1
|
Pang K, Zhang Z. Harnessing the power of ionising radiation to enhance cancer immunotherapy. Clin Transl Med 2025; 15:e70307. [PMID: 40268522 PMCID: PMC12017892 DOI: 10.1002/ctm2.70307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Affiliation(s)
- Kai Pang
- Department of General SurgeryBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Zhongtao Zhang
- Department of General SurgeryBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Zhou L, Yu G, Shen Y, Wen R, Ding H, Zhou J, Zhu X, Hong Y, Gong H, Liu L, Wang H, Zhang H, Bai C, Hao L, Zhang W. Safety and clinical efficacy of neoadjuvant chemoradiation therapy with immunotherapy for organ preservation in ultra-low rectal cancer: preliminary results of the CHOICE-I trial: a prospective cohort study. Int J Surg 2025; 111:2487-2494. [PMID: 39764608 DOI: 10.1097/js9.0000000000002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 03/16/2025]
Abstract
OBJECTIVE To explore the safety and efficacy of neoadjuvant chemoradiotherapy (nCRT) combined with a PD-1 antibody in improving complete clinical response (cCR) and organ preservation in patients with ultra-low rectal cancer. METHODS This was a prospective phase II, single-arm, open-label trial. Patients with confirmed pMMR status T 1-3a N 0-1 M 0 retcal adenocarcinoma were included. Long-course chemoradiotherapy was delivered to a dose of 50 Gy. A PD-1 antibody was added 2 weeks after the first radiotherapy session, and two courses were administered. After chemoradiotherapy, CapeOX plus PD-1 antibody was administered to patients for two cycles. After evaluation, patients with cCR were managed with a watch-and-wait (W&W) approach. Local excision or a W&W approach was performed for patients with near complete clinical response (ncCR) as per multidisciplinary team decision. Radical surgery was recommended for poorly regressed or progressed tumors. RESULTS Twenty-five patients were enrolled, but two patients withdrew from the study. A total of 23 patients completed the entire neoadjuvant therapy. Ten and five patients achieved cCR and ncCR, respectively, and the rest had a partial clinical response. Patients with cCR were managed with W&W. Four patients with ncCR underwent local excision and were managed using W&W. Eight patients with partial clinical response underwent anus-preserving surgery. At the last follow-up, the rectum and anus preservation rates were 63.4% (14/22) and 95.5% (21/22), respectively. CONCLUSION nCRT combined with immunotherapy tended to achieve better cCR and rectum preservation rates with good tolerance in patients.
Collapse
Affiliation(s)
- Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuxin Shen
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haibo Ding
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jidian Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoming Zhu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yonggang Hong
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haifeng Gong
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lianjie Liu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hao Wang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chenguang Bai
- Department of Pathology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Liqiang Hao
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Szwed M, Jost T, Majka E, Gharibkandi NA, Majkowska-Pilip A, Frey B, Bilewicz A, Fietkau R, Gaipl U, Marczak A, Lubgan D. Pt-Au Nanoparticles in Combination with Near-Infrared-Based Hyperthermia Increase the Temperature and Impact on the Viability and Immune Phenotype of Human Hepatocellular Carcinoma Cells. Int J Mol Sci 2025; 26:1574. [PMID: 40004038 PMCID: PMC11855494 DOI: 10.3390/ijms26041574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Near-infrared light (NIR)-responsive metal-based nanoparticles (NPs) could be used for tumour therapy. We examined how platinum (Pt), gold (Au), and core-shell Pt-Au NPs affect the viability of human hepatocellular carcinoma (HCC) cell lines (Hep3B, HepG2, and Huh7D-12) alone and in combination with NIR exposure. In addition, the expression of immune checkpoint molecules (ICMs) on the tumour cells was analysed. We revealed that the cytotoxicity and programmed cell death induction of Au and Pt-Au NPs toward HCC cells could be enhanced by NIR with 960 nm in a different way. Pt-Au NPs were the only particles that resulted in an additional temperature increase of up to 2 °C after NIR. Regarding the tumour cell immune phenotype, not all of the cells experienced changes in immune phenotype. NIR itself was the trigger of the alterations, while the NPs did not significantly affect the expression of most of the examined ICMs, such as PD-L1, PD-L1, HVEM, CD70, ICOS-L, Ox40-L, and TNFRSF9. The combination of Pt-Au NPs with NIR resulted in the most prominent increase of ICMs in HepG2 cells. We conclude that the thermotherapeutic effect of Pt-Au NP application and NIR could be beneficial in multimodal therapy settings in liver cancer for selected patients.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Tina Jost
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Emilia Majka
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Nasrin Abbasi Gharibkandi
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Agnieszka Majkowska-Pilip
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Rainer Fietkau
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Dorota Lubgan
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
4
|
Yang Y, Pang K, Lin G, Liu X, Gao J, Zhou J, Xu L, Gao Z, Wu Y, Li A, Han J, Wu G, Wang X, Li F, Ye Y, Zhang J, Chen G, Wang H, Kong Y, Wu A, Xiao Y, Yao H, Zhang Z. Neoadjuvant chemoradiation with or without PD-1 blockade in locally advanced rectal cancer: a randomized phase 2 trial. Nat Med 2025; 31:449-456. [PMID: 39762418 DOI: 10.1038/s41591-024-03360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 02/20/2025]
Abstract
Radiotherapy displays unique antitumor synergism with immune checkpoint inhibitors, which is indicated by high pathological complete response (pCR) rates from single-arm trials of locally advanced rectal cancer (LARC). Here we test the efficacy and safety of the radiation-immune checkpoint inhibitor combination in patients with LARC in a phase 2, randomized trial conducted in eight major colorectal cancer centers in Beijing. In total, 186 eligible all-comer (proficient mismatch repair and deficient mismatch repair) participants were enrolled. The patients were randomly assigned to receive neoadjuvant chemoradiation + concurrent/sequential PD-1 blockade (experiment groups A/B) or neoadjuvant chemoradiation alone (control group). Radical surgeries were scheduled after neoadjuvant treatments. The primary endpoint was the pCR rate. The pCR rates were 27.1%, 32.7% and 14.0% for experiment groups A and B and the control group, respectively. The difference in pCR rates between experiment group B and the control group reached statistical significance (risk ratio 2.332, 95% confidence interval 1.106-4.916; P = 0.019). No substantial differences between either one of the experiment groups and the control group were observed regarding adverse reaction, surgical complication and disease progression. Our results show that adding PD-1 blockade after neoadjuvant chemoradiation increases the pCR rate for patients with LARC and raises no substantial safety concerns. Phase 3 trials with larger sample sizes are warranted (ClinicalTrials.gov identifier NCT05245474 ).
Collapse
Affiliation(s)
- Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kai Pang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guole Lin
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xinzhi Liu
- Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiaolin Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yingchao Wu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Ang Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Guoju Wu
- Department of General Surgery, Beijing Hospital, Beijing, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiwen Wu
- Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China.
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Wirta EV, Elomaa H, Ahtiainen M, Hyöty M, Seppälä TT, Kuopio T, Böhm J, Mecklin JP, Väyrynen JP. The impact of preoperative treatments on the immune environment of rectal cancer. APMIS 2024; 132:1046-1060. [PMID: 39253758 PMCID: PMC11582340 DOI: 10.1111/apm.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
To improve local disease control, the use of preoperative radiotherapy either alone or combined with chemotherapy has become standard practice in rectal cancer, but it is unclear how these treatments modify the antitumoral immune response. We aimed to evaluate tumor histopathologic features and the prognostic effect of host immune response in rectal cancer with variable treatment modalities. Ninety-five rectal cancers with short-course radiotherapy (SRT), 97 with long-course chemoradiotherapy (CRT), and 154 without preoperative treatments, were evaluated for histopathologic features including Crohn's-like reaction (CLR). CD3+ and CD8+ immunohistochemistry and tumor cells were analyzed from tumor tissue microarray samples to calculate T-cell densities and G-cross function values to estimate cancer cell-T-cell co-localization (proximity score). We found that lymphocyte densities were diminished after SRT, but CLR was scarcer after CRT. Proximity score and CLR density were prognostic for survival in cancer without preoperative treatments and could be combined into an enhanced prognostic score (immune grade). In the irradiated tumors, CLR density remained prognostic while the impact of T-cell infiltration was insufficient alone. In multivariable analysis, the immune grade proved to be an independent prognostic factor for survival. In conclusion, the immune contexture of rectal cancer harbors prognostic significance even after preoperative radiotherapy.
Collapse
Affiliation(s)
- Erkki-Ville Wirta
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Hanna Elomaa
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Education and Research, The Wellbeing Services of Central Finland, Jyväskylä, Finland
| | - Maarit Ahtiainen
- Department of Pathology, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Marja Hyöty
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Toni T Seppälä
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Teijo Kuopio
- Department of Pathology, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Jan Böhm
- Department of Pathology, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, The Wellbeing Services of Central Finland, Jyväskylä, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Azizi M, Mokhtari Z, Tavana S, Bemani P, Heidari Z, Ghazavi R, Rezaei M. A Comprehensive Study on the Prognostic Value and Clinicopathological Significance of Different Immune Checkpoints in Patients With Colorectal Cancer: A Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2024; 101:100760. [PMID: 39434898 PMCID: PMC11492099 DOI: 10.1016/j.curtheres.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Background The prognostic significance of immune checkpoint expression in the tumor microenvironment has been widely investigated in colorectal cancers. However, the results of these studies are inconsistent and limited to some immune checkpoints. Objective The study aimed to investigate the correlation between different immune checkpoint expression and clinicopathological features and prognostic parameters. Methods We conducted a systematic review and meta-analysis of the published literature in PubMed, Web of Science-Core Collection, Scopus, Embase, and Cochrane databases to summarize the association between various immune checkpoints expression on both tumor cells and immune cells with clinicopathological features and prognostic parameters in patients with colorectal cancer. Results One hundred four studies incorporating 22,939 patients were included in our meta-analysis. Our results showed that among the B7 family, the high expression of B7H3, B7H4, PD-1, and PD-L1 on tumor cells and tumor tissue was significantly associated with higher T stage, advanced tumor, node, metastasis (TNM) stage, presence of vascular invasion, and lymphatic invasion. In addition, patients with high expression of B7H3, B7H4, PD-1, PD-L1, and PD-L2 were associated with shorter overall survival. High expression of PD-1 and PD-L1 in immune cells correlated with the absence of lymph node metastasis, lower TNM stage, early T stage, poor overall survival, and disease-free survival, respectively. Moreover, we found significant positive correlations between CD70 and Galectin-3 expression with advanced T stage. HLA-II overexpression was correlated with the absence of lymph node metastasis (odds ratio = 0.21, 95% CI = 0.11-0.38, P < 0.001) and early TNM stage (odds ratio = 0.35, 95% CI = 0.26-0.47, P < 0.001). Conclusions Overexpression of B7H3, B7H4, PD-1, PD-L1, PD-L2, CD70, and Galectin-3 on tumors is significantly associated with unfavorable clinicopathological characteristics and poor prognostic factors. Hence, these immune checkpoints can serve as predictive biomarkers for prognosis and the clinicopathological features of colorectal cancer because this is essential to identify patients suitable for anticancer therapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mahdieh Azizi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mokhtari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Tavana
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Bemani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roghayeh Ghazavi
- Department of Knowledge and Information Science, Faculty of Education and Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Marzieh Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Xiao WW, Chen G, Gao YH, Lin JZ, Wu XJ, Luo HL, Lu ZH, Wang QX, Sun R, Cai PQ, Zhu CM, Liu M, Li JB, Wang YR, Jin Y, Wang F, Luo HT, Li CL, Pan ZZ, Xu RH. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: A randomized clinical trial. Cancer Cell 2024; 42:1570-1581.e4. [PMID: 39094560 DOI: 10.1016/j.ccell.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/26/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Neoadjuvant chemoradiotherapy (NACRT) was the standard treatment for patients with locally advanced rectal cancer (LARC) with proficient mismatch repair (pMMR) proteins. In this randomized phase 2 trial (ClinicalTrial.gov: NCT04304209), 134 pMMR LARC patients were randomly (1:1) assigned to receive NACRT or NACRT and the programmed cell death protein 1 (PD-1) antibody sintilimab. As the primary endpoint, the total complete response (CR) rate is 26.9% (18/67, 95% confidence interval [CI] 16.0%-37.8%) and 44.8% (30/67, 95% CI 32.6%-57.0%) in the control and experimental arm, respectively, with significant difference (p = 0.031 for chi-squared test). Response ratio is 1.667 (95% CI 1.035-2.683). Immunohistochemistry shows PD-1 ligand 1 (PD-L1) combined positive score is associated with the synergistic effect. The safety profile is similar between the arms. Adding the PD-1 antibody sintilimab to NACRT significantly increases the CR rate in pMMR LARC, with a manageable safety profile. PD-L1 positivity may help identify patients who might benefit most from the combination therapy.
