1
|
Ji G, Zhang J, Sheng H, Feng X, Hu C, Na R, Li F, Han L, Wang Y, Ma Y, Yang W, Ma Y. Screening of key genes involved in endometritis in cows and the regulatory role of CD83 in bovine endometrial epithelial cells. Int Immunopharmacol 2025; 148:114183. [PMID: 39892172 DOI: 10.1016/j.intimp.2025.114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Endometritis in dairy cows involves complex molecular regulatory mechanisms. Therefore, uncovering the molecular regulatory mechanisms of endometritis in dairy cows is crucial to understand its development, prevention, and treatment. This study aimed to screen and validate key genes associated with endometritis using transcriptome sequencing of blood samples and previously obtained metabolomic sequencing data. Based on gain-of-function and loss-of-function experiments on the gene, multiple techniques, including qRT-PCR, western blotting, detection of reactive oxygen species (ROS), measurement of mitochondrial membrane potential, EdU assay, flow cytometry, and CCK-8 assay were used to explore the function of the key gene in lipopolysaccharide (LPS)-stimulated bovine endometrial epithelial cells (BEECs). The results identified 536 differentially expressed genes (DEGs) between healthy cows and those with endometritis. These DEGs were significantly enriched in apoptosis and HIF-1 signaling pathways. Weighted gene co-expression network analysis of transcriptomic and metabolomic data identified CD83, CTNNAL1, LRRC25, and NR1H3 as potential key genes for endometritis in dairy cows, with CD83 being more significantly expressed in LPS-induced BEECs. Consequently, in vitro functional studies were performed on CD83. In overexpression experiments, downregulation of the expression of inflammatory markers interleukin (IL)-1β, IL-6, and IL-8 and reduced ROS release primarily indicated the role of CD83 in attenuating the inflammatory response of BEECs. Furthermore, overexpression of CD83 regulated the S/G2 phase transition of BEECs by affecting the mRNA and protein expression of proliferation marker genes, thereby promoting proliferation of BEECs. The increased EdU positivity and the cell proliferation rate further provided evidence for the promotion of cell proliferation after overexpression of CD83. Additionally, overexpression of CD83 attenuated LPS-stimulated mitochondrial damage in BEECs, as well as the downregulation of apoptosis marker gene expression. In contrast, knockdown of CD83 expression showed the opposite trend. In summary, CD83 attenuated the inflammatory response of BEECs, promoted their proliferation, and inhibited apoptosis. This study provided basic data for understanding the mechanisms of endometritis regulation at the gene level in dairy cows.
Collapse
Affiliation(s)
- Guoshang Ji
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Junxing Zhang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hui Sheng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chunli Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Rina Na
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Fen Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Liyun Han
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yachun Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wenfei Yang
- Ningxia Xin' ao Agriculture and Animal Husbandry Co., Ltd., Lingwu 750406, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Heiß A, Krammer S, Kuhnt C, Draßner C, Beck P, Geiger A, Schliep S, Geppert C, Steinkasserer A, Wild AB. Tissue-Resident Regulatory T Cells Expressing CD83 Maintain Local Homeostasis and Restrict Th2 Responses in Asthma. Eur J Immunol 2025; 55:e202451525. [PMID: 39955650 PMCID: PMC11830382 DOI: 10.1002/eji.202451525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Non-lymphoid tissue Tregs (NLT-Tregs) are critical for tissue homeostasis, inflammation control, and induction of tissue repair. Recent single-cell RNA sequencing data identified the expression of CD83 as part of an NLT-Treg signature, which is an essential molecule for the stability and differentiation of lymphoid Tregs. However, the biological significance of CD83 expression for NLT Tregs has not yet been elucidated. The present study explores for the first time the role of CD83 expression by lung-resident Tregs in the steady state and during asthma to understand its importance in barrier tissues. We evaluated the effect of Treg-specific CD83 deletion (CD83cKO) on the lung-resident T-cell compartment and cytokine profile. CD83-deficient lung Tregs are less differentiated but more activated, resulting in unrestrained T-cell activation. Further, CD83cKO mice were challenged in an asthma model and showed an accelerated disease progression, driven by Th2-biased T-cell responses. CD83cKO Tregs exhibited enhanced responsiveness to IL-4, leading to insufficient control of Th2-differentiation from naïve T cells. These findings underscore the pivotal role of CD83 in the NLT-Treg-mediated modulation of Th2 responses. Overall, our results highlight CD83 as a key player in tissue homeostasis and inflammatory responses, suggesting potential therapeutic implications for inflammatory disorders such as asthma.
Collapse
Affiliation(s)
- Anita Heiß
- Department of Immune ModulationUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Susanne Krammer
- Department of Molecular PneumologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Christine Kuhnt
- Department of Immune ModulationUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Christina Draßner
- Department of Immune ModulationUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Philipp Beck
- Department of Immune ModulationUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Adriana Geiger
- Department of Molecular PneumologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Stefan Schliep
- Department of DermatologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Carol‐Immanuel Geppert
- Institute of PathologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Alexander Steinkasserer
- Department of Immune ModulationUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Andreas B. Wild
- Department of Immune ModulationUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| |
Collapse
|
3
|
Luo M, Zhang W, Yang J, Du X, Wang X, Xu G, Tang H, Wang Z, Zhong X, Feng J, Ma N. CD83 mediates the inhibitory effect of the S1PR1 agonist CYM5442 on LPS-induced M1 polarization of macrophages through the ERK-STAT-1 signaling pathway. Int Immunopharmacol 2024; 143:113526. [PMID: 39486189 DOI: 10.1016/j.intimp.2024.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Macrophages possess M1/M2 polarization, which perform an essential role in immunology and inflammation studies. However, few studies have investigated the specific molecules involved in the polarization process beyond its induction and characterization. Here, we determined that the molecule S1PR1 regulates M1 polarization in macrophages and that the surface marker CD83 is involved in this process. The S1PR1 agonist CYM5442 specifically increases CD83 expression in macrophages. Although the agonist CYM5442 and LPS regulate CD83 differently in macrophages, they have a synergistic effect that enhances CD83 expression. Notably, CYM5442 does not act synergistically with IL-4 regarding CD83 expression and does not affect IL-4-induced macrophage M2 polarization. Furthermore, CYM5442 inhibits the expression of LPS-induced inflammatory cytokines and the phosphorylation of ERK1/2 and STAT-1 in macrophages. However, this inhibition was significantly diminished or absent when CD83 is deficient, highlighting the importance of CD83 in mediating S1PR1 signaling in LPS-induced M1 polarization of macrophages. Overall, our findings provide valuable insights into the molecular mechanisms underlying macrophage polarization, particularly the roles of S1PR1 and CD83 in modulating inflammatory responses.
