cas9 in S. stercoralis and S. ratti. The genome sequences have also enabled significant molecular epidemiologic and phylogenetic findings on human strongyloidiasis, including the first genetic evidence of zoonotic transmission of S. stercoralis between dogs and humans. Studies of molecular signaling pathways identified the nuclear receptor Ss-DAF-12 as one that can be manipulated in the parasite by exogenous application of its steroid ligands. The chemotherapeutic implications of this were unscored by a study in which a Ss-DAF-12 ligand suppressed autoinfection by S. stercoralis in a new murine model of human strongyloidiasis. Summary Seminal advances in genomics of Strongyloides spp. have transformed research into strongyloidiasis, facilitating fundamental phylogenetic and epidemiologic studies and aiding the deployment of CRISPR/Cas9 gene disruption and editing as functional genomic tools in Strongyloides spp. Studies of Ss-DAF-12 signaling in S. stercoralis demonstrated the potential of this pathway as a novel chemotherapeutic target in parasitic nematodes.
Collapse
Affiliation(s)
- Tegegn G. Jaleta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
A Review of Strongyloides spp. Environmental Sources Worldwide. Pathogens 2019; 8:pathogens8030091. [PMID: 31252665 PMCID: PMC6789455 DOI: 10.3390/pathogens8030091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/14/2023] Open
Abstract
Strongyloides spp. are parasitic nematodes that are transmitted through the environment and are capable of causing disease. These nematodes affect an estimated 3–300 million humans worldwide. Identifying the environmental reservoirs of Strongyloides spp. is essential for the development of appropriate control strategies. This systematic literature review examined all published studies that identified Strongyloidesstercoralis, Strongyloidesfuelleborni, Strongyloidesfuellebornikellyi, and Strongyloides spp. from an environmental source. Most studies detected the nematode from dog and primate fecal samples. Other environmental sources identified were ruminants, cats, rodents, insects, water, soil, as well as fruit and vegetables. Most studies used microscopy-based identification techniques; however, several employed molecular-based techniques, which have become increasingly popular for the detection of Strongyloides spp. A limitation identified was a lack of studies that comprehensively screened all potential environmental samples in a region. Future research should undertake this holistic screening process to identify which environmental reservoirs pose the greatest significance to human health. Potential controls can be identified through the identification of environmental sources. Understanding where Strongyloides spp. is commonly found within the environment of endemic areas will inform environmental control strategies to reduce this neglected disease.
Collapse
|
18
|
Frias L, Stark DJ, Salgado Lynn M, Nathan S, Goossens B, Okamoto M, MacIntosh AJJ. Molecular characterization of nodule worm in a community of Bornean primates. Ecol Evol 2019; 9:3937-3945. [PMID: 31015978 PMCID: PMC6468080 DOI: 10.1002/ece3.5022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Strongyles are commonly reported parasites in studies of primate parasite biodiversity. Among them, nodule worm species are often overlooked as a serious concern despite having been observed to cause serious disease in nonhuman primates and humans. In this study, we investigated whether strongyles found in Bornean primates are the nodule worm Oesophagostomum spp., and to what extent these parasites are shared among members of the community. To test this, we propose two hypotheses that use the parasite genetic structure to infer transmission processes within the community. In the first scenario, the absence of parasite genetic substructuring would reflect high levels of parasite transmission among primate hosts, as primates' home ranges overlap in the study area. In the second scenario, the presence of parasite substructuring would suggest cryptic diversity within the parasite genus and the existence of phylogenetic barriers to cross-species transmission. By using molecular markers, we identify strongyles infecting this primate community as O. aculeatum, the only species of nodule worm currently known to infect Asian nonhuman primates. Furthermore, the little to no genetic substructuring supports a scenario with no phylogenetic barriers to transmission and where host movements across the landscape would enable gene flow between host populations. This work shows that the parasite's high adaptability could act as a buffer against local parasite extinctions. Surveys targeting human populations living in close proximity to nonhuman primates could help clarify whether this species of nodule worm presents the zoonotic potential found in the other two species infecting African nonhuman primates.
Collapse
Affiliation(s)
| | - Danica J. Stark
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
- Danau Girang Field CentreLower Kinabatangan Wildlife SanctuarySabahMalaysia
| | - Milena Salgado Lynn
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
- Danau Girang Field CentreLower Kinabatangan Wildlife SanctuarySabahMalaysia
- Wildlife Health, Genetic and Forensic LaboratoryKota KinabaluMalaysia
- Sustainable Places Research InstituteCardiff UniversityCardiffUK
| | | | - Benoit Goossens
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
- Danau Girang Field CentreLower Kinabatangan Wildlife SanctuarySabahMalaysia
- Sustainable Places Research InstituteCardiff UniversityCardiffUK
- Sabah Wildlife DepartmentKota KinabaluMalaysia
| | | | - Andrew J. J. MacIntosh
- Primate Research InstituteKyoto UniversityInuyamaJapan
- Institute for Tropical Biology and ConservationUniversiti Malaysia SabahKota KinabaluMalaysia
| |
Collapse
|