Collapse
Affiliation(s)
- Wei-Wei Xiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China; United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Ltd, Guangzhou, China
| | - Gong Chen
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yuan-Hong Gao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Zhong Lin
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiao-Jun Wu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hui-Long Luo
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Zhen-Hai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Qiao-Xuan Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rui Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Pei-Qiang Cai
- Department of Radiology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Chong-Mei Zhu
- Department of Pathology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Min Liu
- Department of Ultrasound, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ji-Bin Li
- Department of Statistics, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yi-Rui Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Hai-Tao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Cai-Ling Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Zhi-Zhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
8
|
Coussement M, Fazio R, Audisio A, El Khoury R, Abbassi FZ, Assaf I, Conti C, Gallio C, Benhima N, Bregni G, Gkolfakis P, Spagnolo V, Anthoine G, Liberale G, Moretti L, Martinive P, Hendlisz A, Demetter P, Sclafani F. PD-L1 Expression in Paired Samples of Rectal Cancer. Cancers (Basel) 2024; 16:2606. [PMID: 39061244 PMCID: PMC11275196 DOI: 10.3390/cancers16142606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint inhibitors and immune-related biomarkers are increasingly investigated in rectal cancer (RC). We retrospectively analysed PD-L1 expression in diagnostic biopsy and resection samples from RC patients treated at our centre between 2000 and 2020. PD-L1 immunostaining (22C3 clone) was evaluated according to tumour proportion (TPS), immune cell (ICS), and the combined positive score (CPS). Eighty-three patients were included. At diagnosis, PD-L1 expression ≥1%/≥5% was observed in 15.4%/0%, 80.7%/37.4%, and 69.2%/25.6% of patients based on TPS, ICS, and CPS, respectively. At surgery, the respective figures were 4.6%/1.5%, 60.2%/32.5%, and 50.7%/26.2%. Using the 1% cut-off and regardless of the scoring system, PD-L1 was less expressed in surgery than biopsy samples (p ≤ 0.04). In paired specimens, PD-L1-ICS reduction was especially observed following neoadjuvant long-course (chemo)radiotherapy (p = 0.03). PD-L1-ICS of ≥5% in surgical samples (HR: 0.17; p = 0.02), and a biopsy-to-surgery increase in PD-L1-ICS (HR: 0.19; p = 0.04) was predictive for longer disease-free survival, while the PD-L1-ICS of either ≥1% (HR 0.28; p = 0.04) or ≥5% (HR 0.19; p = 0.03) in surgical samples and the biopsy-to-surgery increase in PD-L1-ICS (HR: 0.20; p = 0.04) were associated with better overall survival. Our study suggests that PD-L1 expression in RC is largely reflective of immune cell infiltration, and its presence/increase in surgical samples predicts better outcomes.
Collapse
Affiliation(s)
- Mina Coussement
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Roberta Fazio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Alessandro Audisio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Reem El Khoury
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Fatima-Zahra Abbassi
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Irene Assaf
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Chiara Conti
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Chiara Gallio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Nada Benhima
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Giacomo Bregni
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Paraskevas Gkolfakis
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Valentina Spagnolo
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Geraldine Anthoine
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Gabriel Liberale
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Luigi Moretti
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Philippe Martinive
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Alain Hendlisz
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Pieter Demetter
- Cerba Path, Division CMP, 1070 Brussels, Belgium
- Laboratory for Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Francesco Sclafani
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| |
Collapse
|
9
|
Han D, Han Y, Guo W, Wei W, Yang S, Xiang J, Che J, Zhu L, Hang J, van den Ende T, van Laarhoven HWM, Li B, Ye Y, Li H. High-dimensional single-cell proteomics analysis of esophageal squamous cell carcinoma reveals dynamic alterations of the tumor immune microenvironment after neoadjuvant therapy. J Immunother Cancer 2023; 11:e007847. [PMID: 38016720 PMCID: PMC10685958 DOI: 10.1136/jitc-2023-007847] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Dynamic alterations of the tumor immune microenvironment in esophageal squamous cell carcinoma (ESCC) after different neoadjuvant therapies were understudied. METHODS We used mass cytometry with a 42-antibody panel for 6 adjacent normal esophageal mucosa and 26 tumor samples (treatment-naïve, n=12; postneoadjuvant, n=14) from patients with ESCC. Single-cell RNA sequencing of previous studies and bulk RNA sequencing from The Cancer Genome Atlas were analyzed, flow cytometry, immunohistochemistry, and immunofluorescence analyses were performed. RESULTS Poor tumor regression was observed in the neoadjuvant chemotherapy group. Radiotherapy-based regimens enhanced CD8+ T cells but diminished regulatory T cells and promoted the ratio of effector memory to central memory T cells. Immune checkpoint blockade augmented NK cell activation and cytotoxicity by increasing the frequency of CD16+ NK cells. We discovered a novel CCR4+CCR6+ macrophage subset that correlated with the enrichment of corresponding chemokines (CCL3/CCL5/CCL17/CCL20/CCL22). We established a CCR4/CCR6 chemokine-based model that stratified ESCC patients with differential overall survival and responsiveness to neoadjuvant chemoradiotherapy combined with immunotherapy, which was validated in two independent cohorts of esophageal cancer with neoadjuvant treatment. CONCLUSIONS This work reveals that neoadjuvant therapy significantly regulates the cellular composition of the tumor immune microenvironment in ESCC and proposes a potential model of CCR4/CCR6 system to predict the benefits from neoadjuvant chemoradiotherapy combined with immunotherapy.
Collapse
Affiliation(s)
- Dingpei Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wei
- Department of Esophageal Surgery, Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Su Yang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaming Che
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianggang Zhu
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junbiao Hang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tom van den Ende
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Integrated TCM & Western Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Jeon SH, Song C, Eom KY, Kim IA, Kim JS. Modulation of CD8 + T Cell Responses by Radiotherapy-Current Evidence and Rationale for Combination with Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:16691. [PMID: 38069014 PMCID: PMC10706388 DOI: 10.3390/ijms242316691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Radiotherapy for cancer has been known to affect the responses of immune cells, especially those of CD8+ T cells that play a pivotal role in anti-tumor immunity. Clinical success of immune checkpoint inhibitors led to an increasing interest in the ability of radiation to modulate CD8+ T cell responses. Recent studies that carefully analyzed CD8+ T cell responses following radiotherapy suggest the beneficial roles of radiotherapy on anti-tumor immunity. In addition, numerous clinical trials to evaluate the efficacy of combining radiotherapy with immune checkpoint inhibitors are currently undergoing. In this review, we summarize the current status of knowledge regarding the changes in CD8+ T cells following radiotherapy from various preclinical and clinical studies. Furthermore, key biological mechanisms that underlie such modulation, including both direct and indirect effects, are described. Lastly, we discuss the current evidence and essential considerations for harnessing radiotherapy as a combination partner for immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; (S.H.J.); (C.S.); (K.-Y.E.); (I.A.K.)
| |
Collapse
|
11
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
12
|
Zhang X, Zeng Y, Li H, Zhuang Q, Tang L, Wu J, Li J. A Modified NAR Scoring Model Incorporating Immune Infiltration Characteristics to Better Predict Long-Term Survival Following Neoadjuvant Radiotherapy in Rectal Cancer. Life (Basel) 2023; 13:2106. [PMID: 38004246 PMCID: PMC10672442 DOI: 10.3390/life13112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: The neoadjuvant rectal (NAR) score has been developed as a prognostic tool for survival in locally advanced rectal cancer (LARC). However, the NAR score only incorporates weighted cT, ypT, and ypN categories. This long-term follow-up study aims to modify a novel prognostic scoring model and identify a short-term endpoint for survival. (2) Methods: The prognostic factors for overall survival (OS) were explored through univariate and multivariate analyses. Based on Cox regression modeling, nomogram plots were constructed. Area under the curve (AUC) and concordance indices were used to evaluate the performance of the nomogram. Receiver operating characteristic (ROC) analysis was conducted to compare the efficiency of the nomogram with other prognostic factors. (3) Results: After a long-term follow-up, the 5-year OS was 67.1%. The mean NAR score was 20.4 ± 16.3. Multivariate analysis indicated that CD8+ T-cell, lymphovascular invasion, and the NAR score were independent predictors of OS. The modified NAR scoring model, incorporating immune infiltration characteristics, exhibited a high C-index of 0.739 for 5-year OS, significantly outperforming any individual factor. Moreover, the predictive value of the nomogram was superior to the AJCC stage and pathological complete regression at 3-year, 5-year, and 10-year time points, respectively. Over time, the model's predictions of long-term survival remained consistent and improved in accuracy. (4) Conclusions: The modified NAR scoring model, incorporating immune infiltration characteristics, demonstrates high accuracy and consistency in predicting OS.
Collapse
Affiliation(s)
| | | | | | | | | | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (X.Z.); (Y.Z.); (H.L.); (Q.Z.); (L.T.)
| | - Jinluan Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (X.Z.); (Y.Z.); (H.L.); (Q.Z.); (L.T.)
| |
Collapse
|
13
|
Zhou L, Yu G, Wen R, Jia H, Zhang T, Peng Z, Fan H, Pan A, Yu Y, Zhu X, Gong H, Gao X, Lou Z, Zhang W. Neoadjuvant chemoradiation therapy combined with immunotherapy for microsatellite stable ultra-low rectal cancer (CHOICE II): study protocol of a multicentre prospective randomised clinical trial. BMJ Open 2023; 13:e069793. [PMID: 37709314 PMCID: PMC10503376 DOI: 10.1136/bmjopen-2022-069793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Neoadjuvant chemoradiotherapy (nCRT) could bring tumour shrinking and downstaging and increase the probability of organ preservation for patients with low rectal cancer. But for ultra-low rectal cancer, there is little possibility for organ preservation. Immunotherapy has been shown to have significant survival benefits in microsatellite instability-high patients but poor response in microsatellite stable (MSS) patients. Studies have demonstrated that radiotherapy and immunotherapy have synergistic effects in cancer treatment. There is no existing evidence about the clinical efficacy of immunotherapy combined with nCRT for patients with MSS ultra-low rectal cancer. METHOD AND ANALYSIS This trial is an open-labelled multicentre prospective randomised controlled trial (NCT05215379) with two parallel groups and allocation ratio 1:1 (nCRT+immunotherapy vs nCRT group). Eligible participants will be aged 18-75 years, with a desire for anus preservation, confirmed cT1-3aN0-1M0 rectal adenocarcinoma, confirmed MSS type, inferior margin of ≤5 cm from the anal verge. The primary endpoint of this trial is complete clinical response (cCR) rate. Immunotherapy is added after 1 week of chemoradiotherapy for two cycles, and then the patients will be administered two cycles of immunotherapy and CAPOX. The evaluations will be carried out after the completion of the whole neoadjuvant therapy. We expect the programme to improve the cCR rate and the quality of life for patients with ultra-low rectal cancer. ETHICS AND DISSEMINATION This trial was approved by the Ethics committee of Changhai Hospital and other medical centres (Grant number:CHEC2022-118). The results of this study will provide further insight into the clinical efficacy of immunotherapy in combination with nCRT in patients with MSS ultra-low rectal cancer. TRIAL REGISTRATION NUMBER NCT05215379.