Collapse
Affiliation(s)
- MeiHua Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Wei Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Juan Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xi Du
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Zhibin Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
4
|
Tran TT, Prakash H, Nagasawa T, Nakao M, Somamoto T. Characterization of CD83 homologs differently expressed during monocytes differentiation in ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105212. [PMID: 38878874 DOI: 10.1016/j.dci.2024.105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024]
Abstract
CD83 is a costimulatory molecule of antigen-presenting cells (APCs) that plays an important role in eliciting adaptive responses. It is also a well-known surface protein on mature dendritic cells (DCs). Furthermore, monocytes have been reported to differentiate into macrophages and monocyte-derived dendritic cells, which play an important role in innate immunity. CD83 expression affects the activation and maturation of DCs and stimulates cell-mediated immune responses. This study aims to reveal the CD83 expression during monocyte differentiation in teleosts, and the CD83 homologs evolutionary relationship. This study found two distinct CD83 homologs (GbCD83 and GbCD83-L) in ginbuna crucian carp (Gb) and investigated the evolutionary relationship among GbCD83 homologs and other vertebrates and the gene and protein expression levels of the homologs during 4 days of monocyte culture. The phylogenetic tree showed that the two GbCD83 homologs are classified into two distinct branches. Interestingly, only ostariophysians (Gb, common carp, rohu, fathead minnow and channel catfish), but not neoteleosts, mammals, and others, have two CD83 homologs. Morphological observation and colony-stimulating factor-1 receptor (CSF-1R), CD83, CD80/86, and CCR7 gene expressions illustrated that there is a differentiation of monocytes isolated from peripheral blood leukocytes after 4 days. Specifically, gene expression and immunocytochemistry revealed that GbCD83 is mainly expressed on monocytes at the early stage of cell culture, whereas GbCD83-L is expressed in the latter stage. These findings provided the first evidence of differential expression of CD83 homologs during monocytes differentiation in teleost.
Collapse
Affiliation(s)
- Trang Thu Tran
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan.
| |
Collapse
|
5
|
Krupa P, Wein H, Zemmrich LS, Zygmunt M, Muzzio DO. Pregnancy-related factors induce immune tolerance through regulation of sCD83 release. Front Immunol 2024; 15:1452879. [PMID: 39328416 PMCID: PMC11424458 DOI: 10.3389/fimmu.2024.1452879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
A well-balanced maternal immune system is crucial to maintain fetal tolerance in case of infections during pregnancy. Immune adaptations include an increased secretion of soluble mediators to protect the semi-allogeneic fetus from excessive pro-inflammatory response. B lymphocytes acquire a higher capacity to express CD83 and secrete soluble CD83 (sCD83) upon exposure to bacteria-derived components such as LPS. CD83 possesses immune modulatory functions and shows a promising therapeutic potential against inflammatory conditions. The administration of sCD83 to pregnant mice reduces LPS-induced abortion rates. The increased CD83 expression by endometrial B cells as compared to peripheral blood B cells suggests its modulatory role in the fetal tolerance, especially in the context of infection. We postulate that in pregnancy, CD83 expression and release is controlled by pregnancy-related hormones. The intra- and extracellular expression of CD83 in leukocytes from peripheral blood or decidua basalis and parietalis at term were analyzed by flow cytometry. After treatment with pregnancy-related hormones and LPS, ELISA and qPCR were performed to study sCD83 release and CD83 gene expression, respectively. Cleavage prediction analysis was used to find potential proteases targeting CD83. Expression of selected proteases was analyzed by ELISA. Higher levels of CD83 were found in CD11c+ dendritic cells, CD3+ T cells and CD19+ B cells from decidua basalis and decidua parietalis after LPS-stimulation in vitro. An increase of intracellular expression of CD83 was also detected in CD19+ B cells from both compartments. Stimulated B cells displayed significantly higher percentages of CD83+ cells than dendritic cells and T cells from decidua basalis and peripheral blood. Treatment of B lymphocytes with pregnancy-related molecules (E2, P4, TGF-β1 and hCG) enhanced the LPS-mediated increase of CD83 expression, while dexamethasone led to a reduction. Similarly, the release of sCD83 was increased under TGF-β1 treatment but decreased upon dexamethasone stimulation. Finally, we found that the hormonal regulation of CD83 expression is likely a result from a balance between gene transcription from CD83 and the modulation of the metalloproteinase MMP-7. Thus, data supports and complements our previous murine studies on hormonal regulation of CD83 expression, reinforcing its immunomodulatory relevance in anti-bacterial responses during pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University Medicine
Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Lin CH, Wu CJ, Cho S, Patkar R, Huth WJ, Lin LL, Chen MC, Israelsson E, Betts J, Niedzielska M, Patel SA, Duong HG, Gerner RR, Hsu CY, Catley M, Maciewicz RA, Chu H, Raffatellu M, Chang JT, Lu LF. Selective IL-27 production by intestinal regulatory T cells permits gut-specific regulation of T H17 cell immunity. Nat Immunol 2023; 24:2108-2120. [PMID: 37932457 PMCID: PMC11058069 DOI: 10.1038/s41590-023-01667-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
Regulatory T cells (Treg cells) are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, in the present study we show that interleukin (IL)-27 is specifically produced by intestinal Treg cells to regulate helper T17 cell (TH17 cell) immunity. Selectively increased intestinal TH17 cell responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+CD62Llo Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a new Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.
Collapse
Affiliation(s)
- Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Cheng-Jang Wu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sunglim Cho
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rasika Patkar
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William J Huth
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ling-Li Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Mei-Chi Chen
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Elisabeth Israelsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joanne Betts
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Niedzielska
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shefali A Patel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Han G Duong
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Romana R Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Chia-Yun Hsu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Matthew Catley
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rose A Maciewicz
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Koni M, Lopatina T, Grange C, Sarcinella A, Cedrino M, Bruno S, Buffolo F, Femminò S, Camussi G, Brizzi MF. Circulating extracellular vesicles derived from tumor endothelial cells hijack the local and systemic anti-tumor immune response: Role of mTOR/G-CSF pathway. Pharmacol Res 2023; 195:106871. [PMID: 37506784 DOI: 10.1016/j.phrs.2023.106871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Circulating tumour-derived extracellular vesicles are supposed to contribute to the spreading of distant metastasis. In this study, we investigated the impact of circulating extracellular vesicles derived from tumour-endothelial cells (TEVs) in the expansion of the metastatic bulk. We focus on the role of immune cells in controlling this process using the 4T1 triple negative breast cancer (TNBC) syngeneic model. 4T1 cells were intravenously injected and exposed to circulating TEVs from day 7. The lung, spleen, and bone marrow (BM) were recovered and analysed. We demonstrated that circulating TEVs boost lung metastasis and angiogenesis. FACS and immunohistochemically analyses revealed a significant enrichment of Ly6G+/F4/80+/CD11b+ cells and Ly6G+/F4/80-/CD11b+ in the lung and in the spleen, while Ly6G+/F4/80-/CD11b+ in the BM, indicating the occurrence of a systemic and local immune suppression. TEV immune suppressive properties were further supported by the increased expression of PD-L1, PD-1, and iNOS in the tumour mass. In addition, in vitro experiments demonstrated an increase of CD11+ cells, PD-L1+ myeloid and cancer cells, upregulation of LAG3, CTLA4 and PD-1 in T-cells, release of ROS and NOS, and impaired T-cell-mediated cytotoxic effect in co-culture of TEVs-preconditioned PBMCs and cancer cells. Granulocyte-colony stimulating factor (G-CSF) level was increased in vivo, and was involved in reshaping the immune response. Mechanistically, we also found that mTOR enriched TEVs support G-CSF release and trigger the phosphorylation of the S6 (Ser235/236) mTOR downstream target. Overall, we provided evidence that circulating TEVs enriched in mTOR supported G-CSF release thereby granting tumour immune suppression and metastasis outgrowth.