Collapse
Affiliation(s)
- Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hang Jia
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianshuai Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhiying Peng
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hao Fan
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Anfu Pan
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yue Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoming Zhu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haifeng Gong
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xianhua Gao
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zheng Lou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Liu WL, Zhang YQ, Luo XJ, Zhu YY, Song L, Ming ZH, Zhang LX, Li MJ, Lv RC, Zhang GJ, Chen M. Novel Dual-Mode NIR-II/MRI Nanoprobe Targeting PD-L1 Accurately Evaluates the Efficacy of Immunotherapy for Triple-Negative Breast Cancer. Int J Nanomedicine 2023; 18:5141-5157. [PMID: 37705867 PMCID: PMC10497065 DOI: 10.2147/ijn.s417944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Background Durable responses to immune-checkpoint blocking therapy (ICT) targeting programmed cell death protein-1/ligand-1 (PD-1/PD-L1) have improved outcomes for patients with triple negative breast cancer (TNBC). Unfortunately, only 19-23% of patients benefit from ICT. Hence, non-invasive strategies evaluating responses to therapy and selecting patients who will benefit from ICT are critical issues for TNBC immunotherapy. Methods We developed a novel nanoparticle-Atezolizumab (NPs-Ate) consisting of indocyanine green (ICG), gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), human serum albumin (HSA), and Atezolizumab. The efficiency of Gd-DTPA linking was verified using mass spectrometry, and the size of NPs-Ate was characterized using Nano-flow cytometry. The synthesized NPs-Ate were evaluated for fluorescence stability, penetration depth, and target specificity. TNBC cell lines and tumor-bearing mice models were used to identify the feasibility of this dual-modal second near-infrared/magnetic resonance imaging (NIR-II/MRI) system. Additionally, ICT combination with chemotherapy or radiotherapy in TNBC tumor-bearing mice models were used to assess dynamic changes of PD-L1 and predicted therapeutic responses with NPs-Ate. Results Atezolizumab, a monoclonal antibody, was successfully labeled with ICG and Gd-DTPA to generate NPs-Ate. This demonstrated strong fluorescence signals in our NIR-II imaging system, and relaxivity (γ1) of 9.77 mM-1 s-1. In tumor-bearing mice, the NIR-II imaging signal background ratio (SBR) reached its peak of 11.51 at 36 hours, while the MRI imaging SBR reached its highest as 1.95 after 12 hours of tracer injection. NPs-Ate specifically targets cells and tumors expressing PD-L1, enabling monitoring of PD-L1 status during immunotherapy. Combining therapies led to inhibited tumor growth, prolonged survival, and increased PD-L1 expression, effectively monitored using the non-invasive NPs-Ate imaging system. Conclusion The NIR-II/MRI NPs-Ate effectively reflected PD-L1 status during immunotherapy. Real-time and non-invasive immunotherapy and response/prognosis monitoring under NIR-II/MRI imaging guidance in TNBC is a promising and innovative technology with potential for extensive clinical applications in the future.
Collapse
Affiliation(s)
- Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang’an Hospital of Xiamen University, Xiamen, People’s Republic of China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, People’s Republic of China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, People’s Republic of China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang’an Hospital of Xiamen University, Xiamen, People’s Republic of China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, People’s Republic of China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, People’s Republic of China
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiang-Jie Luo
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People’s Republic of China
| | - Yuan-Yuan Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang’an Hospital of Xiamen University, Xiamen, People’s Republic of China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, People’s Republic of China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, People’s Republic of China
| | - Liang Song
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences and Technology University, Xiamen, People’s Republic of China
| | - Zi-He Ming
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang’an Hospital of Xiamen University, Xiamen, People’s Republic of China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, People’s Republic of China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, People’s Republic of China
| | - Li-Xin Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang’an Hospital of Xiamen University, Xiamen, People’s Republic of China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, People’s Republic of China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, People’s Republic of China
| | - Meng-Jun Li
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang’an Hospital of Xiamen University, Xiamen, People’s Republic of China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, People’s Republic of China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, People’s Republic of China
| | - Rui-Chan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shanxi, People’s Republic of China
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang’an Hospital of Xiamen University, Xiamen, People’s Republic of China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, People’s Republic of China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, People’s Republic of China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang’an Hospital of Xiamen University, Xiamen, People’s Republic of China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, People’s Republic of China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, People’s Republic of China
| |
Collapse
|
15
|
Stepanyan A, Fassan M, Spolverato G, Castagliuolo I, Scarpa M, Scarpa M. IMMUNOREACT 0: Biopsy-based immune biomarkers as predictors of response to neoadjuvant therapy for rectal cancer-A systematic review and meta-analysis. Cancer Med 2023; 12:17878-17890. [PMID: 37537787 PMCID: PMC10523971 DOI: 10.1002/cam4.6423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The main therapy for rectal cancer patients is neoadjuvant therapy (NT) followed by surgery. Immune biomarkers are emerging as potential predictors of the response to NT. We performed a meta-analysis to estimate their predictive significance. METHODS A systematic literature search of PubMed, Ovid MEDLINE and EMBASE databases was performed to identify eligible studies. Studies on patients with rectal cancer undergoing NT in which the predictive significance of at least one of the immunological markers of interest was assessed by immunohistochemistry (IHC) in pretreatment biopsies were included. RESULTS Seventeen studies reporting sufficient data met the inclusion criteria for meta-analysis. High levels of total CD3+, CD4+ and CD8+ tumor infiltrating lymphocytes (TILs), as well as stromal and intraepithelial CD8+ compartments, significantly predicted good pathological response to NT. Moreover, high levels of total (tumoral and immune cell expression) PD-L1 resulted associated to a good pathological response. On the contrary, high levels of intraepithelial CD4+ TILs were correlated with poor pathological response. FoxP3+ TILs, tumoral PD-L1 and CTLA-4 were not correlated to the treatment response. CONCLUSION This meta-analysis indicated that high-density TILs might be predictive biomarkers of pathological response in patients that underwent NT for rectal cancer.
Collapse
Affiliation(s)
- Astghik Stepanyan
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| | - Matteo Fassan
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
- Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Gaya Spolverato
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| | | | - Melania Scarpa
- Immunology and Molecular Oncology Diagnostics UnitVeneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Marco Scarpa
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| |
Collapse
Collaborators
Agostini Marco, Angriman Imerio, Bao Riccardo Quoc, Bardini Romeo, Becherucci Giulia, Bergamo Francesca, Bordignon Giovanni, Brignola Stefano, Brolese Marco, Businello Gianluca, Buzzi Gianluca, Campi Michela, Candioli Salvatore, Capelli Giulia, Cataldo Ivana, Cavallin Francesco, Cipollari Chiara, Chiminazzo Valentina, Da Lio Corrado, Dal Santo Luca, D'Angelo Antonella, De Simoni Ottavia, Dei Tos Angelo Paolo, Di Camillo Barbara, Di Cristofaro Loretta, Facci Luca, Franzato Boris, Gavagna Laura, Godina Mario, Guerrieri Mario, Guerriero Silvio, Guzzardo Vincenza, Kotsafti Andromachi, Laurino Licia, Marchegiani Francesco, Maretto Isacco, Massani Marco, Merenda Roberto, Mondi Isabella, Negro Silvia, Ortenzi Monica, Parini Dario, Pilati Pierluigi, Pirozzolo Giovanni, Porzionato Andrea, Portale Giuseppe, Pozza Anna, Pozza Giulia, Prando Daniela, Pucciarelli Salvatore, Recordare Alfonso, Ricagna Fabio, Rivella Giorgio, Romiti Chiara, Ruffolo Cesare, Saadeh Luca, Salmaso Beatrice, Salmaso Roberta, Scapinello Antonio, Scognamiglio Federico, Spolverato Ylenia Camilla, Stecca Tommaso, Tagliente Giovanni, Tomassi Monica, Tedeschi Umberto, Vignotto Chiara, Verdi Daunia, Zagonel Vittorina, Zizzo Maurizio,
Collapse
|
16
|
Koukourakis IM, Platoni K, Tiniakos D, Kouloulias V, Zygogianni A. Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Curr Issues Mol Biol 2023; 45:4495-4517. [PMID: 37232754 DOI: 10.3390/cimb45050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
It is well-established that tumor antigens and molecules expressed and secreted by cancer cells trigger innate and adaptive immune responses. These two types of anti-tumor immunity lead to the infiltration of the tumor's microenvironment by immune cells with either regulatory or cytotoxic properties. Whether this response is associated with tumor eradication after radiotherapy and chemotherapy or regrowth has been a matter of extensive research through the years, mainly focusing on tumor-infiltrating lymphocytes and monocytes and their subtypes, and the expression of immune checkpoint and other immune-related molecules by both immune and cancer cells in the tumor microenvironment. A literature search has been conducted on studies dealing with the immune response in patients with rectal cancer treated with neoadjuvant radiotherapy or chemoradiotherapy, assessing its impact on locoregional control and survival and underlying the potential role of immunotherapy in the treatment of this cancer subtype. Here, we provide an overview of the interactions between local/systemic anti-tumor immunity, cancer-related immune checkpoint, and other immunological pathways and radiotherapy, and how these affect the prognosis of rectal cancer patients. Chemoradiotherapy induces critical immunological changes in the tumor microenvironment and cancer cells that can be exploited for therapeutic interventions in rectal cancer.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vassilis Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| |
Collapse
|
17
|
Shi J, Sun Z, Gao Z, Huang D, Hong H, Gu J. Radioimmunotherapy in colorectal cancer treatment: present and future. Front Immunol 2023; 14:1105180. [PMID: 37234164 PMCID: PMC10206275 DOI: 10.3389/fimmu.2023.1105180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer (CRC) is a deadly form of cancer worldwide. Patients with locally advanced rectal cancer and metastatic CRC have a poor long-term prognosis, and rational and effective treatment remains a major challenge. Common treatments include multi-modal combinations of surgery, radiotherapy, and chemotherapy; however, recurrence and metastasis rates remain high. The combination of radiotherapy and immunotherapy (radioimmunotherapy [RIT]) may offer new solutions to this problem, but its prospects remain uncertain. This review aimed to summarize the current applications of radiotherapy and immunotherapy, elaborate on the underlying mechanisms, and systematically review the preliminary results of RIT-related clinical trials for CRC. Studies have identified several key predictors of RIT efficacy. Summarily, rational RIT regimens can improve the outcomes of some patients with CRC, but current study designs have limitations. Further studies on RIT should focus on including larger sample sizes and optimizing the combination therapy regimen based on underlying influencing factors.
Collapse
Affiliation(s)
- Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhuang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Dandan Huang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Haopeng Hong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Peking Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing, China
| |
Collapse
|
18
|
Colloca G, Venturino A, Guarneri D. Neutrophil-to-lymphocyte ratio predict survival of patients with rectal cancer receiving neo-adjuvant chemoradiation followed by radical resection: a meta-analysis. Expert Rev Anticancer Ther 2023; 23:421-429. [PMID: 36970998 DOI: 10.1080/14737140.2023.2194635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND Neutrophil-to-lymphocyte ratio is suggested as a prognostic and predictive factor for patients with rectal cancer. The purpose of the current meta-analysis is to evaluate the relationship between neutrophil-lymphocyte ratio (NLR) and the outcome of patients, with rectal cancer receiving chemoradiation and surgery. METHODS A systematic review on two databases and a selection of studies were done. Thereafter, two meta-analyses were performed, evaluating the relationship of baseline NLR with overall survival (OS) and disease-free survival (DFS). RESULTS Thirty-one retrospective studies were selected. Twenty-six studies have documented a significant relationship of NLR to OS (HR 2.05, CI 1.66-2.53), whereas 23 studies have reported a weaker but significant relationship of NLR to DFS (HR 1.78, CI 1.49-2.12). Among the moderator variables, a possible effect for age and sex on the relationship of NLR with DFS is suggested. CONCLUSIONS Baseline NLR >3 is a simple and reproducible prognostic factor, with a more consistent effect in the elderly. It could be a reliable variable to support clinicians in defining personalized treatment strategies, even though a standardization of the cutoff and a better characterization among microsatellite unstable rectal tumors are necessary.
Collapse
|
19
|
Immunoscore Signatures in Surgical Specimens and Tumor-Infiltrating Lymphocytes in Pretreatment Biopsy Predict Treatment Efficacy and Survival in Esophageal Cancer. Ann Surg 2023; 277:e528-e537. [PMID: 34334651 PMCID: PMC10060045 DOI: 10.1097/sla.0000000000005104] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Tumor-infiltrating lymphocytes (TILs) have long been recognized as playing an important role in tumor immune microenvironment. Lately, the Immunoscore (IS) has been proposed as a new method of quantifying the number of TILs in association with patient survival in several cancer types. METHODS In 300 preoperatively untreated esophageal cancer (EC) patients who underwent curative resection at two different institutes, immunohistochemical staining using CD3 and CD8 antibodies was performed to evaluate IS, as objectively scored by auto-counted TILs in the tumor core and invasive margin. In addition, in pre-neoadjuvant chemotherapy (pre-NAC) endoscopic biopsies of a different cohort of 146 EC patients who received NAC, CD3, and CD8 were immunostained to evaluate TIL density. RESULTS In all cases, the IS-high (score 3-4) group tended to have better survival [5-year overall survival (OS) of the IS-high vs low group: 77.6 vs 65.8%, P = 0.0722] than the IS-low (score 1-2) group. This trend was more remarkable in cStage II-IV patients (70.2 vs 54.5%, P = 0.0208) and multivariate analysis of OS further identified IS (hazard ratio 2.07, P = 0.0043) to be an independent prognostic variable. In preNAC biopsies, NAC-responders had higher densities than non-responders of both CD3 + ( P = 0.0106) and CD8 + cells ( P = 0.0729) and, particularly CD3 + cell density was found to be an independent prognostic factor (hazard ratio 1.75, P = 0.0169). CONCLUSIONS The IS signature in surgical specimens and TIL density in preNAC- biopsies could be predictive markers of clinical outcomes in EC patients.
Collapse
|
20
|
Song J, Di Y, Kang X, Ren G, Wang Y. Development and validation of a nomogram to predict cancer-specific survival with unresected cholangiocarcinoma undergoing external radiotherapy. Front Public Health 2023; 11:1012069. [PMID: 36817916 PMCID: PMC9932201 DOI: 10.3389/fpubh.2023.1012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Objective To analyze the prognostic factors of patients with cholangiocarcinoma (CCA) who were unresected and received radiotherapy to establish a nomogram model for the prediction of patient cancer-specific survival (CSS). Methods Suitable patient cases were selected from the Surveillance, Epidemiology, and End Results (SEER) database, survival rates were calculated using the Kaplan-Meier method, prognostic factors were analyzed by Lasso, Cox regression, and nomogram was developed based on independent prognostic factors to predict 6 and 12 months CSS. The consistency index (C-index), calibration curve, and decision curve analysis (DCA) were tested for the predictive efficacy of the model, respectively. Results The primary site, tumor size, T-stage, M-stage, and chemotherapy (P < 0.05) were identified as independent risk factors after Cox and Lasso regression analysis. Patients in training cohort had a 6 months CSS rates was 68.6 ± 2.6%, a 12-month CSS rates was 49.0 ± 2.8%. The median CSS time of 12.00 months (95% CI: 10.17-13.83 months). The C-index was 0.664 ± 0.039 for the training cohort and 0.645 ± 0.042 for the validation cohort. The nomogram predicted CSS and demonstrated satisfactory and consistent predictive performance in 6 (73.4 vs. 64.9%) and 12 months (72.2 vs. 64.9%), respectively. The external validation calibration plot is shown AUC for 6- and 12-month compared with AJCC stage was (71.2 vs. 63.0%) and (65.9 vs. 59.8%). Meanwhile, the calibration plot of the nomogram for the probability of CSS at 6 and 12 months indicates that the actual and nomogram predict that the CSS remains largely consistent. DCA showed that using a nomogram to predict CSS results in better clinical decisions compared to the AJCC staging system. Conclusion A nomogram model based on clinical prognostic characteristics can be used to provide CSS prediction reference for patients with CCA who have not undergone surgery but have received radiotherapy.
Collapse
Affiliation(s)
- Jiazhao Song
- Department of Radiotherapy, Air Force Medical Center, PLA, Beijing, China,Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Yupeng Di
- Department of Radiotherapy, Air Force Medical Center, PLA, Beijing, China
| | - Xiaoli Kang
- Department of Radiotherapy, Air Force Medical Center, PLA, Beijing, China
| | - Gang Ren
- Department of Radiotherapy, Air Force Medical Center, PLA, Beijing, China,Department of Radiotherapy, Peking University Shougang Hospital, Beijing, China
| | - Yingjie Wang
- Department of Radiotherapy, Air Force Medical Center, PLA, Beijing, China,*Correspondence: Yingjie Wang ✉
| |
Collapse
|
21
|
Zhou P, Wang Y, Qin S, Han Y, Yang Y, Zhao L, Zhou Q, Zhuo W. Abscopal effect triggered by radiation sequential mono-immunotherapy resulted in a complete remission of PMMR sigmoid colon cancer. Front Immunol 2023; 14:1139527. [PMID: 37020543 PMCID: PMC10067748 DOI: 10.3389/fimmu.2023.1139527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Background Radiation therapy combined with immune checkpoint inhibitors (ICIs) has recently turned into an appealing and promising approach to enhance the anti-tumor immunity and efficacy of immunological drugs in many tumors. Abscopal effect induced by radiation is a phenomenon that often leads to an efficient immunity response. In this study, we investigated whether the combination of the immunogenic effects derived from radiotherapy sequential ICIs-based therapy could increase the incidence of abscopal effects, and improve the survival rates. Case presentation We described a clinical case regarding a 35-year-old male patient who was admitted to our hospital with a diagnosis of adenocarcinoma of the sigmoid colon and synchronous multiple liver metastases following a surgical resection. The molecular pathological examination showed immune-desert phenotype and proficient mismatch repair (pMMR). The patient was treated with adjuvant chemotherapy after surgery, however, after 7 months, multiple metastasis in the pelvic lymph nodes were diagnosed. Unfortunately, the tumor progressed despite multiple cycles of chemotherapy combined with cetuximab or bevacizumab. Within the follow-up treatment, the patient was administered with only 50Gy/25F of radiation dose to treat the anastomotic lesions. Subsequently, mono-sindilizumab was used as systemic therapy, leading to a rapid reduction of all pelvic lesions and complete clinical remission. So far, the patient survived for more than 20 months under continuous mono-sindilizumab treatment and is still in complete remission. Conclusion A localized radiotherapy combined with a sindilizumab-based systemic therapy may overcome the immune resistance of pMMR metastatic colorectal cancer (mCRC), thus obtaining greater efficacy of the therapy. Its mechanism may be related to the abscopal effect obtained by the synergistic use of radiation and sindilizumab, which should be further investigated in the future.
Collapse
Affiliation(s)
- Pu Zhou
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
| | - Yan Wang
- Department of Oncology, Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Si Qin
- Department of Oncology, Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yan Han
- Department of Oncology, People’s Hospital of Chongqing Hechuan, Chongqing, China
| | - Yumeng Yang
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
| | - Liang Zhao
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
| | - Quan Zhou
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
| | - Wenlei Zhuo
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
- *Correspondence: Wenlei Zhuo,
| |
Collapse
|
22
|
Kapoor V, Kelly WJ. Biomarkers for immune checkpoint inhibitors in solid tumors. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:126-136. [PMID: 36103047 DOI: 10.1007/s12094-022-02942-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
The use of immune checkpoint inhibitors in solid organ malignancies has become widespread in the last decade. Accumulating evidence shows broad survival benefit as compared to traditional chemotherapies. At the same time, a need has emerged to stratify these drugs in various patient populations and histologies. Consequently, various immune biomarkers have been proposed to help in selecting patients for these therapies. Here, we review the evidence pertaining to biomarkers including programmed death-ligand 1, defective mismatch repair, tumor mutational burden, tumor-infiltrating lymphocytes, gene expression profiles, circulating blood cells, circulating DNA and the gut microbiome. The value of PD-L1 testing in certain malignancies, such as lung and urothelial cancer is highlighted as well as emerging data from trials such as GARNET and CheckMate142.
Collapse
Affiliation(s)
- Vidit Kapoor
- Mays Cancer Center, UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA
| | - William James Kelly
- Mays Cancer Center, UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA.
| |
Collapse
|
23
|
Xiao W, Luo H, Yao Y, Wang Y, Liu S, Sun R, Chen G. Total neoadjuvant treatment and PD-1/PD-L1 checkpoint inhibitor in locally advanced rectal cancer. Front Immunol 2023; 14:1149122. [PMID: 37033988 PMCID: PMC10079866 DOI: 10.3389/fimmu.2023.1149122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
For local advanced rectal cancer (LARC), total neoadjuvant treatment (TNT) has shown more complete response (CR), reduced risk of distant metastasis (DM) and increase of the sphincter preservation rate. Now it is the one and only recommendation for high-risk group of LARC according to National Comprehensive Cancer Network (NCCN) rectal cancer guideline, while it is also preferentially recommended for low-risk group of LARC. TNT is also beneficial for distant rectal cancer patients who have need for organ preservation. Even though the prognostic value of programmed cell death-ligand 1 (PD-L1) in the neoadjuvant chemoradiotherapy (NACRT) of LARC patients is undetermined yet, the combination of NACRT and programmed cell death-1 (PD-1)/PD-L1 antibodies seem bring new hope for mismatch repair proficient (pMMR)/microsatellite stable (MSS) LARC patients. Accumulating small sample sized studies have shown that combining NACRT with PD-1/PD-L1 antibody yield better short-term outcomes for pMMR/MSS LARC patients than historic data. However, ideal total dose and fractionation of radiotherapy remains one of unresolved issues in this combination setting. Thorough understanding the impact of radiotherapy on the tumor microenvironment and their interaction is needed for in-depth understanding and exquisite design of treatments combination model.
Collapse
Affiliation(s)
- Weiwei Xiao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Gong Chen, ; Weiwei Xiao,
| | - Huilong Luo
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ye Yao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yaqin Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shuang Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rui Sun
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Gong Chen
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Gong Chen, ; Weiwei Xiao,
| |
Collapse
|
24
|
Takasu C, Nishi M, Yoshikawa K, Tokunaga T, Nakao T, Kashihara H, Wada Y, Yoshimoto T, Okikawa S, Yamashita S, Shimada M. Role of IDO expression in patients with locally advanced rectal cancer treated with preoperative chemoradiotherapy. BMC Cancer 2022; 22:1263. [PMID: 36471264 PMCID: PMC9720962 DOI: 10.1186/s12885-022-10357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of the immune system in locally advanced rectal cancer (LARC) following preoperative chemoradiotherapy (CRT) has been widely investigated in recent years. This study examined the prognostic significance of indoleamine-pyrrole 2,3-dioxygenase (IDO) expression in patients with LARC who received preoperative CRT. METHODS Ninety patients with LARC who underwent preoperative CRT and curative resection were enrolled. IDO and programmed death-ligand 1 (PD-L1) expression was evaluated by immunohistochemistry. RESULTS Clinicopathological factors did not significantly differ between patients with positive or negative IDO expression, excluding the correlation of positive IDO expression with better tumor differentiation (p = 0.02). IDO expression was not associated with pathological response (p = 0.44), but it was associated with PD-L1 expression. The 5-year overall survival (OS) rate was significantly worse in the IDO-positive group than in the IDO-negative group (64.8% vs. 85.4%, p = 0.02). Univariate analysis identified IDO and PD-L1 expression (p = 0.02), surgical procedure (p = 0.01), final pathological stage (p = 0.003), lymph node metastasis (p < 0.001), and lymphatic invasion (p = 0.002) as significant prognostic factors for OS. Multivariate analysis revealed that IDO expression (HR: 7.10, p = 0.0006), surgical procedure (HR: 5.03, p = 0.01), lymph node metastasis (HR: 2.37, p = 0.04) and lymphatic invasion (HR: 4.97, p = 0.01) were independent prognostic indicators. Disease-free survival was not correlated with IDO or PD-L1 expression. CONCLUSIONS IDO expression in patients with LARC who received preoperative CRT could be a potential prognostic indicator. IDO expression could be a useful marker for specifying individual treatment strategies in LARC.