Collapse
Affiliation(s)
- Malvina Koni
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tatiana Lopatina
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabrizio Buffolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Saveria Femminò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
8
|
Maeda K, Tanioka T, Takahashi R, Watanabe H, Sueki H, Takimoto M, Hashimoto SI, Ikeo K, Miwa Y, Kasama T, Iwamoto S. MCAM+CD161- Th17 Subset Expressing CD83 Enhances Tc17 Response in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1867-1881. [PMID: 37186262 DOI: 10.4049/jimmunol.2200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Recent studies have highlighted the pathogenic roles of IL-17-producing CD8+ T cells (T-cytotoxic 17 [Tc17]) in psoriasis. However, the underlying mechanisms of Tc17 induction remain unclear. In this study, we focused on the pathogenic subsets of Th17 and their mechanism of promotion of Tc17 responses. We determined that the pathogenic Th17-enriched fraction expressed melanoma cell adhesion molecule (MCAM) and CCR6, but not CD161, because this subset produced IL-17A abundantly and the presence of these cells in the peripheral blood of patients has been correlated with the severity of psoriasis. Intriguingly, the serial analysis of gene expression revealed that CCR6+MCAM+CD161-CD4+ T cells displayed the gene profile for adaptive immune responses, including CD83, which is an activator for CD8+ T cells. Coculture assay with or without intercellular contact between CD4+ and CD8+ T cells showed that CCR6+MCAM+CD161-CD4+ T cells induced the proliferation of CD8+ T cells in a CD83-dependent manner. However, the production of IL-17A by CD8+ T cells required exogenous IL-17A, suggesting that intercellular contact via CD83 and the production of IL-17A from activated CD4+ T cells elicit Tc17 responses. Intriguingly, the CD83 expression was enhanced in the presence of IL-15, and CD83+ cells stimulated with IL-1β, IL-23, IL-15, and IL-15Rα did not express FOXP3. Furthermore, CCR6+MCAM+CD161-CD4+ T cells expressing CD83 were increased in the peripheral blood of patients, and the CD83+ Th17-type cells accumulated in the lesional skin of psoriasis. In conclusion, pathogenic MCAM+CD161- Th17 cells may be involved in the Tc17 responses via IL-17A and CD83 in psoriasis.
Collapse
Affiliation(s)
- Kohei Maeda
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiro Tanioka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Rei Takahashi
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Hideaki Watanabe
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Hirohiko Sueki
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Yusuke Miwa
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Kasama
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
9
|
Langguth P, Peckert-Maier K, Beck P, Kuhnt C, Draßner C, Deinzer A, Steinkasserer A, Wild AB. CD83 acts as immediate early response gene in activated macrophages and exhibits specific intracellular trafficking properties. Biochem Biophys Res Commun 2023; 647:37-46. [PMID: 36709671 DOI: 10.1016/j.bbrc.2023.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Macrophages (MΦ) are remarkably plastic cells, which assume phenotypes in every shade between a pro-inflammatory classical activation, and anti-inflammatory or resolving activation. Therefore, elucidation of mechanisms involved in shaping MΦ plasticity and function is key to understand their role during immunological balance. The immune-modulating CD83 molecule is expressed on activated immune cells and various tissue resident MΦ, rendering it an interesting candidate for affecting MΦ biology. However, in-depth analyses of the precise kinetics and trafficking of CD83 within pro-inflammatory, LPS activated bone-marrow-derived MΦ have not been performed. In this study, we show that activation with LPS leads to a very fast and strong, but transient increase of CD83 expression on these cells. Its expression peaks within 2 h of stimulation and is thereby faster than the early activation antigen CD69. To trace the CD83 trafficking through MΦs, we employed multiple inhibitors, thereby revealing a de novo synthesis and transport of the protein to the cell surface followed by lysosomal degradation, all within 6 h. Moreover, we found a similar expression kinetic and trafficking in human monocyte derived MΦ. This places CD83 at a very early point of MΦ activation suggesting an important role in decisions regarding the subsequent cellular fate.
Collapse
Affiliation(s)
- Pia Langguth
- Department of Immune Modulation, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Beck
- Department of Immune Modulation, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Draßner
- Department of Immune Modulation, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Deinzer
- Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander -Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Lin CH, Wu CJ, Cho S, Patkar R, Lin LL, Chen MC, Israelsson E, Betts J, Niedzielska M, Patel SA, Duong HG, Gerner RR, Hsu CY, Catley M, Maciewicz RA, Chu H, Raffatellu M, Chang JT, Lu LF. Selective IL-27 production by intestinal regulatory T cells permits gut-specific regulation of Th17 immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529261. [PMID: 36865314 PMCID: PMC9980002 DOI: 10.1101/2023.02.20.529261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Regulatory T (Treg) cells are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, here we show that IL-27 is specifically produced by intestinal Treg cells to regulate Th17 immunity. Selectively increased intestinal Th17 responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+TCF1+ Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a novel Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue, and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.