Collapse
Affiliation(s)
- Chie Takasu
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Masaaki Nishi
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Kozo Yoshikawa
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Takuya Tokunaga
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Toshihiro Nakao
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Hideya Kashihara
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Yuma Wada
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Toshiaki Yoshimoto
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Shohei Okikawa
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Shoko Yamashita
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Mitsuo Shimada
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| |
Collapse
|
25
|
Lim YJ, Koh J, Choi M, Kim S, Chie EK. Prognostic stratification based on the levels of tumor-infiltrating myeloid-derived suppressor cells and PD-1/PD-L1 axis in locally advanced rectal cancer. Front Oncol 2022; 12:1018700. [PMID: 36387259 PMCID: PMC9641101 DOI: 10.3389/fonc.2022.1018700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Although rectal cancer remains somewhat sanctuary to the contemporary immunotherapy, there is increasing knowledge on clinical implications of anti-tumor immunity. This study evaluated the prognostic relevance of two immune-inhibitory functions, myeloid-derived suppressor cells (MDSCs) and programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis. METHODS Study cohort is comprised of 165 patients with locally advanced rectal cancer who underwent neoadjuvant chemoradiotherapy followed by definitive resection. Using postsurgical tissue microarrays, the number of MDSCs, PD-1+/CD8+ tumor-infiltrating lymphocyte (TIL) ratio, and PD-L1 expression scores in stromal immune cells and tumor cells were assessed. RESULTS Positive correlation was observed between the PD-1+/CD8+ TIL ratio and number of MDSCs (P < 0.001). The greater the immune infiltrates, the higher the PD-L1 immune cell score (P < 0.001). MDSCHigh, PD-1+/CD8+ TILHigh, PD-L1 immune cell scoreLow, and PD-L1 tumor H-scoreHigh were associated with worse disease-free survival (DFS) (P < 0.001, P = 0.042, 0.047, and P < 0.001, respectively). To integrate the adverse effects of MDSCHigh, PD-1+/CD8+ TILHigh, and either PD-L1 immune cell scoreLow (set I) or tumor H-scoreHigh (set II), prognostic risks were stratified according to the number of factors: 0, 1, and 2-3 (P < 0.001 for I and II). On multivariate analyses, patients with multiple risk factors for set I and II had worse prognosis (P < 0.001; 2-3 vs. 0 for models I and II), and the two prognostic models had acceptable predictability. CONCLUSION In this study, integration of the prognostic impact of MDSCs and PD-1/PD-L1 stratified the long-term risks of patients with locally advanced rectal cancer. Thus, further exploration could be focused to the identified subset of patients carrying worse prognosis, where potential benefits could be derived by targeting the two components contributing to the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Yu Jin Lim
- Department of Radiation Oncology, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, South Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Choi
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, South Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
26
|
Baretti M, Zhu Q, Fu W, Meyer J, Wang H, Anders RA, Azad NS. Chemoradiation-induced alteration of programmed death-ligand 1, CD8+ tumor-infiltrating lymphocytes and mucin expression in rectal cancer. Oncotarget 2022; 13:907-917. [PMID: 35937503 PMCID: PMC9348692 DOI: 10.18632/oncotarget.28255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: DNA damage and resulting neoantigen formation is considered a mechanism for synergy between radiotherapy and PD-1/PD-L1 pathway inhibition to induce antitumor immune response. We investigated neoadjuvant chemoradiotherapy (nCRT)-induced changes in CD8+ tumor infiltrating lymphocyte, PD-L1 and mucin expression in rectal cancer patients. Materials and Methods: Tumor samples of rectal adenocarcinoma patients undergoing resection between 2008-2014 with (n = 62) or without (n = 17) nCRT treatment were collected. Sections were stained with CD8 and PD-L1 antibodies for immunohistochemistry. The prevalence of CD8+ cells was recorded in the tumor, interface tumor and background rectal side. Image analysis was used to determine the density of CD8+ lymphocytes. The percentage of PD-L1 expression was manually counted in tumor cells (TC), tumor stroma (TS) and the invasive front (IF). Mucin expression was determined as the percentage of the mucin area in the whole tumor area. Results: PD-L1 expression on TCs was identified in 7.6% (6/79) of nCRT specimens (p = 0.33) and in none of the non-nCRT patients. Median densities of CD8+ infiltrating T lymphocytes did not differ significantly between the two groups. Mucin expression was significantly higher in the nCRT cohort (p = 0.02). Higher neutrophil to lymphocytes ratio (NLR) after nCRT was associated with worse outcome (HR = 1.04, 95% CI = 1.00–1.08). Conclusions: nCRT exposure was associated with a non-significant difference in PD-L1 expression in rectal adenocarcinoma patients, possibly due to sample size limitations. Further mechanistic investigations and comprehensive immune analysis are needed to understand nCRT-induced immunologic shift in rectal cancer and to expand the applicability of checkpoint inhibitors in this setting.
Collapse
Affiliation(s)
- Marina Baretti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wei Fu
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeffrey Meyer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hao Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nilofer S. Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
27
|
Hassanian H, Asadzadeh Z, Baghbanzadeh A, Derakhshani A, Dufour A, Rostami Khosroshahi N, Najafi S, Brunetti O, Silvestris N, Baradaran B. The expression pattern of Immune checkpoints after chemo/radiotherapy in the tumor microenvironment. Front Immunol 2022; 13:938063. [PMID: 35967381 PMCID: PMC9367471 DOI: 10.3389/fimmu.2022.938063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
As a disease with the highest disease-associated burden worldwide, cancer has been the main subject of a considerable proportion of medical research in recent years, intending to find more effective therapeutic approaches with fewer side effects. Combining conventional methods with newer biologically based treatments such as immunotherapy can be a promising approach to treating different tumors. The concept of "cancer immunoediting" that occurs in the field of the tumor microenvironment (TME) is the aspect of cancer therapy that has not been at the center of attention. One group of the role players of the so-called immunoediting process are the immune checkpoint molecules that exert either co-stimulatory or co-inhibitory effects in the anti-tumor immunity of the host. It involves alterations in a wide variety of immunologic pathways. Recent studies have proven that conventional cancer therapies, such as chemotherapy, radiotherapy, or a combination of them, i.e., chemoradiotherapy, alter the "immune compartment" of the TME. The mentioned changes encompass a wide range of variations, including the changes in the density and immunologic type of the tumor-infiltrating lymphocytes (TILs) and the alterations in the expression patterns of the different immune checkpoints. These rearrangements can have either anti-tumor immunity empowering or immune attenuating sequels. Thus, recognizing the consequences of various chemo(radio)therapeutic regimens in the TME seems to be of great significance in the evolution of therapeutic approaches. Therefore, the present review intends to summarize how chemo(radio)therapy affects the TME and specifically some of the most important, well-known immune checkpoints' expressions according to the recent studies in this field.
Collapse
Affiliation(s)
- Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- McCaig Insitute, Hotchkiss Brain Institute, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Insitute, Hotchkiss Brain Institute, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi” University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Takahashi H, Watanabe H, Hashimura M, Matsumoto T, Yokoi A, Nakagawa M, Ishibashi Y, Ito T, Ohhigata K, Saegusa M. A combination of stromal PD-L1 and tumoral nuclear β-catenin expression as an indicator of colorectal carcinoma progression and resistance to chemoradiotherapy in locally advanced rectal carcinoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2022; 8:458-469. [PMID: 35762092 PMCID: PMC9353658 DOI: 10.1002/cjp2.285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022]
Abstract
Programmed cell death-1 (PD-1) and its ligand (PD-L1) are significant mediators of immune suppression in the tumor microenvironment. We focused on the immunological impact of PD-1/PD-L1 signaling during tumor progression in colorectal carcinoma (CRC) and its association with resistance to neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal carcinoma (LAd-RC). Histopathological and immunohistochemical analyses of 100 CRC cases (including 34 RC) without NCRT and 109 NCRT-treated LAd-RC cases were performed. Membranous tumoral PD-L1 expression was identified in 9 of 100 (9%) CRC cases, including 1 of 34 (2.9%) RC cases, but PD-L1 immunopositivity was not associated with any clinicopathological factors, with the exception of deficient mismatch repair (dMMR) status. In contrast, stromal PD-L1+ immune cells, which frequently exhibited coexpression of PD-1 and CD8 markers, were significantly correlated with tumor vessel invasion, nuclear β-catenin+ tumor budding cancer stem cell (CSC)-like features, and unfavorable prognosis. In the LAd-RC cases, stromal CD8+ (but not PD-L1+) immune cell infiltration in pretreatment-biopsied samples was significantly and positively associated with therapeutic efficacy. After NCRT, tumoral PD-L1 expression was observed in only 2 of 83 (2.4%) tumors, independent of dMMR status, whereas high stromal PD-L1+ and tumoral nuclear β-catenin positivity were significantly linked to a poor response to NCRT and high tumor budding features. In addition, high stromal PD-L1 immunoreactivity was significantly associated with poorer overall survival. In conclusion, a combination of stromal PD-L1+ immune cells and nuclear β-catenin+ tumor budding may contribute to tumor progression in CRC and resistance to NCRT in LAd-RC, through formation of niche-like lesions that exhibit immune resistance and CSC properties.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Pathology, Kitasato University School of Allied Health Science, Sagamihara, Japan
| | - Hirono Watanabe
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Pathology, Kitasato University School of Allied Health Science, Sagamihara, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yu Ishibashi
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takashi Ito
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kensuke Ohhigata
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
29
|
Stoll E, Hader M, Rückert M, Weissmann T, Lettmaier S, Putz F, Hecht M, Fietkau R, Rosin A, Frey B, Gaipl US. Detailed in vitro analyses of the impact of multimodal cancer therapy with hyperthermia and radiotherapy on the immune phenotype of human glioblastoma cells. Int J Hyperthermia 2022; 39:796-805. [PMID: 35676615 DOI: 10.1080/02656736.2022.2080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Improvements of heat-delivery systems have led to hyperthermia (HT) being increasingly recognized as an adjunct treatment modality also for brain tumors. But how HT affects the immune phenotype of glioblastoma cells is only scarcely known. MATERIALS AND METHODS We therefore investigated the effect of in vitro HT, radiotherapy (RT), and the combination of both (RHT) on cell death modalities, immune checkpoint molecule (ICM) expression and release of the danger signal HSP70 of two human glioblastoma cell lines (U87 and U251) by using multicolor flow cytometry and ELISA. Hyperthermia was performed once or twice for 60-minute sessions reaching temperatures of 39 °C, 41 °C, and 44 °C, respectively. RT was administered with 5 x 2 Gy. RESULTS A hyperthermia chamber for cell culture t-flasks regulating the temperature via a contact sensor was developed. While the glioblastoma cells were rather radioresistant, particularly in U251 cells, the combination of RT with HT significantly increased the percentage of apoptotic and necrotic cells for all temperatures examined and for both, single and double HT application. In line with that, an increased release of HSP 70 was seen only in U251 cells, mainly following treatment with HT at temperatures of 44 °C alone or in combination with RT. In contrast, immune suppressive (PD-L1, PD-L2, HVEM) and immune stimulatory (ICOS-L, CD137-L and Ox40-L) ICMs were significantly increased mostly on U87 cells, and particularly after RHT with 41 °C. CONCLUSIONS Individual assessment of the glioblastoma immune cell phenotype with regard to the planned treatment is mandatory to optimize multimodal radio-immunotherapy protocols including HT.
Collapse
Affiliation(s)
- Eileen Stoll
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Michael Hader
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Andreas Rosin
- Chair for Ceramic Materials Engineering, Keylab Glastechnology, University of Bayreuth, Bayreuth, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
30
|
de Ruiter EJ, Bisheshar SK, de Roest RH, Wesseling FWR, Hoebers FJP, van den Hout MFCM, Leemans CR, Brakenhoff RH, de Bree R, Terhaard CHJ, Willems SM. Assessing the prognostic value of tumor-infiltrating CD57+ cells in advanced stage head and neck cancer using QuPath digital image analysis. Virchows Arch 2022; 481:223-231. [PMID: 35451620 PMCID: PMC9343309 DOI: 10.1007/s00428-022-03323-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/07/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
Abstract
This study aimed to assess the prognostic value of intratumoral CD57+ cells in head and neck squamous cell carcinoma (HNSCC) and to examine the reproducibility of these analyses using QuPath. Pretreatment biopsies of 159 patients with HPV-negative, stage III/IV HNSCC treated with chemoradiotherapy were immunohistochemically stained for CD57. The number of CD57+ cells per mm2 tumor epithelium was quantified by two independent observers and by QuPath, software for digital pathology image analysis. Concordance between the observers and QuPath was assessed by intraclass correlation coefficients (ICC). The correlation between CD57 and clinicopathological characteristics was assessed; associations with clinical outcome were estimated using Cox proportional hazard analysis and visualized using Kaplan-Meier curves. The patient cohort had a 3-year OS of 65.8% with a median follow-up of 54 months. The number of CD57+ cells/mm2 tumor tissue did not correlate to OS, DFS, or LRC. N stage predicted prognosis (OS: HR 0.43, p = 0.008; DFS: HR 0.41, p = 0.003; LRC: HR 0.24, p = 0.007), as did WHO performance state (OS: HR 0.48, p = 0.028; LRC: 0.33, p = 0.039). Quantification by QuPath showed moderate to good concordance with two human observers (ICCs 0.836, CI 0.805–0.863, and 0.741, CI 0.692–0.783, respectively). In conclusion, the presence of CD57+ TILs did not correlate to prognosis in advanced stage, HPV-negative HNSCC patients treated with chemoradiotherapy. Substantial concordance between human observers and QuPath was found, confirming a promising future role for digital, algorithm driven image analysis.
Collapse
Affiliation(s)
- Emma J de Ruiter
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands. .,Department of Pathology, University Medical Center Utrecht, H04.312, 3508, GA, Utrecht, The Netherlands.
| | - Sangeeta K Bisheshar
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.,Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Reinout H de Roest
- Department of Otolaryngology/Head and Neck Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Frederik W R Wesseling
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Frank J P Hoebers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - C René Leemans
- Department of Otolaryngology/Head and Neck Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chris H J Terhaard
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.,Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14092050. [PMID: 35565180 PMCID: PMC9103710 DOI: 10.3390/cancers14092050] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Hyperthermia (HT) is a cancer treatment which locally heats the tumor to supraphysiological temperature, and it is an effective sensitizer for radiotherapy (RT) and chemotherapy. HT is further capable of modulating the immune system. Thus, a better understanding of its effect on the immune phenotype of tumor cells, and particularly when combined with RT, would help to optimize combined anti-cancer treatments. Since in clinics, no standards about the sequence of RT and HT exist, we analyzed whether this differently affects the cell death and immunological phenotype of human breast cancer cells. We revealed that the sequence of HT and RT does not strongly matter from the immunological point of view, however, when HT is combined with RT, it changes the immunophenotype of breast cancer cells and also upregulates immune suppressive immune checkpoint molecules. Thus, the additional application of immune checkpoint inhibitors with RT and HT should be beneficial in clinics. Abstract Hyperthermia (HT) is an accepted treatment for recurrent breast cancer which locally heats the tumor to 39–44 °C, and it is a very potent sensitizer for radiotherapy (RT) and chemotherapy. However, currently little is known about how HT with a distinct temperature, and particularly, how the sequence of HT and RT changes the immune phenotype of breast cancer cells. Therefore, human MDA-MB-231 and MCF-7 breast cancer cells were treated with HT of different temperatures (39, 41 and 44 °C), alone and in combination with RT (2 × 5 Gy) in different sequences, with either RT or HT first, followed by the other. Tumor cell death forms and the expression of immune checkpoint molecules (ICMs) were analyzed by multicolor flow cytometry. Human monocyte-derived dendritic cells (moDCs) were differentiated and co-cultured with the treated cancer cells. In both cell lines, RT was the main stressor for cell death induction, with apoptosis being the prominent cell death form in MCF-7 cells and both apoptosis and necrosis in MDA-MB-231 cells. Here, the sequence of the combined treatments, either RT or HT, did not have a significant impact on the final outcome. The expression of all of the three examined immune suppressive ICMs, namely PD-L1, PD-L2 and HVEM, was significantly increased on MCF-7 cells 120 h after the treatment of RT with HT of any temperature. Of special interest for MDA-MB-231 cells is that only combinations of RT with HT of both 41 and 44 °C induced a significantly increased expression of PD-L2 at all examined time points (24, 48, 72, and 120 h). Generally, high dynamics of ICM expression can be observed after combined RT and HT treatments. There was no significant difference between the different sequences of treatments (either HT + RT or RT + HT) in case of the upregulation of ICMs. Furthermore, the co-culture of moDCs with tumor cells of any treatment had no impact on the expression of activation markers. We conclude that the sequence of HT and RT does not strongly affect the immune phenotype of breast cancer cells. However, when HT is combined with RT, it results in an increased expression of distinct immune suppressive ICMs that should be considered by including immune checkpoint inhibitors in multimodal tumor treatments with RT and HT. Further, combined RT and HT affects the immune system in the effector phase rather than in the priming phase.
Collapse
|
32
|
Wang N, Huang A, Kuang B, Xiao Y, Xiao Y, Ma H. Progress in Radiotherapy for Cholangiocarcinoma. Front Oncol 2022; 12:868034. [PMID: 35515132 PMCID: PMC9063097 DOI: 10.3389/fonc.2022.868034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CCA) originates from the epithelium of the bile duct and is highly malignant with a poor prognosis. Radical resection is the only treatment option to completely cure primary CCA. Due to the insidious onset of CCA, most patients are already in an advanced stage at the time of the initial diagnosis and may lose the chance of radical surgery. Radiotherapy is an important method of local treatment, which plays a crucial role in preoperative neoadjuvant therapy, postoperative adjuvant therapy, and palliative treatment of locally advanced lesions. However, there is still no unified and clear recommendation on the timing, delineating the range of target area, and the radiotherapy dose for CCA. This article reviews recent clinical studies on CCA, including the timing of radiotherapy, delineation of the target area, and dose of radiotherapy. Further, we summarize large fraction radiotherapy (stereotactic body radiotherapy [SBRT]; proton therapy) in CCA and the development of immunotherapy and the use of targeted drugs combined with radiotherapy.
Collapse
Affiliation(s)
- Ningyu Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bohua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xiao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Ma, ; Yong Xiao,
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Ma, ; Yong Xiao,
| |
Collapse
|
33
|
Hamid HKS, Emile SH, Davis GN. Prognostic Significance of Lymphocyte-to-Monocyte and Platelet-to-Lymphocyte Ratio in Rectal Cancer: A Systematic Review, Meta-analysis, and Meta-regression. Dis Colon Rectum 2022; 65:178-187. [PMID: 34775400 DOI: 10.1097/dcr.0000000000002291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The low lymphocyte-to-monocyte ratio and high platelet-to-lymphocyte ratio have been reported to be poor prognostic indicators in various solid tumors, but the prognostic significance in rectal cancer remains controversial. OBJECTIVES We sought to determine the prognostic value of the lymphocyte-to-monocyte ratio and the platelet-to-lymphocyte ratio following curative-intent surgery for rectal cancer. DATA SOURCES Following PRISMA guidelines (PROSPERO, ID: CRD42020190880), PubMed and Embase databases were searched through January 2021 including 3 other registered medical databases. STUDY SELECTION Studies evaluating the impact of pretreatment lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio on overall or disease-free survival in patients undergoing curative rectal cancer resection were selected. MAIN OUTCOMES MEASURES The main outcome measures were overall and disease-free survival. RESULTS A total of 23 studies (6683 patients) were included; lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio were evaluated in 14 and 16 studies. A low lymphocyte-to-monocyte ratio was associated with poorer overall survival (HR, 1.57; 95% CI, 1.29-1.90; p < 0.001) and disease-free survival (HR, 1.29; 95% CI, 1.13-1.46; p < 0.001). However, when the analysis was limited to patients treated with surgery alone or to those with stage I to III tumors, lymphocyte-to-monocyte ratio was not a predictor of overall survival and disease-free survival. The platelet-to-lymphocyte ratio did not predict for overall or disease-free survival, regardless of the treatment modality, studied population, tumor stage, or cutoff value. Finally, a low lymphocyte-to-monocyte ratio, but not a high platelet-to-lymphocyte ratio, was inversely correlated with complete pathologic response rate. LIMITATIONS The retrospective nature of most included studies was a limitation. CONCLUSIONS Pretreatment lymphocyte-to-monocyte ratio, but not platelet-to-lymphocyte ratio, correlates with tumor response to neoadjuvant chemoradiotherapy and poorer prognosis after curative-intent surgery for rectal cancer, and it potentially represents a simple and reliable biomarker that could help optimize individualized clinical decision-making in high-risk patients. REGISTRATION https://www.crd.york.ac.uk/prospero/; ID: CRD42020190880.
Collapse
Affiliation(s)
- Hytham K S Hamid
- Department of Surgery, East Kent Hospitals University NHS Foundation Trust, Ashford, United Kingdom
| | - Sameh H Emile
- Colorectal Surgery Unit, Department of General Surgery, Mansoura University Hospitals, Mansoura University, Mansoura, Egypt
| | - George N Davis
- Department of Surgery, Dorset County Hospital NHS Foundation Trust, Dorchester, United Kingdom
| |
Collapse
|
34
|
The Role of Ablative Radiotherapy to Liver Oligometastases from Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Purpose of Review
This review describes recent data supporting locoregional ablative radiation in the treatment of oligometastatic colorectal cancer liver metastases.
Recent Findings
Stereotactic body radiotherapy (SBRT) demonstrates high rates of local control in colorectal cancer liver metastases when a biologically equivalent dose of > 100 Gy is delivered. Future innovations to improve the efficacy of SBRT include MRI-guided radiotherapy (MRgRT) to enhance target accuracy, systemic immune activation to treat extrahepatic disease, and genomic customization. Selective internal radiotherapy (SIRT) with y-90 is an intra-arterial therapy that delivers high doses to liver metastases internally which has shown to increase liver disease control in phase 3 trials. Advancements in transarterial radioembolization (TARE) dosimetry could improve local control and decrease toxicity.
Summary
SBRT and SIRT are both promising options in treating unresectable metastatic colorectal cancer liver metastases. Identification of oligometastatic patients who receive long-term disease control from either therapy is essential. Future advancements focusing on improving radiation design and customization could further improve efficacy and toxicity.
Collapse
|
35
|
Wurm M, Schaaf O, Reutner K, Ganesan R, Mostböck S, Pelster C, Böttcher J, de Andrade Pereira B, Taubert C, Alt I, Serna G, Auguste A, Stadermann KB, Delic D, Han F, Capdevila J, Nuciforo PG, Kroe-Barrett R, Adam PJ, Vogt AB, Hofmann I. A Novel Antagonistic CD73 Antibody for Inhibition of the Immunosuppressive Adenosine Pathway. Mol Cancer Ther 2021; 20:2250-2261. [PMID: 34482286 PMCID: PMC9398120 DOI: 10.1158/1535-7163.mct-21-0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 01/07/2023]
Abstract
Despite some impressive clinical results with immune checkpoint inhibitors, the majority of patients with cancer do not respond to these agents, in part due to immunosuppressive mechanisms in the tumor microenvironment. High levels of adenosine in tumors can suppress immune cell function, and strategies to target the pathway involved in its production have emerged. CD73 is a key enzyme involved in adenosine production. This led us to identify a novel humanized antagonistic CD73 antibody, mAb19, with distinct binding properties. mAb19 potently inhibits the enzymatic activity of CD73 in vitro, resulting in an inhibition of adenosine formation and enhanced T-cell activation. We then investigated the therapeutic potential of combining CD73 antagonism with other immune modulatory and chemotherapeutic agents. Combination of mAb19 with a PD-1 inhibitor increased T-cell activation in vitro Interestingly, this effect could be further enhanced with an agonist of the adenosine receptor ADORA3. Adenosine levels were found to be elevated upon doxorubicin treatment in vivo, which could be blocked by CD73 inhibition. Combining CD73 antagonism with doxorubicin resulted in superior responses in vivo Furthermore, a retrospective analysis of rectal cancer patient samples demonstrated an upregulation of the adenosine pathway upon chemoradiation, providing further rationale for combining CD73 inhibition with chemotherapeutic agents.This study demonstrates the ability of a novel CD73 antibody to enhance T-cell function through the potent suppression of adenosine levels. In addition, the data highlight combination opportunities with standard of care therapies as well as with an ADORA3 receptor agonist to treat patients with solid tumors.