Collapse
Affiliation(s)
- Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Cheng-Jang Wu
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Sunglim Cho
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Rasika Patkar
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Ling-Li Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Mei-Chi Chen
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Elisabeth Israelsson
- Bioscience, Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joanne Betts
- Bioscience, Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Niedzielska
- Bioscience, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shefali A Patel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Han G Duong
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Romana R Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Chia-Yun Hsu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Matthew Catley
- Bioscience, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rose A Maciewicz
- Bioscience, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Riaz B, Islam SMS, Ryu HM, Sohn S. CD83 Regulates the Immune Responses in Inflammatory Disorders. Int J Mol Sci 2023; 24:ijms24032831. [PMID: 36769151 PMCID: PMC9917562 DOI: 10.3390/ijms24032831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Activating the immune system plays an important role in maintaining physiological homeostasis and defending the body against harmful infections. However, abnormalities in the immune response can lead to various immunopathological responses and severe inflammation. The activation of dendritic cells (DCs) can influence immunological responses by promoting the differentiation of T cells into various functional subtypes crucial for the eradication of pathogens. CD83 is a molecule known to be expressed on mature DCs, activated B cells, and T cells. Two isotypes of CD83, a membrane-bound form and a soluble form, are subjects of extensive scientific research. It has been suggested that CD83 is not only a ubiquitous co-stimulatory molecule but also a crucial player in monitoring and resolving inflammatory reactions. Although CD83 has been involved in immunological responses, its functions in autoimmune diseases and effects on pathogen immune evasion remain unclear. Herein, we outline current immunological findings and the proposed function of CD83 in inflammatory disorders.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - S. M. Shamsul Islam
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hye Myung Ryu
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Correspondence:
| |
Collapse
|
12
|
Silveira PA, Kupresanin F, Romano A, Hsu WH, Lo TH, Ju X, Chen HT, Roberts H, Baker DG, Clark GJ. Anti-Mouse CD83 Monoclonal Antibody Targeting Mature Dendritic Cells Provides Protection Against Collagen Induced Arthritis. Front Immunol 2022; 13:784528. [PMID: 35222372 PMCID: PMC8866188 DOI: 10.3389/fimmu.2022.784528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibodies targeting the activation marker CD83 can achieve immune suppression by targeting antigen-presenting mature dendritic cells (DC). This study investigated the immunosuppressive mechanisms of anti-CD83 antibody treatment in mice and tested its efficacy in a model of autoimmune rheumatoid arthritis. A rat anti-mouse CD83 IgG2a monoclonal antibody, DCR-5, was developed and functionally tested in mixed leukocyte reactions, demonstrating depletion of CD83+ conventional (c)DC, induction of regulatory DC (DCreg), and suppression of allogeneic T cell proliferation. DCR-5 injection into mice caused partial splenic cDC depletion for 2-4 days (mostly CD8+ and CD83+ cDC affected) with a concomitant increase in DCreg and regulatory T cells (Treg). Mice with collagen induced arthritis (CIA) treated with 2 or 6 mg/kg DCR-5 at baseline and every three days thereafter until euthanasia at day 36 exhibited significantly reduced arthritic paw scores and joint pathology compared to isotype control or untreated mice. While both doses reduced anti-collagen antibodies, only 6 mg/kg achieved significance. Treatment with 10 mg/kg DCR-5 was ineffective. Immunohistological staining of spleens at the end of CIA model with CD11c, CD83, and FoxP3 showed greater DC depletion and Treg induction in 6 mg/kg compared to 10 mg/kg DCR-5 treated mice. In conclusion, DCR-5 conferred protection from arthritis by targeting CD83, resulting in selective depletion of mature cDC and subsequent increases in DCreg and Treg. This highlights the potential for anti-CD83 antibodies as a targeted therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Adelina Romano
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Hsiao-Ting Chen
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Kira Biotech Pty Ltd., Brisbane, QLD, Australia
| |
Collapse
|
13
|
Peckert-Maier K, Royzman D, Langguth P, Marosan A, Strack A, Sadeghi Shermeh A, Steinkasserer A, Zinser E, Wild AB. Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. Int J Mol Sci 2022; 23:732. [PMID: 35054916 PMCID: PMC8775349 DOI: 10.3390/ijms23020732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| | | | | | | | | | | | | | | | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| |
Collapse
|
14
|
Mo L, Luo X, Yang G, Liu J, Yang L, Liu Z, Wang S, Liu D, Liu Z, Yang P. Epithelial cell-derived CD83 restores immune tolerance in the airway mucosa by inducing regulatory T-cell differentiation. Immunology 2021; 163:310-322. [PMID: 33539546 PMCID: PMC8207377 DOI: 10.1111/imm.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanism of generation of regulatory T cells (Treg) remains incompletely understood. Recent studies show that CD83 has immune regulatory functions. This study aims to investigate the role of epithelial cell-derived CD83 in the restoration of immune tolerance in the airway mucosa by inducing the Treg differentiation. In this study, CD83 and ovalbumin (OVA)-carrying exosomes were generated from airway epithelial cells. An airway allergy mouse model was developed to test the role of CD83/OVA-carrying exosomes in the suppression of airway allergy by inducing Treg generation. We observed that mouse airway epithelial cells expressed CD83 that could be up-regulated by CD40 ligand. The CD83 deficiency in epithelial cells retarded the Treg generation in the airway mucosa. CD83 up-regulated transforming growth factor-β-inducible early gene 1 expression in CD4+ T cells to promote Foxp3 expression. Exposure of primed CD4+ T cells to CD83/OVA-carrying exosomes promoted antigen-specific Treg generation. Administration of CD83/OVA-carrying exosomes inhibited experimental airway allergic response. In summary, airway epithelial cells express CD83 that is required in the Treg differentiation in the airway mucosa. Administration of CD83/OVA-carrying exosomes can inhibit airway allergy that has the translation potential in the treatment of airway allergic disorders.
Collapse
Affiliation(s)
- Li‐Hua Mo
- Research Center of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Xiang‐Qian Luo
- Department of Pediatric OtolaryngologyShenzhen HospitalSouthern Medical UniversityShenzhenChina
| | - Gui Yang
- Department of OtolaryngologyLonggang Central HospitalShenzhenChina
| | - Jiang‐Qi Liu
- Longgang ENT Hospital & Shenzhen ENT InstituteShenzhenChina
| | - Li‐Teng Yang
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zhi‐Qiang Liu
- Longgang ENT Hospital & Shenzhen ENT InstituteShenzhenChina
| | - Shuai Wang
- Longgang ENT Hospital & Shenzhen ENT InstituteShenzhenChina
| | - Da‐Bo Liu
- Department of Pediatric OtolaryngologyShenzhen HospitalSouthern Medical UniversityShenzhenChina
| | - Zhi‐Gang Liu
- Research Center of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Ping‐Chang Yang
- Research Center of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesShenzhenChina
| |
Collapse
|
15
|
Liedtke K, Alter C, Günther A, Hövelmeyer N, Klopfleisch R, Naumann R, Wunderlich FT, Buer J, Westendorf AM, Hansen W. Endogenous CD83 Expression in CD4 + Conventional T Cells Controls Inflammatory Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3217-3226. [PMID: 32341061 DOI: 10.4049/jimmunol.2000042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
The glycoprotein CD83 is known to be expressed by different immune cells including activated CD4+Foxp3+ regulatory T cells (Tregs) and CD4+Foxp3- conventional T cells. However, the physiological function of endogenous CD83 in CD4+ T cell subsets is still unclear. In this study, we have generated a new CD83flox mouse line on BALB/c background, allowing for specific ablation of CD83 in T cells upon breeding with CD4-cre mice. Tregs from CD83flox/flox/CD4-cretg/wt mice had similar suppressive activity as Tregs from CD83flox/flox/CD4-crewt/wt wild-type littermates, suggesting that endogenous CD83 expression is dispensable for the inhibitory capacity of Tregs. However, CD83-deficient CD4+ conventional T cells showed elevated proliferation and IFN-γ secretion as well as an enhanced capacity to differentiate into Th1 cells and Th17 cells upon stimulation in vitro. T cell-specific ablation of CD83 expression resulted in aggravated contact hypersensitivity reaction accompanied by enhanced CD4+ T cell activation. Moreover, adoptive transfer of CD4+CD45RBhigh T cells from CD83flox/flox/CD4-cretg /wt mice into Rag2-deficient mice elicited more severe colitis associated with increased serum concentrations of IL-12 and elevated CD40 expression on CD11c+ dendritic cells (DCs). Strikingly, DCs from BALB/c mice cocultured with CD83-deficient CD4+ conventional T cells showed enhanced CD40 expression and IL-12 secretion compared with DCs cocultured with CD4+ conventional T cells from CD83flox/flox/CD4-crewt/wt wild-type mice. In summary, these results indicate that endogenous CD83 expression in CD4+ conventional T cells plays a crucial role in controlling CD4+ T cell responses, at least in part, by regulating the activity of CD11c+ DCs.
Collapse
Affiliation(s)
- Katarina Liedtke
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Christina Alter
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Anne Günther
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Nadine Hövelmeyer
- Institute for Medical Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University of Berlin, 14163 Berlin, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; and
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
16
|
Grosche L, Knippertz I, König C, Royzman D, Wild AB, Zinser E, Sticht H, Muller YA, Steinkasserer A, Lechmann M. The CD83 Molecule - An Important Immune Checkpoint. Front Immunol 2020; 11:721. [PMID: 32362900 PMCID: PMC7181454 DOI: 10.3389/fimmu.2020.00721] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The CD83 molecule has been identified to be expressed on numerous activated immune cells, including B and T lymphocytes, monocytes, dendritic cells, microglia, and neutrophils. Both isoforms of CD83, the membrane-bound as well as its soluble form are topic of intensive research investigations. Several studies revealed that CD83 is not a typical co-stimulatory molecule, but rather plays a critical role in controlling and resolving immune responses. Moreover, CD83 is an essential factor during the differentiation of T and B lymphocytes, and the development and maintenance of tolerance. The identification of its interaction partners as well as signaling pathways have been an enigma for the last decades. Here, we report the latest data on the expression, structure, and the signaling partners of CD83. In addition, we review the regulatory functions of CD83, including its striking modulatory potential to maintain the balance between tolerance versus inflammation during homeostasis or pathologies. These immunomodulatory properties of CD83 emphasize its exceptional therapeutic potential, which has been documented in specific preclinical disease models.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina König
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Lechmann
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Wild AB, Krzyzak L, Peckert K, Stich L, Kuhnt C, Butterhof A, Seitz C, Mattner J, Grüner N, Gänsbauer M, Purtak M, Soulat D, Winkler TH, Nitschke L, Zinser E, Steinkasserer A. CD83 orchestrates immunity toward self and non-self in dendritic cells. JCI Insight 2019; 4:e126246. [PMID: 31527313 PMCID: PMC6824307 DOI: 10.1172/jci.insight.126246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 09/04/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are crucial to balance protective immunity and autoimmune inflammatory processes. Expression of CD83 is a well-established marker for mature DCs, although its physiological role is still not completely understood. Using a DC-specific CD83-conditional KO (CD83ΔDC) mouse, we provide new insights into the function of CD83 within this cell type. Interestingly, CD83-deficient DCs produced drastically increased IL-2 levels and displayed higher expression of the costimulatory molecules CD25 and OX40L, which causes superior induction of antigen-specific T cell responses and compromises Treg suppressive functions. This also directly translates into accelerated immune responses in vivo. Upon Salmonella typhimurium and Listeria monocytogenes infection, CD83ΔDC mice cleared both pathogens more efficiently, and CD83-deficient DCs expressed increased IL-12 levels after bacterial encounter. Using the experimental autoimmune encephalomyelitis model, autoimmune inflammation was dramatically aggravated in CD83ΔDC mice while resolution of inflammation was strongly reduced. This phenotype was associated with increased cell influx into the CNS accompanied by elevated Th17 cell numbers. Concomitantly, CD83ΔDC mice had reduced Treg numbers in peripheral lymphoid organs. In summary, we show that CD83 ablation on DCs results in enhanced immune responses by dysregulating tolerance mechanisms and thereby impairing resolution of inflammation, which also demonstrates high clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jochen Mattner
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Niklas Grüner
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Gänsbauer
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Purtak
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Didier Soulat
- Institute of Microbiology — Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
18
|
Zinser E, Naumann R, Wild AB, Michalski J, Deinzer A, Stich L, Kuhnt C, Steinkasserer A, Knippertz I. Endogenous Expression of the Human CD83 Attenuates EAE Symptoms in Humanized Transgenic Mice and Increases the Activity of Regulatory T Cells. Front Immunol 2019; 10:1442. [PMID: 31293592 PMCID: PMC6603205 DOI: 10.3389/fimmu.2019.01442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
The CD83 is a type I membrane protein and part of the immunoglobulin superfamily of receptors. CD83 is involved in the regulation of antigen presentation and dendritic cell dependent allogeneic T cell proliferation. A soluble form of CD83 inhibits dendritic cell maturation and function. Furthermore, CD83 is expressed on activated B cells, T cells, and in particular on regulatory T cells. Previous studies on murine CD83 demonstrated this molecule to be involved in several immune-regulatory processes, comprising that CD83 plays a key role in the development und function of different immune cells. In order to get further insights into the function of the human CD83 and to provide preclinical tools to guide the function of CD83/sCD83 for therapeutic purposes we generated Bacterial Artificial Chromosomes (BAC) transgenic mice. BACs are excellent tools for manipulating large DNA fragments and are utilized to engineer transgenic mice by pronuclear injection. Two different founders of BAC transgenic mice expressing human CD83 (BAC-hCD83tg mice) were generated and were examined for the hCD83 expression on different immune cells as well as both the in vitro and in vivo role of human CD83 (hCD83) in health and disease. Here, we found the hCD83 molecule to be present on activated DCs, B cells and subtypes of CD4+ T cells. CD8+ T cells, on the other hand, showed almost no hCD83 expression. To address the function of hCD83, we performed in vitro mixed lymphocyte reactions (MLR) as well as suppression assays and we used the in vivo model of experimental autoimmune encephalomyelitis (EAE) comparing wild-type and hCD83-BAC mice. Results herein showed a clearly diminished capacity of hCD83-BAC-derived T cells to proliferate accompanied by an enhanced activation and suppressive activity of hCD83-BAC-derived Tregs. Furthermore, hCD83-BAC mice were found to recover faster from EAE-associated symptoms than wild-type mice, encouraging the relevance also of the hCD83 as a key molecule for the regulatory phenotype of Tregs in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Transgenic
- Somatostatin-Secreting Cells/immunology
- Somatostatin-Secreting Cells/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- CD83 Antigen
Collapse
Affiliation(s)
- Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Michalski
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andrea Deinzer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
Li Z, Ju X, Silveira PA, Abadir E, Hsu WH, Hart DNJ, Clark GJ. CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol 2019; 10:1312. [PMID: 31231400 PMCID: PMC6568190 DOI: 10.3389/fimmu.2019.01312] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
CD83 is a member of the immunoglobulin (Ig) superfamily and is expressed in membrane bound or soluble forms. Membrane CD83 (mCD83) can be detected on a variety of activated immune cells, although it is most highly and stably expressed by mature dendritic cells (DC). mCD83 regulates maturation, activation and homeostasis. Soluble CD83 (sCD83), which is elevated in the serum of patients with autoimmune disease and some hematological malignancies is reported to have an immune suppressive function. While CD83 is emerging as a promising immune modulator with therapeutic potential, some important aspects such as its ligand/s, intracellular signaling pathways and modulators of its expression are unclear. In this review we discuss the recent biological findings and the potential clinical value of CD83 based therapeutics in various conditions including autoimmune disease, graft-vs.-host disease, transplantation and hematological malignancies.