Collapse
Affiliation(s)
- Melanie Wurm
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Pharmacology and Disease Positioning, Vienna, Austria
| | - Otmar Schaaf
- Boehringer Ingelheim RCV, GmbH & Co KG, Drug Discovery Sciences, Vienna, Austria
| | - Katharina Reutner
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Rajkumar Ganesan
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Conneticut
| | - Sven Mostböck
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Christina Pelster
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Jark Böttcher
- Boehringer Ingelheim RCV, GmbH & Co KG, Drug Discovery Sciences, Vienna, Austria
| | | | | | | | - Garazi Serna
- Vall d´Hebron University Hospital, Vall d´Hebron Institute of Oncology, CIBERONC, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Aurelie Auguste
- Boehringer Ingelheim Pharma GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach, Germany
| | - Kai B Stadermann
- Boehringer Ingelheim Pharma GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach, Germany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach, Germany
| | - Fei Han
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Conneticut
| | - Jaume Capdevila
- Vall d´Hebron University Hospital, Vall d´Hebron Institute of Oncology, CIBERONC, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Paolo G Nuciforo
- Vall d´Hebron University Hospital, Vall d´Hebron Institute of Oncology, CIBERONC, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Conneticut
| | - Paul J Adam
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Anne B Vogt
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Irmgard Hofmann
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria.
| |
Collapse
|
36
|
Liang F, Rezapour A, Szeponik L, Alsén S, Wettergren Y, Bexe Lindskog E, Quiding-Järbrink M, Yrlid U. Antigen Presenting Cells from Tumor and Colon of Colorectal Cancer Patients Are Distinct in Activation and Functional Status, but Comparably Responsive to Activated T Cells. Cancers (Basel) 2021; 13:cancers13205247. [PMID: 34680397 PMCID: PMC8533845 DOI: 10.3390/cancers13205247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022] Open
Abstract
Although mouse models of CRC treatments have demonstrated robust immune activation, it remains unclear to what extent CRC patients' APCs and TILs interact to fuel or quench treatment-induced immune responses. Our ex vivo characterization of tumor and adjacent colon cell suspensions suggest that contrasting environments in these tissues promoted inversed expression of T cell co-stimulatory CD80, and co-inhibitory programmed death (PD)-ligand1 (PD-L1) on intratumoral vs. colonic APCs. While putative tumor-specific CD103+CD39+CD8+ TILs expressed lower CD69 (early activation marker) and higher PD-1 (extended activation/exhaustion marker) than colonic counterparts, the latter had instead higher CD69 and lower PD-1 levels. Functional comparisons showed that intratumoral APCs were inferior to colonic APCs regarding protein uptake and upregulation of CD80 and PD-L1 after protein degradation. Our attempt to model CRC treatment-induced T cell activation in vitro showed less interferon (IFN)-γ production by TILs than colonic T cells. In this model, we also measured APCs' CD80 and PD-L1 expression in response to activated co-residing T cells. These markers were comparable in the two tissues, despite higher IFN- γ exposure for colonic APCs. Thus, APCs within distinct intratumoral and colonic milieus showed different activation and functional status, but were similarly responsive to signals from induced T cell activation.
Collapse
Affiliation(s)
- Frank Liang
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (A.R.); (L.S.); (S.A.); (M.Q.-J.)
- Correspondence: (F.L.); (U.Y.)
| | - Azar Rezapour
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (A.R.); (L.S.); (S.A.); (M.Q.-J.)
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (A.R.); (L.S.); (S.A.); (M.Q.-J.)
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (A.R.); (L.S.); (S.A.); (M.Q.-J.)
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden; (Y.W.); (E.B.L.)
| | - Elinor Bexe Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden; (Y.W.); (E.B.L.)
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (A.R.); (L.S.); (S.A.); (M.Q.-J.)
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (A.R.); (L.S.); (S.A.); (M.Q.-J.)
- Correspondence: (F.L.); (U.Y.)
| |
Collapse
|
37
|
Monjazeb AM, Schalper KA, Villarroel-Espindola F, Nguyen A, Shiao SL, Young K. Effects of Radiation on the Tumor Microenvironment. Semin Radiat Oncol 2021; 30:145-157. [PMID: 32381294 DOI: 10.1016/j.semradonc.2019.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A malignant tumor consists of malignant cells as well as a wide array of normal host tissues including stroma, vasculature, and immune infiltrate. The interaction between cancer and these host tissues is critical as these host tissues play a variety of roles in supporting or resisting disease progression. Radiotherapy (RT) has direct effects on malignant cells, but, also, critically important effects on these other components of the tumor microenvironment (TME). Given the growing role of immune checkpoint inhibitors and other immunotherapy strategies, understanding how RT affects the TME, particularly the immune compartment, is essential to advance RT in this new era of cancer therapy. The interactions between RT and the TME are complex, affecting the innate and adaptive arms of the immune system. RT can induce both proinflammatory effects and immune suppressive effects that can either promote or impede antitumor immunity. It is likely that the initial proinflammatory effects of RT eventually lead to rebound immune-suppression as chronic inflammation sets in. The exact kinetics and nature of how RT changes the TME likely depends on timing, dose, fractionation, site irradiated, and tumor type. With increased understanding of the effects of RT on the TME, in the future it is likely that we will be able to personalize RT by varying the dose, site, and timing of intervention to generate the desired response to partner with immunotherapy strategies.
Collapse
Affiliation(s)
- Arta M Monjazeb
- UC Davis Comprehensive Cancer Center, Department of Radiation Oncology, Sacramento, CA.
| | - Kurt A Schalper
- Yale University School of Medicine, Department of Pathology, New Haven, CT
| | | | - Anthony Nguyen
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA
| | - Stephen L Shiao
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA
| | - Kristina Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR; Radiation Oncology Division, The Oregon Clinic, Portland, OR
| |
Collapse
|
38
|
Biomarkers and cell-based models to predict the outcome of neoadjuvant therapy for rectal cancer patients. Biomark Res 2021; 9:60. [PMID: 34321074 PMCID: PMC8317379 DOI: 10.1186/s40364-021-00313-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Rectal cancer constitutes approximately one-third of all colorectal cancers and contributes to considerable mortality globally. In contrast to colon cancer, the standard treatment for localized rectal cancer often involves neoadjuvant chemoradiotherapy. Tumour response rates to treatment show substantial inter-patient heterogeneity, indicating a need for treatment stratification. Consequently researchers have attempted to establish new means for predicting tumour response in order to assist in treatment decisions. In this review we have summarized published findings regarding potential biomarkers to predict neoadjuvant treatment response for rectal cancer tumours. In addition, we describe cell-based models that can be utilized both for treatment prediction and for studying the complex mechanisms involved.
Collapse
|
39
|
A radiomic signature model to predict the chemoradiation-induced alteration in tumor-infiltrating CD8 + cells in locally advanced rectal cancer. Radiother Oncol 2021; 162:124-131. [PMID: 34265357 DOI: 10.1016/j.radonc.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Regarding the altered tumor immune status following cytotoxic treatment, this study aims to develop a radiomic signature to predict CD8+ tumor-infiltrating lymphocyte (TIL) density changes in chemoradiotherapy (CRT) of rectal cancer. MATERIALS AND METHODS We used the magnetic resonance imaging (MRI) and immunohistochemistry data before and after neoadjuvant CRT. The discovery datasets consisted of pre-CRT dataset A1 (n = 113), post-CRT datasets A2 (n = 32; predominance of tumor) and A3 (n = 20; pure fibrosis). The developed model was validated in dataset B (n = 28). Thirty-eight radiomic features from T2-weighted MRI scans were incorporated into the least absolute shrinkage and selection operator method. RESULTS In pre-CRT dataset A1, the area under the receiver operating characteristic curve (AUC) values of radiomic score for predicting CD8+ TILs were 0.760 and 0.729 for training and validation subsets, respectively. A significant correlation was observed between the signature and CD8+ TIL density in the post-CRT dataset A2 (Pearson's R = -0.372, P = 0.036), whereas no association was found in dataset A3 (Pearson's R = -0.069, P = 0.77). The association was also observed in the validation dataset B (Pearson's R = -0.374, P = 0.049). In dataset A2, the radiomic score difference predicted changes in CD8+ TIL density (AUC = 0.824). CONCLUSION We established the MRI-derived radiomic signature for predicting CRT-induced alterations in CD8+ TILs. This study suggests the clinical utility of radiomics-immunophenotype modeling to evaluate tumor immune status following neoadjuvant chemoradiation in rectal cancer.
Collapse
|
40
|
Lee JH, Kang BH, Song C, Kang SB, Lee HS, Lee KW, Chie EK, Kim JS. Microsatellite Instability Correlated Inflammatory Markers and their Prognostic Value in the Rectal Cancer Following Neoadjuvant Chemoradiotherapy: A Hypothesis-generating Study. In Vivo 2021; 34:2119-2126. [PMID: 32606192 DOI: 10.21873/invivo.12017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM This study aimed to analyze the correlation between microsatellite instability (MSI) and inflammatory markers during neoadjuvant CRT in rectal cancer and its influence on prognosis. PATIENTS AND METHODS A total of 549 patients with locally advanced rectal cancer underwent neoadjuvant CRT. Complete blood counts before CRT, and 4-8 weeks after CRT were used to measure neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). RESULTS MSI was significantly associated with elevated NLR and PLR after CRT as well as with a change in NLR and PLR during CRT. Neither inflammatory markers nor MSI significantly related to survival. However, in patients with MSI, an increase in NLR and PLR before CRT was significantly correlated with poor overall survival and disease-free survival. CONCLUSION There is correlation between inflammatory markers and MSI during CRT and it influences prognosis. Therefore, inflammatory markers might have a role in assessing the microenvironment related to MSI and the immunologic response in rectal cancer.
Collapse
Affiliation(s)
- Joo Ho Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Hee Kang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Changhoon Song
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
41
|
In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells 2021; 10:cells10061436. [PMID: 34201238 PMCID: PMC8230049 DOI: 10.3390/cells10061436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5–15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
Collapse
|
42
|
Bindal P, Gray JE, Boyle TA, Florou V, Puri S. Biomarkers of therapeutic response with immune checkpoint inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1040. [PMID: 34277840 PMCID: PMC8267267 DOI: 10.21037/atm-20-6396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitors (ICPIs) have revolutionized the treatment paradigm of a wide range of malignancies with durable responses seen in even advanced, refractory cancers. Unfortunately, only a small proportion of patients with cancer derive meaningful benefit to ICPI therapy, and its use is also limited by significant immune and financial toxicities. Thus, there is a critical need for the development of biomarkers to reliably predict response to ICPI therapy. Only a few biomarkers are validated and approved for use with currently Food and Drug administration (FDA)-approved ICPIs. The development and broad application of biomarkers is limited by the lack of complete understanding of the complex interactions of tumor-host environment, the effect of immunotherapies on these already complex interactions, a lack of standardization and interpretation of biomarker assays across tumor types. Despite these challenges, the field of identifying predictive biomarkers is evolving at an unprecedented pace leaving the clinician responsible for identifying the patients that may derive optimal benefit from ICPIs. In this review, we provide clinicians with a current and practical update on the key, clinically relevant biomarkers of response to ICPIs. We categorize the current and emerging biomarkers of response to ICPIs in four major categories that govern anticancer response—the inflamed tumor, tumor antigens, immune suppression, and overall host environment.
Collapse
Affiliation(s)
- Poorva Bindal
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Vaia Florou
- Division of Medical Oncology, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Sonam Puri
- Division of Medical Oncology, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
43
|
Liang F, Rezapour A, Falk P, Angenete E, Yrlid U. Cryopreservation of Whole Tumor Biopsies from Rectal Cancer Patients Enable Phenotypic and In Vitro Functional Evaluation of Tumor-Infiltrating T Cells. Cancers (Basel) 2021; 13:cancers13102428. [PMID: 34067849 PMCID: PMC8155904 DOI: 10.3390/cancers13102428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) remains the third most common malignancy. Tumor-infiltrating lymphocytes (TILs) have emerged as correlates to CRC patient outcome after treatment. The pro- or anti-tumor responses of TILs are usually assessed in cell suspensions of fresh tumors that were surgically removed a few hours earlier. We propose a platform for concurrent enumeration and in vitro functional evaluation of TILs in cryopreserved tumor biopsies, offering the benefit of postponing tumor processing and analyses of TILs in cell suspensions until clinical post-treatment responses are established. Our platform is practical considering the inconsistent time when patient samples become available for research purposes and can be readily utilized by other laboratories. With a fresh portion of tumor biopsies as benchmark, we validated the recovery of viable TILs capable of interferon (IFN)-γ responses in the cryopreserved portion of same biopsies. Ultimately, this platform could provide sufficient information on TILs, to also predict patient outcome after CRC treatments. Abstract TILs comprise functionally distinct conventional and unconventional T cell subsets and their role in responses to CRC treatments is poorly understood. We explored recovery of viable TILs from cryopreserved tumor biopsies of (chemo)-radiated patients with rectal cancer to establish a platform for retrospective TIL analyses of frozen tumors from pre-selected study cohorts. Frequencies of TIL subsets and their capacity to mount IFN-γ responses in cell suspensions of fresh vs. cryopreserved portions of the same tumor biopsies were determined for platform validation. The percentages and proportions of CD4+ TILs and CD8+ cytotoxic T lymphocytes (CTLs) among total TILs were not affected by cryopreservation. While recovery of unconventional γδ T cells and mucosal-associated invariant T cells (MAIT cells) was stable after cryopreservation, the regulatory T cells (Tregs) were reduced, but in sufficient yields for quantification. IFN-γ production by in vitro-stimulated CD4+ TILs, CTLs, γδ T cells, and MAIT cells were proportionally similar in fresh and cryopreserved tumor portions, albeit the latter displayed lower levels. Thus, the proposed platform intended for TIL analyses on cryopreserved tumor biobank biopsies holds promises for studies linking the quantity and quality of TIL subsets with specific clinical outcome after CRC treatment.