Collapse
Affiliation(s)
- Ziduo Li
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Pablo A. Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Derek N. J. Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Bo L, Guojun T, Li G. An Expanded Neuroimmunomodulation Axis: sCD83-Indoleamine 2,3-Dioxygenase-Kynurenine Pathway and Updates of Kynurenine Pathway in Neurologic Diseases. Front Immunol 2018; 9:1363. [PMID: 29963055 PMCID: PMC6013554 DOI: 10.3389/fimmu.2018.01363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
Many neurologic diseases are related to autoimmune dysfunction and a variety of molecules or reaction pathways are involved in the regulation of immune function of the nervous system. Soluble CD83 (sCD83) is the soluble form of CD83, a specific marker of mature dendritic cell, which has recently been shown to have an immunomodulatory effect. Indoleamine 2,3-dioxygenase (IDO; corresponding enzyme intrahepatic, tryptophan 2,3-dioxygenase, TDO), a rate-limiting enzyme of extrahepatic tryptophan kynurenine pathway (KP) participates in the immunoregulation through a variety of mechanisms solely or with the synergy of sCD83, and the imbalances of metabolites of KP were associated with immune dysfunction. With the complement of sCD83 to IDO-KP, a previously known immunomodulatory axis, this review focused on an expanded neuroimmunomodulation axis: sCD83-IDO-KP and its involvement in nervous system diseases.
Collapse
Affiliation(s)
- Li Bo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tan Guojun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Doebbeler M, Koenig C, Krzyzak L, Seitz C, Wild A, Ulas T, Baßler K, Kopelyanskiy D, Butterhof A, Kuhnt C, Kreiser S, Stich L, Zinser E, Knippertz I, Wirtz S, Riegel C, Hoffmann P, Edinger M, Nitschke L, Winkler T, Schultze JL, Steinkasserer A, Lechmann M. CD83 expression is essential for Treg cell differentiation and stability. JCI Insight 2018; 3:99712. [PMID: 29875316 PMCID: PMC6124443 DOI: 10.1172/jci.insight.99712] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Foxp3-positive regulatory T cells (Tregs) are crucial for the maintenance of immune homeostasis and keep immune responses in check. Upon activation, Tregs are transferred into an effector state expressing transcripts essential for their suppressive activity, migration, and survival. However, it is not completely understood how different intrinsic and environmental factors control differentiation. Here, we present for the first time to our knowledge data suggesting that Treg-intrinsic expression of CD83 is essential for Treg differentiation upon activation. Interestingly, mice with Treg-intrinsic CD83 deficiency are characterized by a proinflammatory phenotype. Furthermore, the loss of CD83 expression by Tregs leads to the downregulation of Treg-specific differentiation markers and the induction of an inflammatory profile. In addition, Treg-specific conditional knockout mice showed aggravated autoimmunity and an impaired resolution of inflammation. Altogether, our results show that CD83 expression in Tregs is an essential factor for the development and function of effector Tregs upon activation. Since Tregs play a crucial role in the maintenance of immune tolerance and thus prevention of autoimmune disorders, our findings are also clinically relevant.
Collapse
Affiliation(s)
- Marina Doebbeler
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christina Koenig
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lena Krzyzak
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christine Seitz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Wild
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Thomas Ulas
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Kevin Baßler
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Dmitry Kopelyanskiy
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Alina Butterhof
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Simon Kreiser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Christin Riegel
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Winkler
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim L. Schultze
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Lechmann
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
22
|
Zhang L, Niu X, Sun L, She Z, Tan R, Wang W. Immune response of bovine sourced cross-linked collagen sponge for hemostasis. J Biomater Appl 2017; 32:920-931. [PMID: 29199891 DOI: 10.1177/0885328217744080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A comprehensive immunogenicity scheme is proposed to examine immune response of bovine sourced hemostasis collagen sponge to establish foundation for further researches and decrease the incidence of adverse reaction in clinical trials. Compared with negative control group without any implant, spleen and lymph nodes morphology show no apparent swelling in mice with different doses of collagen sponge implants. Immune cells population, especially lymph nodes cells population, is practically coincident with organs. However, splenic cells display slight proliferation in early phase following collagen sponge implantation. Splenic cells apoptosis also demonstrates no significant difference among all groups. T lymphocytes subsets, CD4/CD8 cells ratio, in spleen and lymph nodes are practically normal. Splenic cells Ki67 + proportions do not exhibit significant difference between collagen sponge groups and negative control group. Humoral response is determined by detection of IgG and IgM concentration in serum, not exhibiting remarkable increase with collagen sponge implantation, compared to the drastic increase in positive control group with bovine tendon implantation. Local analysis around implants by hematoxylin-eosin staining discovers slight cell infiltration around collagen sponge. Tumour necrosis factor-α immunostaining indicates slight inflammation in early phase following collagen sponge implantation, but interferon-γ immunostaining is negligible even in positive control group. Collagen sponge, especially in high dose, may have evoked benign immune response in BALB/c mice, but this response is transient. The present evaluation scheme for immune response is integrated and comprehensive, suitable for various biomaterials.
Collapse
Affiliation(s)
- Lin Zhang
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Xufeng Niu
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Lei Sun
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Zhending She
- 2 Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, P. R. China
| | - Rongwei Tan
- 2 Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, P. R. China
| | - Wei Wang
- 3 Department of Immunology, School of Basic Medical Sciences, 33133 Peking University , Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, P. R. China
| |
Collapse
|
23
|
Packhäuser KRH, Roman-Sosa G, Ehrhardt J, Krüger D, Zygmunt M, Muzzio DO. A Kinetic Study of CD83 Reveals an Upregulation and Higher Production of sCD83 in Lymphocytes from Pregnant Mice. Front Immunol 2017; 8:486. [PMID: 28491062 PMCID: PMC5405069 DOI: 10.3389/fimmu.2017.00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
For the normal development of pregnancy, a balance between immune tolerance and defense is crucial. However, the mechanisms mediating such a balance are not fully understood. CD83 is a transmembrane protein whose expression has been linked to anti-inflammatory functions of T and B cells. The soluble form of CD83, released by cleavage of the membrane-bound protein, has strong anti-inflammatory properties and was successfully tested in different mouse models. It is assumed that this molecule contributes to the establishment of immune tolerance. Therefore, we postulated that the expression of CD83 is crucial for immune tolerance during pregnancy in mice. Here, we demonstrated that the membrane-bound form of CD83 was upregulated in T and B cells during allogeneic murine pregnancies. An upregulation was also evident in the main splenic B cell subtypes: marginal zone, follicular zone, and transitional B cells. We also showed that there was an augmentation in the number of CD83+ cells toward the end of pregnancy within splenic B and CD4+ T cells, while CD83+ dendritic cells were reduced in spleen and inguinal lymph nodes of pregnant mice. Additionally, B lymphocytes in late-pregnancy presented a markedly higher sensitivity to LPS in terms of CD83 expression and sCD83 release. Progesterone induced a dosis-dependent upregulation of CD83 on T cells. Our data suggest that the regulation of CD83 expression represents a novel pathway of fetal tolerance and protection against inflammatory threats during pregnancy.
Collapse
Affiliation(s)
| | - Gleyder Roman-Sosa
- Département de Virologie, Unité de Virologie Structurale, Institut Pasteur, Paris, France
| | - Jens Ehrhardt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Diana Krüger
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Heilingloh CS, Klingl S, Egerer-Sieber C, Schmid B, Weiler S, Mühl-Zürbes P, Hofmann J, Stump JD, Sticht H, Kummer M, Steinkasserer A, Muller YA. Crystal Structure of the Extracellular Domain of the Human Dendritic Cell Surface Marker CD83. J Mol Biol 2017; 429:1227-1243. [PMID: 28315353 DOI: 10.1016/j.jmb.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 11/27/2022]
Abstract
CD83 is a type-I membrane protein and an efficient marker for identifying mature dendritic cells. Whereas membrane-bound, full-length CD83 co-stimulates the immune system, a soluble variant (sCD83), consisting of the extracellular domain only, displays strong immune-suppressive activities. Besides a prediction that sCD83 adopts a V-set Ig-like fold, however, little is known about the molecular architecture of CD83 and the mechanism by which CD83 exerts its function on dendritic cells and additional immune cells. Here, we report the crystal structure of human sCD83 up to a resolution of 1.7Å solved in three different crystal forms. Interestingly, β-strands C', C″, and D that are typical for V-set Ig-domains could not be traced in sCD83. Mass spectrometry analyses, limited proteolysis experiments, and bioinformatics studies show that the corresponding segment displays enhanced main-chain accessibility, extraordinary low sequence conservation, and a predicted high disorder propensity. Chimeric proteins with amino acid swaps in this segment show unaltered immune-suppressive activities in a TNF-α assay when compared to wild-type sCD83. This strongly indicates that this segment does not participate in the biological activity of CD83. The crystal structure of CD83 shows the recurrent formation of dimers and trimers in the various crystal forms and reveals strong structural similarities between sCD83 and B7 family members and CD48, a signaling lymphocyte activation molecule family member. This suggests that CD83 exerts its immunological activity by mixed homotypic and heterotypic interactions as typically observed for proteins present in the immunological synapse.
Collapse
Affiliation(s)
- Christiane S Heilingloh
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Stefan Klingl
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Claudia Egerer-Sieber
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Benedikt Schmid
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Sigrid Weiler
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Joachim D Stump
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany.
| |
Collapse
|
25
|
Horvatinovich JM, Grogan EW, Norris M, Steinkasserer A, Lemos H, Mellor AL, Tcherepanova IY, Nicolette CA, DeBenedette MA. Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14 + Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2286-2301. [PMID: 28193829 PMCID: PMC5337811 DOI: 10.4049/jimmunol.1600802] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022]
Abstract
The transmembrane protein CD83, expressed on APCs, B cells, and T cells, can be expressed as a soluble form generated by alternative splice variants and/or by shedding. Soluble CD83 (sCD83) was shown to be involved in negatively regulating the immune response. sCD83 inhibits T cell proliferation in vitro, supports allograft survival in vivo, prevents corneal transplant rejection, and attenuates the progression and severity of autoimmune diseases and experimental colitis. Although sCD83 binds to human PBMCs, the specific molecules that bind sCD83 have not been identified. In this article, we identify myeloid differentiation factor-2 (MD-2), the coreceptor within the TLR4/MD-2 receptor complex, as the high-affinity sCD83 binding partner. TLR4/MD-2 mediates proinflammatory signal delivery following recognition of bacterial LPSs. However, altering TLR4 signaling can attenuate the proinflammatory cascade, leading to LPS tolerance. Our data show that binding of sCD83 to MD-2 alters this signaling cascade by rapidly degrading IL-1R-associated kinase-1, leading to induction of the anti-inflammatory mediators IDO, IL-10, and PGE2 in a COX-2-dependent manner. sCD83 inhibited T cell proliferation, blocked IL-2 secretion, and rendered T cells unresponsive to further downstream differentiation signals mediated by IL-2. Therefore, we propose the tolerogenic mechanism of action of sCD83 to be dependent on initial interaction with APCs, altering early cytokine signal pathways and leading to T cell unresponsiveness.
Collapse
Affiliation(s)
| | | | - Marcus Norris
- Research Department, Argos Therapeutics, Inc., Durham, NC 27704
| | - Alexander Steinkasserer
- Cancer Immunology, Department of Immune Modulation, University Hospital Erlangen, University of Erlangen-Nuremberg, D-91052 Erlangen, Germany; and
| | - Henrique Lemos
- Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Andrew L Mellor
- Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | | | | | | |
Collapse
|
26
|
Heilingloh CS, Grosche L, Kummer M, Mühl-Zürbes P, Kamm L, Scherer M, Latzko M, Stamminger T, Steinkasserer A. The Major Immediate-Early Protein IE2 of Human Cytomegalovirus Is Sufficient to Induce Proteasomal Degradation of CD83 on Mature Dendritic Cells. Front Microbiol 2017; 8:119. [PMID: 28203230 PMCID: PMC5285329 DOI: 10.3389/fmicb.2017.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the prototypic beta-herpesvirus and widespread throughout the human population. While infection is asymptomatic in healthy individuals, it can lead to high morbidity and mortality in immunocompromised persons. Importantly, HCMV evolved multiple strategies to interfere with immune cell function in order to establish latency in infected individuals. As mature DCs (mDCs) are antigen-presenting cells able to activate naïve T cells they play a crucial role during induction of effective antiviral immune responses. Interestingly, earlier studies demonstrated that the functionally important mDC surface molecule CD83 is down-regulated upon HCMV infection resulting in a reduced T cell stimulatory capacity of the infected cells. However, the viral effector protein and the precise mechanism of HCMV-mediated CD83 reduction remain to be discovered. Using flow cytometric analyses, we observed significant down-modulation of CD83 surface expression becoming significant already 12 h after HCMV infection. Moreover, Western bot analyses revealed that, in sharp contrast to previous studies, loss of CD83 is not restricted to the membrane-bound molecule, but also occurs intracellularly. Furthermore, inhibition of the proteasome almost completely restored CD83 surface expression during HCMV infection. Results of infection kinetics and cycloheximide-actinomycin D-chase experiments, strongly suggested that an HCMV immediate early gene product is responsible for the induction of CD83 down-modulation. Consequently, we were able to identify the major immediate early protein IE2 as the viral effector protein that induces proteasomal CD83 degradation.
Collapse
Affiliation(s)
| | - Linda Grosche
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Lisa Kamm
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Myriam Scherer
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg Erlangen, Germany
| | - Melanie Latzko
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg Erlangen, Germany
| | | |
Collapse
|
27
|
Ju X, Silveira PA, Hsu WH, Elgundi Z, Alingcastre R, Verma ND, Fromm PD, Hsu JL, Bryant C, Li Z, Kupresanin F, Lo TH, Clarke C, Lee K, McGuire H, Fazekas de St Groth B, Larsen SR, Gibson J, Bradstock KF, Clark GJ, Hart DNJ. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4613-4625. [PMID: 27837105 DOI: 10.4049/jimmunol.1600339] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023]
Abstract
CD83 is a member of the Ig gene superfamily, first identified in activated lymphocytes. Since then, CD83 has become an important marker for defining activated human dendritic cells (DC). Several potential CD83 mRNA isoforms have been described, including a soluble form detected in human serum, which may have an immunosuppressive function. To further understand the biology of CD83, we examined its expression in different human immune cell types before and after activation using a panel of mouse and human anti-human CD83 mAb. The mouse anti-human CD83 mAbs, HB15a and HB15e, and the human anti-human CD83 mAb, 3C12C, were selected to examine cytoplasmic and surface CD83 expression, based on their different binding characteristics. Glycosylation of CD83, the CD83 mRNA isoforms, and soluble CD83 released differed among blood DC, monocytes, and monocyte-derived DC, and other immune cell types. A small T cell population expressing surface CD83 was identified upon T cell stimulation and during allogeneic MLR. This subpopulation appeared specifically during viral Ag challenge. We did not observe human CD83 on unstimulated human natural regulatory T cells (Treg), in contrast to reports describing expression of CD83 on mouse Treg. CD83 expression was increased on CD4+, CD8+ T, and Treg cells in association with clinical acute graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. The differential expression and function of CD83 on human immune cells reveal potential new roles for this molecule as a target of therapeutic manipulation in transplantation, inflammation, and autoimmune diseases.