Collapse
Affiliation(s)
- Frank Liang
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.L.); (A.R.)
| | - Azar Rezapour
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.L.); (A.R.)
| | - Peter Falk
- Department of Surgery, Fibrinolysis Laboratory, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 416 85 Gothenburg, Sweden;
| | - Eva Angenete
- Department of Surgery, Sahlgrenska University Hospital/Östra, Region Västra Götaland, 413 45 Gothenburg, Sweden
- Department of Surgery, SSORG—Scandinavian Surgical Outcomes Research Group, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 416 85 Gothenburg, Sweden
- Correspondence: (E.A.); (U.Y.); Tel.: +46-31-343-8410 (E.A.); +46-31-786-6225 (U.Y.)
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.L.); (A.R.)
- Correspondence: (E.A.); (U.Y.); Tel.: +46-31-343-8410 (E.A.); +46-31-786-6225 (U.Y.)
| |
Collapse
|
44
|
Otegbeye EE, Mitchem JB, Park H, Chaudhuri AA, Kim H, Mutch MG, Ciorba MA. Immunity, immunotherapy, and rectal cancer: A clinical and translational science review. Transl Res 2021; 231:124-138. [PMID: 33307273 PMCID: PMC8016725 DOI: 10.1016/j.trsl.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/28/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Rectal cancer remains a challenging disease to treat. Therapy for locally advanced rectal cancer (LARC), the most frequent presentation, has evolved to include a multimodal approach of radiation, chemotherapy, and surgery. While this approach improves local disease control, the distant recurrence rate is nearly 30% and treatment-related morbidity is substantial, thus underscoring the need for new therapeutic approaches with better efficacy and lower side effects. Immunotherapy could potentially fill this need, but its promise is not yet realized in rectal cancer. In this translational science review, we address what is known about how cytotoxic therapies shape rectal cancer immunity and potentially prime the tumor microenvironment for response to immune checkpoint inhibitors and other immunotherapies. We also address the role of current immunotherapies in colorectal cancer and highlight where novel immunotherapy approaches are currently being evaluated in LARC. Finally, we address important future directions in LARC immunotherapy including the need to define optimal therapeutic sequencing, predictive biomarkers, strategies to limit treatment-related side effects and the potential of gut microbiome manipulation to improve outcomes. In summary, this review provides a framework to guide future research and inform immunotherapy trial design so as to advance rectal cancer care.
Collapse
Affiliation(s)
- Ebunoluwa E Otegbeye
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan B Mitchem
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri; Surgical Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Haeseong Park
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Aadel A Chaudhuri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri; Department of Computer Science & Engineering, Washington University, St. Louis, Missouri
| | - Hyun Kim
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew G Mutch
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Department of Surgery, Section of Colorectal Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew A Ciorba
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Inflammatory Bowel Diseases Center and the Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
45
|
Georges NDF, Oberli B, Rau TT, Galván JA, Nagtegaal ID, Dawson H, Blank A, Kohler A, Lugli A, Zlobec I. Tumour budding and CD8 + T cells: 'attackers' and 'defenders' in rectal cancer with and without neoadjuvant chemoradiotherapy. Histopathology 2021; 78:1009-1018. [PMID: 33340423 DOI: 10.1111/his.14319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023]
Abstract
AIM Tumour budding ('attacker') and CD8+ T cells ('defender') are recognised as important parameters for risk stratification in colon cancers and, combined, may have an even stronger clinical impact. Here, we determine the value of tumour budding and CD8+ in rectal cancer patients treated with/without neoadjuvant therapy. METHODS AND RESULTS Using digital scans of all tumour slides/case, we analysed CD8+ T cell counts in two patient cohorts: 45 neoadjuvantly treated and 47 primarily surgically treated (totalling n = 543 slides) after double-staining of the surgical resection specimen for pan-cytokeratin and CD8+ . Tumour buds in hot-spots were manually counted (area = 0.785 mm2 ) and CD8+ T cell counts were analysed separately both in tumour budding hot-spots and the densest CD8+ regions throughout the tumour. In neoadjuvantly treated patients, only tumour budding and not CD8+ T cells was associated with tumour features, including more advanced ypT (P = 0.0062), venous invasion (P = 0.002), lymphatic invasion (P = 0.0003) and perineural invasion (P = 0.0017), as well as higher American Joint Committee on Cancer (AJCC) tumour regression score (P = 0.0035), indicating less tumour response. Overall survival was also worse in patients with high-grade budding in univariate analysis only. In contrast, all three variables, namely tumour budding (P = 0.0347), CD8+ T cells in budding hot-spots (P = 0.0382) and CD8+ T cells in the densest areas (P = 0.0117) were also associated with worse (budding) and better (CD8) survival time in the multivariate setting. CONCLUSION In rectal cancer, tumour budding has clinical relevance in both primarily surgically treated patients and in those with neoadjuvantly treated patients, where it characterises highly aggressive residual disease. CD8+ T cell counts appear not to have prognostic relevance in the neoadjuvant context.
Collapse
Affiliation(s)
| | - Beatrice Oberli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tilman T Rau
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Iris D Nagtegaal
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heather Dawson
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Annika Blank
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Andreas Kohler
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Sato H, Demaria S, Ohno T. The role of radiotherapy in the age of immunotherapy. Jpn J Clin Oncol 2021; 51:513-522. [PMID: 33561212 PMCID: PMC8012351 DOI: 10.1093/jjco/hyaa268] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
With the development of immune checkpoint inhibitors, the efficacy of immunotherapy as a cancer treatment that is effective against multiple tumor types has been established, and this modality came to be considered as the fourth pillar of cancer therapy. The clinical success of immunotherapy greatly changed the field of oncology by highlighting the importance of the immune system in cancer control and elimination. It has now become clear that research into, and the clinical application of, the immune response are important for effective cancer treatment. Moreover, it has become apparent that conventional cancer treatments, such as radiotherapy and chemotherapy, can modulate the cross-talk between the tumor and the immune system, and their efficacy depends, in part, on the ability to elicit antitumor immune response. The ability of radiotherapy to induce an immune response has become relevant in the immunotherapy age. Radiotherapy has been redefined as a partner for cancer immunotherapy, based on evidence indicating the potential synergistic effect of the combination of these therapeutic modalities. This review outlines the major findings reported to date on the immune response induced by radiotherapy and discusses the role of radiotherapy in combination with immunotherapy. Furthermore, we introduce research aimed at the clinical application of combination therapy and discuss its potential in clinical practice and future issues.
Collapse
Affiliation(s)
- Hiro Sato
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Tatsuya Ohno
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
47
|
PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 18:345-362. [PMID: 33580222 DOI: 10.1038/s41571-021-00473-5] [Citation(s) in RCA: 883] [Impact Index Per Article: 220.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Immune-checkpoint inhibitors targeting PD-1 or PD-L1 have already substantially improved the outcomes of patients with many types of cancer, although only 20-40% of patients derive benefit from these new therapies. PD-L1, quantified using immunohistochemistry assays, is currently the most widely validated, used and accepted biomarker to guide the selection of patients to receive anti-PD-1 or anti-PD-L1 antibodies. However, many challenges remain in the clinical use of these assays, including the necessity of using different companion diagnostic assays for specific agents, high levels of inter-assay variability in terms of both performance and cut-off points, and a lack of prospective comparisons of how PD-L1+ disease diagnosed using each assay relates to clinical outcomes. In this Review, we describe the current role of PD-L1 immunohistochemistry assays used to inform the selection of patients to receive anti-PD-1 or anti-PD-L1 antibodies, we discuss the various technical and clinical challenges associated with these assays, including regulatory issues, and we provide some perspective on how to optimize PD-L1 as a selection biomarker for the future treatment of patients with solid tumours.
Collapse
|
48
|
Hecht M, Gaipl US, Fietkau R. [Promising results of the combination of radiotherapy and pembrolizumab in metastatic NSCLC]. Strahlenther Onkol 2020; 196:289-292. [PMID: 32040692 DOI: 10.1007/s00066-019-01573-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Markus Hecht
- Universitäts-Strahlenklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Deutschland.
| | - Udo S Gaipl
- Universitäts-Strahlenklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Deutschland
| | - Rainer Fietkau
- Universitäts-Strahlenklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Deutschland
| |
Collapse
|
49
|
De Souza ALPB. Finding the hot spot: identifying immune sensitive gastrointestinal tumors. Transl Gastroenterol Hepatol 2020; 5:48. [PMID: 33073043 DOI: 10.21037/tgh.2019.12.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Although researchers have been trying to harness the immune system for over 100 years, the advent of immune checkpoint blockers (ICB) marks an era of significant clinical outcomes in various metastatic solid tumors, characterized by complete and durable responses. ICBs are monoclonal antibodies that target either of a pair of transmembrane molecules in tumors or T-cells involved in immune evasion. Currently 2 ICBs targeting the checkpoint program death 1 (PD-1), nivolumab and pembrolizumab, and one cytotoxic lymphocyte antigen-4 (CTLA-4) inhibitor (ipilimumab) are approved in gastrointestinal malignancies. We review herein the current evidence on predictive biomarkers for ICB response in gastrointestinal tumors. A review of literature based on the National Cancer Institute list of FDA-approved drugs for neoplasms and FDA-approved therapies at the FDA website was performed. An initial literature review was based on the American Association for Clinical Research meeting 2019, the American Society of Clinical Oncology meeting 2019 and the European Society of Medical Oncology 2019 proceedings. A systematic search of PubMed was performed involving MeSH browser terms such as biomarkers, immunotherapy, gastrointestinal diseases and neoplasms. When appropriate, American and British terms were used in the search. The most relevant predictor of response to ICBs is microsatellite instability (MSI) and the data is strongest for colorectal cancer. At least 3 prospective trials show evidence of PD-L1 as a predictive biomarker for ICB response in gastroesophageal malignancies. At least one prospective trial has described tumor mutational burden high (TMB-H), independent of MSI, as predictive of response in anal and biliary tract carcinomas. DNA Polymerase Epsilon (POLE) or delta (POL-D) mutations have been implicated in a subset of MSS colorectal cancer with TMB-H but this biomarker requires prospective validation. There is evolving data based on retrospective observations that gene alterations predicting acquired resistance and hyper-progression. Ongoing clinical research is assessing the role of the human microbiome and RNA-editing complex mutations as predictive biomarkers of response to ICBs. MSI has the strongest predictive power among current biomarkers for ICB response in gastrointestinal cancers. Data continue to accumulate from ongoing clinical trials and new biomarkers are emerging from pre-clinical studies, suggesting that drug combinations targeting pathways complimentary to the PD-1/PD-L1 axis inhibition will define a robust field of clinical research.
Collapse
|
50
|
Radiotherapy Scheme Effect on PD-L1 Expression for Locally Advanced Rectal Cancer. Cells 2020; 9:cells9092071. [PMID: 32927784 PMCID: PMC7563314 DOI: 10.3390/cells9092071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
In locally advanced rectal cancer, radiotherapy (RT) followed by surgery have improved locoregional control, but distant recurrences remain frequent. Although checkpoint inhibitors have demonstrated objective response in several cancers, the clinical benefit of PD-1/PD-L1 blockade remains uncertain in rectal cancer. We collected data from biopsies and surgical specimens in 74 patients. The main objective was to evaluate the impact of neoadjuvant RT and fractionation on PD-L1 expression. Secondary objectives were to study the relation between PD-L1 expression and tumor regression grade (TRG), progression-free survival (PFS), overall survival (OS), and CD8 TILs infiltration. Median rates of cells expressing PD-L1 pre- and post-RT were 0.15 (range, 0-17) and 0.5 (range, 0-27.5), respectively (p = 0.0005). There was no effect of RT fractionation on PD-L1+ cell rates. We found no relation between CD8+ TILs infiltration and PD-L1 expression and no difference between high-PD-L1 or low-PD-L1 expression and TRG. High-to-high PD-L1 expression profile had none significant higher OS and PFS compared to all other groups (p = 0.06). Median OS and PFS were higher in biopsies with >0.08 PD-L1+ cells. High-to-high PD-L1 profile and ypT0-2 were significantly associated with higher OS and PFS. This study did not show the differential induction of PD-L1 expression according to fractionation.
Collapse
|