Collapse
Affiliation(s)
- Xinsheng Ju
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Pablo A Silveira
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Wei-Hsun Hsu
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zehra Elgundi
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Renz Alingcastre
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Nirupama D Verma
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Phillip D Fromm
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jennifer L Hsu
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Christian Bryant
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ziduo Li
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fiona Kupresanin
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Tsun-Ho Lo
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Candice Clarke
- Anatomical Pathology Department, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia; and
| | - Kenneth Lee
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Anatomical Pathology Department, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia; and
| | - Helen McGuire
- Centenary Institute, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | | | - Stephen R Larsen
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - John Gibson
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Kenneth F Bradstock
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Georgina J Clark
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Derek N J Hart
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia;
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
28
|
TGF-β1 along with other platelet contents augments Treg cells to suppress anti-FVIII immune responses in hemophilia A mice. Blood Adv 2016; 1:139-151. [PMID: 28164173 DOI: 10.1182/bloodadvances.2016001453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Platelets are a rich source of many cytokines and chemokines including transforming growth factor β 1 (TGF-β1). TGF-β1 is required to convert conventional CD4+ T (Tconv) cells into induced regulatory T (iTreg) cells that express the transcription factor Foxp3. Whether platelet contents will affect Treg cell properties has not been explored. In this study, we show that unfractionated platelet lysates (pltLys) containing TGF-β1 efficiently induced Foxp3 expression in Tconv cells. The common Treg cell surface phenotype and in vitro suppressive activity of unfractionated pltLys-iTreg cells were similar to those of iTreg cells generated using purified TGF-β1 (purTGFβ-iTreg) cells. However, there were substantial differences in gene expression between pltLys-iTreg and purTGFβ-iTreg cells, especially in granzyme B, interferon γ, and interleukin-2 (a 30.99-, 29.18-, and 17.94-fold difference, respectively) as determined by gene microarray analysis. In line with these gene signatures, we found that pltLys-iTreg cells improved cell recovery after transfer and immune suppressive function compared with purTGFβ-iTreg cells in factor VIII (FVIII)-deficient (F8null, hemophilia A model) mice after recombinant human FVIII (rhF8) infusion. Acute antibody-mediated platelet destruction in F8null mice followed by rhF8 infusion increased the number of Treg cells and suppressed the antibody response to rhF8. Consistent with these data, ex vivo proliferation of F8-specific Treg cells from platelet-depleted animals increased when restimulated with rhF8. Together, our data suggest that pltLys-iTreg cells may have advantages in emerging clinical applications and that platelet contents impact the properties of iTreg cells induced by TGF-β1.
Collapse
|
29
|
Krzyzak L, Seitz C, Urbat A, Hutzler S, Ostalecki C, Gläsner J, Hiergeist A, Gessner A, Winkler TH, Steinkasserer A, Nitschke L. CD83 Modulates B Cell Activation and Germinal Center Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3581-94. [PMID: 26983787 DOI: 10.4049/jimmunol.1502163] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2023]
Abstract
CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83(-/-) mice have a strong reduction of CD4(+) T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell-specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo.
Collapse
Affiliation(s)
- Lena Krzyzak
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Christine Seitz
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Anne Urbat
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Stefan Hutzler
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Joachim Gläsner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - Andreas Hiergeist
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - André Gessner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - Thomas H Winkler
- Division of Genetics, Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen, 91058 Erlangen, Germany
| | | | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany;
| |
Collapse
|
30
|
Tanaka Y, Mizuguchi M, Takahashi Y, Fujii H, Tanaka R, Fukushima T, Tomoyose T, Ansari AA, Nakamura M. Human T-cell leukemia virus type-I Tax induces the expression of CD83 on T cells. Retrovirology 2015; 12:56. [PMID: 26129803 PMCID: PMC4487981 DOI: 10.1186/s12977-015-0185-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/21/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND CD83, a cell surface glycoprotein that is stably expressed on mature dendritic cells, can be transiently induced on other hematopoietic cell lineages upon cell activation. In contrast to the membrane form of CD83, soluble CD83 appears to be immunosuppressive. In an analysis of the phenotype of leukemic CD4(+) T cells from patients with adult T-cell leukemia (ATL), we found that a number of primary CD4(+) T cells became positive for cell surface CD83 after short-term culture, and that most of these CD83(+) CD4(+) T cells were positive for human T-cell leukemia virus type-I (HTLV-I) Tax (Tax1). We hypothesized that Tax1 is involved in the induction of CD83. RESULT We found that CD83 was expressed selectively on Tax1-expressing human CD4(+) T cells in short-term cultured peripheral blood mononuclear cells (PBMCs) isolated from HTLV-I(+) donors, including ATL patients and HTLV-I carriers. HTLV-I-infected T cell lines expressing Tax1 also expressed cell surface CD83 and released soluble CD83. CD83 can be expressed in the JPX-9 cell line by cadmium-mediated Tax1 induction and in Jurkat cells or PBMCs by Tax1 introduction via infection with a recombinant adenovirus carrying the Tax1 gene. The CD83 promoter was activated by Tax1 in an NF-κB-dependent manner. Based on a previous report showing soluble CD83-mediated prostaglandin E2 (PGE2) production from human monocytes in vitro, we tested if PGE2 affected HTLV-I propagation, and found that PGE2 strongly stimulated expression of Tax1 and viral structural molecules. CONCLUSIONS Our results suggest that HTLV-I induces CD83 expression on T cells via Tax1 -mediated NF-κB activation, which may promote HTLV-I infection in vivo.
Collapse
Affiliation(s)
- Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yoshiaki Takahashi
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Hideki Fujii
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takeaki Tomoyose
- Division of Endocrinology, Diabetes and Metabolism, Haematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
31
|
Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015:171520. [PMID: 25961057 PMCID: PMC4413981 DOI: 10.1155/2015/171520] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells. In this context, it is not surprising that GITR appears to be a marker of active Tregs, as suggested by the association of GITR expression with other markers of Treg activation or cytokines with suppressive activity (e.g., IL-10 and TGF-β), the presence of GITR(+) cells in tissues where Tregs are active (e.g., solid tumours), or functional studies on Tregs. Furthermore, some Treg subsets including Tr1 cells express either low or no classical Treg markers (e.g., FoxP3 and CD25) and do express GITR. Therefore, when evaluating changes in the number of Tregs in human diseases, GITR expression must be evaluated. Moreover, GITR should be considered as a marker for isolating Tregs.
Collapse
|